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Abstract

We consider a novel dynamic pricing and learning setting where in addition to
setting prices of products in sequential rounds, the seller also ex-ante commits to
‘advertising schemes’. That is, in the beginning of each round the seller can decide
what kind of signal they will provide to the buyer about the product’s quality upon
realization. Using the popular Bayesian persuasion framework to model the effect
of these signals on the buyers’ valuation and purchase responses, we formulate
the problem of finding an optimal design of the advertising scheme along with a
pricing scheme that maximizes the seller’s expected revenue. Without any apriori
knowledge of the buyers’ demand function, our goal is to design an online algo-
rithm that can use past purchase responses to adaptively learn the optimal pricing
and advertising strategy. We study the regret of the algorithm when compared to
the optimal clairvoyant price and advertising scheme.
Our main result is a computationally efficient online algorithm that achieves an
O(T 2/3(m log T )1/3) regret bound when the valuation function is linear in the
product quality. Here m is the cardinality of the discrete product quality domain
and T is the time horizon. This result requires some natural monotonicity and
Lipschitz assumptions on the valuation function, but no Lipschitz or smoothness
assumption on the buyers’ demand function. For constant m, our result matches
the regret lower bound for dynamic pricing within logarithmic factors, which is
a special case of our problem. We also obtain several improved results for the
widely considered special case of additive valuations, including an Õ

�
T

2/3
�

re-
gret bound independent of m when m  T

1/3. 1

1 Introduction

Dynamic pricing is a key strategy in revenue management that allows sellers to anticipate and influ-
ence demand in order to maximize revenue and/or utility. When the customer valuation and demand
response for a product is apriori unknown, price variation can also be used to observe and learn the
demand function in order to adaptively optimize price and revenue over time. This learning and
optimization problem has been a focus of much recent literature that uses exploration-exploitation
and multi-armed bandit techniques with dynamic pricing algorithms (e.g., see [43, 16, 41, 8]).

In practice, there is another important tool available to sellers in the form of advertising, using
which the sellers can inform and shape customers’ valuations of a product. It has been theoretically
[53, 54] and empirically [55, 49] shown that advertisements can serve as a credible signal of the
quality or characteristics of the advertised product. Sellers can use advertising to provide partial
information about a product in order to better position the product in the market and potentially
increase customers’ chances of purchasing the product. For example, as a common strategy to drive

1A full version of this work is at https://arxiv.org/abs/2304.14385.
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subscriptions, online newspapers may use a “teaser” that selectively includes previews of some
news articles that are likely to entice readers to subscribe for access to the full story; in the online
used-car market, the dealer can advertise the used car by emphasizing different aspects of the car,
such as fuel efficiency/mileage/unique features, or selectively disclose history-report information
from reputable third parties, catering to specific buyer interests; a film distributor may advertise the
movie by selectively showing footage from the film.

However, advertising must be carefully designed to achieve the desired gains. At one glance up-
selling or inflating the product quality by selectively disclosing only favorable information might
appear as a profitable advertising strategy. But such strategies carry the disadvantage of not being
very effective in modifying customer beliefs as customers may not trust that the provided informa-
tion accurately reflects the product’s true quality. Also, the design of the advertising strategy needs
to interact with the design of the pricing strategy and account for the demand function. For example,
to sell highly-priced products or under heavy competition/low demand, the customer may need to
be convinced of a good match through more information and thorough insights about the product
characteristics. On the other hand, in markets with high demand or for very low-priced goods, the
seller may get away with revealing very little information. An extreme example of this phenomenon
is the concept of mystery deal boxes sold by some retailers like Amazon/Woot, where the customers
are not even made aware of the exact contents of the low-cost box that they are purchasing.2

In this paper, we use a Bayesian persuasion framework [39] to model the effect of an advertising
strategy on customers’ beliefs about product quality and consequently their purchase decisions. Our
novel formulation combines the Bayesian persuasion model with dynamic pricing and learning in
order to quantify the tradeoffs between the design of the pricing and advertising strategies and their
combined impact on the revenue outcomes. Without any apriori knowledge of the demand function,
our goal is to design an online algorithm that can use past customer responses to adaptively learn a
joint pricing and advertising strategy that maximizes the seller’s revenue.

Bayesian persuasion is a popular framework for information design with several different settings
considered in the literature [39, 30, 38, 10]. We consider a Bayesian persuasion model where the
sender (seller) ex-ante commits to an information policy (advertising strategy) that prescribes the
distribution of signals the sender will provide to the receiver (buyer) on observing the true state of
the world (product quality). The receiver, on observing the sender’s signal, uses Bayes’ rule to form
a posterior on the state of the world. The receiver’s action (purchase decision) then optimizes their
expected utility under this posterior.

