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Abstract

We introduce Density-Informed VAE (DiVAE), a lightweight, data-driven reg-
ularizer that aligns the VAE log-prior probability log pZ(z) with a log-density
estimated from data. Standard VAEs match latents to a simple prior, overlooking
density structure in the data-space. DiVAE encourages the encoder to allocate
posterior mass in proportion to data-space density and, when the prior is learnable,
nudges the prior toward high-density regions. This is realized by adding a ro-
bust, precision-weighted penalty to the ELBO, incurring negligible computational
overhead. On synthetic datasets, DiVAE (i) improves distributional alignment of
latent log-densities to its ground truth counterpart, (ii) improves prior coverage,
and (iii) yields better OOD uncertainty calibration. On MNIST, DiVAE improves
alignment of the prior with external estimates of the density, providing better
interpretability, and improves OOD detection for learnable priors.

1 Introduction

Variational autoencoders (VAEs) typically assume a simple prior pZ (e.g., N (0, I)) [1]. This choice
encourages the variational posterior qϕ(z | x) to place latent codes near the origin and to distribute
mass according to the prior rather than the data’s empirical density. As a result, the log-prior
probability s(z) = log pZ(z) may be poorly aligned with how samples concentrate in data space,
reducing its usefulness for anomaly detection, out-of-distribution (OOD) scoring, and uncertainty
estimation. It also contributes to well-known issues such as the hole problem –regions of high prior
mass unsupported by the theoretically optimal prior: the aggregated variational posterior [2, 3].

To address the limitations of a simple, fixed prior described above, we introduce Density-Informed
VAE (DiVAE), which injects a per-sample density signal ρ –an estimate of log-density measured
in a data-derived projection– into training via a regularization term. Acting as a density teacher,
DiVAE adds an alignment penalty that pushes the encoder to place latent codes in proportion to ρ.
Consequently, even with a non-learnable prior (e.g., N (0, I)), the latent space recovers the data-space
density structure, improving the usefulness of s(z) without changing the prior itself. For a learnable
prior (e.g., a Gaussian mixture model, GMM), the same density signal simultaneously (i) guides the
encoder toward regions whose mass reflects the estimate and (ii) pulls the prior parameters toward
those high-density regions, thereby improving agreement between prior mass and empirical structure.
Concretely, we augment the ELBO with a robust, precision-weighted alignment loss (Section 2)
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that incurs negligible computational overhead (Table 12) and requires no changes to the encoder or
decoder architectures.

We implement this alignment in two forms: a direct variant that matches the model’s latent log-prior
to the external log-density estimate, and a flow-corrected variant that learns a normalizing flow to
account for the change-of-variables (Jacobian) between latent and data-derived projections.

We show that on synthetic datasets (in which we know the ground truth), DiVAE (Sec. 3): (i) improves
distributional alignment of latent log-densities to the ground truth log-density, shifting the mean
toward the true scale; (ii) improves prior coverage, and (iii) yields better OOD uncertainty calibra-
tion—stronger separation, higher posterior entropy. These gains hold under both standard-normal
and learnable GMM priors; FLOW attains the strongest separation, whereas DIRECT provides the best
calibration trade-off. In MNIST, where the ground truth is unknown, we find stable improvements in
alignment between several types of prior and an external estimate of the density, with latent codes
that are significantly most typical under the learned prior (see Table 2); for the OOD, when the prior
is learnable, there are consistent improvements in adopting a density regularizer (4) .

Related Work A major line of work improves VAE priors to better approximate the (theoretically
optimal) aggregated posterior. Building on the observation that the aggregate is typically a gaussian
mixture [2], VampPrior introduces learnable pseudo-inputs so that the prior becomes a mixture of
variational posteriors that explicitly targets this distribution [4]. Flow– and autoregressive–based
priors further increase flexibility and improve likelihoods/compression [5, 6, 7, 8, 9].

