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ABSTRACT

Multimodal large language models have demonstrated impressive capabilities in
visual-language understanding, particularly in offline video tasks. More recently,
the emergence of online video modeling has introduced early forms of active
interaction. However, existing models, typically limited to tens of minutes, are
not yet capable of all-day proactive understanding over ultra-long video streams.
They struggle to maintain long-term context online, as they suffer from token
accumulation and lack scalable memory mechanisms. These limitations hinder
critical tasks such as reminding users that medication was taken hours earlier—an
ability that exemplifies the shift from reactive to memory-oriented assistants with
long-term reasoning. To bridge this gap, we present Memento, the first proactive
vision-language framework for ultra-long streaming video. To avoid token growth
and support scalable long-duration understanding, we introduce Dynamic Memory
and Query-related Memory Selection, enabling sparse memory retention and effi-
cient retrieval. To address the training challenges of memory-based modeling, we
propose Step-Aware Memory Attention, which aligns memory access with tempo-
ral steps for stable supervision. To support both training and evaluation of active,
long-term behavior, we construct Memento-54K and MementoBench, a dataset-
benchmark suite covering diverse tasks on text, object, and action across video
streams up to 7 hours. Experiments demonstrate that Memento achieves superior
performance, paving the way toward reliable all-day proactive video assistants.

1 INTRODUCTION

Recent advancements in large language models (LLMs) (Ouyang et al., 2022; Touvron et al., 2023;
Yang et al., 2024b;a; Xin et al., 2025; Guo et al., 2025) and vision-language models (VLMs) (Liu
et al., 2023; 2024a; Achiam et al., 2023; Bai et al., 2025) have shown remarkable progress in video
understanding, particularly with the emergence of long-form (Ren et al., 2024; Song et al., 2024a;
Zeng et al., 2025) and online video LLMs (Chen et al., 2024a; Wu et al., 2024b; Li et al., 2025a;
Qian et al., 2025). Such progress has further raised expectations for an all-day, proactive assistant.
This assistant would continuously perceive the environment through ultra-long video streams and
proactively interact with humans, rather than merely responding passively to explicit user queries.
Achieving this capability would not only fundamentally transform the role of AI assistants in daily
human activities, but also represent a critical step toward genuine autonomous agents (Fan et al.,
2024; Wang et al., 2024b; Putta et al., 2024; Hong et al., 2024).

Despite this promising progress, existing models still fall short of realizing such a proactive assistant
in practice. Their limitations become especially evident in scenarios requiring extremely long-term
behavioral monitoring and temporal reasoning. For instance, an all-day assistant should be able to
recall whether the user has already taken a specific medication hours ago, detect that the same object
has been accessed multiple times throughout the day, or notice a warning text previously ignored.
Fig. 1 illustrates a detailed case, inspired by a scene from the film Memento: the wife asks for an
insulin shot three times within a few hours, but the husband, due to short-term memory loss, fails to
recognize the repeated requests, potentially leading to serious consequences. In this scenario, existing
long-form video models fail to assist during critical moments. They cannot issue timely warnings
during the shots and fail to respond accurately. On the other hand, even the most advanced online
streaming models struggle with ultra-long durations due to their token-based architectures, which
cause visual tokens from each frame to accumulate in memory usage over time. As a result, after
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T = 15m 10s

No Response！

Online
Video LLMs

>25min

Long 
Video LLMs

How many times did the
woman asks for a shot? Remind
me each time.

T = 2m 15s

User

I understand. Every time she asks
for a shot, I will remind you.

Memento
I understand. Every time the
woman asks for a shot, I will tell
you which occurrence it is.

……
Tell me how long it's been since
I gave her the previous shot.

Ultra-long 

Streaming 

Video

…

3rd time the woman asks for
a shot.

T = 2m 30s T = 1h 40m 36s T = 1h 42m 54s

2nd time the woman
asks for a shot.

OK! I understand. This shot is
5264.3 seconds after the last.

……

Of course, I will remind you
whenever she asks for the shot.

…

2nd time the woman
asks for a shot.

…

Tsum > 4h

Memento: Toward an All-Day Proactive Assistant for Ultra-Long Streaming Video

最长7小时

Sammy? It’s time 
for my shot.

Sammy! It’s time 
for my shot.

No Response！

No Response！

It’s time for my shot!

Exact time between the final shot
and the preceding one is 515s.