Problem formulation. Specifically, our dynamic pricing and advertising problem is formulated as
follows. There are T sequential and discrete rounds. In each round, a fresh product is offered by the
seller, with a public prior distribution � on the product quality ! 2 ⌦ ✓ [0, 1]. At the beginning of
each round t, before observing the realized quality of the t

th product, the seller commits to a price
pt 2 [0, U ] and an advertising strategy �t, where �t(�|!) prescribes the distribution of signal � 2 ⌃
where ⌃ is an arbitrary signaling space given the realized product quality ! 2 ⌦.

A buyer arrives in each round t with private type ✓t generated i.i.d. from a distribution with CDF
F (·) and support3 ⇥ = [0, 1]. The CDF F (·) (or equivalently the demand function D(·) , 1�F (·))
is fixed but unknown to the seller. For a buyer of type ✓ 2 ⇥, the valuation of a product with product
quality ! is given by function v(✓,!).

The t
th product quality !t ⇠ � is then realized and observed by the seller. The buyer cannot

observe the realized product quality, but only a signal �t ⇠ �t(·|!t) provided by the seller. The
buyer uses this signal along with the prior � to formulate a Bayesian posterior distribution on the
product quality µt(!|�t) / �t(�t|!) ·�(!). The buyer then purchases the product if and only if the
expected valuation under this posterior E!⇠µt(·|�t)[v(✓t,!)] is greater than or equal to the price pt.
We denote the buyer decision at time t by at 2 {0, 1} with at = 1 denoting purchase.

Remark 1.1. We consider the setting where buyers use only the prior distribution and signal in the
current round, and not the signals in the past rounds, to make their decisions. This is motivated by

2For example, when selling the opaque products, the precise product features or characteristics are hidden
from the customers [31].

3Our results can be generalized to the setting where ⇥ is any compact interval [✓, ✓̄] ✓ R+, or unbounded
(see Remark 2.3).
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the fact that at each round, the buyer is facing a fresh product, whose quality is drawn independently
across time. Thus, previous signals do not carry information about the current product. Fresh
products with independent qualities are common in many real-world applications such as second-
hand markets, mystery boxes sold by Amazon/Woot, etc. This similar problem structure has also
been studied in the online/sequential Bayesian persuasion literature with repeated interactions of
sender and receivers, for example, see [61, 24, 23, 33, 58, 15].

A summary of the game timeline is as follows: at t 2 [T ], (1) the seller commits to a price pt 2 [0, U ]
and an advertising strategy �t; (2) a buyer t with private type ✓t ⇠ F arrives; (3) a product with
quality !t ⇠ � is realized; the seller sends signal �t ⇠ �t(·|!t) to the buyer; (4) the buyer formulates
Bayesian posterior µt(!|�t), and the buyer purchases the product (denoted by at = 1) to generate
revenue pt if and only if her expected value exceeds the price, i.e., E!⇠µt(·|�t)[v(✓t,!)] � pt.

Our goal is to design an online learning algorithm that sequentially chooses the price and advertising
strategy pt,�t in each round t based on the buyers’ responses in the previous rounds, in order to op-
timize total expected revenue over a time horizon T without apriori knowledge of the distribution F .
Let Rev(pt,�t) , E[pt · at; pt,�t] denote the expected revenue at time t under the price pt and ad-
vertising strategy �t. Here the expectation is over realizations of customer type ✓t ⇠ F , product
quality !t ⇠ � and advertising signal �t ⇠ �t(·|!t). Note that since product quality and types are
i.i.d. across time, for any given pt = p,�t = �, the expected per-round revenue Rev(p,�) does
not depend on time. Thus a static price and advertising strategy maximizes total expected revenue
over the time horizon T . Therefore, we can measure the performance of an algorithm in terms of
regret that compares the total expected revenue of the algorithm to that of the best static pricing and
advertising strategy. We define

Regret(T ) , T max
p,�

Rev(p,�)�
TX

t=1

Rev(pt,�t) .

Our contributions. In this work, we present a computationally efficient online pricing and advertis-

ing algorithm that achieves an O
�
T

2/3(m log T )1/3
�

bound on the regret in time T , where m = |⌦|
is the cardinality of the (discrete) product quality space. Importantly, we achieve this result without
any assumptions like Lipschitz or smoothness on the demand function D(·) = 1� F (·). However,
our results require certain assumptions on the valuation function. Following the literature, we make
the common assumption that the function v(✓,!) is linear in the product quality !. Furthermore,
we assume the following monotonicity and Lipschitz properties on the valuation function.
Assumption 1. Buyer’s valuation function v(·, ·) satisfies:

1a Fix any buyer type ✓, function v(✓,!) is non-decreasing w.r.t. quality !.
1b Fix any quality !, function v(✓,!) is increasing and 1-Lipschitz4 w.r.t. type ✓.

