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Abstract

Ring attractors, mathematical models inspired by neural circuit dynamics, provide
a biologically plausible mechanism to improve learning speed and accuracy in
Reinforcement Learning (RL). Serving as specialized brain-inspired structures that
encode spatial information and uncertainty, ring attractors explicitly encode the
action space, facilitate the organization of neural activity, and enable the distribu-
tion of spatial representations across the neural network in the context of Deep
Reinforcement Learning (DRL). These structures also provide temporal filtering
that stabilizes action selection during exploration, for example, by preserving the
continuity between rotation angles in robotic control or adjacency between tactical
moves in game-like environments. The application of ring attractors in the action
selection process involves mapping actions to specific locations on the ring and
decoding the selected action based on neural activity. We investigate the application
of ring attractors by both building an exogenous model and integrating them as
part of DRL agents. Our approach significantly improves state-of-the-art perfor-
mance on the Atari 100k benchmark, achieving a 53% increase in performance
over selected baselines.

1 Introduction

This paper addresses the challenge of efficient action selection in Reinforcement Learning (RL),
particularly in environments with spatial structures, ranging from robotic manipulation where joint
movements are coupled, to game-playing agents where tactical decisions might depend on positional
awareness. We integrate ring attractors, a neural circuit model from neuroscience originally proposed
by [50] and later experimentally validated by [18], into the RL framework. This approach provides
a mechanism for uncertainty-aware decision-making in RL, thereby yielding more efficient and
reliable learning in complex environments. Ring attractors offer a unique framework to represent
spatial information in a continuous and stable manner [33]. In a ring attractor network, neurons
interconnect circularly, forming a loop with tuned connections [7]]. This configuration allows for
robust and localized activation patterns, maintaining accurate spatial representations even in the
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presence of noise or perturbations. Applying ring attractors to the selection of RL actions involves
mapping actions to specific ring locations and decoding the selected action based on neural activity.
This spatial embedding proves advantageous for continuous action spaces, particularly in tasks
such as robotic control and navigation [28]]. Ring attractors improve decision-making by exploiting
spatial relations between actions, contributing to informed transitions between actions in sequential
decision-making tasks in RL. While many action spaces possess inherent topological structure [39],
traditional neural networks represent actions as orthogonal vectors that ignore these relationships.
Ring attractors bridge this gap by providing a neural substrate that preserves spatial ordering and
similarity between actions. This is particularly relevant given recent advances showing that spatial
structure in representations improves sample efficiency [25}49] and generalization [3} [13]], yet these
benefits have not been systematically applied to action selection mechanisms themselves.

In what follows, we summarize our contributions. Briefly, our contributions include a novel approach
to RL policies based on ring attractors, the inclusion of uncertainty-aware capabilities in our RL
systems, and the development of Deep Learning (DL) modules for RL with ring attractors.

* We propose a novel approach for integrating ring attractors into RL, incorporating spatial
information, temporal filtering, and relations between actions. This spatial awareness
significantly speeds up the learning rate of the RL agent. See Sections and 4.1}

» We utilize a Bayesian approach to build ring attractors input signals, encoding uncertainty
estimation to drive the action selection process, showing further performance improvement.

See Sections and[4.1]

* We develop a reusable DL module based on recurrent neural networks that incorporates
ring attractors into DRL agents. This allows integration and comparison with existing
DRL frameworks and baselines, enabling the adoption of our ring attractor approach across
different RL models and tasks in applied domains. See Sections[3.2)and .2}

Codebase available athttps://github. com/marcosaura/RA_RL,

2 Related Research

The integration of ring attractors into RL systems brings together neuroscience-inspired models and
advanced machine learning techniques. In this section, we review the literature on key areas that form
the foundation of our RL research: spatial awareness in RL, biologically inspired RL approaches,
and uncertainty quantification methods.

2.1 Spatial Awareness in RL

Incorporating spatial awareness into RL systems has improved performance on tasks with inherent
spatial structure. Regarding relational RL, [49] introduced an approach using attention mechanisms
to reason about spatial relations between entities in an environment. This method demonstrated
improved sample efficiency and generalization in tasks that require spatial reasoning. On the topic
of navigation, [25] developed a DRL agent capable of navigating complex city environments using
street-level imagery. Their approach incorporated auxiliary tasks, such as depth prediction and loop
closure detection. Concerning explicit spatial representations, [13]] proposed a cognitive mapping
and planning approach for visual navigation, combining spatial memory with a differentiable neural
planner. Similarly, [3]] introduced a relational DRL framework using graph neural networks to capture
spatial relations between objects. Although these approaches demonstrate the importance of spatial
awareness in RL, they rely on emergent learning to develop spatial understanding through compre-
hensive architectural additions, which require extensive training to discover action relationships. In
contrast, our ring attractor approach explicitly encodes spatial structure in the action space, providing
spatial inductive bias that accelerates learning rather than relying on the RL agent to autonomously
discover all critical action space relationships, which may result in suboptimal or incomplete spatial
understanding.