In this work, rather than only enriching the prior, we directly align the density around data points
–measured in the PCA-reduced space– with the latent density, enforcing local agreement between
empirical structure and prior mass.

2 Methods

Setup Let x ∈ X be an input, qϕ(z | x) = N
(
µϕ(x), diag(σ

2
ϕ(x))

)
is the encoder, pθ(x | z)

the decoder, and pZ(z) = pZ(z;ψ) a prior (fixed or learnable) with parameters ψ (for a standard
Gaussian prior, ψ = ∅).

We apply a dimensionality-reduction step used only for density estimation and for comparing densities
between data and latent spaces. Specifically, we project the data from the original space X onto the
linear subspace U ⊆ X spanned by the top d principal components, where d = dim(Z) matches the
latent dimensionality. Let P : X →U denote the PCA projector; for each training point xi, we write
ui = P xi for its projection.

We assume that we have access to a external (i.e., model-independent) log-density estimate ρi in the
U space of the PCA projected data, with a standard error σi expressing the estimator’s uncertainty
at ui. In practice, this estimate will be performed with standard techniques such as Kernel-Density
Estimation (KDE), or Point Adaptive k-Nearest Neighbors (PAk) [10, 11].

We define the log-prior probability for xi, expressing the log probability assigned by the prior to
the encoding of a data point xi, as si = Ez∼qϕ(·|xi)

[
log pZ(z)

]
, and estimate it with Monte Carlo

sampling, where in practice we use one-sample estimates. The central idea of our work is to nudge
the log-prior probabilities {si} towards {ρi} using a penalty, which we call the alignment loss. This
loss comes in two flavours, depending on the aligner type: 1) a direct aligner and 2) a flow-corrected
aligner.

Direct aligner The direct aligner operates with a robust, precision-weighted loss term that acts as a
regularizer, and compares the model’s prior log-densities {si} to the external log-densities {ρi}. We
define precision weights from the estimator’s uncertainties wi = σ−2

i .

Given a mini–batch {xi}Bi=1 the direct alignment loss is written as:

Ldirect-align =

√√√√ 1

B

B∑
i=1

wi Γδ

(
si − ρi

)
, (1)
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k=4 k=8 k=12

Prior Method KS↓ KL↓ KS↓ KL↓ KS↓ KL↓
GMM NONE 0.469 114.184 0.501 20.877 0.380 3.728
GMM DIRECT 0.102 69.620 0.073 6.447 0.124 6.823
GMM FLOW 0.946 4.419 0.753 5.334 0.934 4.582

STANDARD NONE 0.116 - 0.322 - 0.418 -
STANDARD DIRECT 0.228 - 0.231 - 0.384 -
STANDARD FLOW 0.338 - 0.315 - 0.255 -

Table 1: KS statistic and coverage divergence KL(p2 ∥ pZ(·;ψ)) on synthetic Gaussian-mixture
datasets with k=4, 8, 12 components. Means over three seeds. External densities are estimated using
PAk. KL is omitted for the standard-normal prior since pZ is fixed and identical across methods.

where Γδ is the Huber loss. The Huber loss [12] behaves quadratically within a range δ > 0, and
linearly outside this range, to mitigate the influence of outliers (see D). In our experiments we set
δ = 1, corresponding to ≈ 1

2 probability for the residual to fall in the linear regime.

Training objective We optimize the (negative) ELBO plus the alignment term L = −LELBO +
γt Ldirect-align, with a warm-up weight γt, practically chosen as a linear warm-up from 0 to a 1 over
training epochs. Unless stated otherwise, we do not detach encoder gradients in (1); this allows the
regularizer to shape the variational posterior qϕ.