Such assumptions are in fact common in literature and natural in many economic situations where
the valuation of a product increases with the product quality and buyer’s type (paying ability/need).
Existing literature on Bayesian persuasion/dynamic pricing often makes even stronger assumptions
about the receiver’s utility function. For example, both the additive functions v(✓,!) = ✓ + ! [cf.
35, 45, 27] and the multiplicative functions v(✓,!) = ✓!+ ✓ [cf. 22, 48], are linear in ! and satisfy
Assumption 1. Our main result is then summarized as follows:
Theorem 1.1. For any type CDF F , given a valuation function v(✓,!) that is linear in product
quality ! and satisfies Assumption 1, Algorithm 1 with parameter " = ⇥((m log T/T)1/3) has an
expected regret of O

�
T

2/3(m log T )1/3
�
. Here, m is the cardinality of the discrete quality space ⌦.

Furthermore, we obtain several improved results for the widely considered special case of additive
valuations, i.e., for v(✓,!) = ✓ + !. See Appendix B for the formal statements and analysis.

1. (Theorem B.1) Consider discrete sets ⌦ that are ‘equally-spaced’, e.g., ⌦ = {0, 1} or ⌦ = [m].
Given such a product quality space ⌦ and additive valuation function, we show that the regret of
Algorithm 1 is bounded by O(T 2/3(log T )1/3) when m  (T/log T)1/3, and by O(

p
mT log T )

for larger m.
4Here 1 Lipschitz constant is for exposition simplicity, an arbitrary Lipschitz constant L can be treated

similarly.
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2. (Theorem B.2) For any arbitrary (discrete or continuous) product quality space ⌦, given additive
valuation functions, we have a slightly modified algorithm (see Algorithm 3 in Appendix C.2)
with an expected regret of O(T 3/4(log T )1/4) independent of m.

When the valuation function v(·,!) is L-Lipschitz w.r.t. type ✓, our regret bound in Theorem 1.1
would become O(T 2/3(Lm log T )1/3), and the regret bound for arbitrary space ⌦ would become
O(T 3/4(L log T )1/4).

We might compare our results to the best regret bounds available for the well-studied dynamic
pricing and learning problem with unlimited supply [43, 8], which is a special case of our problem if
the product quality is deterministic, i.e., m = 1, and the advertising scheme reveals no information
and thus has no impact on the buyer’s purchase decision. For the dynamic pricing problem a lower
bound of ⌦(T 2/3) on regret is known [43]. Therefore the dependence on T in our results cannot be
improved. In fact, our result matches this lower bound in the case of binary or constant size quality
space, which are common settings in information design literature [39, 18, 5, 57, 33, 12].

High-level descriptions of the proposed algorithm and challenges. Our problem can be viewed
as a very high dimensional combinatorial multi-armed bandit problem, where each arm is a pair of
a price and a feasible advertising strategy: the set of feasible advertising strategies being the set of
all possible conditional distributions {�(·|!),! 2 ⌦} over signal space ⌃. As a first step towards
obtaining a more tractable setting, we present an equivalent reformulation of the problem which
uses the observation that advertising affects the buyer’s decision only via the posterior distribution
over quality. By the linearity of valuation function v(·, ·) over product quality !, seller’s choice of
advertising strategy in every round can be further simplified to selecting a distribution over posterior
means that is subject to a feasibility constraint.

From here, the seller’s decision space now becomes two-dimensional (a price and a distribution
of posterior means). Viewing seller’s expected revenue as an unknown (nonlinear) function over
this two-dimensional decision space, one may consider applying algorithms in contextual bandits or
Lipschitz bandits to get sublinear regrets, e.g., Õ(T 3/4poly(m)) regret for two-dimensional decision
space if there exists a Lipschitz property of reward function relative to seller’s decision space. How-
ever, it is unclear whether one can establish such Lipschitz property given that we do not assume
Lipschitzness or smoothness on demand function and we have complex constraints on the feasibility
of advertising space. Instead, in our algorithm we use a ‘model-based approach’: we use buyers’
purchase responses to explore the demand function over the (discretized) type space and jointly
learn the optimal advertising and pricing. To explore the demand function over the one-dimensional
(discretized) type space, we propose a novel discretization scheme such that it enables near-optimal
price and advertising strategy even without Lipschitzness or smoothness assumption and with the
complex feasibility constraint on the advertising space. These treatments lead us to the optimal
Õ(T 2/3

m
1/3) regret.

Related work. Our work is related to several streams of research. Below we briefly review the some
of these connections.

In our setting, the seller can utilize her information advantage to design an advertisement to signal
the product quality to the buyer. There is a long line of research in the literature, from both empirical
and theoretical perspective, dedicated to study how to use advertisement as a signal to steer buyers’
evaluations of advertised goods [53, 54, 42, 52, 37, 55, 40]. In our problem, we follow the literature
in information design, a.k.a., Bayesian persuasion [39] [also see the recent surveys by 30, 38, 10],
where the seller can commit to an information policy that can strategically disclose product infor-
mation to the buyer so that to influence buyer’s belief about the product quality. Similar formulation
for advertising has also appeared in [19, 32, 3, 34, 14, 13, 28]. Our work differs from these works
in several ways. First, the seller’s offline problem in our setting is a joint pricing and advertising
problem. Second, we focus on an online setting where the seller has no apriori knowledge of the
demand function and has to use past buyers’ purchase responses to adaptively learn optimal pricing
and advertising strategy.