2.2 Biologically Inspired Machine Intelligence

Biologically inspired approaches to RL seek to leverage insights from neuroscience to improve the
efficiency, adaptability, and interpretability of RL algorithms. These methods often draw upon neural
circuit dynamics and cognitive processes observed in biological systems. A notable example is
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the work in [45]], which demonstrated how neural attractor states implement probabilistic choices
through recurrent network dynamics. The work presented in [2] demonstrated that incorporating
grid-like representations, inspired by mammalian grid cells, into RL agents improved performance
in navigation tasks. Their work showed that these biologically inspired representations emerged
naturally in agents trained on robotics tasks and transferred well to new environments. Similarly, [10]
showed that recurrent neural networks trained on navigation tasks naturally developed grid-like
representations, suggesting a deep connection between biological and artificial navigation systems.
In RL, grid cells and ring attractors serve distinct computational roles. Grid cells encode spatial
state information (the agent’s position), through hexagonal firing patterns, functioning as fixed basis
functions for value functions and spatial generalization [2, [10]. Ring attractors encode persistent
states, directional and spatial bias, through recurrent dynamics that actively maintain information
over time [16]]. While grid cells provide emergent spatial input features, ring attractors are dynamical
components that provide intrinsic spatial encoding for memory states [17], that here we translate to
encoding of the action space. [31] demonstrated how RL agents naturally develop insect-like behaviors
and neural dynamics when solving complex spatial navigation tasks. [44] proposed a biologically
inspired meta-RL algorithm that mimics the function of the prefrontal cortex and dopamine-based
neuromodulation. Their approach demonstrated rapid learning and adaptation to new tasks, similar to
the flexibility observed in biological learning systems. However, these approaches primarily focus on
mimicking neural representations or learning dynamics, whereas ring attractors specifically encode
spatial relationships in the action space itself, providing both biological plausibility and direct spatial
awareness for action selection.

2.3 Uncertainty Quantification

Regarding exploration strategies, [27] introduced bootstrapped Deep Q-networks (DQNs), addressing
exploration by leveraging uncertainty in Q-value estimates by training multiple DQNs with shared
parameters. Building on this theme, [8] proposed random network distillation (RND), measuring
uncertainty by comparing predictions between a target network and a randomly initialized network.
For efficient uncertainty quantification, [11] and [9]] presented a novel “masksemble” approach,
applying masks across the input batch during the forward pass to generate diverse predictions.
Addressing risk assessment in non-stationary environments, [14] described a method to analyze
sources of lack of knowledge by adding a second Bayesian model to predict algorithmic action
risks, particularly relevant for multi-agent RL (MARL) systems. [19] developed a Bayesian ring
attractor that outperforms conventional ring attractors by dynamically adjusting its activity based
on evidence quality and uncertainty. In the context of individual treatment effects, [20] performed
uncertainty quantification (UQ) using an exogenously prescribed algorithm, making the method
agnostic to the underlying recommender algorithm. [1] developed a Bayesian approach for RL
in episodic high-dimensional Markov decision processes (MDPs). They introduced two novel
algorithms: LINUCB and LINPSRL. These algorithms achieve significant improvements in sample
efficiency and performance by incorporating uncertainty estimation into the learning process. In the
context of DRL, Bayesian Deep Q-networks (BDQNs) [[1] incorporate efficient Thompson sampling
and Bayesian linear regression at the output layer to factor uncertainty estimation in the action-
value estimates. While these methods treat uncertainty estimation as a separate module applied
to existing architectures, our ring attractor approach integrates uncertainty through the variance
parameters of Gaussian input signals, making uncertainty awareness an intrinsic part of the spatial
action representation.

In summary, the literature reveals a growing interest in incorporating spatial awareness, biological
inspiration, and UQ into RL systems. However, there remains a gap in integrating these elements into
a cohesive framework that simultaneously provides biological plausibility, explicit spatial encoding,
and natural uncertainty handling within a single neural architecture. Our work on ring attractors
aims to bridge this gap by providing a biologically plausible model that inherently captures spatial
relations and can be extended to handle uncertainty, potentially leading to more robust and efficient
RL agents.

