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ABSTRACT

Temporally extended actions improve the ability to explore and plan in single-
agent settings. In multi-agent settings, the exponential growth of the joint state
space with the number of agents makes coordinated behaviours even more valu-
able. Yet, this same exponential growth renders the design of multi-agent op-
tions particularly challenging. Existing multi-agent option discovery methods
often sacrifice coordination by producing loosely coupled or fully independent
behaviours. Toward addressing these limitations, we describe a novel approach
for multi-agent option discovery. Specifically, we propose a joint-state abstrac-
tion that compresses the state space while preserving the information necessary to
discover strongly coordinated behaviours. Our approach builds on the inductive
bias that synchronisation over agent states provides a natural foundation for co-
ordination in the absence of explicit objectives. We first approximate a fictitious
state of maximal alignment with the team, the Fermat state, and use it to define
a measure of spreadness, capturing team-level misalignment on each individual
state dimension. Building on this representation, we then employ a neural graph
Laplacian estimator to derive options that capture state synchronisation patterns
between agents. We evaluate the resulting options across multiple scenarios in two
multi-agent domains, showing that they yield stronger downstream coordination
capabilities compared to alternative option discovery methods.

1 INTRODUCTION

Effective cooperation in complex domains requires agents to coordinate intentions, synchronise ac-
tions, share information, and make decisions that impact others under partial observability. Hu-
mans seeking to achieve such cooperation often adapt previously learned cooperation patterns to
new tasks, inventing novel strategies by reasoning about the structure and rules of the task (see
Appendix A.1 for extended discussion and examples). When learning a new ball game, basic coop-
eration patterns like passing or positioning relative to teammates or opponents surface instinctively
and are then adapted to the new setting. This ability to identify and reuse cooperation patterns al-
lows us to bypass relearning basic skills and instead focus on discovering more abstract (high-level)
strategies. In this work, we study how to enable AI agents to discover such basic cooperation pat-
terns and use them to explore and identify more useful cooperation strategies at a higher level than
that allowed by primitive actions.

In single-agent reinforcement learning (RL), the options framework (Sutton et al., 1999) is a widely
used mechanism for formulating temporally extended actions. That is, options can act as shortcuts
between distant regions of the state space during exploration (McGovern & Barto, 2001). Yet, as
noted in prior work (Jong et al., 2008), the effectiveness of options is sensitive to many factors,
and poorly designed and excessively large sets of options can hinder learning. This makes option
discovery, i.e., the automated design of useful options, a challenging problem. Methods based on
the eigen-decomposition of the graph Laplacian, such as Eigenoptions (Machado et al., 2017a), have
gained traction due to their task-agnostic discovery of options and exploration guarantees (Jinnai
et al., 2019a). However, the reliance on the eigenvectors of the state-transition graph Laplacian
leads to an excessive number of options being discovered (twice the state count), a problem that
is more pronounced in multi-agent systems because the joint state space grows exponentially with
the number of agents. Moreover, current Laplacian eigenvector approximators are most effective
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in estimating small numbers of eigenvectors (Wang et al., 2021; Gomez et al., 2024), risking not
identifying many useful options, particularly those that facilitate exploration at various timescales.

We address option discovery for multi-agent systems through a novel inter-agent relative state ab-
straction. This new state abstraction compresses the joint state space of a group of agents into a
compact latent representation centred around the state of maximal alignment among agents we call
the Fermat state. Through this abstraction of the joint state, we drastically reduce the number of
discovered options while also focusing the discovery process on inter-agent relational dynamics.
We then empirically show how this transformation encourages the emergence of highly coordinated
behaviours. Our approach builds on the intuition that in the absence of an explicit objective, syn-
chronisation over state features represents a natural basis for coordination. Returning to the ball
game example, both the passing and positioning skills can be understood as forms of multi-agent
state synchronisation: determining who holds the ball and how agents align relative to one another
along each spatial dimension. This intuition is consistent with insights into position alignment in
animal collective movement (Herbert-Read, 2016) and emergent coordination in human psychol-
ogy (Knoblich et al., 2011). The key contributions of our paper are:

• A novel abstract joint state representation that estimates inter-agent relations by transitioning to a
multi-dimensional N-metric space;

• The use of the abstract state representations for the discovery of highly coordinated joint options,
due to their ability to compress and reorient eigenoption discovery toward inter-agent relations;

• Adapting the MacDec-POMDP framework (Amato et al., 2019) to support joint-option execution;

We illustrate and experimentally evaluate the capabilities of our approach in two benchmark multi-
agent collaboration domains: Level-Based Foraging (Papoudakis et al., 2021) and Overcooked (Ruh-
dorfer et al., 2024). Beyond assessing the benefits of relative options over standard, non-option-
enhanced baselines, we test the hypothesis that the proposed state abstraction facilitates the discov-
ery of a more diverse and generalisable set of coordination behaviours, better suited to support teams
of agents in downstream tasks compared with other multi-agent option discovery methods.

2 BACKGROUND

We begin by describing the basic concepts of Dec-POMDPs, the options framework, and n-metrics.

2.1 DECENTRALISED PARTIALLY-OBSERVABLE MARKOV DECISION PROCESSES

A Dec-POMDP (Bernstein et al., 2009) is defined as a tuple ⟨I,S, {Ai}, T ,R, {Ωi},O, γ⟩, where
I = {1, . . . , N} is a finite set of agents’ indices, S the state space and A = A1 × · · · × AN the
joint action space. At every time-step t, agent i receives its local observation oit ∈ Ωi, where Ω =
Ω1×· · ·×ΩN is the joint set of observations that was generated according to the observation function
O : S×A×Ω→ [0, 1]. Agent i then selects an action ait ∈ Ai according to a policy πi(ait|hit), that
is conditioned on the history of its local observations and actions hit = (oi1, a

i
1, . . . , o

i
t−1, a

i
t−1, o

i
t).

Given the joint set of actions at t, at = {a1t , . . . , aNt }, the environment transitions to a new state
st+1 ∈ S according to the state transition function T : S × A × S → [0, 1] and induces a global
reward received by all agents rt = R(s, a), whereR : S×A → R. The goal is to learn a joint policy
π = (π1, . . . , πN ) that maximises the expected cumulative discounted return G =

∑T
t=1 γ

t−1rt.

Amato et al. (2019) extended Dec-POMDPs by integrating single-agent macro-actions (options)
within an asynchronous execution scheme. They defined a MacDec-POMDP as the tuple
⟨I,S,A, {Mi}, T ,R, {Zi}, {Ωi}, {ζi}, O⟩, where ⟨I,S,A, T ,R, {Ωi}, O⟩ are the same as in a
Dec-POMDP. The primitive action set of each agent i ∈ I,Ai, is replaced with a finite set of macro-
actionsMi, andM =M1 × · · · ×MN is the joint macro-action set. They also introduced a joint
set of macro-observation ζ = ζ1× · · ·× ζN , with Zi :Mi×S × ζi → [0, 1] specifying the macro-
observation probability function for each agent i. To formalise macro-actions, separate histories are
maintained for the two execution levels: Hi

A is the primitive action–observation history, and Hi
M is

the macro-action–macro-observation history. The joint primitive history is HA = (H1
A, . . . ,H

N
A ),

and the joint macro history is HM = (H1
M , . . . ,H

N
M ).
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2.2 OPTIONS

Sutton et al. (1999) define an option as a tuple w = ⟨Iw, πw, βw⟩, where Iw ⊆ S is the initiation
set, πw is the option policy, and βw : S → [0, 1] is the termination condition. If these compo-
nents depend only on the current state, the option is referred to as a Markov option. This notion
is generalised to semi-Markov options, in which the policy and termination condition may depend
on additional information (e.g., state–action–reward histories), or termination may be triggered by
external factors such as a fixed k-step horizon.

Eigen-option discovery (Machado et al., 2017b) estimates the eigenvectors of the combinatorial
graph Laplacian corresponding to a state–transition graph, typically via random walks. The eigen-
vectors of the graph Laplacian, L = D −A (where D and A are the degree and adjacency matrices,
respectively), captures long-term temporal relationships between states and the overall geometry of
an MDP (Mahadevan & Maggioni, 2007). Given an eigenvector e, the intrinsic reward function for
transitioning from state s to s′ can be computed as re(s, s′) = ei[s

′]− ei[s]. Subsequent work (Wu
et al., 2018; Jinnai et al., 2020; Wang et al., 2021) extends this framework to non-tabular domains
by approximating the eigenvectors through neural networks trained to minimise objectives derived
from graph-drawing theory (Koren, 2005). The ALLO method introduced by Gomez et al. (2024)
further improves robustness to hyperparameters and eigenvector rotations.