Our problem shares similarity to the problem on sale of information in economics and computer
science literature [7, 9, 11, 26, 20, 48, 12, 59, 47, 25]. In particular, similar to the problem on sale
of information, the seller, in our setting, also commits to design an information structure to reveal
information about the realized state to the decision maker (i.e., buyer); and the buyer, in our setting,
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then makes the payment based on the declared information structure, not for specific realizations
of the seller’s informative signals [12, 20, 48]. However, different from these works, the seller in
our setting is selling a product with some inherent value and not just information. The valuation of
the product can be shaped by providing information. This gives new interesting tradeoffs between
information and revenue in our problem that are absent in the settings where only information is
being sold. Moreover, in most literature of selling information, the buyers’ type distribution is
usually assumed to be known. We consider a more practical data-driven setting where the underlying
buyers’ type distribution (demand function) is apriori unknown to the seller and needs to be learnt
from observations.

Facing unknown buyer’s preference (i.e., buyer’s private type), the seller’s dynamic advertising prob-
lem also relates to the growing line of work in information design on relaxing one fundamental
assumption in the canonical Bayesian persuasion model – the sender perfectly knows receiver’s
preference. The present paper joins the recent increased interests on using online learning approach
to study the regret minimization when the sender repeatedly interacts with receivers [23, 24, 61, 33]
without knowing receivers’ preferences. Moreover, our work also conceptually relates to research
on Bayesian exploration in multi-armed bandit [46, 51, 50, 36] which also studies an online set-
ting where one player can utilize her information advantage to persuade another player to take the
desired action. Our work departs from this line of work in terms of both the setting and the appli-
cation domain. Particularly, the above works typically consider an online setting on how to learn
optimal signaling scheme whereas in our setting the optimal policy is a joint pricing and signaling
(advertising) scheme.

When there is no uncertainty in the product quality, the seller’s problem in our setting reduces to
a standard dynamic pricing and learning problem with unknown non-parametric demand function
[43, 16, 41, 8]. However, given any non-trivial product quality space and prior distributions, in our
problem, in addition to a price, the seller needs to choose a non-trivial advertising strategy in order
to maximize revenue. This makes the seller’s decision space high dimensional and (as we discuss
in the next section) introduces significant complexities and difficulties so that the typical techniques
(like uniform or adaptive discretization) used in pricing and continuous/combinatorial multi-armed
bandit literature cannot be directly applied.

2 Algorithm Design

In this section, we present our main algorithm for the dynamic pricing and advertising problem. In
subsection 2.1, we present an equivalent reformulation for tractable advertising strategies, then in
subsection 2.2, we discuss many important challenges even after this simplification, and finally, in
subsection 2.3 we present our algorithm.

2.1 An equivalent reformulation for tractable advertising strategies

Recall that in every round, the buyer t sees the offered price pt and advertising strategy �t that
specifies the distributions over signals �t(·|!) 2 �⌃ that the seller will send for each possible value
! of the realized product quality. After the product quality !t is realized, the buyer t sees a signal
�t ⇠ �t(·|!t) from the seller’s declared advertising strategy. The buyer uses this signal along with
the prior � to form a Bayesian posterior µt(·|�t) 2 �⌦ on the product quality. The Bayesian rational
buyer then takes the action at 2 {0, 1}, based on expected utility maximization. In particular, we
have at = 1 if E!⇠µt(·|�t)[v(✓t,!)] � pt and at = 0 otherwise.

From the decision formula above, it is clear that the choice of advertising strategy affects the buyer
t’s decision only through the realized posterior µt(·|�t). Consequently, the seller’s choice of ad-
vertising strategy in time t can be reduced to selecting a distribution over posteriors µt. Seller’s
choice can in fact be further simplified in the case where the buyer’s valuation function is linear in
the product quality ! since in that case we have