3 Methodology

Ring attractors represent a computational principle where neurons are arranged in a circular topology
to maintain spatial representations. Originally proposed by [50] for encoding heading direction and
empirically discovered by [[18] in Drosophila, these networks exhibit circular organization where
head direction cells encode different spatial directions [38]. For our methodology, ring attractors



integrate multiple cues through distance-weighted connections [51}12] and maintain representational
stability through excitatory-inhibitory dynamics [37]]. This bioinspired structure has been repurposed
in this line of research to explicitly encode the action space during the decision-making process. In
this section, we describe two main methods: an exogenous ring attractor model using continuous-time
recurrent neural networks (CTRNNs) and a DL-based ring attractor integrated into the RL agent.
While the CTRNN model validates the theoretical principles, the DL architecture eases deployment
and adoption in existing DRL frameworks. Both leverage the ring attractors’ spatial encoding
capabilities to enhance action selection and performance. In the CTRNN model, we detail the ring
attractor architecture, Section [3.1.T} dynamics and implementation, Section[3.1.2} and uncertainty
injection, Section[3.1.3] CTRNNS are used for their ability to model continuous neural dynamics
and maintain stable attractor states [4]. The integrated DL approach offers end-to-end training for
efficiency and scalability, detailed in Section [3.2} Ring attractors in RL maintain stable spatial
information representations, preserving action relations lost in traditional flattened action spaces.
This circular spatial representation potentially yields smoother policy gradients and more efficient
learning in spatial tasks, attributed to the ring attractors’ ability to maintain a stable representation of
spatial information.

3.1 Continuous-Time RNN Ring Attractor Model

During the first stage of the research, the focus is on developing a self-contained exogenous ring
attractor as a CTRNN. This will be integrated into the output of the value-based policy model to
perform action selection.

3.1.1 Ring Attractor Architecture

Ring attractors commonly consist of a configuration of excitatory and inhibitory neurons arranged
in a circular pattern. We can model the dynamics of the ring using the Touretzky ring attractor
network [40]]. In this model, each excitatory neuron establishes connections with all other excitatory
neurons, and an inhibitory neuron is placed in the middle of the ring with equal weighted connections
to all excitatory neurons.

Excitatory neurons’ input signal: Let 2!, € R* denote the input signal from source number i to

the excitatory neuron n = 1,..., N. The total input to neuron n is defined as the sum of all input

signals I for that particular neuron: z,, = Zle x!, where x,, € R. To model input signals z?, of

varying strengths, these signals are commonly viewed as Gaussian functions z¢, : R® — R*®. These
functions allow us to represent the input to each neuron as a sum of weighted Gaussian distributions.
The key parameters of these Gaussian functions are: K, the magnitude variable for the input signal
in index ¢, which determines the overall strength of the signal; 1;, which defines the mean position
of the Gaussian curve in the ring for the input signal i, representing the central focus of the signal;
o0, the standard deviation of the Gaussian function, which determines the spread or reliability of the
signal; and a.,, which represents the preference for the orientation of the neuron n in space. These
parameters combine to the following:

X () = ix;(an) = i K exp (_W) (1
— — V2mo; 207

Neuron activation function: We employ rectified linear unit (ReLU) function f(z) = max(0, z+h),
where h € RT as activation function for each neuron, where 4 is a threshold that introduces the
non-linear behaviour in the ring.

Excitatory neuron dynamics: The dynamics of excitatory neurons in the ring is described as:
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In Eq. @) v,, € R represents the activation of the excitatory neuron n, z,, is previously defined in
Eq. (1) is the external input to the neuron n of Eq. (I), €, € R represents the weighted influence
of the other excitatory neurons activation, which is defined mathematically in Eq. @). 7, € R is
the influence from the weighted inhibitory neuron activation to the target excitatory neuron n, and
7 = At is the time integration constant. This equation captures the evolution of neuronal activation
over time, considering both excitatory and inhibitory activations.

Inhibitory neuron dynamics. The activation of the inhibitory neuron, which regulates network
dynamics, is described by:
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Here, u € R represents the inhibitory neuron’s activation output, €, is the weighted sum of excitatory
activations where in this case n is the inhibitory neuron, and 7,, € R is the weighted self-inhibition
activation term. This equation models how the inhibitory neuron integrates inputs from the excitatory
population and its own state.