2.3 n-METRICS & n-DISTANCES

n-metric. Given a set X and an integer n ≥ 2, an n-(hemi)metric (Deza & Rosenberg, 2000; Deza
& Deza, 2009) is a function d : Xn → R, that respects the following conditions:

(M1) (Non-negativity) d(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ X .
(M2) (Total symmetry) d(x1, . . . , xn) = d(xπ(1), . . . , xπ(n)), for all x1, . . . , xn ∈ X and for any

permutation π of {1, . . . , n}.
(M3) (Definiteness) d(x1, . . . , xn) = 0, if and only if x1, . . . , xn are not pairwise distinct.
(M4) (Simplex inequality) d(x1, . . . , xn) ≤

∑n
i=1 d(x1, . . . , xn)

z
i , for all x1, . . . , xn, z ∈ X .

This definition uses n, to replace m+1 in the original definition of an m-hemimetric (Deza & Deza,
2009) and d(x1, . . . , xn)zi to represent functions on n elements, where element i is replaced z.

n-distance. n-distances (Martı́n & Mayor, 2011; Kiss et al., 2018) relax (M3) by setting
d(x1, . . . , xn) = 0 only when x1 = . . . = xn, providing a direct way of comparing the dissim-
ilarity or separateness for sets with more than two elements.

Fermat n-distance. Given a metric space (X, d) and an integer n ≥ 2, a Fermat set Fx for a list of
n elements (x1, . . . , xn) is a set that minimises the sum of distances to each element in the list:

FX =

{
x ∈ X :

n∑
i=1

d(xi, x) ≤
n∑
i=1

d(xi, x
′), ∀x′ ∈ X

}
. (1)

The elements of Fx are then named the Fermat points for the respective list. Based on these defini-
tions, Kiss et al. (2018) introduce Fermat n-distances as functions dF : Xn → R of the form:

dF (x1, . . . , xn) = min
x∈X

n∑
i=1

d(xi, x). (2)

3 MULTI-AGENT OPTION-DISCOVERY

We next describe our framework for multi-agent option discovery, starting with the method for
approximating the spread of a group of agents through n-distance estimation.

3.1 n-DISTANCES FOR MULTI-AGENT DISSIMILARITY ESTIMATION

In the absence of a reward signal, one key strategy for coordination among a group of agents is
through the alignment of their states. An important step to generate such collaborative behaviours

3
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is to define a measure of spreadness for the group of agents at any given time. We begin by intro-
ducing a notion of distance between the states of two agents. To this end, we assume that the joint
state-space, S, can be factored into N single-agent state spaces Si, with N = |I| and i ∈ I, by
ignoring the presence of others and including information corresponding solely to each individual
agent 1. We denote si ∈ Si to be a single agent-state, and d(si, sj) as a distance metric capable of
comparing the similarity between the states of two agents, i, j ∈ I. For simplicity, we focus our
notation and definitions on homogeneous agent state spaces, i.e., S∗ = S1 = . . . = SN . However,
Appendix A.8 describes how this model can be extended to heterogeneous settings, and presents
empirical evaluation in two toy scenarios.

Inspired by Fermat n-distances (Equation 2), we define an n-distance metric for a group of agents.
Definition 1. For a metric space (S∗, d), where S∗ is a single-agent state space, d is a state distance
metric and N ≥ 2, we define the Fermat inter-agent state distance as a map dF : S → R such that:

dF (s
1, . . . , sN ) = min

s∈S∗

N∑
i=1

d(si, s). (3)

Computing the minimization operation from Definition 1. becomes intractable in large or continuous
state spaces. To alleviate this problem, we propose approximating the Fermat state, the state of
minimum summed distance to each agent, through a parameterised function, ϕ : S → S∗, which we
call the Fermat encoder and train by minimizing the following objective:

LF (ϕ, d) = E
τ∼ρπ

[
1

N

N∑
i=1

d(sit, ϕ(st))
2

]
. (4)

where τ ≜ (s0, . . . , sT−1) ∼ ρπ is a history of states under the trajectory distribution ρπ of joint
policy π, T is the time horizon of an episode, st is the joint state, and sit is the ith element of
the factorised joint state, corresponding to agent i. This objective depends on a pre-defined state
distance metric d. While any valid state distance metric would suffice, we employ temporal distances
due to their invariance to feature semantics and close alignment with environmental dynamics (see
Section 5). Temporal distances are typically formulated as quasimetrics that are obtained by relaxing
the symmetry requirement to account for the arrow of time (e.g., ascending a mountain takes more
time than descending it). Although a quasimetric function can be symmetrised, e.g. dm(x, y) =
dq(x, y)+ dq(y, x), such transformations remove a key advantage of temporal distances and reduce
the expressivity of the resulting measure. Thus, we enforce a consistent input order by fixing the
Fermat state as the second input in Equation 4, yielding a directed function that can be interpreted
as the expected number of steps needed for the agents to achieve full alignment.

We adopt the successor distances method (Myers et al., 2024) for approximating temporal distances
and denote the parameterised state distance as dθ : S∗ × S∗ → R. The Fermat encoder ϕ and
the distance approximator dθ are trained concomitantly by enforcing a stop-gradient operator on the
distance estimator’s parameters (θ) when integrating it in the Fermat encoder objective (Equation 4).

3.2 MULTI-AGENT OPTION DISCOVERY ON RELATIVE STATES

Eigen-option discovery, introduced in Section 2.2, consists of two main steps: (i) estimating the
state-transition graph and (ii) performing the eigen-decomposition of the graph Laplacian to gener-
ate a set of eigenvectors for option training. An important observation is that this process is com-
pletely dependent on the state representation used to construct the transition graph. We propose to
intentionally leverage this observation by embedding the joint state space into an inter-agent relative
representation prior to performing the graph Laplacian eigen-decomposition.

Intuitively, one could replace each joint state in the transition graph with the corresponding n-
distance estimation. However, such a compression may limit the behavioural expressivity captured
in the eigenvectors. Using a singular scalar value to describe the dissimilarity on all feature dimen-
sions can obscure their individual effect. For instance, two agents reported as being k units apart may
differ primarily along one dimension defining the space, or some subset of these dimensions, but the

1Single agent states can contain general environmental information. Because it is shared by all agents, it
will be naturally ignored by the state distance measure.
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Figure 1: Option discovery on inter-agent relative representations for a state factorisation function
g, Fermat encoder ϕ, state distance encoder dθ and a graph Laplacian eigenvector approximator µ.

scalar provides no insight into which dimension drives the misalignment. Furthermore, mapping
joint states to scalar values has drastic effects on the topology of the state-transition graph, further
limiting the diversity of the alignment behaviour discovered. To address this issue, we compute
the n-distance along each feature dimension of the single-agent state space and encode the nodes
in the state-transition graph as their concatenation. The distance module is thus modified to predict
F outputs dF : S∗ × S∗ → RF , where F = dim(S∗). We then use a linear projection layer to
approximate the overall state-distance when training dFθ . Figure 1 provides an overview of our joint
option discovery framework, which uses multi-dimensional n-distances as state representations.

In practice, however, this unconstrained decomposition can lead to degenerate solutions, as dFθ can
output identical distance estimates on all dimensions or revert to only using one of the output dimen-
sions. To mitigate this issue, we impose a Mutual Information (MI) objective that encourages each
state feature to dominate the information flow leading to its corresponding distance prediction. For-
mally, let Si,j = (Si, Sj) be the random pair of single-agent states corresponding to agents i, j ∈ I,
with i ̸= j, obtained by factorizing states of joint trajectories from ρπ . For each feature index
f ∈ {1, . . . , F}, we denote Si,jf = (Sif , S

j
f ) as the pair of their f -th feature dimension. Given that

dF : S∗ × S∗ → RF is a deterministic map, we define a random vector Zi,j = dF (Si, Sj) ∈ RF
and its f -th component Zi,jf . We require that the MI between each feature distance Zi,jf and the
rest of the state-feature pairs Si,j−f , i.e. I(Si,j−f , Z

i,j
f ), does not exceed the MI between the feature

pairs themselves, I(Si,j−f , S
i,j
f ). This implies that each distance prediction should not carry more

information about the value of other features than is already captured in the correlations between the
inherent features. We next establish that through simple manipulations of the chain rule of informa-
tion, we can upper bound the information between Zi,jf and the rest of the state features Si,j−f by the
information already explained by feature Si,jf about Si,j−f plus a residual conditional term.

