Scaling Offline Q-Learning with Vision Transformers

Jordi Orbay* Yingjie Miao* Rishabh Agarwal Aviral Kumar George Tucker
Aleksandra Faust
Google Deepmind
*Equal contribution

Abstract

It has been shown that offline RL methods, such as conservative Q-learning (CQL),
scale favorably for training generalist agents with a ResNet backbone. Recent
vision and natural language processing research shows that transformer-based mod-
els scale more favorably compared to domain specific models with strong inductive
biases (such as convolutional neural networks and recurrent neural networks). In
this paper, we investigate how well visual transformers (ViTs) serve as backbones
for CQL for training single-game agents. In this work, we enhance the Vision
Transformer (ViT) for image-based RL by introducing spatio-temporal attention
layers. We further investigate the impact of various embedding sequence aggre-
gation methods on ViT performance. Overall, our modified ViT outperforms the
standard ViTs in the single-game Atari setting.

1 Introduction

Modern advances in foundation models clearly illustrate that training high-capacity neural networks
on large datasets is crucial for obtaining generalist models that can solve a variety of tasks. In the
domain of reinforcement learning and decision making, one would expect that offline reinforcement
learning (RL) approaches — that seeks to learn decision-making policies directly from a static dataset,
without any active environment interaction — would enable us to replicate a similar success story by
combining the policy improvement benefits offered with RL algorithms with architectural and scaling
benefits offered by foundation models. But is this really the case?

Empirical results from large-scale decision-making studies ( s ; ,

, ) show that it is p0551ble to devise scalable approaches for offline RL that can
train on large databases of prlor experience. For instance, ( ; )
develop methods for running offline Q-learning on multi-task data and ( , ) develops
methods to train transformer policies via return-conditioned supervised learning (RCSL). While these
initial results are very promising, utilizing the best neural network architecture designs from modern
foundation models has been challenging: offline Q-learning approaches from the aforementioned
prior works often fail with standard transformer-based architectures and require non-trivial amounts
of architectural design to perform well ( s ); whereas RCSL approaches that alleviate this
issue with architectural design often fail to attain substantial amounts of policy improvement and lag
behind Q-learning methods, especially with sub-optimal training data.

In this paper, we tackle an instance of the above challenge in the context of offline Q-learning.
Concretely, in this paper, we attempt to develop an entirely transformer-based architecture for
parameterizing value functions, which is then trained entirely via offline Q-learning. We specifically
consider problems with visual observations, where an entire transformer based architecture utilizes a
vision transformer (ViT) ( s ). Our key insight is that while a vision transformer
is hard to utilize in conjunction with offline Q-learning approaches, we can attain better performance
by utilizing a variant of attention, that we call, spatio-temporal attention. This approach first
applies temporal attention to aggregate information across observations appearing in multiple time-

Foundation Models for Decision Making Workshop at NeurIPS 2023



steps followed by spatial attention across patches in a given frame. Our results show that training
this modified architecture approach outperforms standard vision transformers trained via offline
Q-learning.

Discussion of the most related works. Previous work ( , ) has scaled offline Q-
learning using ResNets on multi-game Atari. This work aims to drive further scaling by improving the
performance of transformer-based Q-learning architectures. Other works have trained transformers
on offline reinforcement learning using return-conditioned behavioral cloning ( ). We
aim to bring similar benefits to offline Q-learning. ( ) trained offline Q-learning
agents with an architecture combining convolutional neural networks and transformers. We focus on
only using transformers and feed-forward networks.

2 Background

We consider sequential-decision making problems where on each timestep, an agent observes a state
s, produces an action a, and receives a reward r. The goal of a learning algorithm is to maximize
the sum of discounted rewards. Our approach is based on conservative Q-learning (CQL) (

, ), an offline Q-learning algorithm. CQL uses a sum of two loss functions: (i) standard
TD-error that enforces Bellman consistency, and (ii) a regularizer that minimizes the Q-values for
unseen actions at a given state, while maximizing the Q-value at the dataset action to counteract
excessive value underestimation. Denoting Qg (s, a) as the learned Q-function, the training objective
for CQL is given by:

min « (ESND
6

—Es o~p [Qo(s, a)]) + TDError(6; D), (1)

log <Z exp(Qa (s, a’)))

where « is the regularizer weight, which we fix to o = 0.05 based on preliminary experiments unless

noted otherwise. ( ) utilized a distributional TDError(6; D) from C51 (

R ), whereas ( s ) showed that similar results could be attained with
the standard mean-squared TD-error. Following ( ), we use the distributional
formulation of CQL.