E!⇠µt(·|�t)[v(✓t,!)] = v(✓t,E!⇠µt(·|�t)[!]) = v(✓t, qt)

where qt is the realized posterior mean qt , E!⇠µt(·|�t)[!]. Here qt 2 [0, 1] since ! 2 ⌦ ✓ [0, 1].
Therefore the buyer purchases (at = 1) if and only if v(✓t, qt) � pt. As a result, we can reduce the
seller’s advertising in round t to the choice of distribution (pdf) ⇢t(·) 2 �[0,1] over posterior means.
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However, the choice of ⇢t must be restricted to only feasible distributions of posterior means, that
is, all possible distributions over posterior means that can be induced by any advertising scheme
given the prior �. It is well known that the distribution over posterior means ⇢ is feasible if and
only if it is the mean-preserving contraction of the prior [17, 6]. This condition can be equivalently
written in terms of a Bayes-consistency condition [39] on the conditional means ⇢(·|!),! 2 ⌦.
For simplicity of exposition, we consider discrete quality space ⌦ = {!̄1, . . . , !̄m} ✓ [0, 1], where
0 = !̄1 < !̄2 < . . . < !̄m = 1 and m = |⌦| is the cardinality of the quality space. Then, a
distribution ⇢ over posterior means is feasible if one can construct a set of conditional distributions
(⇢i)i2[m] satisfying the following Bayes-consistency condition, and vice versa [39]:

P
i2[m] �i⇢i(q)!̄iP
i2[m] �i⇢i(q)

= q, 8q 2 supp(⇢) . (BC)

Throughout this paper, we use the collection of distributions (⇢i)i2[m] satisfying (BC) condition as
a convenient way to construct feasible distributions over posterior means: ⇢(q) =

P
i ⇢i(q)�i.

With the above observations, we can without loss of generality assume that seller’s advertising
strategy is to directly choose a distribution ⇢t over the posterior means that satisfies (BC), without
considering the design of the underlying signaling scheme {�(�|!),⌃}.

We summarize the new equivalent game timeline as follows: at t 2 [T ], (1) the seller commits to
a price pt 2 [0, U ] and an advertising strategy ⇢t = (⇢i,t)i2[m] satisfying (BC); (2) a buyer t with
private type ✓t ⇠ F arrives; (3) a product with quality !t ⇠ � is realized; a posterior mean qt ⇠ ⇢t

is realized; (4) the buyer observes the posterior mean qt; the buyer purchases the product (at = 1)
to generate revenue pt if only if v(✓t, qt) � pt. Note that the seller knows the form of the buyer’s
valuation function v. Moreover, the seller observes the realized product quality !t, the realized
posterior mean qt, and the buyer’s purchase decision at, but does not know type CDF F (i.e., the
demand function D) and the realized buyer type ✓t.

Revenue and regret. Given the new formulation, we can also rewrite the revenue and regret in
terms of the choices of ⇢t, t = 1, . . . , T . We define the following function (p, q), which we refer
to as the critical type for a given price p and posterior mean q.
Definition 2.1 (Critical type). For any p 2 [0, U ] and q 2 [0, 1], define function (·, ·) as (p, q) ,
min{✓ 2 ⇥ : v(✓, q) � p}.

Now under Assumption 1b, due to the monotonicity of the valuation function in buyer’s type, we
have that given any p, q, ✓, 1[v(✓, q) � p] = 1[✓ � (p, q)]. Therefore, the buyer t will purchase the
product if and only if ✓t � (pt, qt).

Therefore, given the price, advertising pt = p, ⇢t = ⇢ and prior distribution �, the expected revenue
in any round t is given by 5

Rev(p, ⇢) = E!⇠�,✓⇠F,q⇠⇢[p · 1[✓ � (p, q)]] = p

X

i

�i

Z 1

0
⇢i(q)D((p, q))dq (1)

Let the seller’s online policy offer price pt and advertising ⇢t at time t, where pt, ⇢t can depend on
the history of observations/events up to time t. Then expected regret defined in Section 1 can be
equivalently written as

Regret[T ] = TRev(p⇤, ⇢⇤)�
TX

t=1

E[Rev(pt, ⇢t)] .

Here, the expectation is taken with respect to any randomness in the algorithm’s choice of pt, ⇢t;
and p

⇤
, ⇢

⇤ = (⇢⇤i )i2[m] are defined as the best price and advertising strategy for a given F (and
(·, ·) which is determined by F ). Given the expression for Rev(p, ⇢) derived above, these can be
characterized by the following optimization program

p
⇤
, ⇢

⇤ , argmax
p,⇢

Rev(p, ⇢)

s.t.

P
i2[m] �i⇢i(q)!̄iP
i2[m] �i⇢i(q)

= q, q 2 [0, 1]; ⇢i 2 �[0,1]
, i 2 [m] .

(POPT)

where the first constraint is due to (BC).
5Here, we slightly abuse the notation to redefine Rev as a function of price and ⇢, instead of price and �

defined earlier.
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2.2 Algorithm design: challenges and ideas

Challenge: high-dimensional continuous decision space. In the last section, we obtained a con-
siderable simplification of the problem by reducing the seller’s advertising strategy in every round
t to a distribution ⇢t 2 �[0,1] over posterior means satisfying the (BC) condition. However, the
decision space (a.k.a space of arms) still remains high dimensional and therefore a naive application
of (uniform or adaptive) discretization-based bandit techniques, e.g. from Lipschitz bandit literature
[44, 56], would not achieve the desired results.