Proposition 1. For any two agent indexes i, j ∈ I, with i ̸= j, and feature index f ∈ {1, . . . , F}:

I(Si,j−f ;Z
i,j
f ) ≤ I(Si,j−f ;S

i,j
f ) + I(Si,j−f ;Z

i,j
f | S

i,j
f ). (5)

A proof of this proposition is deferred to Appendix A.2. To reduce information overflow in the
distance predictions, we thus minimise the following Conditional Mutual Information (CMI), mea-
suring the excess information that Zi,jf conveys about Si,j−f beyond what is already captured in Si,jf :

I(Si,j−f ;Z
i,j
f | S

i,j
f ) = DKL

[
p(Si,j−f ;S

i,j
f ;Zi,jf )

∥∥∥ p(Si,j−f | S
i,j
f )p(Zi,jf | S

i,j
f )

]
(6)

Minimizing CMI. We adopt the approach of Dunion et al. (2023) and introduce a discrimina-
tor network Dψ trained to directly detect the information excess. Specifically, the discriminator
is trained to distinguishing between real triplets {si,j−f,t; s

i,j
f,t; z

i,j
f,t} obtained by pairing factorised

single-agent states from a history of joint states τ ≜ (s0, . . . , sT ) ∼ ρπ , and fake triplets obtained
by permuting si,j−f,t while keeping {si,jf,t; z

i,j
f,t} fixed. As in Dunion et al. (2023), we use the discrim-

inator’s predictions to define a disentanglement penalty when training dFθ . We defer a description
of the CMI minimization algorithm to Appendix A.3. A visual comparison of scalar and the multi-
dimensional n-distances is in Appendix A.5.
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(1,4), (1,7) (7,7), (7,8) (7,7), (7,8)(1,4), (1,7)

JointSingle Relative

Figure 2: The first three non-trivial eigenvectors of the graph Laplacian for an 15x15 grid environ-
ment with three agents, as the only entities in the grid, under varying state representations: single
agent state spaces (left), raw joint state spaces (center) and inter-agent relative state representations
(right). For visibility, we fix the position of two agents for the multi-agent scenarios (at [(1,4), (1,7)]
and [(7,7), (7,8)]), and display the values when varying the position of the remaining agent.

We follow the representation-driven option discovery (ROD) cycle from Machado et al. (2023) 2 to
generate the desired set of options, but precede the eigenvector estimation by first representing the
joint states as their disentangled multi-dimensional n-distance representation. Both the n-distance
encoder training and joint option discovery are done offline, prior to the generic training. By convert-
ing raw joint states into relative representations, we produce options that reflect a range of complex
multi-agent alignment behaviours, enabling agents to synchronise along various subsets of their
state features. Figure 2 (right) illustrates the resulting eigenvectors in a grid-world setting with
coordinate-based states; Appendix A.6 provides a more detailed analysis. For ease of understand-
ing, we fix the positions of N − 1 agents and visualise the eigenvector from the remaining agent’s
perspective. We emphasise that these relative eigenvectors are highly responsive to changes in the
joint state due to the re-centering effect around the Fermat state, a property that is much less evident
in the eigenvectors discovered on raw joint-states. In this simple domain, the first eigenvector aligns
agents along one coordinate axis, while its negation (also a valid eigenvector) aligns them along the
other. The subsequent eigenvector promotes alignment across both axes simultaneously, followed
by eigenvectors that capture more complex state synchronisation patterns.

Following the procedure introduced in Section 2.2, we use these eigenvectors as intrinsic reward
signals for option-policy training. Figure 3 shows a visualisation of the multi-agent options trained to
follow the positive and negative versions of the first two eigenvectors for a team of four agents. With
each grid, we report the feature-wise distance values for the corresponding final states, highlighting
the distinct alignment patterns achieved by the learned option policies. Furthermore, the first two
eigenvectors induce the same behaviours for four agents as they did for three in Figure 2, illustrating
the consistency of the alignment patterns with respect to team size.

3.3 ADDING JOINT OPTIONS TO DEC-POMPDS

We adapt the MacDec-POMDP framework (Amato et al., 2019) described in Section 2.1 to support
multi-agent macro-actions (joint options). To ensure the correct selection, execution, and termina-
tion of joint options in decentralised settings, we impose the following two modeling assumptions:

Assumption 1. There is an information-sharing mechanism between all agents.

This assumption yields a more permissive model than the standard MacDec-POMDP framework.
However, it still withholds access to the true underlying state. The information sharing mechanism

2We use the ALLO method from Gomez et al. (2024) to approximate the eigenvectors of the graph Laplacian
and follow the original eigenoptions approach from Machado et al. (2017b), where we use a single ROD cycle
to generate the whole set of eigenvectors. A motivation for these design choices is in Appendix A.9.
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Option 1 Option 2 Option 3 Option 4

Figure 3: Policy roll-outs visualisation of the first four relative options in the 15×15 grid environment
with four agents. Arrows indicate the actions taken by each agent’s policy, coloured circles mark the
final states (before the termination action is triggered), and the white circle denotes the estimated
Fermat state corresponding to these final states. The bars on the right of each figure show the Fermat
n-distance estimates for each feature. Please see Appendix A.7 for other state initializations.

is motivated by the collective nature of the options discovered, where effective option selection
often depends on team-level information. In a scenario where agents must search for resources in
an environment, a good strategy might be to spread out, locate a resource, and then trigger an option
to gather around it. Without knowing if a teammate has found the resource, however, triggering the
option prematurely can hinder performance and destabilise exploration.
Assumption 2. There is a synchronisation mechanism that ensures the minimum number of agents
required for the correct execution of joint options.

In the same way that passing in a ball game cannot be defined without a receiving partner, this design
choice synchronises joint option selection, asserting that enough agents agree on following an option
at a given time for that option to be activated and executed correctly.

Inspired by the work on local options (Amato et al., 2019), we define joint options through a hier-
archical view on agent histories. A joint option is then a tupleW = ⟨IW , πW , βW ,PI

W⟩, where the
initiation set IW ⊆ HM and the termination condition βW : HM → [0, 1] are specified in terms of
joint macro histories, and the joint option policy πW = (π1

W , . . . , πNW) is a map from HA to prim-
itive actions. The multi-agent nature of these options requires additionally specifying the subsets
of agents for which an option is defined, PI

W , where different join-options might include distinct
subsets of agents. For homogeneous teams, PI

W can solely be specified by the number of agents
required to initiate the option, i.e., PI

W = {J ⊆ I | |J | = nW}. This formulation generalises local
options, which correspond to the special case where nW = 1.

To adapt the MacDec-POMDP framework to support the integration of joint options, we first redefine
the macro-actions set Mi in terms of joint options, and restrict ourselves to full team consensus,
nW = N , while treating primitive actions as joint options with nW = 1 and immediate termination.
When agent i selects an option Mi at time step t, this counts as a vote toward the threshold for
initiation, nW ; if this value is reached, the option is executed and control is transferred to the option
policy until termination, otherwise control is returned at t+1. Next, we redefine macro-observations
ζi to incorporate information shared by teammates. Dec-POMDP-Com (Oliehoek & Amato, 2016)
extends the standard framework with an explicit communication protocol. Since communication is
not our focus, we mimic this step by allowing agents to share their observations directly and defer a
more general treatment of communication to future work.

4 EMPIRICAL EVALUATION

We structured our empirical evaluation around three hypotheses: (H1) Joint options provide ad-
vantages in downstream tasks compared with not using them. (H2) Joint options discovered via
inter-agent relative representations (IARO) yield better downstream performance than those derived
from other methods. (H3) The multi-dimensional n-distance representation enables a more robust
option discovery process that its scalar-value variant in domains with more complex state spaces.
Additionally, we investigate how increasing or decreasing the number of relative options discovered
by our framework affects overall performance in our experimental domains.