Setup. Our goal is to train policies using CQL on a fixed offline dataset. We utilize the set of five
Atari games from ( ). For each game, we utilize the DQN-Replay dataset (

( ). Specifically, we uniformly sample 5% of the data from the DQN-Replay dataset for our
offline RL experiments. Our hyperparameters for the single-game training setup are listed in Table 2.

Evaluation. We evaluate our models with sticky actions, meaning there is a 25% probability at
every time step that the environment will execute the previous action again instead of the new action
commanded. To ensure that our evaluations are reliable, for reporting performance, we follow
the recommendations by ( ). Specifically, we report interquartile mean (IQM)
normalized scores, which is the average scores across middle 50% of the runs, combined across all
games, as well as performance profiles for qualitative summarization.

3 ViTs for Offline RLL

We run our experiment across two different ViT architectures:

e Vision transformer (ViT) from ( ).

e Vision transformer with spatio-temporal attention (ViT-ts).

Standard ViT. A ViT is an architecture that splits images into patches, adds positional embeddings
to the patch embeddings, and feeds the sequences to a transformer encoder. Since vision transformers

have achieved the state of the art in several vision tasks ( ( ) and
( )), we explored using ViT as a CQL policy’s backbone. We chose our ViT to match the
parameters of ViT-S in ( ). In our setup illustrated in 1a, we first rearranged our four

stacked frames into 144 patches (flattened from 4 frames, with 36 patches per frame) per step. The
patches are passed through feedforward layers and the ViT-S encoder. The ViT output is aggregated.
This is flattened into a vector that is fed into feed-forward networks.



ViT-ts architecture The Vit-ts architecture in Figure 1b is similar to the ViT architecture except that
it uses two ViT encoders sequentially. Our use of spatio-temporal attention is adapted from
( ), but we use the two temporal and spatial transformers sequentially, whereas

( ) uses them in parallel. First, the patches are arranged so that the height and width axes of each
patch are rearranged into the batch axis. We then pass these vectors into a temporal ViT encoder that
does attention over the different frames per batch. After this, the embedding is then rearranged to put
the height and width dimensions back into the token dimension. We pass the resultant embedding
through a spatial ViT encoder, after which we proceed as the ViT backbone does.

. Feed-
coter | aggregation | Fomward
. utpu
encoder aggregation Networks

(a) ViT architecture The ViT input is composed of four stacked frames that are rearranged into 144 patches.
They pass through a single feed-forwrd layer before continuing to the encoder. The encoder attends over all 144
patch embeddings. The encoder output is then aggregated and passed through feed-forward networks.

Temporal . " Feed-
) |, Spatial ViT | | Sequence | |
ViT encoder aggregation Forward Output

encoder Networks

(b) ViT-ts architecture The ViT-ts input is similar to the ViT input except that it is rearranged so that the
Temporal ViT encoder attends across only the four temporal frame embeddings per patch. After the temporal
ViT encoder, the embedding is then rearranged so that the Spatial ViT encoder attends over the height and width
dimensions per embedding. Following that, the architecture continues similarly to the ViT.

Sequence aggregations. We run our ViT experiments with three methods for aggregating the
embedding sequences after the ViT encoder.

e No aggregation: We only take the last dimension along the sequence dimension.
e Global average pooling: We take the mean along the sequence dimension.

e [earned spatial embeddings ( , ): We use learned spatial embeddings that
learn a matrix that point-wise multiplies the output of the ViT encoder.

In the ViT-ts architecture, the sequence aggregation is taken after the second ViT encoder for both
"no aggregation" and learned spatial embedding. For global average pooling, the mean is taken after
the first and second ViT encoder.

All models and sequence aggregation methods are listed with their number of parameters in Table 1.
The learned spatial embeddings used by both models have about 49M parameters.



Table 1: Number of parameters per model and sequence aggregation combination. Number of
parameters are listed in millions.