Synaptic weighted connections: The influence between neurons decreases with distance, as modeled
by the weighted connections. This weighted connection applies to both excitatory and inhibitory

-_— 2 . .
neurons. For excitatory neurons: w(Fm—=En) = ¢~%m.n)  where d(m,n) = |m — n| is the distance

between neurons m and n. For the inhibitory neuron: w(!=F») = ¢~dmm = e~1. Note that our
model contains a single inhibitory neuron placed in the middle of the ring, with a distance of 1 unit to
all excitatory neurons. The excitatory (e,) and inhibitory (7,,) weighted connections are also known
in the literature as neuron-proximal excitatory and inhibitory voltage or potential. These are then
defined as follows:

N
en =D w2 Py, g, = w2y 4)
m=1

3.1.2 Ring Attractor as Behavior Policy in RL

To integrate the ring attractor model with RL, we need to establish a connection between the estimated
value of state-action pairs and the input to the ring attractor network. This integration allows the ring
attractor to serve as a behavior policy, guiding action selection based on the values learned.

Excitatory neurons’ action input signal: We begin by reformulating the input function for a target
excitatory neuron n from Eq. (I). To integrate the ring attractor with RL, we reformulate the input
signals by mapping K; to the Q-value Q(s, a), effectively substituting input signal index i € I with
actions a € A. In other words, the key modification is setting the scale factor K; to the Q-value
Q(s, a) of the state-action pair (s, a), thatis K; = Q(s, a).

This formulation is represented in Fig. [T|and described in Eq. (3] ensures that actions with higher
estimated values are given more weight in the ring attractor dynamics, naturally biasing the network
towards more valuable actions. The orientation of the signal within the ring attractor is determined
by the direction of movement in the action space. We represent this as u; = a,(a), where a,(a) is
the angle corresponding to the action a in the circular action space. We define our circular action
space A as a subset of R?, where each action a € A is represented by a point on the unit circle. The
function « : A — [0, 27) maps each action to its corresponding angle on this circle, and «,, which
presents the preference for the orientation of the neuron n in space. To account for uncertainty in our
value estimates, we incorporate the variance of the estimated value for each action o; = 0.

This allows the network to represent not just the expected value of actions, but also the confidence in
those estimates. Combining these, we arrive at the following equation for the action signal x,,(Q):

- s, a Ay — gl 2

This equation represents the input to each neuron as a sum of Gaussian functions, where each function
is centered on an action’s direction and scaled by its Q-value.

Full excitatory neuron dynamics. The dynamics of the excitatory neurons in the ring attractor, now
incorporating the Q-value inputs, are described by:

m=N
dv 1 ; N
- _ = (E—E) (I—Eu) —
rraialbell KU 0, mE:1 Wy O+ 20 (Q) +w u Up (6)

This equation captures how the activation of each neuron evolves over time, influenced by the Gaussian

functions of the input action value x,,(Q), the excitatory feedback €,, = ZTanl wEm=En)y and

the inhibitory feedback 7, = w!F»)q,
Full inhibitory neuron dynamics. The complete dynamics of the inhibitory neuron are given by:
N
d 1
di: =—|mazx (0, | u+ ZwﬁlE“_”)vn —u, 7
T

n=1



where the self-inhibition term v and excitatory
input v,, from each excitatory neuron n from
Eq. (6) updates the activation of the inhibitory
neuron du Eq. (6) and Eq. (7) collectively de-
scribe the dynamics of the ring attractor network,
capturing the interplay between excitatory and
inhibitory neurons, external inputs, and synaptic
connections. To translate the ring attractor’s out-
put into an action in the 2D space, we use the
following equation:
N(A)

N@ (8

action = argmax{V'}
where n € {1,..., N(®)}, N() is the number
of excitatory neurons in the ring attractor, N (4)
is the number of discrete actions in the action
space A, and the activation of excitatory neurons
around the ring V = [v1,v2,...,unm]. This
equation assumes that both the neurons in the
ring attractor and the actions in the action space
are uniformly distributed. This approach allows
for nuanced action selection that takes into ac-
count both the spatial relations between actions
and their estimated values. A visualization of
the ring is presented in Fig. [I]

3.1.3 Uncertainty Quantification Integration

—— Excitatory connectiqns (V; ;)
Inhibitory connections (U;)
Overall activation
e Excitatory neuron
Inhibitory neuron
Attractor state

Figure 1: Ring attractor TouretzKky representation:
Circular arrangement of excitatory neurons (NO-
N7) and central inhibitory neuron. Four input sig-
nals shown as colored gradients. Overall activa-
tion depicted by red outline. Includes connection
weights and input signal parameters, illustrating
the final ring attractor dynamics state from Eq. (8).