Experimental Setup. We evaluated our approach in two multi-agent domains: Level-Based For-
aging (Papoudakis et al., 2021) and Overcooked (Ruhdorfer et al., 2024), using their JAX re-
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implementations from jum (2024) and Rutherford et al. (2024), respectively. We focused on two
scenarios in each domain: for LBF, these are 15x15-4p-3f and 15x15-4p-5f and for Overcooked,
they are Forced Coordination and Counter Circuit. In LBF, we introduced stronger coordination re-
quirements by setting each apple’s level equal to the sum of all agents’ levels, the forced cooperation
configuration from (Papoudakis et al., 2021). Our choice of domains reflects a trade-off between in-
terpretability and feature diversity. LBF enables straightforward visualisation of eigenvectors and
relative representations through its X,Y -coordinate state space. Overcooked involves richer feature
semantics, combining X,Y -coordinates, orientations, and a categorical variable for item inventory.
While information sharing is implicit in the Overcooked task, in LBF, we allowed agents to always
observe the relative distances to their teammates (rather than only when they enter their field of
view) and add a flag to their observations indicating when each teammate is in the vicinity of an
apple. Our approach and all baselines operated under the same level of observability in our analysis.

To train the n-distance encoder and the graph Laplacian eigenvector approximator (ALLO (Gomez
et al., 2024)), we used a dataset of 500,000 transitions sampled from a random joint policy in each
domain. In LBF, we approximated the first 10 eigenvectors, yielding 20 options, while in Over-
cooked we approximated 20 eigenvectors, yielding 40 options. Once estimated, we trained joint
option policies based on these eigenvectors for one million steps, equivalent to 5% and 10% of the
total training time in each task. We employed IQL to train the option policies and incorporated an
action, A′

i = Ai ∪ {⊥}, as the termination condition (Machado et al., 2017b). All agents involved
had to all choose this action for an option to be terminated. In addition, we enforced a hard stop
after 50 steps. The initiation set was defined as the entire joint state space, allowing options to be
started anywhere, provided that the required number of agents, nW = N , was met.

Evaluation against generic baselines. To evaluate H1, we compared the performance of
IQL equipped with inter-agent relative options (IQL+IARO) against four option-free baselines:
MAPPO (Yu et al., 2022), IPPO, IQL, and VDN (Sunehag et al., 2018). Following Rutherford et al.
(2024), we left MAPPO out of our analysis for Overcooked. Figure 4 presents IQM scores with 95%
confidence intervals (CI) computed across 10 seeds. The addition of joint options (IQL+IARO) led
to consistent performance gains over the vanilla IQL, achieving higher percentages of apples eaten
per episode in LBF and more successful deliveries per episode in Overcooked; see top row of Fig-
ure 4. This improvement was especially visible in Overcooked, where IQL tends to remain stuck in
suboptimal solutions. The joint options equipped agents with coordination skills that systematically
explored the state space and enabled them to swiftly parse through various coordination patterns
in search of better strategies. Additionally, IQL+IARO outperformed the other baselines across
the set of experiments, except the Forced Coordination scenario where VDN is known to perform
well (Rutherford et al., 2024). These results highlight the benefits of joint options in overcoming the
limitations of independent policy learning in multi-agent tasks by encouraging cooperation through
the set of pre-computed coordination behaviours; note that our method does not rely on central-
ization (MAPPO) or value decomposition (VDN) to support it. However, we did observe a slower
convergence at the start of training, which we attribute to known challenges of training with options
under global initiation sets (Jong et al., 2008; Machado et al., 2023).

Evaluation against other option frameworks. Next, to evaluate hypothesis H2, we compared the
downstream benefits of the options discovered with our framework against those discovered through
an existing Kronecker graph product method from Chen et al. (2022) (IQL+Kron), and an ablation
where discovery was performed directly on raw joint states (IQL+RJS). For IQL+Kron, we closely
followed the original implementation, apart from two main adaptations to match our framework:
(i) we employed ALLO (Gomez et al., 2024) to approximate both eigenvectors and eigenvalues
directly; and (ii) we used a single ROD cycle to estimate multiple eigenvectors. Figure 4 compares
the resulting options across both domains and shows that the options discovered by our method
better equip teams of agents with the cooperative skills necessary to solve these downstream tasks.
We noticed that, particularly in LBF, options discovered via raw joint states and Kronecker products
can degrade performance. We believe that this is due to their first non-trivial eigenvectors mainly
capturing behaviours that drive agents to the edges of the state space (also see Appendix A.6), which
is counterproductive for the apple-picking task.

We then explored H3 by evaluating the utility of the multi-dimensional n-distance representation
(IQL+IARO-MultiDim) against its scalar-value variant (IQL+IARO-Scalar). While in LBF, the do-
main with simpler state definitions, both methods performed similarly, in Overcooked, the multi-
distance method proved more effective, as agent states consist of multiple features of diverse se-
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Figure 4: Downstream task performance analysis for both environments (LBF on the left, Over-
cooked on the right). The top row compares IQL+IARO against option-free baseline algorithms,
while the bottom row compares it against IQL augmented with other option discovery methods.

Figure 5: Downstream task performance for the most complex scenario in LBF and Overcooked,
evaluated using different numbers of options. We report IQM scores over 15 seeds and 64 evaluation
episodes at the end of training for each configuration, with standard deviations shown as error bars.

mantics, highlighting the benefits of the disentangled n-distance representation. By decomposing
n-distance estimation across features, agents can align on specific subsets of state dimensions, yield-
ing a richer set of cooperative behaviours. It is then up to the acting policy to decide, via exploration,
which alignment strategies are beneficial for the task at hand.

A complementary episodic reward analysis for a larger set of domains is provided in Appendix A.4,
while other implementation details and the list of hyperparameters can be found in Appendix A.10.

Option count analysis. We examined how the number of joint options used during training influ-
ences downstream task performance. Our goal was to identify the threshold at which a subset of
options yields substantial performance gains, as well as to understand how further increasing the
number of options affects results. Figure 5 reports the aggregated scores for the most complex sce-
nario in both environments. We observed that both tasks benefit even from a relatively small option
set. In LBF, the largest boost in apples collected appears with as few as two options, while no-
table improvements in successful deliveries emerge with the first ten options in Overcooked. This is
consistent with eigen-option theory, which suggests that the first eigenvectors connect distant nodes
in the state-transition graph, yielding powerful exploration behaviours. Later eigenvectors encode
shorter time-scale behaviours, whose usefulness may vary in each task. We also note that more
complex state spaces generally imply a larger threshold, reflecting the greater diversity of long-
horizon alignment patterns that emerge through different feature combinations. Finally, although
larger option sets can sometimes further improve performance (e.g., six options for LBF and twenty
for Overcooked), these gains eventually saturate. Larger option sets can introduce increased train-
ing instability, resulting in reduced performance or higher variance. In our previous evaluations we
utilised the maximum number of options for both environments to enable a fair comparison with the
other option discovery methods.
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5 RELATED WORK

We discuss related work on similar metrics, state representations, and temporally-extended actions.

State similarity metrics. Estimating state similarity measures is a fundamental challenge in RL.
Even in simple domains, standard distances such as Euclidean, fail to capture true state proxim-
ity in the presence of obstacles, as they ignore environmental dynamics. In contrast, bisimulation
metrics (Ferns et al., 2004) measure state similarity through differences in rewards and transition dy-
namics, and have been widely applied in optimality preserving state aggregation methods (Li et al.,
2006). However, these approaches struggle in sparse-rewards settings, leaving them susceptible to
representation collapse (Kemertas & Aumentado-Armstrong, 2021; Chen et al., 2024). Temporal or
successor distances define state similarity as the expected number of actions required by a policy to
travel between two states (Venkattaramanujam et al., 2019). This class of state distances is invariant
to state representations and closely reflects environmental dynamics, making it a popular solution
for goal-conditioned RL (Hartikainen et al., 2020; Durugkar et al., 2021; Myers et al., 2024), in-
trinsic reward composition (Bae et al., 2024; Jiang et al., 2025) and unsupervised skill discovery
(Park et al., 2024). Notably, METRA (Park et al., 2024) is particularly relevant to our work, as it
aims to learn skills that explore a latent space connected to the ground state space via a temporal
metric. Besides performing skill discovery in single-agent settings, a main distinction is that we
leverage temporal distances to approximate a latent representation for the eigenoption discovery of
joint options that achieve exploration at different time-scales, rather than only at its extremes.