Model Number of Parameters
ViT with no sequence aggregation 24.2M
ViT with mean pooling 24.2M
ViT with learned spatial embeddings 73.9M
ViT-ts with no sequence aggregation 45.5M
ViT-ts with mean pooling 45.5M
ViT-ts with learned spatial embeddings 95.3M
Convnet 63.5M

4 Results and Discussion

4.1 Results

We measure results using average DQN-normalized interquartile-mean (IQM) ( , ).
The DQN scores we normalize against are listed in Table 3.

Architecture Baseline. As a baseline, we report results using the convolutional neural network
(convnet) from ( ) and ( ). The Convnet backbone we utilize has
three convolutional layers and a hidden feedforward layer of 512 features.

Behavioral cloning vs CQL findings Our results are summarized in 2. CQL outperforms behavioral
cloning when using the ViT backbone and when using a ViT-ts backbone. All models are using no
sequence aggregation here. With ViT, the highest value achieved by CQL is 1.03 IQM, whereas
behavioral cloning achieved a maximum of 0.55 IQM. With Vit-ts, the highest value achieved by
CQL is 1.56 IQM, whereas behavioral cloning achieved a maximum of 0.78 IQM.

Architecture findings Our results are summarized in Figure 3. ViT-ts reached the highest perfor-
mance within the observed steps. The maximum IQM achieved by an individual ViT-ts run is 1.68
IQM. ViT’s maximum score is 1.21 IQM and convnet’s maximum score is 1.35 IQM. The median
ViT-ts also surpassed both of these opposing maximum scores before ViT and convnet reached
them, showing that it was also the more sample-efficient algorithm. Vit-ts, ViT, and convnet ran at
approximately 12,24, and 48 training steps per second, respectively.

Sequence aggregation findings Our results are summarized in Figure 4. When testing the three
different sequence aggregation methods, we find that the mean performance of using learned sequence
embeddings outperforms the other two methods in ViT. However, the variance of using both other
methods are large enough to intersect with the performance of mean learned sequence aggregation.
In ViT-ts, the mean performance of using global average pooling outperforms the other two methods.
ViT-learned reached a maximum score of 1.35 IQM and vit-ts-mean reached a maximum score of
1.93 IQM. ViT-ts also consistently outperforms ViT with all three sequence aggregation methods.

08 17

06
" — Vit-BC 08 — \it-ts-BC

viecqL & vit-ts-COL
0.4 JW 06

02

oM

00 0.0
0 10 0 0 40 50 o 10 20 30 40 50
eval steps eval steps

(a) ViT. (b) ViT:ts.

Figure 2: Behavioral cloning vs CQL with no sequence aggregation. CQL outperforms behavioral
cloning when using a ViT or a ViT-ts backbone, as expected. Each eval step in the x-axis here and in
the other figures occurs every 62,500 training environment steps.



175
150
125

1.00 — it

= it

o vit-ts
0.75 —— convnet

0 25 50 75 100 125 150 175 200
eval steps

Figure 3: CQL using ViT, ViT-ts, and convnet as backbones. The ViT-ts outperformed the other
models, attaining an IQM score of 1.68. ViT-ts reliably outperformed convnet in all seeds.

14 2.00

12 175

10 150

\.VV

125
08 —— vit-none
it = 1.00
V!l mean o
vit-learned

—— vit-ts-none
vit-ts-mean

075 — vit-ts-learned

0.50
02 0.25
00 0.00

] 20 40 B0 80 100 o 20 40 60 80 100
eval steps eval steps

(a) ViT. (b) ViT-ts.

Figure 4: CQL runs using either no sequence aggregation (none), global average pooling
(mean), or learned spacial embeddings (learned). In ViT, vit-learned attained the highest IQM
score of 1.35. In ViT-ts, vit-ts-mean attained the highest IQM of 1.93.

4.2 Discussion

This work shows that CQL outperforms behavioral cloning when using a ViT backbone. It shows
that adding spatio-temporal attention to ViT aids the policy in using information from all four frames
for decision making. As we hoped, we recorded similar trends as those observed in

( ). It shows that when running CQL with a ViT backbone without spatio-temporal attention,
the mean score for the learned spatial aggregation models surpasses the other two models within the
observed steps, but no sequence aggregation method reliably surpasses the others. When running a
ViT backbone with spatio-temporal attention, the mean pooling models surpass the other two models
within the observed steps.