In the field of DRL, for any state-action pair (s, a), the Q-value (s, a) can be expressed as a function
of the input state through a function approximation algorithm ®g(s) taking as input the current state
s. This function approximation algorithm (®4(s)) can be expressed as the weight matrix of our
function approximation algorithm transposed 67 times the feature vector extracted from the input
state 7(s): Q(s,a) = ®y(s) = 07 x(s) [34]. For further context on function approximation in RL
see Appendix[A.2] As stated in Section[3.1.2] the variance of the Gaussian functions, input to the
ring attractor, will be given by the variance of the estimate value for that particular action o; = o,,.
Among the various methods to compute the uncertainty of the action (o,) we have chosen to compute
a posterior distribution with Bayesian linear regression (BLR). BLR acts as output layer for our

neural network (NN) of choice.

We choose a linear regression model

Algorithm 1 CTRNN Ring Attractor Action Selection

because it does not compromise the ef-
ficiency of the NN, while at the same
time it provides a distribution to com-

[

Require: Input: State s, action a from Action space

St.ep 1: Compute Q-values and Uncertainty

pute the variance for the state-action 2: Compute mean Q(s,a) and variance o2 using Eq.
pairs. The implementation is based 11
on [1]], where a Bayesian value-based  3: Step 2: Generate Input Action Signals
DQN model was instantiated to output ~ 4: for each excitatory neuron n do
an uncertainty-aware prediction for the  5: Generate Gaussian action signal using Eq. 5
state-action pairs. The new () function  6: end for
is defined as: 7. Step 3: Reach Attractor State
8: for timestep ¢ until 7' do > choose T=50
Q(s,a) = ®p(s) wa, © empirically
h th iohts from th 9: for each excitatory neuron n do
where w, are the weights from the pos- . duy, : :
terior distribution of the BLR model. Eq. i(l) end id(fr Update excitatory neurons using Eq. 6
() represents the parameters of the fmal 12: du Update inhibitory neuron using Eq. 7
Bayesian linear lgyer. When prov1df;d 13- end %r
with a state transition tuple (s, a, 7, s"), 14: Step 4: Translate Neural Activity V to action se-

where s is the current state, a is the ac-
tion taken, 7 is the reward received, and
s’ is the next state. This tuple represents

a single step of interaction between agent and environment. The model learns to adjust the weights

lected from action space .4 using Eq. 8

15: return action




w, of the BLR and the function approximation algorithm, i.e. neural networks (NNs) (®g), to align
the Q values with the optimal action a = argmax(y®g(s)T w,),

Q(s,a) = ®g(s) wa = y =1+ ¥Pg,. (5) Wiarger i, (10)

where -y is the discount factor, y is the expected Q-value, @y, are the features from the next state
5" extracted by the function approximation algorithm ® using the target network parameters, Otarget
refers to the target function approximation algorithm parameters, and a is the predicted optimal
action in the next state s’. The construction of the Gaussian BLR prior distribution and the weights ¢
sample w,_; collected from the posterior distribution are performed through Thompson Sampling.
This process allows us to incorporate uncertainty into our action-value estimates. For details on the
construction of the Gaussian prior distribution and the specifics of the sampling process, we refer
the reader to [T]]. Both the mean Q(s, a) and the variance 2 of Eq. (T) are calculated from a finite
number of samples /.

i= i= i= 2
Q(s,a) = Zi:é (s,a)i _ Zi:é wy i Po(st) 52 — Zi:é (wai®o(st) — tta) 1)
’ I I e I-1

3.2 Deep Learning Ring Attractor Model

To further enhance the ring attractor’s integration into RL frameworks and agents, we provide a
Deep Learning (DL) implementation. This approach improves model learning and integration with
DRL agents. Our implementation offers both algorithmic improvements, by benefiting from DL
training process, and software integration improvements, easing the deployment processes. Recurrent
Neural Networks (RNNs) offer an approach for integrating ring attractors within DRL agents. Recent
studies by [22] show that RNNs perform well in modeling sequential data and in capturing temporal
dependencies for decision-making. Like CTRNNs, RNNs mirror ring attractors’ temporal dynamics,
with their recurrent connections and flexible architecture emulating their interconnected nature.
Allowing modelling weighted connections for forward and recurrent hidden states, as shown in
Appendix [A.6 The premises for modeling RNN are as follows.

Attractor state as recurrent connections. RNN recurrent connections model the attractor state,
integrating information from previous time steps into the current network state, allowing for the
retention of information over time.

Signal input as a forward pass. Forward connections from previous layers are arranged circularly,
mimicking the ring’s spatial distribution. The attractor state encodes the task context, influenced by
the current input and hidden state. A learnable time constant 7, inherited from Eq. @), controls input
and temporal evolution, enabling adaptive behavior and elastic contribution to the attractor state.