State representations in MARL. State representations in MARL have been mostly used for the
aggregation of agents’ local observations into a compact global representation, often through graph
neural networks (GNNs). GNNs are invariant to the number of entities, here agent observation em-
beddings, and can weight the information passed between vertices differently through edge features
(Jiang et al., 2020; Liu et al., 2019; 2021; Nayak et al., 2023). Utke et al. (2025) emphasise the
importance of relative information for estimating inter-agent relations, and embed this inductive
bias into GNN edge features based on hand-crafted spatial relations. In contrast, our method learns
inter-agent relations automatically, without any restrictions on feature semantics.

Temporally extended actions for multi-agent systems. Makar et al. (2001) extend semi-Markov
decision processes to cooperative multi-agent settings, introducing two execution schemes: syn-
chronous (macro-actions terminate simultaneously) and asynchronous (macro-actions terminate in-
dependently). Asynchronous schemes gained recent popularity due to their innate generality (Amato
et al., 2019; Xiao et al., 2021; 2022), but typically rely on single-agent (local) options that do not ex-
press cooperative behaviours. Therefore, coordination occurs only at the option selection level, but
not within the option policies themselves. This approach drastically limits the expressiveness of the
options used in multi-agent scenarios. To address this, Chen et al. (2022) integrates option discov-
ery techniques based on covering options (Jinnai et al., 2019b) that construct joint behaviours via
Kronecker products of single-agent transition graphs. However, the resulting joint options mainly
synchronise independent behaviours, failing to capture strong inter-agent dependencies or correla-
tions, a limitation noted by the authors. This leaves the problem of discovering strongly coordinated
behaviours still open, which is precisely what we aim to address with our method.

6 CONCLUSION

In this work, we introduced a novel inter-agent relative representation for joint states, designed to
address the key challenges of multi-agent option discovery. This representation compresses the joint
state space and re-centers it around the point of maximum alignment for the team. We define this
point as the Fermat state and propose a method that estimates it explicitly. Using the relative rep-
resentation, we then produce joint options that are strongly coordinated and well-suited to capture
inter-agent relational dynamics. Moreover, by disentangling the representation across individual
state features, our approach further enriches the behavioural diversity expressed in the discovered
joint options. We demonstrated the effectiveness of the proposed method across multiple bench-
mark domains and scenarios, confirming its ability to support agent teams in achieving stronger
solutions on downstream tasks. Our work opens up multiple directions for further research in the
discovery and use of options for multi-agent collaboration. In particular, we will relax the assump-
tion of homogeneity among agent states, the assumption of sharing observations in lieu of a proper
communication protocol, and the restriction that joint option initiation requires full team consensus.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jumanji: a diverse suite of scalable reinforcement learning environments in jax, 2024. URL https:
//arxiv.org/abs/2306.09884.

Christopher Amato, George Konidaris, Leslie P. Kaelbling, and Jonathan P. How. Modeling and
planning with macro-actions in decentralized pomdps. J. Artif. Int. Res., 64(1):817–859, January
2019. ISSN 1076-9757. doi: 10.1613/jair.1.11418. URL https://doi.org/10.1613/
jair.1.11418.

Junik Bae, Kwanyoung Park, and Youngwoon Lee. Tldr: Unsupervised goal-conditioned rl via
temporal distance-aware representations, 2024. URL https://arxiv.org/abs/2407.
08464.

Daniel S Bernstein, Christopher Amato, Eric A Hansen, and Shlomo Zilberstein. Policy iteration for
decentralized control of markov decision processes. Journal of Artificial Intelligence Research,
34:89–132, 2009.

Jianda Chen, Wen Zheng Terence Ng, Zichen Chen, Sinno Jialin Pan, and Tianwei Zhang. State
chrono representation for enhancing generalization in reinforcement learning, 2024. URL
https://arxiv.org/abs/2411.06174.

Jiayu Chen, Jingdi Chen, Tian Lan, and Vaneet Aggarwal. Scalable multi-agent covering option
discovery based on kronecker graphs. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

M.-M. Deza and I.G. Rosenberg. n-semimetrics. Eur. J. Comb., 21(6):797–806, August 2000. ISSN
0195-6698. doi: 10.1006/eujc.1999.0384. URL https://doi.org/10.1006/eujc.
1999.0384.

Michel Marie Deza and Elena Deza. Encyclopedia of Distances, pp. 1–583. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00234-2. doi: 10.1007/978-3-642-00234-2 1.
URL https://doi.org/10.1007/978-3-642-00234-2_1.

Mhairi Dunion, Trevor McInroe, Kevin Luck, Josiah Hanna, and Stefano Albrecht. Conditional mu-
tual information for disentangled representations in reinforcement learning. Advances in neural
information processing Systems, 36:80111–80129, 2023.

Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation for
reinforcement learning, 2021. URL https://arxiv.org/abs/2105.13345.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pp.
162–169, Arlington, Virginia, USA, 2004. AUAI Press. ISBN 0974903906.

Diego Gomez, Michael Bowling, and Marlos C. Machado. Proper laplacian representation learning,
2024. URL https://arxiv.org/abs/2310.10833.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance
learning for semi-supervised and unsupervised skill discovery, 2020. URL https://arxiv.
org/abs/1907.08225.

J. E. Herbert-Read. Understanding how animal groups achieve coordinated movement. Journal of
Experimental Biology, 219(19):2971–2983, 10 2016. ISSN 0022-0949. doi: 10.1242/jeb.129411.
URL https://doi.org/10.1242/jeb.129411.

Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. Graph convolutional reinforcement
learning, 2020. URL https://arxiv.org/abs/1810.09202.

Yuhua Jiang, Qihan Liu, Yiqin Yang, Xiaoteng Ma, Dianyu Zhong, Hao Hu, Jun Yang, Bin Liang,
Bo Xu, Chongjie Zhang, and Qianchuan Zhao. Episodic novelty through temporal distance, 2025.
URL https://arxiv.org/abs/2501.15418.

11

https://arxiv.org/abs/2306.09884
https://arxiv.org/abs/2306.09884
https://doi.org/10.1613/jair.1.11418
https://doi.org/10.1613/jair.1.11418
https://arxiv.org/abs/2407.08464
https://arxiv.org/abs/2407.08464
https://arxiv.org/abs/2411.06174
https://doi.org/10.1006/eujc.1999.0384
https://doi.org/10.1006/eujc.1999.0384
https://doi.org/10.1007/978-3-642-00234-2_1
https://arxiv.org/abs/2105.13345
https://arxiv.org/abs/2310.10833
https://arxiv.org/abs/1907.08225
https://arxiv.org/abs/1907.08225
https://doi.org/10.1242/jeb.129411
https://arxiv.org/abs/1810.09202
https://arxiv.org/abs/2501.15418


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering options for exploration
by minimizing cover time. In Proceedings of the International Conference on Machine Learning,
2019a.

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering options for exploration
by minimizing cover time, 2019b. URL https://arxiv.org/abs/1903.00606.

Yuu Jinnai, Jee Won Park, Marlos C. Machado, and George Dimitri Konidaris. Exploration in
reinforcement learning with deep covering options. In International Conference on Learn-
ing Representations, 2020. URL https://api.semanticscholar.org/CorpusID:
211266513.

Nicholas K. Jong, Todd Hester, and Peter Stone. The utility of temporal abstraction in re-
inforcement learning. In Adaptive Agents and Multi-Agent Systems, 2008. URL https:
//api.semanticscholar.org/CorpusID:5973935.

Mete Kemertas and Tristan Aumentado-Armstrong. Towards robust bisimulation metric learning.
In Proceedings of the 35th International Conference on Neural Information Processing Systems,
NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Gergely Kiss, Jean-Luc Marichal, and Bruno Teheux. A generalization of the concept of dis-
tance based on the simplex inequality. Beiträge zur Algebra und Geometrie / Contributions
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A APPENDIX

A.1 PRACTICAL EXAMPLES IN REALISTIC SCENARIOS

We present two example scenarios where identifying coordination strategies can drastically acceler-
ate the computation of effective solutions in downstream tasks: a search-and-rescue team operation
and the dynamics of a professional restaurant kitchen.

As the first example, consider a team of AI agents assisting humans in a search and rescue operation.
The appropriate strategy for the team depends on multiple factors, such as the type of terrain to be
explored (e.g., open fields versus dense forest), the capabilities of the agents involved (e.g., bipedal
robots or drones), and the level of effort required to assist each individual in need (e.g., assist in
extracting the human from rubble, or arranging for an ambulance). In dense forests, teams may need
to form tight lines or sweep formations to ensure perfect coverage, whereas open fields can often
be searched more efficiently by dispersion. Moreover, when victims require substantial assistance,
teams may need to alternate between broad search patterns and swift regrouping around targets to
deliver help quickly and effectively.