Flow-corrected aligner The direct aligner supervises the log-prior probability s(z) = log pZ(z)
but, by itself, cannot account for the change of variables between the latent space Z and U , i.e.,
it omits the log-determinant Jacobian term. We therefore learn an invertible map f : Z → U ,
parameterized as a normalizing flow [9]. The change of variables formula implies log pU (u) =
log pZ

(
f−1(u)

)
+ log

∣∣det Jf−1(u)
∣∣. We train f by maximum likelihood on observed projections

ui:

Lflow-ML = − 1

B

B∑
i=1

[
log pZ

(
f−1(ui)

)
+ log

∣∣det Jf−1(ui)
∣∣]. (2)

For alignment in Z-space, the ideal target would be s(z) = log pU
(
f(z)

)
+ log

∣∣det Jf (z)∣∣.
Since pU is unknown, we substitute the external density estimate at the corresponding projected
point. Assuming local coherence f(zi) ≈ ui, we obtain the practical approximation si ≈ ρi +
log

∣∣det Jf (zi)∣∣. The flow-corrected alignment loss then reads

Lflow-align =

√√√√√ 1

B

B∑
i=1

wi Γδ

(
si − ρi − log

∣∣det Jf (zi)∣∣︸ ︷︷ ︸
stop-grad w.r.t. f

)
(3)

where the log-determinant term provides the correct Jacobian correction, and we stop its gradient
into f during alignment (so the encoder/prior is driven by the density signal while the flow is learned
by (2)). The overall objective becomes Ltotal = −LELBO + γt Lflow-align + Lflow-ML optimized with
two parameter blocks: (ϕ, ψ, θ) for the VAE and flow parameters for f .

3 Results

We evaluate DiVAE on three synthetic datasets under both a fixed standard-normal prior and a
learnable GMM prior, using several external density estimators (details in Appendix A and B). For
each configuration we compare a non-regularized baseline (NONE) to the proposed alignment variants
(DIRECT, FLOW). We report: (i) the mean prior log-density s̄; (ii) distributional alignment between
model and external or ground-truth log densities using the two-sample Kolmogorov–Smirnov (KS)
test [13] and the 1D Wasserstein distance (W) [14]; (iii) coverage between the true mixture and the
learned prior via KL(true ∥ prior); and (iv) the mean stochastic ELBO L. For notation clarity, we
summarize all quantities and definitions in Tab. 5. The reasoning behind our selection of metrics is
discussed in Section C.
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Prior Method ℓ ↑ s̄ ↑ KS ↓ W ↓
STANDARD NONE -101.214 ± 29.087 -14.209 ± 1.750 0.1102 0.8374
STANDARD DIRECT -101.517 ± 28.980 -13.958 ± 1.629 0.1133 0.6475
STANDARD FLOW -101.585 ± 28.660 -16.102 ± 2.053 0.4540 2.7300

GMM NONE -100.087 ± 29.314 -20.633 ± 2.510 0.9008 7.2613
GMM DIRECT -99.793 ± 29.419 -13.568 ± 3.216 0.0815 0.3992
GMM FLOW -101.309 ± 29.402 -41.539 ± 2.024 1.0000 28.1673

VAMP NONE -99.548 ± 29.393 -20.833 ± 2.875 0.8873 7.4612
VAMP DIRECT -99.895 ± 29.503 -13.510 ± 3.167 0.0698 0.3460
VAMP FLOW -102.175 ± 30.056 -56.126 ± 1.757 1.0000 42.7541

Table 2: MNIST validation results across priors and regularization methods. Values are averaged
over three seeds. The external PAk estimate has mean s̄ext = −13.372± 2.711.

Prior Method s̄↓ KL(q, p2)↑ H(q)↑
GMM NONE -2.378 12.975 -5.785
GMM DIRECT -3.365 12.477 -5.216
GMM FLOW -7.397 16.567 -2.654
STANDARD NONE -3.428 18.247 -5.474
STANDARD DIRECT -3.236 18.581 -5.645
STANDARD FLOW -4.850 19.683 -5.326

Table 3: Out-of-distribution experiment on synthetic data. Models are trained on a k=4 GMM and
evaluated on an unseen k=8 GMM (dim=50). External densities for alignment are estimated using
PAk.