3.2.1 DRL Agent Integration

To shape circular connectivity within a RNN, the weighted connections in the input sig-
nal V(s) and the hidden state or attractor state U(v) are computed as in (I2). This circu-
lar structure mimics the arrangement of excitatory neurons in the ring attractor. Eq. (12)
shows the input signal to the recurrent layer V,, , from neuron m from the previous layer
in the DL agent to neuron n in the RNN. The hidden state, U,,, mimics an attractor state,
representing the recurrent connections in the RNN. The weighted RNN connections include
fixed input-to-hidden connections (w!™#m,n) to maintain the ring’s spatial structure, and
learnable hidden-to-hidden connections (w® ~#m, n) to capture emerging action relationships.
These depend on a parameter A that drives 1 1

the decay over distance and distance between V($)mn = ;¢9(5)Tw7]r;>zH = ;©9(S)T6
neurons d(m, n) where N is the total number M M
of neurons for the RNN and M is the count  d(m,n) =min (jm —n—|[, N —|m —n—|)
of neurons in the previous layer of the NN N N
architecture. The function ¢ (s) : RY 5 RM U)o, = h(v)wa,{:H = h(®p)"e
maps the input state s of the DL agent to a d(m,n) = min (|m — n|, N — |m —n])
representation of characteristics that will be (12)
the input of the recurrent layer. Likewise, 6

represents the parameters of this function (i.e., the weights and biases of the NN layers recedin]§
the RNN layer, which extract relevant features from the input). The function h(v) : R — R
is parameterized by learnable weights that map the information from previous forward passes to

_ d(m,n)
I

_d(m,n)
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the current hidden state. The learnable parameter 7 is the positive time constant responsible for the
integration of signals in the ring. Here, 7 acts as a learnable scaling factor that controls the balance
between immediate input responsiveness and temporal integration within the ring attractor dynamics,
with smaller values increasing sensitivity to current inputs and enabling faster adaptation, while larger
values promote stability and smoother transitions between attractor states by integrating information
over longer time horizons. It defines the contribution of input ¢y(s) to the current hidden state,
imitating the attractor state, applied to NNs.

Finally, the action-value function Q(s, a) is derived from the RNN layer’s output by applying the
neurons activation function to the combined input V() and hidden state information U(s). The
activation function of choice is a hyperbolic tangent tanh, this function is symmetric around zero,
leading to faster convergence and stability. However, the output range of tanh (-1 to 1) is not fully
compatible with value-based methods, where the DL agents need to output action-value pairs in the
range of the environment’s reward function. To address this issue and prevent saturation of the tanh
activation function, we scale the action-value pairs by multiplying them by a learnable scalar 3, as
Q(s,a) = Bhy = Btanh (V(s) + U(v)) = Btanh (L &g (s))Tw! = + hy_y (v)Tw=H). While
our main focus is on value-based ring-attractor agents, we also provide an overview of methods and
results for policy-gradient approaches in Appendix

4 Experiments

This section presents the findings of our experiments that validate our proposed approach to inte-
grate ring attractors into RL algorithms. To assess the effectiveness of our method, we conducted
comparisons between multiple baseline models and action spaces. The evaluation encompasses two
implementations: a CTRNN exogenous ring attractor and a DL approach where the ring attractor
is modeled directly into DRL agents. In both implementations, the action-value pairs (s, a) are
evenly distributed across the ring circumference. For the exogenous model, each action is associated
with a specific discrete angle or continuous space, section In the DL implementation, each
neuron in the RNN corresponds to one action-value. The ring attractor serves as the output layer of
the DL agent with the weights modeling the circular topology of the action space, Section[3.2.1] For
both approaches, ring attractor agents are annotated with the suffix RA. We demonstrate that ring
attractors significantly enhance action selection and speed up the learning process.

Learning speed comparison: OpenAl Gym — Super Mario Bros Learning speed comparison: OpenAl Gym — Highway

— BDON BDQNRA — BDONRA-UA — BDON BDQNRA — BDQNRA-UA
BDON STD BDQNRASTD BDQNRA-UASTD BDQN STD BDQNRA STD BDQNRA-UA STD.

Cumulative Reward

Figure 2: Learning speed comparison. Above: OpenAl Gym Super Mario Bros environment [[15]
with discrete action space. Below: OpenAl highway [21]] with a continuous 1-D circular variable. The
plot shows cumulative reward over 1 million frames for three models: Standard BDQN; BDQNRA
with ring attractor behavior policy from Section[3.1.2] setting the action-value pair variance constant
to o, = %, using this fixed variance to enable smooth action transitions while preventing interference
with opposing actions; and BDQNRA-UA with RA and Uncertainty Awareness (UA) implementing
the uncertainty quantification model from Section [3.1.3to feed into the variance of the action-value

pairs. Displaying mean episodic returns over 10 averaged seeds.