As another example of multi-agent collaboration, consider a professional kitchen with multiple AI
agents coordinating their activities, operating with maximum efficiency and precision to prepare and
serve high-quality dishes as quickly as possible. The complex dynamics of the scenario require both
division of labour and synchronisation, with different subsets of the agents pursuing coordinating
patterns for preparing ingredients and cooking the dishes while synchronising their activities at
specific steps in the recipe, and delivering the dishes to provide a good experience for the customers.

Humans often draw on their rich contextual understanding to identify and apply the correct strategy
for these (and other such) tasks, although even humans will undergo specialised training to acquire
this contextual understanding. On the other hand, learning complex, temporally-extended, and var-
ied coordination strategies from scratch is extremely challenging for teams of AI agents. Sparse
reward (i.e., feedback) signals, non-stationarities in the dynamics of the domain and the agents, and
credit assignment are among multiple reasons that make this learning particularly challenging. The
discovery of intermediate coordination patterns (options) that aid in the reliable and efficient com-
pletion of such tasks by AI agents is central to our efforts; our objective (in this paper) is to develop
a method capable of identifying these patterns from a limited number of interactions with the envi-
ronment. Such a method enables the team of agents to focus solely on learning when and where to
deploy each strategy, a substantially easier task in complex downstream scenarios. The domains we
use for experimental evaluation are simplified versions of the complex scenarios described above.

A.2 MUTUAL INFORMATION OBJECTIVE PROOF

Proposition 2. For any two agent indexes i, j ∈ I, with i ̸= j, and feature index f ∈ {1, . . . , F}:

I(Si,j−f ;Z
i,j
f ) ≤ I(Si,j−f ;S

i,j
f ) + I(Si,j−f ;Z

i,j
f | S

i,j
f ).

Proof. Let A, B, and C be three random variables such that A,B,C ∼ p(a, b, c), where p(a, b, c) is
the joint distribution, and let I(A;B,C) be the Multivariate Mutual Information (MI) estimate for
these variables. Then, from the chain rule of MI:

I(A;B,C) = I(A;C) + I(A;B|C)
I(A;B,C) = I(A;B) + I(A;C|B)

and therefore:

I(A;C) + (A;B|C) = I(A;B) + I(A;C|B)

Given that an MI estimate is always positive, i.e. I(A,B|C) ≥ 0:

−I(A;B|C) ≤ 0

I(A;C)− I(A;B)− I(A;C|B) ≤ 0

I(A;C) ≤ I(A;B) + I(A;C|B)

Replacing A = Si,j−f , B = Si,jf and C = Zi,jf , we obtained the inequality in Equation 5.
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A.3 CMI MINIMISATION ALGORITHM

Algorithm 1 follows the framework of Dunion et al. (2023) to minimise the CMI estimator defined
in Equation 6.

Algorithm 1 CMI minimisation step

Require: Transitions τ = {s0, . . . , sT } ∼ ρπ , joint-state factorisation function g : S →
∏N
i=1 S∗.

Require: Parameters for the distance estimator θ and the discriminator ψ.
1: Factorise each joint state into N single-agent states {s0t , . . . , sNt } = g(st), with t ∈ {0, . . . , T}.
2: Create single agent state pairs bi,jt = {(s0t , s1t ), (s0t , s2t ), . . . (sN−1

t , sNt )}.
3: Concatenate the single agent state pairs into the final batch for CMI minimisation:

Bi,j = {(s00, s10), . . . (sN−1
0 , sN0 ), (s01, s

1
1), . . . (s

N−1
T , sNT )}

4: Initialise LD ← 0 and LA ← 0.
5: Forward pass through multi-feature distance encoder zn = dFθ (s

i,j
n ), where si,jn is the n-th pair

in the single agent dataset Bi,j .
6: for n ∈ (1, . . . , |Bi,j |) do
7: for f ∈ (1, . . . , F ) do
8: Create conditioning set cf,n = (si,jf,n, zf,n).

9: Find k nearest neighbours (kNN) of cf,n in the batch:
√∑

i

(
(cf,n)i − (cf,n′)i

)2
.

10: Create sperm
−f,n = {sperm

0 , . . . , sperm
f−1, s

perm
f+1, . . . , s

perm
F } by shuffling the kNNs.

11: Calculate discriminator loss:

LD ← LD + log σ(Dϕ(s
i,j
n , zf,n) + log

(
1− σ(Dϕ(s

perm
−f,n, s

i,j
f,n, zf,n)

)
12: end for
13: end for
14: Update discriminator parameters to minimise LD.
15: for n ∈ (1, . . . , N) do
16: for f ∈ (1, . . . , F ) do
17: Calculate adversarial loss: LA ← LA + log

(
1− σ(Dϕ(s

i,j
n , zf,n)

)
.

18: end for
19: end for
20: Update encoder parameters to minimise LA.

A.4 EPISODIC REWARD ANALYSIS & ADDITIONAL RESULTS

Figure 6 presents an extended analysis of our method using episodic returns as the evaluation mea-
sure. Beyond the four scenarios discussed in Section 4, we add one additional setting for each
domain: 15x15-3p-5f in Level-Based Foraging (LBF) and Asymmetric Advantages in Overcooked.
These scenarios, together with the original four, were selected because the IQL baseline finds it
difficult to compute solutions for these scenarios (Papoudakis et al., 2021; Rutherford et al., 2024),
thereby highlighting the improvements achieved by our approach. Similar to Figure4, we report the
IQM scores with 95% CI for 10 seeds.

A.5 n-DISTANCE REPRESENTATION COMPARISON

Figure 7 compares the outputs of the trained n-distance estimator, conditioning on the positions
of two agents, for the scalar and multi-dimensional variants. Since the two state features, X and
Y coordinates, are independent and no obstacles are present, the multi-agent temporal distance
approximates a measure similar to a standard spatial distance. The scalar estimator computes the
n-distance jointly across both axes, whereas the multi-dimensional variant disentangles them by
applying the proposed MI penalty. At the centre of these representations lies the Fermat state, as a
point of minimal distance from the fixed coordinates of the teammates.
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Figure 6: Episodic reward IQM results for the entire suite of environments (including 15x15-3p-5f
for LBF and Asymmetric Advantages for Overcooked).

Relative - Scalar Relative - MultiDim

(7,13), (13,7)

(7,7), (7,8)

(1,4), (1,7)

Figure 7: A visualisation of the n-distance approximator outputs for the scalar and multi-
dimensional disentangled variants in a 15×15 grid environment with three agents, where we fix
the positions of two agents and show the n-distance values as the position of the third agent varies.

A.6 EIGENVECTOR COMPARISON

In this section, we offer a more detailed explanation of the differences between eigenvectors com-
puted on the inter-agent relative representation of the joint state space, and those obtained by apply-
ing eigenoption discovery directly on the raw states. We also extend the visualisation in Figure 2 to
incorporate the Kronecker eigenvector approximations, and the eigenvectors obtained from both the
scalar and multi-dimensional n-distance representations presented in Figure 7, not just the latter.

To this end, we fix two agents at specific positions and examine the values of each eigenvector
from the perspective of the remaining agent. Under the assumption of agent homogeneity, agents
are interchangeable, and examining the perspective of one agent yields meaningful insight into the
team-level subgoals captured by the eigenvectors. This statement holds in particular for eigenvectors
that encode coordinated behaviours, whereas the choice of conditioning order can lead to different
results for more independent behaviours. We found this to be evident in the Kronecker product ap-
proximation, where joint eigenvectors are formed as products of multiple single-agent eigenvectors.
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Figures 8-10 provide a more extensive analysis of the first five non-trivial eigenvectors for each of the
four frameworks: Eigenoption discovery on raw joint states (Joint), Kronecker product-based joint
option discovery (Kronecker Product), and the two proposed inter-agent relative options (Relative-
Scalar and Relative-MultiDim). We also extend the analysis to three distinct conditioning pairs for
the positions of the first two agents: [(1,4),(1,7)], [(7,7),(7,8)], and [(7,13),(13,7)]. Please note the
negated version of each eigenvector, as the eigenvectors produce two options with opposite effects.