We also evaluate DiVAE on the MNIST dataset [15], where ground-truth log-densities are not
available. External densities are therefore estimated with the PAk method [11]. We again compare
NONE, DIRECT, and FLOW across three priors: standard normal, learnable GMM, and VampPrior.
For each model we report: (i) the mean prior log-density s̄, interpreted as latent log-likelihood; (ii)
the ELBO ℓ; and (iii) alignment with the PAk log-densities via KS and W.

Table 1 summarizes results on the synthetic datasets, which consist of high-dimensional Gaussian
mixtures with k=4, 8, 12 components (Appendix A). DIRECT consistently improves KS and coverage
KL under a learnable GMM prior compared to NONE, whereas FLOW achieves the lowest KL but
with substantially higher KS, indicating over-correction and shape mismatch. Under a fixed standard
prior, DIRECT generally improves KS, while FLOW is beneficial primarily for more complex mixtures
(k=12). Complete numerical results are provided in Tables 6–11.

Table 2 reports MNIST results. Across all priors, DIRECT improves alignment with external PAk
densities (lower KS and W) while preserving or slightly improving the ELBO and s̄ relative to NONE.
The FLOW variant often deteriorates both KS and W, indicating that its stronger transformations can
misalign the latent structure in the absence of ground truth. Overall, DIRECT provides the most stable
improvements across both synthetic and real data regimes.

Out-of-distribution (OOD) We first assess OOD sensitivity on synthetic data by treating a k=8
GMM as OOD for models trained on k=4 (Table 3). We report: (i) the mean prior log-density s̄, which
decreases when the model assigns lower latent likelihood to OOD samples; (ii) the posterior–true
prior divergence KL(q, p2), capturing latent mismatch under OOD inputs; and (iii) the posterior
entropy H(q), reflecting uncertainty. Both DIRECT and FLOW improve OOD separation over NONE
(lower s̄). FLOW yields the strongest separation but also shows substantially larger KL(q, p2) and
higher entropy, indicating aggressive rejection and over-correction. DIRECT provides a more balanced
trade-off: improved separation with moderate increases in divergence and competitive entropy.

We further evaluate OOD detection on real data by training models on MNIST and testing on
FashionMNIST [16] (Table 4). Here we report shifts between OOD and in-distribution metrics:
ELBO (∆ℓ), prior log-density (∆s̄), latent prior mismatch shift (∆KL), and posterior entropy shift
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Prior Method ∆ℓ ↓ ∆s ↓ ∆KL ↑ ∆H ↑
STANDARD NONE -1058.67 0.504 3.165 -2.810
STANDARD DIRECT -1025.35 0.016 1.554 -1.577
STANDARD FLOW -1033.58 0.402 2.556 -3.169

GMM NONE -1073.48 -2.761 2.945 0.450
GMM DIRECT -996.18 -3.608 3.476 0.091
GMM FLOW -1133.04 0.400 3.615 -4.202

VAMP NONE -1063.15 -3.065 2.055 0.725
VAMP DIRECT -1071.64 -2.790 0.916 1.686
VAMP FLOW -1239.54 0.730 10.138 -9.706

Table 4: OOD results on MNIST. Models are trained on MNIST and evaluated on FashionMNIST.
External densities for alignment are estimated using PAk.
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Figure 1: UMAP representation and density alignments on the MNIST latent space. The regularized
model places the prior components directly onto the data clusters (as evidenced by the coloring by
ground-truth labels), whereas the unregularized model tends to collapse several prior centers onto
the same region of the latent space. Moreover, the regularizer enforces a strong alignment between
the learned log prior density and an external, non–black-box density proxy, providing a clear and
interpretable correspondence between the latent geometry and the data distribution.