No Response！

Meta-LLaMA3

Figure 1: Comparison of model behaviors for all-day proactive assistance. Long-term and online
video models both fail to assistant at injection points beyond 25 minutes. Conversely, Memento
continuously tracks repeated shots, demonstrating its capability toward serving as an all-day proactive
assistant. Results for online models and Memento are obtained via supervised fine-tuning (SFT),
while long video model outputs are based on prompt engineering due to architectural limitation.

at most a few dozen minutes, the model exceeds GPU memory limits, and cannot recognize that
previous requests occurred.

To address the above issues, we propose Memento, a proactive vision-language framework for ultra-
long video streams. To handle the long-term memory challenge, we introduce a Dynamic Memory
(DM) mechanism that learns to retain or fuse incoming visual information over time, allowing
Memento to preserve relevant context while keeping memory usage bounded. In addition, we propose
a Query-related Memory Selection (QMS) module that retrieves only the most relevant memory
slots during generation, enabling efficient and targeted access across extended video durations. This
framework departs from the token-based paradigm, in which frame-level features are concatenated
and multiple positions are supervised jointly. In contrast, Memento operates over dynamically updated
memory representations, which evolve over time and cannot be aligned to discrete frame steps. As
a result, directly applying token-level supervision leads to misaligned inputs and invalid training.
To resolve this structural mismatch, we introduce Step-Aware Memory Attention (SAMA), which
restricts attention to memory available at each step, ensuring temporally consistent and semantically
valid learning. While Memento addresses the architectural challenges of proactive interaction with
long-range memory, existing datasets (Chen et al., 2024a; Yao et al., 2025; Grauman et al., 2022;
Yang et al., 2025) offer limited support for training or evaluation. Online benchmarks (Chen et al.,
2024a; Li et al., 2025b; Wu et al., 2024a) include only short-term proactive tasks such as behavior
recap based on recent frames, lacking supervision for long-term monitoring. To bridge this gap, we
construct Memento-54k and MementoBench, covering diverse task types on text, object, and action
over video streams up to 7 hours, all requiring long-range, proactive understanding.

Our contributions are summarized as follows:

• Framework. For the first time, a framework for proactive interaction over ultra-long video streams,
named Memento, is proposed.

• Memory modeling. To address the scalable long-term memory challenges, we introduce dynamic
memory and a query-related selection for selective retention and efficient retrieval.

• Training strategy. To enable training compatibility with dynamic memory, we propose step-aware
memory attention, ensuring stable and effective learning for proactive vision-language modeling.

• Dataset and benchmark. We construct Memento-54k and MementoBench, covering diverse long-
range proactive tasks, validating the effectiveness of Memento and supporting the development of
an all-day proactive assistant.
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Related Work Visual Input Long Form Proactive
LLaMA-VID (ECCV 2024) fixed token ✓ ✗
TimeSuite (ICLR 2025) fixed token ✓ ✗
MovieChat (CVPR 2024) fixed memory ✓ ✗
MA-LMM (CVPR 2024) fixed memory ✓ ✗
VideoLLM-online (CVPR 2024) fixed token ✗ ✓
VideoLLM-MoD (NeurIPS 2024) dynamic token ✗ ✓
LION-FS (CVPR 2025) dynamic token ✗ ✓

Memento dynamic memory ✓ ✓

Table 1: Comparison between related methods and the proposed Memento. “Proactive” indicates
whether the model supports interaction without explicit queries.

2 RELATED WORK

Long-Form Video Understanding. Recent multimodal large language models have demonstrated
strong instruction-following capabilities in video understanding (Cheng et al., 2024; Zhang et al.,
2023; Li et al., 2024b; Liu et al., 2024b; Wang et al., 2025; Zhang et al., 2024b), particularly for
long-range content. As early approaches based on sparse frame sampling often fail to capture key
clues in long videos (Lin et al., 2024; Li et al., 2024a; Maaz et al., 2024; Ma et al., 2024; Zhou et al.,
2024), fixed token-based methods have been introduced via encoding each frame into a fixed number
of visual tokens, with compression algorithm for acquiring more frames (Wang et al., 2024c; Ren
et al., 2024; Weng et al., 2024). For example, LLaMA-VID (Li et al., 2024c) represents each frame
only using two visual tokens, enabling efficient processing of hour-long videos. Beyond token-based
compression, fixed memory-based models, including MovieChat (Song et al., 2024b), Koala (Tan
et al., 2024), MA-LMM (He et al., 2024), and others (Fan et al., 2024; Wang et al., 2024b; Zhang
et al., 2024a), maintain a fixed-length memory bank as the visual tokens. They achieve effective
long-video compression by aggregating redundant frames with similar features. However, these
approaches suffer from increasing inference overhead, limited long-term memory and the inability to
proactively interact, making them unsuitable for all-day assistant scenarios.