Algorithm design idea: exploring over one-dimesnional type space. Our algorithm uses a
‘model-based approach’ instead, where we use buyer purchase responses to develop (upper con-
fidence bound) estimates of the demand model D(✓) = 1� F (✓) on the points of a discretized type
space S ✓ ⇥. We then use these upper confidence bounds to construct a piecewise-constant demand
function that is an upper confidence bound (UCB) for the demand function D. Then, in each round
we solve for the optimal price and advertising strategy by solving an optimization problem similar
to POPT, but with the UCB demand function.

Challenge: efficient discretization of type space. The challenge then is to design a discretization
scheme for the type space such that we have a) efficient learning, i.e., the discretized space can be
efficiently explored to accurately estimate the demand function on those points, and b) Lipschitz
property, i.e., the optimal revenue with the UCB estimate of demand function is close to the true
optimal revenue as long as the estimation error on the discretized space is small.

There are two main difficulties in achieving this: (1) Lack of any smoothness/Lipschitz assumption
on CDF F . (2) Sensitivity of the Bayes-consistency condition (BC). To see these difficulties, recall
that given a price pt and realized posterior mean qt, the t

th buyer’s purchase decision is given by
at = 1[✓t � (pt, qt)]; thus the seller can obtain demand function estimate at point (pt, qt). With-
out any smoothness or Lipschitz property of demand function, estimates of demand function cannot
be extrapolated accurately to other points. This means that in our revenue optimization problem
(estimated version of POPT), we need to find a price and advertising strategy that we can only use
estimates of demand function on a discretized type space, say S ✓ ⇥. However, if we restrict to a
discretized type space S , then the support of posterior mean distributions (a.k.a advertising strategy)
must be restricted to the points q such that the corresponding critical types (p, q) are in the set S .

Unfortunately, the (BC) condition makes the set of feasible advertising strategies very sensitive to
their support. In particular, if we use uniform-grid based discretization (which is commonly used
in previous dynamic pricing literature such as [43, 8]), it is easy to construct examples of prior
distribution and valuation function such that there are no or very few feasible advertising strategies
with the corresponding restricted support.

Example 2.2. Consider additive valuation function, i.e., v(✓,!) = ✓+!, and thus (p, q) = p� q.
Consider quality space ⌦ = {!̄i}i2[3]. Given a small ", consider a uniform-grid based discretization
for the type space S , i.e., S = {0, ", 2", . . . , 1}. If we also use a price p that is from uniform-grid
based discretized price space, i.e., p = k" for some k 2 N

+, then to ensure (p, q) 2 S , the support
of advertising strategy (i.e., the distribution of the posterior means) must also be restricted within
the set S . However, if the prior distribution � has negligible probabilities on qualities !̄1, !̄3, and
quality !̄2 /2 S , then we cannot construct any posterior distribution with the mean in the set S .
Therefore, there does not exist any feasible advertising strategy.

Note that this difficulty cannot be fixed by simply modifying the discretized type space to S [ ⌦,
because even then we would need to construct an advertising such that (p, q) = p � q 2 S [ ⌦
in the grid for all p. That would need that the support of the strategy (i.e., posterior means q) is
restricted to be in {k✏� !̄i}k2N+,i2[3]; such posterior means again may not be achieved here.

Algorithm design idea: novel discretization scheme. Our algorithm employs a carefully-designed
quality-and-price-dependent discretization scheme. The above example shows that we cannot uni-
formly discretize price and type using "-grids, as we may not have any feasible advertising strategy
under such discretization. And furthermore, it also shows that this difficulty cannot be fixed by sim-
ply adding the m points in quality space to the discretized type space S . Instead, in our discretization
scheme, we first uniformly discretize the price space to an "-grid P . Then to construct a discretized
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type space S , in addition to the points on an "-grid over [0, 1], we also include points {(p,!)}
for every price p 2 P and quality ! 2 ⌦. This gives us a discretized type space S of size mU/".
We claim that our construction ensures that there exist near-optimal price and advertising strategy
with support in the discretized type space S . The proof of this claim requires a careful rounding
argument, which forms one of the main technical ingredients for our regret analysis in Section 3.

2.3 Details of the proposed algorithm

Our dynamic pricing and advertising algorithm jointly discretizes the price space and type space
using the following quality-and-price-dependent discretiztion scheme: given parameter ", we define
the following set:

P , {", 2", . . . , U}
S , {0, ", . . . , 1� ", 1} [ {((p,!) ^ 1) _ 0}p2P,!2⌦ .

(2)

At time t, we restrict the price and advertising strategies (pt, ⇢t) to the set of (p, ⇢ = (⇢i)i2[m]) such
that p 2 P , and given price p, each conditional distribution ⇢i has restricted support Qp defined as
Qp , {q : (p, q) 2 S}. Given the price and advertising pt, ⇢t, let the realized posterior mean at
time t be qt ⇠ ⇢t, and let the corresponding critical type be xt , (pt, qt) 2 [0, 1]. Then, note that
the above restrictions on price and advertising strategies guarantee that xt 2 S .