(∆H). Across all priors, DIRECT yields more stable and calibrated OOD shifts, with moderate
ELBO and s̄ reductions and controlled increases in ∆KL and ∆H. In contrast, FLOW produces the
largest separation (e.g. most negative ∆ℓ and largest ∆KL for GMM and VampPrior) but often at
the cost of excessive mismatch and inflated entropy. Overall, DIRECT consistently improves OOD
robustness especially on learnable priors, without the over-rejection effects seen in the stronger FLOW
transformation.

4 Conclusion

We introduced Density-Informed VAE (DiVAE), a lightweight, data-driven regularizer that aligns
the VAE prior log-density with a log-density estimate derived from data via suitable aligners. On
synthetic benchmarks with known ground truth, DiVAE improves prior log-density calibration under
both standard-normal and GMM priors with negligible overhead. On MNIST, where the ground truth
is unknown, we find similar benefits when we adopt a learnable prior (Figure 1). These findings,
although preliminary, suggest that explicitly coupling the prior to data-density structure can be a
simple and effective route for developing new generative models or improving existing ones. Future
directions include testing in real-world datasets and a deeper analysis of the promising flow approach.

Limitations

The results we report are limited to simple datasets and small architectures: scaling to larger models
and more challenging datasets remains to be demonstrated.
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A Datasets

From 2D GMM to D-dimensional data via padding and rotation

Setup. Let u ∈ R2 be drawn from a 2D mixture density p2(u) (the ground-truth Gaussian mixture
in the main text). For a target ambient dimension D ≥ 2, set m = D − 2 and define

z =

[
u
w

]
∈ RD, w ∼ N

(
0, σ2

padIm
)
.

Let R ∈ RD×D be an orthogonal matrix (R⊤R = I) with detR = +1, and set

x = Rz, z = R⊤x.

By independence of (u,w), the D-dimensional density factorizes as

pZ(z) = p2(u) pW (w) = p2(u)

m∏
j=1

N
(
wj ; 0, σ

2
pad

)
.

Since x = Rz with orthogonal R, the change-of-variables determinant is unity (| detR| = 1), hence

pX(x) = pZ
(
R⊤x

)
.

Writing z = (u,w) = R⊤x, we obtain the oracle log-density

loracle(x) = log pX(x) = log p2
(
u
)
+

m∑
j=1

logN
(
wj ; 0, σ

2
pad

)
. (4)

Recovering the 2D generator density Let R ∈ RD×D be the rotation used to construct the dataset
and define the selector

S =
[
I2 02×(D−2)

]
∈ R2×D.

Given any observed point x ∈ RD, the unrotated coordinates are z = R⊤x, and the generator
(ancestor) coordinates in R2 are

u = S z = SR⊤x.

Equivalently, with the fixed linear map Π = SR⊤ ∈ R2×D,

u = Πx, Π⊤Π = RS⊤SR⊤ (projection onto the generator subspace).

Since the global rotation is orthogonal, the 2D density of the latent ancestor corresponding to x is
simply the mixture density evaluated at u:

pancestor(x) = p2
(
u
)

= p2
(
Πx

)
. (5)

B Experimental setup

Synthetic data We construct three synthetic datasets as follows. We first sample from a 2D GMM
with k ∈ {4, 8, 12} mixture components, then append (D−2) i.i.d. “filler” dimensions drawn from
N (0, 0.022). Subsequently, we apply a random orthogonal rotation in RD as described in Appendix
A. We set D=50 for the first two datasets (k=4 and k=8) and D=30 for the third dataset (k=12).
Each dataset contains 60,000 training and 10,000 validation points.

Priors We assess two priors for the VAE latent variable z: (i) the isotropic standard Gaussian
N (0, I); and (ii) a learnable k-component Gaussian mixture,

pZ(z) =

k∑
k=1

πk N
(
z; µk, diag(σ

2
k)
)
,

with k ∈ {4, 8, 12} chosen to match the generator’s component count. In the mixture prior, the
component means {µk} and diagonal scales {σk} are learned.
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Density estimates We associate to each training sample its log-density estimate ρi used by the
aligner as a supervising signal: (i) Oracle—the ground-truth log pX(x) from the data generator
(details on the Oracle are given in A, see in particular eq. 4); (ii) PAk estimator [11] computed after
projecting the data onto the top d=2 principal components (matching the latent dimensionality). The
PAk routine also returns a standard error, which we use as precision weight.