Online Video LLMs. Online Video LLMs aim to achieve real-time, proactive interaction over
streaming inputs, with the ultimate ambition of supporting continuous operation across ultra-long
video streams in open-ended scenarios. VideoLLM-online (Chen et al., 2024a) is the first to enable
proactive interaction in video-language modeling by introducing a Streaming-EOS objective to decide
when to respond or remain silent. However, like other fixed token-based approaches, it requires
extracting visual tokens for each incoming video frame, leading to unacceptable growth in memory
usage and computational cost. To reduce overhead, subsequent models introduce dynamic token
strategies, such as MoE-style (Jacobs et al., 1991; Fedus et al., 2022; Shazeer et al., 2017; Lepikhin
et al., 2021) token routing in VideoLLM-MoD (Wu et al., 2024b) and LION-FS (Li et al., 2025a),
where only a subset of tokens are forwarded into deeper layers, and patch-level token dropping in
TimeChat-online (Yao et al., 2025), where high redundancy regions are discarded. These methods
increase the supported video duration to tens of minutes, but still retain frame token accumulation.
Even the most advanced multimodal models (Wang et al., 2024a; Chen et al., 2024c; Gao et al., 2024;
Chen et al., 2024b), such as GPT-4o (Achiam et al., 2023) and Gemini 1.5 Pro (Team et al., 2024;
2023), struggle to proactively reason over ultra-long streaming video. Unlike prior works, Memento
introduces a dynamic memory design and query-related retrieval, as shown in Table. 1, avoiding
token burden and preserving relevant information beyond fixed memory limits. Overall, it paves the
way toward reliable, all-day proactive assistants..

3 MEMENTO: A PROACTIVE LLM OVER ULTRA-LONG VIDEO STREAMS

3.1 OVERVIEW

In this section, we introduce our Memento in detail. As shown in Fig. 2 (a), given a streaming video
V = {f1, f2, . . . , fT }, Memento encodes each frame ft using a ViT-based (Radford et al., 2021)
encoder. The result vt ∈ R(1+hp×wp)×C contains a global [CLS] token and hp × wp spatial tokens.

Instead of directly projecting vt into the language space via an MLP projector as in LLaVA (Liu
et al., 2023; 2024a), we first process it through the Dynamic Memory (DM). At each step t, the
current vt and historical memory Mt−1 are fused according to a Remember-and-Forget (R&F)
strategy. It decides whether to retain the original information, and produces the updated memory
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Figure 2: Overall architecture of Memento. (a) Memento receives user queries and historical
responses with the current memory state, achieving proactive interaction over ultra-long video streams.
(b) Details of the DM mechanism, which mainly utilizes similarity-based retention and aggregation.
(c) Details of the QMS module using query-conditioned gating and masking.

Mt = DM(vt,Mt−1) as R&F Memory. Then, for all the user queries q = {q1, q2, . . . , qn} in the
past, the current R&F memory Mt is filtered by the Query-related Memory Selection (QMS) to
retrieve the most relevant subset M′

t ⊂ Mt. The selected memory M′
t is fed into the LLM to

generate the next-token distributions P , enabling both reactive and proactive responses.

Finally, considering that the fused memory changes across frames but lacks per-frame token structure,
we apply Step-Aware Memory Attention (SAMA) to restrict attention to available memory at each
time step during training. Thanks to this alignment, the supervision objective from VideoLLM-
online (Chen et al., 2024a) can be directly adopted to train the memory-based framework:

L =
1

N

N∑
j=1

(− log lj+1P
[Txtj+1]
j︸ ︷︷ ︸

LM Loss

− log fjP
[EOS]
j︸ ︷︷ ︸

Streaming Loss

), (1)

where lj is 1 if the j-th token is a language response token, and 0 otherwise. fj is 1 if both (1) the
j-th token is the last token in M′

t, and (2) lj+1 is 0. P [Txtj+1]
j is the probability on the j + 1-th text

token, output from the large language model head of the j-th token, and P [EOS]
j is the probability for

the EOS token.

3.2 DYNAMIC MEMORY

To update R&F memory Mt, we aim to balance between retaining essential information and fusing
redundant content, which may arise in the short term (adjacent frames with little change) or in the
long term (repeated scenes or actions), as shown in Fig. 2 (b). To handle both, we compute two
relevance scores: (1) a short-term score δ, based on cosine similarity (Wang et al., 2024d;e) between
the current frame vt and the last memory mt−1 ∈ R(1+hp×wp)×C in Mt−1; and (2) a long-term
score σ, obtained via cross-attention (Vaswani et al., 2017) between vt and all flattened historical
memory tokens Mt−1 ∈ RNt−1(1+hp×wp)×C in Eq. 2. A fixed threshold ϵ controls memory update.