4.1 CTRNN Ring Attractor Model Performance

To evaluate our CTRNN ring attractor model from Section [3.1.2] integrated with BDQN [1]] we
performed experiments in the OpenAl Super Mario Bros environment [[15]] and OpenAl highway [21]].
These benchmarks exhibit a spatially distributed complex decision-making scenario with 8 discrete
different actions and a navigation-centric task with a continuous 1D circular actions space, respectively.
Fig. [ shows that both ring attractor models (BDQNRA and BDQNRA-UA) consistently outperform
standard BDQN. The uncertainty-aware version (BDQNRA-UA) shows the best overall performance,
highlighting the benefits of combining ring attractors spatial distribution of the action space with
uncertainty-aware action selection. Empirical evaluations revealed that CTRNN-based ring attractor



Cumulative Reward

models exhibited a mean computational overhead of 297.3% (SD = 14.2%) compared to the baseline,
significantly impacting runtime. To address this performance bottleneck and integrate the spatial
understanding of the ring attractor into DRL, we developed a DL implementation of the ring attractor.
This DL implementation is evaluated in the following subsections.

4.2 DL Ring Attractor Model Performance

To evaluate the effectiveness of our DL-based ring attractor implementation from Section

we conducted experiments implementing DDQNRA, an extension of DDQN [43]. Fig. 3] shows
DDQNRA consistently outperforms standard DDQN, with the ring attractor’s spatial encoding
ability contributing significantly to improved learning speed. These results demonstrate substantial
performance gains, especially in environments with strong spatial and directional cues.

Learning speed comparison: OpenAl Gym — Super Mario Bros Learning speed comparison: OpenAl Gym — Highway

DDGN Actual © — DDGN — DQNRA

—— DDQN Smoothed DDQN STD DQNRASTD

DDQNRA Actual — ban DDANRA

DDQNRA Smoothed DQN STD DDQNRA STD AN )
e . / Vs’

Cumulative Reward

{

Figure 3: Performance comparison: DDQNRA vs standard DDQN [43] in two environments. Above:
OpenAl Super Mario Bros [15], demonstrating adaptability to complex, game-like scenarios. Below:
OpenAl highway [21]], showing learning speed in spatial navigation tasks. Displaying mean episodic
returns over 10 averaged seeds.

4.3 Performance on Atari 100k Benchmark

In this results section, we provide a comprehensive analysis of the performance of our DRL model on
the Atari 100k benchmark [S]]. We present comparisons with state-of-the-art models, highlighting the
improvements achieved by our approach. Table[I] presents a comparison of our ring attractor-based
DRL model integrated with Efficient Zero [48]], which evaluates performance in Atari games with a
limited training size of 100,000 environment steps. The table includes results from top-performing
algorithms SPR [30] and CURL [32] for context. Our model demonstrates significant improvements
over baseline methods, achieving a 53% average improvement, with over 100% gains in games with
inherent spatial components, like Asterix and Boxing. Results demonstrate ring attractors provide
consistent performance improvements across diverse RL tasks, with benefits extending beyond purely
spatial tasks. We re-run baseline EffZero under identical cloud resources, to ensure fair comparison.

The mapping between game action spaces and ring configurations reflects the fundamental structure
of each environment’s action space. Games with primarily directional movement actions, such as
Asterix and Ms Pacman, utilise a Single ring configuration where eight directional movements map
naturally to positions around the ring circumference. In contrast, games combining movement with
independent action dimensions, such as Seaquest and BattleZone, employ a Double ring configuration,
one ring encoding movement actions and another representing secondary mechanics such as combat.
This architecture maintains spatial relationships while preserving the independence of different action
types. Further implementation details for multiple ring dynamics can be found in Appendix[A.7]

Ablation studies were conducted to isolate the impact of key components in our ring attractor models,
detailed in Appendix [A.4.T] and [A.4.2] for both implementations respectively. For the exogenous
model, we compared performance with correct and randomized action distributions in the ring.
In the DL implementation, we removed the circular weight distribution to assess its importance.
Additionally, Appendix [A.5|reveals preserved attractor dynamics behaving as a low-pass filter in the
CTRNN and DL both at pre and post-training stages.



Table 1: Performance comparison on Atari 100k Benchmark [3]]. Benchmark performed across all
environments where actions can be laid out in one or more 2D action space planes (ring attractors).
This is represented by the ring configuration column. Game score and overall mean and median
human-normalized scores are recorded at the end of training and averaged over 10 random seeds, 3
samples per seed.