Training For the synthetic datasets, all models are VAEs with latent dimension d = 2, a Gaussian
decoder with fixed observation noise σx = 0.02, and shallow linear MLPs. The encoder maps
D → D/2 → (µ, log σ2) ∈ R2, and the decoder maps 2 → D/2 → D. For MNIST, all models are
VAEs with latent dimension d = 10, a Bernoulli decoder, and a shallow MLP with one hidden layer
with 300 neurons, both in the encoder and the decoder.

In both settings, we train with Adam (lr = 10−3) [17], batch size 128, for 100 epochs. We apply a
KL warm-up [18] from 0.1 to 1.0 over the first half of training. We compare NONE (no alignment),
DIRECT (direct aligner), and FLOW (flow aligner). For the flow aligner, we use a small normalizing
flow with coupling layers [19, 20, 21], with 5 layers and hidden width 16. Experiments are repeated
over multiple random seeds.
Our code is publicly available at https://github.com/alessimichele/DiVAE-EurIPS.

C Definitions and explanation of the metrics

Why KS/W. We evaluate distributions of log-densities through KS and W rather than relying on
s̄ alone, because means can mask “holes” (mass misplacement/missing modes): two models may
match s̄ yet allocate probability very differently. KS captures the worst-case gap between empirical
CDFs, while W measures average transport. Together they provide complementary diagnostics of
distribution-level calibration (lower is better).

Why KL(p2 ∥ pZ). We favor KL(true || prior) because it penalizes under-allocation of probability
where the true generator places mass (poor coverage). Lower values indicate better coverage of the
true support.

Why KL(q ∥ p2). It quantifies how incompatible the latent encoding of x is with the true generator.
For OOD inputs, a higher value is desirable: it indicates the model correctly identifies that the
posterior mass lies off the true latent manifold (i.e., it does not spuriously project OOD inputs onto
plausible generator modes).

Why entropy H(q). It measures the encoder’s uncertainty about the latent representation. OOD
inputs should induce higher entropy (broader posteriors), reflecting appropriate uncertainty rather
than overconfident misassignments.

Definition and motivation for ∆KL. We define a latent mismatch shift (∆KL) as the difference
between the expected posterior–prior divergence on OOD and in-distribution inputs:

∆KL = Ex∼pOOD

[
KL

(
q(z | x) ∥ p(z)

)]
− Ex∼pIN

[
KL

(
q(z | x) ∥ p(z)

)]
. (6)

This metric measures how much does the posterior–prior mismatch increase when I move from in-
distribution (MNIST) inputs to OOD (Fashion-MNIST) inputs, thus positive values of ∆KL indicate
that the posterior–prior mismatch is systematically larger on OOD data than on in-distribution data.

Definition and motivation for ∆H. We define an entropy-based uncertainty shift as the difference
between the expected posterior entropy on OOD and in-distribution inputs:

∆H = Ex∼pOOD

[
H
(
q(z | x)

)]
− Ex∼pIN

[
H
(
q(z | x)

)]
, (7)

where q(z | x) is the approximate posterior and H(·) denotes its entropy.

We hypothesize that, in a good model, the encoder becomes noticeably more uncertain when it sees
OOD data. Therefore, positive values of ∆H are to be preferred.
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D Model details

Huber loss The Huber loss, defined as:

Γδ(e) =

{
1
2e

2, |e| ≤ δ,

δ
(
|e| − 1

2δ
)
, |e| > δ.

is quadratic when the residual’s magnitude e is below a threshold a, and linear beyond that, with a
continuous derivative at a. It is preferred to the squared error when performing robust regression for
it is less sensitive to outliers [12].