Attn(vt,Mt−1) = softmax

(
(vtWq)(Mt−1Wk)

⊤
√
d

)
,

σ = ψ ((Attn(vt,Mt−1) · (Mt−1Wv))Wo) ,

(2)

where Wq, Wk, Wv, and Wo are projection matrices. ψ(·) denotes a summation followed by a
sigmoid activation (LeCun et al., 1998), yielding a scalar score σ ∈ R.

The R&F gate selects the memory update strategy based on a relevance threshold ϵ. If δ > ϵ, the
current frame is considered locally redundant and is fused into the last memory token using Eq. 3.

score = softmax(Attn(mt−1, vt)), w = score · u,

m̃t−1 = mt−1 · (1− sum(w)) + w⊤vt, Mt = Concat(M[:Nt−1−1]
t−1 , m̃t−1),

(3)
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where score ∈ R(1+hp×wp)×(1+hp×wp) is the normalized attention weight in spatial, u ∈ R is a fixed
scalar update ratio. m̃t−1 is the fused token, and M[:Nt−1−1]

t−1 denotes the first Nt−1 − 1 memory. If
δ ≤ ϵ while σ > ϵ, the frame is semantically aligned with long-term memory content; we thus reuse
the same update strategy but compute attention scores by treating Mt−1 as queries and vt as keys and
values, enabling soft updates across all memory slots. Finally, if both δ ≤ ϵ and σ ≤ ϵ, the frame is
considered distinct and directly appended to memory, namely Mt = Concat(Mt−1, vt).

This gated update mechanism enables Memento to forget redundant content via token fusion, and
remember distinct information. Different from token-based methods, this mechanism could avoid
unacceptable growth in memory usage and computational cost. Compared with the fixed-length
memory banks, it dynamically expands for novel content. This design maintains a compact yet
expressive representation across ultra-long video streams.

3.3 QUERY-RELATED MEMORY SELECTION

To reduce memory consumption while preserving response quality, we filter the current R&F
memory Mt according to user queries q in Fig. 2 (c). Specifically, we transform Mt into
Mt ∈ RNt×(1+hp×wp)×C , and compute cross-attention with user tokens Q as keys and values,
following Eq. 2, to yield the scoreR ∈ RNt for each memory frame. QMS then applies a top-k gating
strategy to select the most relevant k = rqms · Nt tokens, M′

t = TopK(Mt, R, k). The selected
compact memory M′

t is then passed to the LLM for generation. Our QMS ensures query-aware
generation while decreasing the cost of full-memory attention, thereby enabling scalable reasoning
over ultra-long temporal sequences.

3.4 STEP-AWARE MEMORY ATTENTION

Unlike token-based mod-
els with frame-wise ac-
cumulation, the memory
bank lacks explicit align-
ment with video steps.
Thus, prior standard train-
ing methods in (Chen et al.,
2024a; Wu et al., 2024b; Li
et al., 2025a) with causal at-
tention are inapplicable. As
shown in Fig. 3 (a), this
attention will allow access
to expired memory. In con-
trast, our proposed SAMA
in Fig. 3 (b) introduces
a masking scheme to align
with frame-wise visibility.

[Txt]

User

[EOS]

Mem [EOS]

Mem

[EOS]

Mem User [Txt] Mem [EOS] User Mem [Txt][Txt]

Mem

User

[Txt]

Mem

Mem

[Txt]

0 1 0 1 2 3 4 4 5 6 7

[Txt]

User

[EOS]

Mem [EOS]

Mem

[EOS]

Mem User [Txt] Mem [EOS] User Mem [Txt][Txt]

Mem

User

[Txt]

Mem

Mem

[Txt]

0 1 2 3 4 5 6 7 8 9 10

(a) Causal Attention (b) Step-Aware Memory Attention (SAMA)

Pos Pos

Figure 3: Causal attention vs. SAMA. Causal attention (left) permits
access to all past tokens, including expired memory. SAMA (right)
restricts attention to valid memory, excluding irrelevant tokens.

Specifically, an example of input sequence is:

tokens = [M′
1, [EOS], M′

2, q1, [Txt]1, M′
3, [EOS], q2, [Txt]2, M′

4, [Txt]3]L. (4)

A binary attention mask A ∈ {0, 1}L×L is built, where token xi is allowed to attend to token xj if:

Aij =


1, xj ∈ M′

s ∪ q ∪ {[Txt]k}k=1,2,.., i ≥ j, xj ̸= [EOS]

1, i = j, xi = [EOS]

0, otherwise
(5)

Here, s = step(xi) denotes the video frame index when token xi is added to the sequence. Further-
more, we reassign correct position ids for each token to ensure that tokens within the same frame
share a base offset. This aligns positional encoding with the token visibility defined by the mask.