Although we improved on ViT’s performance, our setup is not optimal. The scale of the experiments
limited the number of ablations we could explore. We expect future experiments to improve on
our results. For example, unlike decision transformer ( ), we did not incorporate
data augmentation into our experiments, which we expect should improve results. We also did not
vary the number of layers in either the spatial or temporal attention layers, which can likely be
optimized. Optimizing will be needed to confirm that ViT-ts models surpass ViT models when they
are constrained to the same number of parameters. Addressing these improvements is left to future
work.

S Acknowledgements

We thank Igor Mordatch and Kamyar Ghasemipour for informative discussions.



Table 2: Hyperparameters used by single-game training. Here we report the key hyperparameters
used by the single-game training. These are typical for single-game training following

(2020).

Hyperparameter Setting (for both variations)
Eval Sticky actions Yes
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 32
Target network update period every 2000 updates
Training environment steps per iteration 62.5k
Update period every 1 environment steps
Evaluation € 0.001
Evaluation steps per iteration 125K
Learning rate .00001
n-step returns (n) 3
CQL regularizer weight o 0.05

Table 3: Average returns across 5 runs for the random agent and the average performance of
the trajectories in the DQN (Nature) dataset. For Atari normalized scores reported in the paper,
the random agent is assigned a score of 0 while the average DQN replay is assigned a score of 100.
Note that the random agent scores are also evaluated on Atari 2600 games with sticky actions. These
values are from ( ).

Game Random Average DQN-Replay

Asterix 279.1 3185.2
Breakout 1.3 104.9
Pong -20.3 14.5
Qbert 155.0 8249.7
Seaquest 81.8 1597.4

References

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M. (2021). Deep
reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304-29320.

Agrawal, R., Schuurmans, D., and Norouzi, M. (2020). An optimistic perspective on offline rein-
forcement learning. In ICML.

Aksan, E., Kaufmann, M., Cao, P., and Hilliges, O. (2021). A spatio-temporal transformer for 3d
human motion prediction. In 3DV, pages 565-574. IEEE.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449-458. PMLR.

Chebotar, Y., Vuong, Q., Irpan, A., Hausman, K., Xia, F,, Lu, Y., Kumar, A., Yu, T., Herzog, A.,
Pertsch, K., Gopalakrishnan, K., Ibarz, J., Nachum, O., Sontakke, S., Salazar, G., Tran, H. T.,
Peralta, J., Tan, C., Manjunath, D., Singht, J., Zitkovich, B., Jackson, T., Rao, K., Finn, C., and
Levine, S. (2023). Q-transformer: Scalable offline reinforcement learning via autoregressive
g-functions.



Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and
Mordatch, I. (2021). Decision transformer: Reinforcement learning via sequence modeling. In
NeurlIPS, pages 15084—15097.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An image is worth
16x16 words: Transformers for image recognition at scale. CoRR, abs/2010.11929.

Kalantari, A. A., Amini, M., Chandar, S., and Precup, D. (2022). Improving sample efficiency of
value based models using attention and vision transformers.

Kumar, A., Agarwal, R., Geng, X., Tucker, G., and Levine, S. (2023). Offline g-learning on diverse
multi-task data both scales and generalizes. In ICLR. OpenReview.net.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. (2021a). Implicit under-parameterization inhibits
data-efficient deep reinforcement learning.

Kumar, A., Agarwal, R., Ma, T., Courville, A., Tucker, G., and Levine, S. (2021b). Dr3: Value-based
deep reinforcement learning requires explicit regularization.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative g-learning for offline
reinforcement learning.

Lee, K., Nachum, O., Yang, M., Lee, L., Freeman, D., Guadarrama, S., Fischer, 1., Xu, W., Jang, E.,
Michalewski, H., and Mordatch, I. (2022). Multi-game decision transformers. In NeurIPS.

Li, W.,, Luo, H., Lin, Z., Zhang, C., Lu, Z., and Ye, D. (2023). A survey on transformers in
reinforcement learning.

Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., and Beyer, L. (2022). How to train
your vit? data, augmentation, and regularization in vision transformers.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. (2022). Scaling vision transformers. In CVPR,
pages 1204-1213. IEEE.



	Introduction
	Background
	ViTs for Offline RL
	Results and Discussion
	Results
	Discussion

	Acknowledgements