E Tables

Notation Definition Notes

L̂i log pθ(xi | zi)−KL
(
qϕ(z | xi) ∥ pZ(z;ψ)

)
Single-point ELBO estimator; zi ∼ qϕ(z | xi)

ℓoraclei log pX(xi) (see Appx. A.4) Single-point true data log-density

si log pZ(zi;ψ) Single-point log-prior probability; zi ∼ qϕ(z | xi)
soraclei log p2(ui) (see Appx. A.5), ui = Πxi Single-point true generator (2D) log-density

ℓ (L̂i)
Nval
i=1 Mean: ℓ = 1

Nval

∑
i L̂i

ℓoracle (ℓoraclei )Nval
i=1 Mean: ℓ

oracle
= 1

Nval

∑
i ℓ

oracle
i

s (si)
Nval
i=1 Mean: s̄ = 1

Nval

∑
i si

soracle (soraclei )Nval
i=1 Mean: s̄oracle = 1

Nval

∑
i s

oracle
i

KS sup
x

|Fs(x)− Fsoracle(x)| Kolmogorov-Smirnov two samples test between s̄ and s̄oracle

W
∫ 1

0

∣∣F−1
s (u)− F−1

soracle
(u)

∣∣ du 1D Wasserstein (EMD) between s̄ and s̄oracle

KL KL(p2(·) || pZ(·;ψ)) KL divergence between the true 2D GMM and the VAE’s prior

KL(q, p2) KL(q(· | x) || p2(·)) KL divergence between the variational posterior and the true 2D GMM

H(q) −Ez∼qϕ(z|xi)

[
log qϕ(z | xi)

]
Entropy of the variational posterior

Table 5: Per-sample quantities and their vector/mean aggregates used in evaluation. F denotes the
empirical CDF.

Prior Method ℓ s̄ W KS KL

GMM No reg 116.037 ± 5.193 -1.998 ± 0.880 0.814 0.469 114.184
GMM DIRECT 115.970 ± 5.225 -2.589 ± 0.821 0.223 0.133 64.259
GMM FLOW 115.856 ± 5.241 -3.306 ± 0.806 0.516 0.398 34.723

STANDARD No reg 115.408 ± 5.162 -2.728 ± 0.581 0.233 0.116
STANDARD DIRECT 115.225 ± 5.229 -2.663 ± 0.528 0.258 0.126
STANDARD FLOW 115.330 ± 5.219 -2.964 ± 0.740 0.270 0.193

Table 6: Synthetic results for k = 4, dim=50. Averaged across 3 seeds. Oracle external densities.
ℓ
oracle

= 116.831; s̄oracle = -2.81252
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Prior Method ℓ s̄ W KS KL

GMM No reg 116.037 ± 5.193 -1.998 ± 0.880 0.814 0.469 114.184
GMM DIRECT 115.933 ± 5.186 -2.667 ± 0.759 0.182 0.102 69.620
GMM FLOW 114.441 ± 5.291 -6.395 ± 0.838 3.583 0.946 4.419

STANDARD No reg 115.408 ± 5.162 -2.728 ± 0.581 0.233 0.116
STANDARD DIRECT 115.247 ± 5.182 -2.473 ± 0.396 0.361 0.228
STANDARD FLOW 115.082 ± 5.228 -3.286 ± 0.813 0.500 0.338

Table 7: Synthetic results for k = 4, dim=50. Averaged across 3 seeds. PAk external densities.
ℓ
oracle

= 116.831; s̄oracle = -2.81252

Prior Method ℓ s̄ W KS KL

GMM No reg 115.188 ± 5.300 -2.495 ± 0.902 0.870 0.501 20.877
GMM DIRECT 115.245 ± 5.236 -3.078 ± 0.813 0.294 0.187 8.840
GMM FLOW 114.755 ± 16.984 -3.117 ± 0.913 0.285 0.190 9.494