During inference, we maintain the same masking structure so that only previous dialog tokens are
stored as key-value cache (Dao et al., 2023; Ge et al., 2024), allowing efficient streaming decoding
with minimal computation.
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[User] (0.0s)
When does the dog disappear from 
the video frame? 
[Memento] (0.0s) 
I understand. I will track disappearance 
of the dog that appeared in the frame. 
[Memento] (1065.6s)
The dog at 0.4 now disappeared.
[Memento] (2114.7s)
The dog at 1070.2 now disappeared.

Memento-54K dataset

Spatial Disappear

Temporal

Ordering

[User] (834.4s) 
Do different shoe variants appear? 
[Memento] (834.4s) 
Monitoring shoe variants: I'll alert 
when multiple types co-occur. 
[Memento] (1082.1s)
2 variants: white, gray.
[Memento] (1500.4s)
3 variants: white, brown, black.

[User] (12.0s) 
How many times do I hold a phone? 
[Memento] (12.0s) 
Every time you hold a phone, I will 
tell you which occurrence it is.
[Memento] (2071.1s) 
2nd time you hold a phone.
[Memento] (3828.5s)
5th time you hold a phone.

(a) Temporal Counting

(g) Spatial Counting

(c) Temporal Duration

(e) Temporal Disappear

(h) Spatial Disappear

(f) Spatial Abnormal

(i) Spatial Appear

[User] (0.8s)
When the Operate Computer task end?
[Memento] (0.8s) 
I will let you know when the Operate 
Computer task ends. 
……
[Memento] (1745.1s)
Your Operate Computer task is
completed. It took 1739.9 seconds.

0.8s

5.2s

1124.6s

1745.1s

7.4s

12.0s

2071.1s

3828.5s

(d) Temporal Changing

(b) Temporal Ordering

354.9s

834.4s

1082.1s

1500.4s

[User] (81.9s) 
When do these text sequences appear 
in the video: 'why thank', 'wer', 'we'? 
[Memento] (81.9s) 
OK. I will monitor the sequence and 
notify you when detected. 
[Memento] (1749.0s) 
'why thank' (after 1574.9s) - 'wer'
(after 66.8s) - 'we', completed now.

81.9s

107.3s

1682.2s

1749.0s

329.2s

2850.6s

2879.1s

3521.9s

[User] (329.2s) 
Alert me when ride a bicycle lasts 
longer than 642.8 seconds. 
[Memento] (329.2s) 
Okay, I’ll alert you. 
[Memento] (3521.9s)
Reminder: you ride a bicycle has
passed 642.8 seconds.
……

295.8s

378.8s

642.4s

647.5s

[User] (378.8s) 
When does any subset of 'online' 
appear? And when was the last 
time this complete text appeared? 
[Memento] (378.8s) 
I understand. I will notify you. 
[Memento] (642.4s) 
The text 'line' appears, its last full
appearance was at 295.8s.

1.2s

2.4s

30.7s

379.3s

[User] (1.2s) 
What is the count of paintbrush in 
a video frame? 
[Memento] (1.2s) 
When the brush appears, I will tell 
you the number of them. 
[Memento] (2.4s)
The number of brush now is 2.
[Memento] (379.3s)
The number of brush now is 11.

0.0s

1065.6s

1070.2s

2114.7s

1434.9s

1724.6s

2083.1s

2236.7s

[User] (1434.9s) 
When does the text 'mixed' appear 
completely in the current video screen? 
[Memento] (1434.9s) 
I will monitor and notify you when the 
text 'mixed' appears on screen.
[Memento] (1724.6s) 
The complete 'mixed' appears.
[Memento] (2236.7s)
The complete 'mixed' appears.

Figure 4: Overview of Memento-54k. Left: the 9 task types categorized by spatial vs. temporal, and
by modality (text, object, action). Right: example QA instances for each task type.

4 DATASET AND BENCHMARK: MEMENTO-54K AND MEMENTOBENCH

4.1 MEMENTO-54K DATASET CONSTRUCTION

Video Filtering and Sampling. To support long-duration, proactive interaction, we construct
Memento-54k based on Ego4D (Grauman et al., 2022). We filter all videos to retain those between
5 minutes and 7 hours, to ensure long-term context. To reduce sample imbalance, we downsample
videos from overrepresented scenarios (e.g., cooking), yielding a subset of 4,466 daily-life videos.