Next, to compute the offered price and advertising strategy in round t, we optimize an upper confi-
dence bound on the revenue function that we develop using upper confidence bounds DUCB(x), x 2
S of the demand function computed as follows. For every type x 2 S , let Nt(x) denote the set of
time rounds before time t that the induced critical type is exactly x, and let Nt(x) be the number of
such time rounds. That is, Nt(x) , {⌧ < t : (p⌧ , q⌧ ) = x} , Nt(x) , |Nt(x)| , x 2 S .

Recall that buyer’s purchase decision follows a⌧ = 1[✓⌧ � (p⌧ , q⌧ )]. We estimate the demand
function at x as: D̄t(x) ,

P
⌧2Nt(x) a⌧

Nt(x)
. We can now define the following UCB index:

D
UCB

t (x) = min
x02S:x0x

D̄t(x
0) +

s
16 log T

Nt(x0)
+

p
(1 +Nt(x0)) ln(1 +Nt(x0))

Nt(x0)
^ 1, x 2 S (3)

Then, for any pair of discretized price p 2 P and advertising strategy with discretized support for
that price ⇢ = (⇢i 2 �Qp , i 2 [m]}, we define the following seller’s revenue estimates:

RevUCBt (p, ⇢) , p

X

i2[m]

�i

Z 1

0
⇢i(q)D

UCB

t ((p, q))dq .

Above is well-defined since by definition (p, q) 2 S for each such (p, q) 2 P ⇥ Qp. Finally, we
let pt, ⇢t be the optimal solution to the following optimization problem:

(pt, ⇢t) = argmax
p,⇢

RevUCBt (p, ⇢)

s.t. p 2 P;

P
i2[m] �i⇢i(q)!̄iP
i2[m] �i⇢i(q)

= q, q 2 Qp; ⇢i 2 �Qp , i 2 [m] .
(PUCB

t )

We summarize our algorithm as Algorithm 1. The main computational bottleneck of Algorithm 1
is to solve the high-dimensional program PUCB

t at each time t � |S| + 1. As we illustrate in
Proposition 2.1, there exists an efficient method to optimally solve this program. The proof of this
result utilizes the monotoncity of the function D

UCB
t .

Proposition 2.1 (Adopted from [4, 21]). Let " be the discretization parameter for the set P defined
in (2). There exists a polynomial time (in |S|U/") algorithm that can solve the program PUCB

t .

Proof. Since function D
UCB
t is monotone with discontinuities at the points in the set S , when we fix a

price p 2 P , the function D
UCB
t ((p, ·)) is also monotone with discontinuities at the points in Qp =

{q : (p, q) = x}x2S . Given a prior �, optimizing a monotone function with discontinuities over all
feasible advertising strategies induced from the prior � subject to the constraint where the support of
advertising strategies must be in the set Qp has been studied in [4, 21]. It has been shown that there
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Algorithm 1: Algorithm for Dynamic Pricing and Advertising with Demand Learning.

1 Input: Discretization parameter ".
2 For the first |S| rounds, for each x 2 S , offer a price p with no information advertising s.t.

(p,E!⇠�[!]) = x. // No information advertising provides completely
uninformative signal – the distribution �(·|!) of signals does not depend on the
realized quality !

3 for each round t = |S|+ 1, |S|+ 2, . . . , T do
4 For all x 2 S , compute D

UCB
t (x) as defined in (3).

5 Offer the price pt and an advertising ⇢t computed as an optimal solution to program PUCB
t .

/* pt, ⇢t satisfies (pt, q) 2 S for every q 2 supp(⇢t). */
6 Observe realized posterior mean qt ⇠ ⇢t and buyer’s purchase decision at 2 {0, 1}.
7 Update

�
Nt+1(x), Nt+1(x), D̄t+1(x)

 
x2S .

exists a polynomial (w.r.t. the number of discontinuities) algorithm based on convex programming
that can find an optimal advertising strategy (see Proposition 2 in 4). Thus, an exhaustively search
over the discretized price space P can lead to an optimal solution to the program PUCB

t .

We conclude this section with the following remark on the extension to unbounded type support.
Remark 2.3. Our algorithm and analysis can be extended to the case with unbounded type support
(e.g., ⇥ = [0,1)). In particular, since the price is bounded by [0, U ], and the quality is bounded
within [0, 1], by the monotoncity of the valuation function, we know the critical types (p, q) induced
by any possible p 2 [0, U ] and q 2 [0, 1] is bounded within [(0, 1),(U, 0)]. Thus, an instance with
unbounded type support is equivalent to an instance with bounded type support [(0, 1),(U, 0)].