STANDARD No reg 114.339 ± 5.196 -2.720 ± 0.496 0.645 0.322
STANDARD DIRECT 113.794 ± 17.043 -2.847 ± 0.520 0.518 0.233
STANDARD FLOW 113.748 ± 18.338 -3.054 ± 0.648 0.310 0.137

Table 8: Synthetic results for k = 8, dim=50. Averaged across 3 seeds. Oracle external densities.
ℓ
oracle

= 116.256; s̄oracle = -3.36459

Prior Method ℓ s̄ W KS KL

GMM No reg 115.188 ± 5.300 -2.495 ± 0.902 0.870 0.501 20.877
GMM DIRECT 115.142 ± 5.305 -3.244 ± 0.803 0.151 0.073 6.447
GMM FLOW 113.506 ± 5.891 -6.325 ± 1.341 2.960 0.753 5.334

STANDARD No reg 114.339 ± 5.196 -2.720 ± 0.496 0.645 0.322
STANDARD DIRECT 113.919 ± 5.332 -2.844 ± 0.504 0.521 0.231
STANDARD FLOW 113.490 ± 17.099 -3.812 ± 0.925 0.493 0.315

Table 9: Synthetic results for k = 8, dim=50. Averaged across 3 seeds. PAk external densities.
ℓ
oracle

= 116.256; s̄oracle = -3.36459

Prior Method ℓ s̄ W KS KL

GMM NONE 64.961 ± 4.118 -4.265 ± 0.925 0.633 0.380 3.728
GMM DIRECT 64.813 ± 4.141 -3.988 ± 0.773 0.334 0.238 3.349
GMM FLOW 64.833 ± 4.155 -5.049 ± 0.869 1.288 0.606 3.238

STANDARD NONE 64.363 ± 4.069 -2.866 ± 0.680 0.896 0.418
STANDARD DIRECT 64.156 ± 4.164 -2.955 ± 0.723 0.808 0.388
STANDARD FLOW 64.272 ± 4.141 -3.199 ± 0.896 0.564 0.358

Table 10: Synthetic results for k = 12, dim=30. Averaged across 3 seeds. Oracle external densities.
ℓ
oracle

= 66.045; s̄oracle = -3.76285
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Prior Method ℓ s̄ W KS KL

GMM NONE 64.961 ± 4.118 -4.265 ± 0.925 0.633 0.380 3.728
GMM DIRECT 64.837 ± 4.051 -3.549 ± 0.608 0.239 0.124 6.823
GMM FLOW 63.194 ± 4.300 -8.195 ± 1.290 4.432 0.934 4.582

STANDARD NONE 64.363 ± 4.069 -2.866 ± 0.680 0.896 0.418
STANDARD DIRECT 64.099 ± 4.173 -2.996 ± 0.717 0.767 0.384
STANDARD FLOW 63.967 ± 4.233 -3.824 ± 1.264 0.551 0.255

Table 11: Synthetic results for k = 12, dim=30. Averaged across 3 seeds. PAk external densities.
ℓ
oracle

= 66.045; s̄oracle = -3.76285

Prior Method tinit t̄batch t̄epoch

STANDARD NONE - 0.0040 1.898
STANDARD DIRECT 12.08 0.0051 2.392
STANDARD FLOW 10.68 0.0258 12.111

GMM NONE - 0.0053 2.508
GMM DIRECT 12.34 0.0073 3.404
GMM FLOW 13.00 0.0295 13.849

VAMP NONE - 0.0060 2.802
VAMP DIRECT 16.07 0.0088 4.133
VAMP FLOW 11.36 0.0309 14.482

Table 12: Timing results. Direct regularization introduces essentially no computational overhead
during training: both per-batch and per-epoch times remain comparable to the unregularized baseline,
with a modest increase in initialization time due solely to theO(N logN) preprocessing step required
to compute the nearest-neighbour graph over the N training samples. In contrast, the flow-based
regularizer incurs substantial overhead in both batch and epoch times, as it requires training an
additional normalizing flow module jointly with the VAE.
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