Task Annotation. As illustrated in Fig. 4, we define 9 task types spanning spatial and temporal
reasoning, where spatial tasks focus on short-term perception (e.g., object presence), and temporal
tasks require long-range memory (e.g., repeated actions or text changing). These tasks are designed
for three modalities: action, object, and text. Each sample is annotated as a streaming QA pair,
including a question and multiple assistant responses with timestamps. For each modality, we first
obtain timestamp-level labels, and then generate QA pairs:

• Action. Based on Ego4D timestamp narrations, we prompt GPT-4o to generate QA pairs such as
repeated actions of Temporal Counting on the right side of Fig. 4, see Appendix for details.

• Object. We extract objects at 2 FPS using ChatReX (Jiang et al., 2024), a category-agnostic detector.
QA pairs are then generated via rule-based scripts. For example, in temporal duration tasks, we
track object appearance and disappearance timestamps to identify presence for producing response.

• Text. On-screen text is detected by Qwen2-VL at 2 FPS. Text annotations are similar to object,
such as temporal changing tasks identify cases where a previously seen full text is later partially
disappeared, and once the subset is matched, a response is triggered to form a QA pair.

Streaming QA Formatting. For each task, up
to 9 instances are annotated per video, each fo-
cusing on a distinct action, object, or text. Failed
or invalid cases are manually corrected. Then,
QA pairs are grouped by randomly selecting 1-5
user queries with their timestamped responses
to form new streaming samples. This forms the
final release of the Memento-54k dataset, and
the specific distribution is as shown in Table. 2.

Split Duration Videos Samples Responses
Train Total 4,426 53.6k 2.5M

Test
5-10 min 10 62 2.6k

10-30 min 10 67 3.6k
30-60 min 15 56 4.8k
> 60 min 5 13 2.5k

Total 40 198 13.5k

Table 2: Distribution of Memento-54k.

Especially, streaming QA must scan entire videos, making evaluation expensive. Though it contains
only 40 videos, the test set covers over 13k responses, which is sufficient for robust evaluation.

4.2 MEMENTOBENCH EVALUATION

To evaluate models under the proactive long-term understanding setting, we identify three essential
requirements for this task: temporal alignment, answer quality, and minimal redundancy.
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TimeRecall. TimeRecall is the fraction of ground-truth responses for which the model produces at
least one response within a 5-second window, reflecting the ability to anticipate when to respond.

Score. Score measures the generation quality by comparing all the model responses within the above
window with ground-truth answers. We use GPT-3.5-turbo-0125 to assign score from 1 to 10 and
take the maximum among multiple outputs. Scoring details are provided in the Appendix.

Redundancy. Redundancy captures the extent of unnecessary generation, defined as the proportion of
model responses outside the time window in TimeRecall.

The most closely related benchmark to ours is Ego4D Narration Stream (Chen et al., 2024a; Lin et al.,
2022), which evaluates the temporally align performance on generated descriptions with visual events
in streaming egocentric videos. However, it focuses only on the current narration, overlooking tasks
that require long-term past information. In addition, its evaluation relies on exact text match, whereas
MementoBench supports free-form outputs, enabling more flexible and robust assessment.

Notably, existing online benchmarks (Li et al., 2025b; Wu et al., 2024a) such as OVO-Bench, which
appear to evaluate proactive interaction, in fact offer an offline-form question and predefined response
timestamps during inference. All past video frames before each timestamp are provided, which
ideally should be judged by the model. As a result, such benchmarks emphasize response accuracy
for specified questions, allowing non-proactive models to be evaluated under this setting. In contrast,
MementoBench compares whether models can proactively interact at the right time with the correct
content, enabling more accurate evaluation of the desired capabilities in real-world proactive settings.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

In this work, we implement our Memento following the VideoLLM-online framework (Chen et al.,
2024a). Unless otherwise stated, we use SigLIP-ViT-L/384 (Zhai et al., 2023) as the vision encoder,
which extracts frame-wise features at 2 FPS, and set hp = wp = 3. For the LLM module, we use
LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024). Following (Chen et al., 2024a), we train 1 epoch
for our model in the DeepSpeed Zero-2 (Rajbhandari et al., 2020) configuration, with LoRA (Hu
et al., 2022) to all linear layers in the LLM with a rank of 128 and a scaling factor of 256. For our
DM module, we set the relevance threshold ϵ = 0.7, and update ratio u = 0.2. In the QMS module,
the top-k ratio rqms = 50%. We use AdamW optimizer (Loshchilov & Hutter, 2019) with a learning
rate of 1e-4 and cosine decay. All experiments are conducted on 4 NVIDIA A100 GPUs (80GB).
Please refer to Appendix for inference details with a dynamic correction strategy.