(1,4), (1,7)

Krnoecker Product Relative - Scalar Relative - MultiDimJoint

Figure 8: The first five non-trivial eigenvectors resulted from eigenoption discovery on raw joint
states, through the Kronecker product of single agent eigenvectors, and the two proposed inter-agent
relative representation-based methods. The conditioning states for the first two agents in the team
are the coordinates (1,4) and (1,7).

The key difference between eigenvectors derived from the non-relative and relative representations is
the lack of responsiveness of the Joint and Kronecker product eigenvectors to different conditioning
pairs. This effect is pronounced for the Kronecker product eigenvectors, which remain completely
unaffected by teammate positions, further validating the absence of interdependence or coupling
in the behaviours captured by this method. This effect arises because both the raw joint state and
Kronecker product methods emphasise exploration of the state space rather than inter-agent rela-
tions. In contrast, by centring the representation around the Fermat state, the relative representation
yields behaviours that adapt to diverse team configurations and produce various patterns of agent
alignment. While the scalar representation yields behaviours that align the agents at different dis-
tances to each other (on both axes), the multi-dimensional representation enables various in-phase
and off-phase behaviours to be discovered with different combinations of features. In addition, as
we move deeper into the set of estimated graph Laplacian eigenvectors, they capture progressively
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(7,7), (7,8)

Krnoecker Product Relative - Scalar Relative - MultiDimJoint

Figure 9: The first five non-trivial eigenvectors resulted from eigenoption discovery on raw joint
states, through the Kronecker product of single agent eigenvectors, and the two proposed inter-agent
relative representation-based methods. The conditioning states for the first two agents in the team
are the coordinates (7,7) and (7,8).

shorter time scales. This is a consequence of the orthogonality constraint imposed by estimating
multiple eigenvectors per cycle while using graph-drawing–based objectives, ALLO (Gomez et al.,
2024).
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(7,13), (13,7)

Krnoecker Product Relative - Scalar Relative - MultiDimJoint

Figure 10: The first five non-trivial eigenvectors resulted from eigenoption discovery on raw joint
states, through the Kronecker product of single agent eigenvectors, and the two proposed inter-agent
relative representation-based methods. The conditioning states for the first two agents in the team
are the coordinates (7,13) and (13,7).
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A.7 OPTION POLICY VISUALISATION

Option 1 Option 2 Option 3 Option 4

Figure 11: Visualisation of the policy roll-outs for the first four learned options in the 15×15 grid
environment with four agents, illustrating four distinct state-alignment patterns for multiple initial
states. Arrows indicate the actions taken by each agent’s policy, colored circles mark the final states
(before termination action is triggered), and the white circle denotes the estimated Fermat state
corresponding to these final states. The bars on the right of each figure show the Fermat n-distance
estimates for each feature.

A.8 HETEROGENEOUS STATE SPACES

In this section, we present our extension of the homogeneous state space framework (Section 3) to
heterogeneous state spaces. Due to the need for meaningful state-space alignment, we focus on sce-
narios in which each agent shares a subset of its state features with one or more teammates. Without
such shared features, state synchronisation is not a valid strategy for coordination. Furthermore,
we expect each agent to be able to infer its teammates’ types from its observations, either explic-
itly, when the observations contain type information, or implicitly, for example by enforcing a clear
ordering of features or by using fixed positions in the observation vector. We believe these expecta-
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tions are representative of practical multi-agent collaboration domains, and point to agent modelling
techniques (Rabinowitz et al., 2018) as a potential way to relax the latter requirement.

Note that only two modules in our approach operate directly on state information, the pairwise state-
distance function dF : S∗ × S∗ → RF and the Fermat encoder ϕ : S → S∗. In the homogeneous
setting, we had S∗ = S1 = . . . = SN , but this assumption does not hold in heterogeneous domains,
thereby invalidating the original formulations of these two modules. To address this issue, we intro-
duce the unified feature space F∗ =

⋃N
i=1 F i, where F i denotes the feature set underlying agent i’s

individual state space Si, indicating which components of the factorised joint state space it includes.
For each feature f ∈ F∗, let Ff denote its domain, defined as the union of all values that feature can
take across the state spaces of all agents. We then redefine the shared state space as the Cartesian
product over all feature domains in the unified feature space, i.e., S∗ = ×f∈F∗Ff . This definition
of S∗ can represent each individual state space Si by padding the features that appear in F∗ but not
in F i with default values, e.g. zeros. Given the unified single agent state-space S∗, we can retain
our original definition of dF and ϕ; as long as dF can identify the common features between two
heterogeneous agent states and compute their similarity while ignoring any padded values, the rest
of our proposed framework can remain unchanged. While a full treatment of heterogeneous state
distance metrics is beyond the scope of this work, we outline (below) a set of guidelines for adapting
the temporal state distance approach used throughout this paper to heterogeneous state spaces.

In Section 3, we rely on the temporal successor distance method of Myers et al. (2024) for computing
pairwise state distances. We now outline how this method can be extended to heterogeneous state
spaces through two main changes:

1. The MRN distance module is provided the source agent’s type as an additional input.

2. We modify the sampling of goal states to include randomly shuffled values from states of
other agent types, therefore achieving conditional independence to these features, given the
source agent’s type.

In the original MRN architecture (Liu et al., 2023), the distance encoder is computed as a sum of
symmetric and asymmetric parts: dθ(x, y) = ∆(hθ(x)− hθ(y))+∥gθ(x)− gθ(y)∥, where ∆(x) =
maxdi=1[max(0, xi)] and hθ and gθ represent the two halves of the outputs of a encoder network
parameterised by θ. In our adaptation, we extend this expression to include the agent type as follows.
Let sit and git be the source and goal state for agent i at time step t, and li the indexed type of
this agent. Then, we modify the above expression for heterogeneous states as: dθ(sit, g

i
t, l

i) =
∆
(
hθ(s

i
t, l

i)− hθ(git, li)
)
+

∥∥gθ(sit, li)− gθ(git, li)∥∥. When sit and git correspond to the same state
type, li is redundant. However, as stated in our second proposed change, the padded features of git,
{f |f ∈ F∗ ∧ f /∈ F i}, are randomly sampled from the goal states of agents of different types to i,
resulting in the conditional invariance discussed above.

Empirical analysis. To demonstrate the effectiveness of this extension, we constructed two het-
erogeneous toy scenarios by adapting the LBF environment to include two agent types: Type 1 (X
axis only) agents and Type 2 (X & Y axes) agents. Type 1 agents’ states only contain the X-axis
coordinate, and their action space no longer includes the ”Left” and ”Right” horizontal movement
actions. Type 2 agents have full (x, y) state representations and can move along both axes, akin to
the agents in the original environment.

Our experiments use two domain configurations. The first is a 10x10 grid containing one Type 1
and one Type 2 agent. The second is a 15x15 grid with three agents, where one agent is Type 1 and
the remaining two are Type 2. The first configuration aims to analyse whether agents of different
types can successfully identify and synchronise solely on their common features, while the second
configuration examines whether selective alignment can be achieved between multiple agents that
share different numbers of features.

Figure 12 illustrates the eigenvectors learned using our proposed heterogeneous extension for the
two distinct agent types in the first configuration (10x10 grid). Since the two agents share only
a single feature, the eigenvectors are identical from both perspectives, resulting in behaviours that
align the agents solely along that feature. The lower part of the figure shows roll-outs from the
first three option policies derived from the eigenvectors. The first option perfectly aligns the agents
along the shared X-axis coordinate while completely disregarding the Y-axis. Conversely, the second
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(1,0) (4,0)

Type 1 Type 2

(7,0)(1,7)

Option 1 Option 2 Option 3

(4,13) (7,4)

Figure 12: The first three eigenvectors, along with the first three options obtained using the proposed
heterogeneous approach for a 10x10 grid with two agents of distinctive types: Type 1 and Type 2.
The top part of the figure illustrates the eigenvectors, conditioned on the teammate’s position at
different coordinates, while the bottom part shows the roll-outs for the first three options generated.
With padding, the Y-coordinate of the Type 1 agent is replaced with the value 0. We use diagonal
stripes to identify the Type-1 agent in the grid.

option aligns them along the Y-axis, ignoring the X-axis. The third policy positions the agents at
a specific distance along the same axis, demonstrating the capture of behaviours at different time
scales.