3 Regret Analysis: Proof Overview of Theorem 1.1

In this section, we present our main regret bound for Algorithm 1, as stated in Theorem 1.1.
Specifically, we show that for any type CDF F , given a valuation function v(✓,!) that is lin-
ear in product quality ! and satisfies Assumption 1, our algorithm (Algorithm 1 with parameter
" = ⇥((m log T/T)1/3)), has an expected regret of O

�
T

2/3(m log T )1/3
�
. Importantly, for this result

we do not assume any smoothness or Lipschitz properties of distribution F .

For this result, we consider arbitrary but discrete quality space ⌦ of cardinality m. Later in Ap-
pendix B, we show improved regret bounds for the case of additive valuations and equally-spaced
quality space (see Theorem B.1), and also extend to arbitrary large and continuous quality spaces
(see Theorem B.2).

Proof outline. Recall that in every round t, Algorithm 1 sets the price pt and advertising strategy ⇢t

as an optimal solution of program PUCB
t that approximates the benchmark POPT in two ways. Firstly,

it restricts the price and support of advertising strategy to be in a discretized space P⇥{Qp, p 2 P}.
Secondly, it approximates the true demand function with an upper bound D

UCB
t . Our proof consists

of two main steps that bound the errors due to each of the above approximations. Due to the space
limit, all missing proofs in this section are deferred to Appendix A.

• Step 1: bounding the discretization error using a rounding argument (see Appendix A.1).
To separate the discretization error from the error due to demand function estimation, we consider
an intermediate optimization problem eP (in Appendix A.1) obtained on replacing the UCB de-
mand function D

UCB
t with the true demand function D (while keeping the discretized space for

p, ⇢). Let ep⇤, e⇢⇤ be an optimal solution of program eP. We show that the revenue Rev(ep⇤, e⇢⇤) is
sufficiently close (within 2") to the optimal revenue Rev(p⇤, ⇢⇤). This bound is obtained using a
careful rounding argument: we show that the optimal price p

⇤ and the optimal advertising ⇢
⇤ can

be rounded to a new price p
† and a new advertising ⇢

† that satisfy
(i) feasibility (Lemma A.4): p† 2 P, supp(⇢†) ✓ supp(Qp†); and
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(ii) revenue guarantee (Lemma A.5): Rev(p†, ⇢†) � Rev(p⇤, ⇢⇤)� 2✏.
• Step 2: bounding estimation error and establishing optimism (see Appendix A.3).

Next, we show that the UCB estimates of the demand function D
UCB
t (x), x 2 S converge to

the true demand function D with high probability, along with concentration bounds on the gap
between the true and estimated function (Lemma A.7). This allows us to show that

(i) Revenue optimism (Lemma A.8): we show that the algorithm’s revenue estimates are (al-
most) optimistic, i.e., RevUCBt (pt, ⇢t) � Rev(ep⇤, e⇢⇤) � Rev(p⇤, ⇢⇤)� 2".
(ii) Revenue approximation (Lemma A.9): we show that the optimistic revenue estimates
are close to the true revenue in round t, with the gap between the two being inversely
proportional to the number of observations, in particular, RevUCBt (pt, ⇢t) � Rev(pt, ⇢t) 
5ptEq⇠⇢t

hp
log T/Nt((pt, q))

i
.

Finally, in Appendix A.7 we put it all together to bound the regret as stated in Theorem 1.1. We
first use the above observations to show that regret over each round can be roughly bounded as
2✏T + 5ptEq⇠⇢t

hp
log T/Nt((pt, q))

i
. Then, using the constraint

P
x2S NT (x)  T , we show

that in the worst case, total regret over time T is bounded by O(T ✏ +
p
|S|T log T ). The theorem

is then obtained by substituting |S| = O(m/✏) and optimizing ".

4 Conclusions and Future Direction

In this work, we use a foundational information design framework, Bayesian persuasion, to model
the effect of an advertising strategy on customers’ beliefs about product quality and consequently
their purchase decisions. Our formulation combines the Bayesian persuasion model with dynamic
pricing and learning to quantify the tradeoffs between the design of the pricing and advertising
strategies and their combined impact on the revenue outcomes. Without any apriori knowledge
of the demand function, we show that there exists an efficient online policy that has the regret
O(T 2/3(m log T )1/3) for a finite state space with cardinality m. This result implies that when the
number of the states m is a constant, there is almost no additional learning regret for the seller to
additionally learn the optimal advertising compared to the dynamic pricing (without advertising) for
non-parametric demand learning problem. There are interesting future directions from this work.
First, in our current formulation, buyers’ valuation is linear w.r.t the product states. It would be
interesting to explore whether our results could be generalized to more general valuation function.
Secondly, in our setting, a buyer with i.i.d private type arrives at each time round, and leaves the
market no matter what the purchase decision is. However, in practice, buyers may strategize their
purchase time for a more favorable price [2, 29, 60]. How to model the advertising effect with
strategic buyers and achieve efficient demand learning is another interesting future direction.
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