5.2 MAIN RESULTS

We compare our method with VideoLLM-online (Chen et al., 2024a) using MementoBench. To
ensure fairness, we train VideoLLM-online with our Memento-54k dataset using the same training
schedule, denoted as VideoLLM-online*.

To assess runtime scalability, Figure 5 (right) shows GPU mem-
ory usage during streaming video inference. VideoLLM-online
quickly accumulates tokens and runs into OOM at about 25 min-
utes, with memory peaking at 80.5 GB. In contrast, Memento
maintains bounded usage under 45.3 GB across the entire 4-hour
streaming videos, demonstrating its advantages for proactive
response to ultra-long videos with stable memory and no in-
terruption. The occasional rises correspond to dense response
periods and are reduced afterward as temporary variables are
released.
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Figure 5: Memory Usage.

The results on MementoBench are shown in Table 3. The original VideoLLM-online performs
poorly across all aspects, with only 6.1% spatial and 11.8% temporal recall, and nearly 0% beyond
25 minutes due to memory overflow. Even after supervised fine-tuning (SFT) on Memento-54k
(VideoLLM-online*), average recall only rises to 8.9%, with long-term recall still at 0.3%. While
it reports a higher score of 5.32 and lower redundancy of 21.3%, this is largely because it triggers
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Method TimeRecall ↑ Score ↑ Redund. ↓
Sp. Temp. Long (> 25min) Avg. Sp. Temp. Avg.

Online Video LLMs

VideoLLM-online 6.1% 11.8% 0.1% 8.1% 1.55 1.21 1.40 56.4%
VideoLLM-online* 7.9% 11.6% 0.3% 8.9% 5.11 5.68 5.32 21.3%
Ours

Memento* 45.9% 51.3% 35.2% 47.5% 4.31 4.02 4.22 64.5%

Table 3: Evaluation on MementoBench. Sp. and Temp. denote spatial and temporal task types,
where Temp. requires long-term visual reasoning. Long marks responses beyond 25 minutes, for
assessing understanding persistence under ultra-long video streams, independent of task type. In
particular, VideoLLM-online is the only model with available open-source online inference code.

Memory
Schema

TimeRecall ↑ Score ↑ Redund. ↓
Sp. Temp. Avg. Sp. Temp. Avg.

Fixed Memory

Len=8 14.8% 22.1% 16.9% 4.61 4.65 4.64 55.5%
Len=32 20.4% 26.4% 22.1% 5.14 5.04 5.12 53.7%
Len=128 28.1% 31.2% 29.0% 4.77 4.74 4.76 52.7%
Dynamic Memory

ϵ=0.6 23.1% 25.5% 23.8% 5.12 5.25 5.16 50.9%
ϵ=0.7 38.2% 46.7% 40.4% 4.36 4.67 4.39 56.2%
ϵ=0.8 43.9% 46.6% 44.7% 4.59 4.05 4.43 61.4%

Table 4: Ablation on memory schema. “Len” indicates the
fixed memory bank size. Our dynamic memory consistently
yields better recall and offers superior trade-offs in others.
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Figure 6: Memory Size Comparison.

very few responses, often staying silent when answers are expected. The resulting low recall makes it
unsuitable for real-world applications. In contrast, Memento achieves 45.9% spatial, 51.3% temporal,
and 35.2% long-duration recall, while maintaining a solid score of 4.22. Although its redundancy
increases to 64.5%, given the substantial gain in recall (+38.6%), we consider this a worthwhile
trade-off, as ensuring timely and consistent response is critical in ultra-long online scenarios.

5.3 ABLATION STUDY

We conduct three ablation studies to evaluate the core design components of Memento. Our analysis
focuses on three aspects: memory mechanism (with 1+2×2 frame tokens, rqms=100%), frame token
configuration (with ϵ=0.7, rqms=100%) and QMS top-k ratio (with ϵ=0.7, 1+2×2 frame tokens).