Figure 13 presents a similar analysis for the second configuration (15x15 grid). With the addition of
another agent of Type 2, the eigenvectors enable these two agents to align along both axes of move-
ment, while considering the third agent only with respect to the shared feature. This demonstrates
the ability of the state alignment to occur selectively based on agent types. Specifically, the second
eigenvector aligns an agent precisely with the Y-axis coordinate of its same-type teammate, while
the third eigenvector captures behaviours that align all agents along the X-axis but only the corre-
sponding ones (Type 2) along the Y-axis. We further support this observation by showing roll-outs
from the trained option policies, which clearly exhibit these behaviours.

A.9 ROD CYCLE DISCUSSION

We adopt the original ROD cycle of Machado et al. (2017a) to approximate eigenoptions, estimating
multiple eigenvectors within a single cycle. This design ensures orthogonality among eigenvectors,
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Option 1 Option 2 Option 3

(1,0), (1,7) (7,0), (7,8)

Type 2

(4,0), (7,1)(1,4), (1,7) (7,7), (7,8) (4,7), (7,1)

Type 1

Figure 13: The first three eigenvectors, along with the first three options obtained using the proposed
heterogeneous approach for a 15x15 grid with three agents of distinctive types: one agent of Type
1 and two agents Type 2. The top part of the figure illustrates the eigenvectors, conditioned on the
teammate’s position at different coordinates, while the bottom part shows the roll-outs for the first
three options generated. With padding, the Y-coordinate of the Type 1 agent is replaced with the
value 0.We use diagonal stripes to identify the Type-1 agent in the grid.

a property that enables options to function at different time scales. By contrast, other frameworks
extract only one eigenvector per cycle, requiring multiple cycles to generate a full set of options, as in
covering options (Jinnai et al., 2019b; Chen et al., 2022) and covering eigenoptions (CEO) (Machado
et al., 2023). Covering options provide exploration guarantees by leveraging the Fiedler eigenvector
to produce policies that connect the farthest points in the state-transition graph, an objective where
orthogonality plays little role (Jinnai et al., 2019b). Our focus, however, is on discovering sets
of cooperative behaviours that express diverse alignment patterns. In our experiments with CEO,
the most recent framework, we found the resulting eigenvectors to exhibit limited diversity, see
Figure 14, reinforcing our decision to return to the original approach.

A.10 IMPLEMENTATION DETAILS & HYPERPARAMETERS

We plan to release the code base for this work at the camera-ready stage.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(7,7), (7,8)

(1,4), (1,7)

Cycle:1 Cycle: 2 Cycle: 3
 

Cycle: 4
 

Cycle: 5 

Figure 14: The eigenvectors generated by five consecutive CEO cycles, where once discovered, the
option is introduced in the action space of the agents for exploration in the next phase.

n-distance training. We followed the publicly available implementation of successor distances
from Myers et al. (2024) when integrating the CMD-1 architecture into our codebase. The temporal
distance encoder dθ is trained using the symmetrised InfoNCE contrastive loss (without resubstitu-
tion) (van den Oord et al., 2019), as suggested in the original work. We jointly train this encoder
with the Fermat encoder ϕ using joint states sampled from a random joint policy and factorised as
described in Section 3. Positive pairs for the InfoNCE loss are constructed by pairing current and
future states from each agent’s trajectory individually, without cross-agent mixing, while negatives
are generated through in-batch shuffling, allowing combinations of states from different agents. To
train the Fermat encoder, we incorporate dθ into the objective in Equation 4 using a stop-gradient
operator. When using a multi-dimensional n-distance dFθ , we insert a lightweight linear projection to
map outputs to a scalar for contrastive loss computation. This projection is discarded after training,
restoring the full multi-dimensional relative states. For Fermat encoder training, we instead sum the
distance dimensions, since the errors on each dimension are weighted equally for this step.

In some scenarios, e.g., Overcooked Forced-coord and Asymmetric Advantages, agents cannot ac-
cess the same states, as they are separated by walls. This violates the homogeneous state space
assumption, which causes the temporal distance estimator to encounter single-agent state combina-
tions not present in training, resulting in noisy predictions. To mitigate this, we omit the feature
causing the heterogeneity (the Y coordinate) during state factorization. We note that this issue is
tied to the temporal distance model itself, and our framework would operate successfully with any
distance function not affected by this problem. We present the full list of hyperparameters for n-
distance estimation training in Table 1.

Hyperparameter LBF Overcooked
Distance encoder learning rate 0.001 0.00005
Fermat encoder learning rate 0.001 0.00005
Optimizer Adam (Kingma & Ba, 2017) r Adam (Kingma & Ba, 2017)
Distance encoder hidden layers [256, 256] [256, 256]
Distance encoder dimension (per feature) 8 12
Fermat encoder hidden layers [256, 256] [256, 256]
Minibatch size 100 100
# of epochs 10 10
Discriminator (CMI) learning rate 0.0003 0.0001
Discriminator hidden layers [256, 256] [256, 256]
# kNNs 15 15
Penalty weight 0.003 0.0003

Table 1: Hyperparameters for training the n-distance estimator, for the scalar variant (up to the
horizontal line) and the multi-dimensional variant (the entire set).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

ALLO training (Eigenvector approximator). We used the same dataset to train the eigenvec-
tor encoder ALLO as for n-distance training. We followed the publicly available implementation
referenced in Gomez et al. (2024), with similar hyperparameter configurations: two layers of 256
dimensions and barrier coefficient initiation value 2.

Joint option policy training. For joint option policy training, we used separate IQL architec-
tures for each eigenvector sign (positive and negative), without parameter sharing, to accom-
modate potentially distinct agent behaviours. The environmental reward is thus replaced with
re(s, s

′) = e[s′] − e[s], for each eigenvector e and two subsequent states s, s′. Table 2 lists the
hyperparameters used for option policy training.

Hyperparameter LBF Overcooked
Learning rate 0.001 0.001
Anneal learning rate False False
Optimizer Adam (Kingma & Ba, 2017) r Adam (Kingma & Ba, 2017)
Hidden layers [64, 64] [32,32]
CNN features - [16,16,16]
CNN Kernel dims - [[5,5], [3,3], [3,3]]
Parallel environments 32 16
Rollout steps 10 10
γ 0.99 0.99
Buffer size 5000 105

Buffer batch size 32 128
Target update interval 10 10
Maximum gradient norm 1 10
ϵ start 1.0 1.0
ϵ decay 0.1 0.1
ϵ finish 0.05 0.05
ϵ evaluation 0.05 0.05
Learning starts at timestep 5000 1000
# of epochs 4 4
# training steps 106 106

Table 2: Hyperparameters used for training the joint opinion policies.

MacDec-POMDP training. We integrated the discovered set of options as additional actions in the
original action space of each individual agent. For the backbone IQL implementation, we used an
RNN decentralised architecture, trained with the set of hyperparameters presented in Table 3. We
used the same list of hyperparameters when training IQL enhanced with options generated from each
option discovery framework. To support the training of the decentralised policy over options, we
additionally integrated previous SMDP training techniques like training primitive actions on option
policy steps, intra-option learning and option interruption (Sutton et al., 1999). When integrating
intra-option learning, we only reused the experiences of the executing joint option to train others
when there was an exact match for the actions of each individual agent. For option interruption, we
follow the termination-improvement theorem from Sutton & Barto (1998) and enable an option w to
be interrupted if Qi(Hi

M ,W) < V (Hi
M ), for any agent i currently following that option.

A.11 LLM USAGE DECLARATION

In this work, the use of LLMs was kept to a minimum, providing limited support in writing tasks
such as grammar correction and synonym search.
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Hyperparameter LBF Overcooked
Learning rate 0.0005 0.0005
Anneal learning rate True True
Optimizer Adam (Kingma & Ba, 2017) r Adam (Kingma & Ba, 2017)
Hidden layers [128, 128] [128, 128]
CNN features - [32,32,32]
CNN Kernel dims - [[5,5], [3,3], [3,3]]
Parallel environments 32 16
Rollout steps 20 10
γ 0.99 0.99
Buffer size 5000 105

Buffer batch size 128 128
Target update interval 10 100
Maximum gradient norm 1 10
ϵ start 1.0 1.0
ϵ decay 0.1 0.1
ϵ finish 0.05 0.05
ϵ evaluation 0.05 0
Learning starts at timestep 5000 1000
# of epochs 4 4
# training steps 2× 107 107

# step limit for option execution 50 50

Table 3: Hyperparameters used for training the joint opinion policies.
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