Memory Mechanism. To examine the impact of memory structure and hyperparameter on long-term
reasoning, we compare fixed-length memory banks with our dynamic memory mechanism, as shown
in Table 4. Increasing the fixed memory size improves recall from 16.9% to 29.0% and slightly
reduces redundancy. In comparison, dynamic memory achieves notably higher recall (up to 44.7%
at ϵ = 0.8) while maintaining comparable score and redundancy (up to 5.16 and 50.9% at ϵ = 0.6).
Notably, for temporal tasks that require long-range memory, recall improves significantly from 31.2%
(fixed) to 46.7% at ϵ = 0.7. Figure 6 further shows that dynamic memory scales naturally with video
length, enabling long-range context retention. However, ϵ = 0.8 results in nearly 10× larger memory
than ϵ = 0.7 with marginal gain in all the metrics, so we adopt the default ϵ = 0.7.
Frame Token Configuration. We futher analyze
different frame tokens in Table 5. 1 + 3× 3 offers
a better balance, which achieves the highest recall
of 68.9%, while maintaining a reasonable score of
3.78 and moderate redundancy at 66.6%. Fewer
tokens achieve a too low recall of 40.4%. 1+4×4
increases redundancy without improving recall.

Frame Token TimeRecall ↑ Score ↑ Redund. ↓
1 + 2× 2 40.4% 4.39 56.2%
1 + 3× 3 68.9% 3.78 66.6%
1 + 4× 4 60.9% 3.93 67.2%

Table 5: Ablation on frame tokens.
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rqms
TimeRecall ↑ Score ↑ Redund. ↓ Memory Usage ↓

Sp. Temp. Avg. Sp. Temp. Avg.

10% 38.7% 31.5% 33.6% 4.31 4.67 4.33 63.0% 39.53 GB
50% 54.7% 59.5% 56.1% 3.96 3.86 3.93 66.7% 45.19 GB
90% 49.0% 52.8% 50.1% 4.15 3.97 4.10 63.7% 53.50 GB

100% 38.2% 46.7% 40.4% 4.36 4.67 4.39 56.2% 55.44 GB

Table 6: Ablation on QMS top-k ratio. We exclude textual KV cache in “Memory Usage” reporting,
as dialogue history size varies with response behavior and is independent of rqms.

>25min

Q1: When does the event of
me holding the rope occur?
Q2: When will the pulling
the rope task end?User

最长7小时

I understand now! Every time
she told you, I will remind you!

T = 0h 44m 58s (hodling a rope)

Time = 0h : 0m : 0s

Memento

Q3: When have I had these
consecutive events sequence:
'look up', 'look around’, and
'hold the rope'?

Your action of holding
the rope has come up.

Time = 0h : 27m : 04s Time = 0h 44m 38sTime = 0h : 35m : 05s

Your pulling the rope
task has been completed.

……

Time = 0h : 44m : 59s

Your action of holding
the rope has come up.……

Time = 0h : 45m : 00s Time = 1h : 25m : 41sTime = 0h : 49m : 59s

You've had these sequential
events: 'look up' (after 1.0s)
→ 'look around' (after
300.0s) → 'hold the rope'

Figure 7: Qualitative results of Memento on ultra-long streaming video. The scene involves rock
climbing over a 1.5-hour timeline, with three user queries issued at 0, 0, and 44 minutes, respectively.
These queries cover the tasks of spatial appear, temporal disappear and temporal ordering for action.

QMS Top-k Ratio. To assess how QMS filtering affects retrieval relevance, we adjust the top-k se-
lection ratio rqms in the QMS module. As shown in Table 6, selecting all memory slots (rqms=100%)
results in suboptimal performance: although it achieves the highest score of 4.39 and lowest redun-
dancy of 56.2%, its recall is notably lower compared to the best rqms = 50% setting by 15.7%. This
highlights that overly broad memory access may introduce irrelevant context and distract attention
from key visual evidence. Meanwhile, too few slots (r=10%) limits context recall and harms perfor-
mance. The 50% configuration strikes the best trade-off across all metrics, demonstrating that QMS
effectively prioritizes relevant memory and improves response alignment.

5.4 VISUALIZATION OF MEMENTO

Figure 7 showcases Memento’s performance on a 1.5-hour streaming video with temporally distant
queries. The model identifies “holding the rope” at 27 minutes in response to an initial query and
triggers “pulling the rope completed” 8 minutes later. It also tracks the ordered occurrence of
“look up”, “look around”, and “hold the rope” before issuing a final response. Moreover, it remains
proactive across the entire duration, generating correct responses even after 80 minutes, demonstrating
its robustness in ultra-long streaming scenarios.

6 CONCLUSION

In this paper, we present Memento, a proactive vision-language framework for ultra-long streaming
video. It introduces dynamic memory, query-related selection and step-aware attention for scalable
long-term context modeling and temporally aligned training. Moreover, we construct Memento-54k
and MementoBench for training and evaluation. Experiments show that Memento enables effective
proactive interaction. Declaration of LLM usage will be discussed in Appendix.
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