Game Agent Reported Implemented
Environment  Ring Human CURL SPR EffZero EffZero EffZeroRA
Alien Double 7127.7 558.2 801.5 808.5 738.1 1098.8
Asterix Single 8503.3 734.5 977.8  25557.8  14839.3 31037.3
Bank Heist Double 753.1 131.6 380.9 351.0 362.8 460.5
BattleZone Double 37187.5 14870.0 16651.0 13871.2 11908.7 15672.0
Boxing Double 12.1 1.2 35.8 52.7 30.5 62.4
Chopper C. Double 7387.8 1058.5 974.8 1117.3 1162.4 1963.0
Crazy Climber  Single 35829.4  12146.5 42923.6 83940.2 83883.0 100649.7
Freeway Double 29.6 26.7 244 21.8 22.7 31.3
Frostbite Double 4334.7 1181.3 1821.5 296.3 287.5 354.8
Gopher Double 2412.5 669.3 715.2 3260.3 2975.3 3804.0
Hero Double 30826.4 6279.3 7019.2 9315.9 9966.4 11976.1
Jamesbond Double 302.8 471.0 365.4 517.0 350.1 416.4
Kangaroo Double 3035.0 872.5 3276.4 724.1 689.2 1368.8
Krull Double 2665.5 4229.6 3688.9 5663.3 6128.3 9282.1
Kung Fu M. Double 227363  14307.8 13192.7 30944.8 27445.6 49697.7
Ms Pacman Single 6951.6 1465.5 1313.2 1281.2 1166.2 2028.0
Private Eye Double 69571.3 2184 124.0 96.7 94.3 155.8
Road Runner Double 7845.0 5661.0 669.1 17751.3  19203.1 29389.3
Seaquest Double 42054.7 384.5 583.1 1100.2 1154.7 1532.8
Human-normalised Score

Mean 1.000 0.428 0.638 1.101 0.959 1.454
Median 1.000 0.242 0.434 0.420 0.403 0.531

5 Conclusion and Future Work

Conclusion. This paper presents a novel approach to RL, integrating ring attractors into action
selection. Our work demonstrates that these neuroscience-inspired ring attractors significantly
enhance learning capabilities for RL agents, leading to more stable and efficient action selection,
particularly in spatially structured tasks.

The integration of ring attractors as a DL module proves to be particularly effective, allowing for end-
to-end training and easy incorporation into existing RL architectures. Our experiments demonstrate
significant improvements in action selection and learning speed, achieving state-of-the-art results
on the Atari 100K benchmark. Notably, we observe an average 53% performance increase across
all tested games compared to prior baselines. The most relevant improvements were observed in
games with strong spatial components, such as Asterix (110 % improvement) and Boxing (105%
improvement). Additionally, we observed improvements in other environments tested outside the
Atari benchmark, further supporting the effectiveness of our approach across RL tasks and agents.

Future work. Future research should investigate scalability in high-dimensional action spaces and
explore its efficacy in domains where spatial relationships are less straightforward. We believe that
the success of this approach opens up several future research paths. This work can be extended to
multi-agent scenarios and continuous control tasks as these have been the current limits of this piece of
research. The ring attractor approach may exhibit reduced applicability in discrete action spaces with
cardinality | 4| < 3 where the circular topology overhead exceeds potential spatial encoding benefits,
and in action spaces where the action correlation matrix approaches the identity matrix, indicating
absence of spatial dependencies or sequential relationships between discrete actions. Additionally, the
extension to 3D spatial navigation tasks presents an organic expansion of this work, these scenarios
will naturally introduce realistic sensor noise into the system.

In the field of uncertainty-aware decision making, leveraging the spatial structure provided by attractor
networks presents a promising avenue to map uncertainty explicitly to the action space. Deploying
the techniques presented here into specific domains could yield performance boosts, especially in
safe RL, leveraging their stability properties to enforce constraints and ensure predictable behavior.
This approach not only improves performance but also offers potential insight into spatial encoding
of actions and decision-making processes, bridging the gap between neuroscience-inspired models
and practical RL agents.
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A Appendix

A.1 Background: Attractor Networks Theoretical Foundations

Ring attractor networks are a type of biological neural structure that has been proposed to underlie
the representation of various cognitive functions, including spatial navigation, working memory, and
decision-making [18]].

Biological intuition. In the early 1990s, the research carried out by [50] proposed that ring neural
structures could underlie the representation of heading direction in rodents. [S0] argued that the neural
activity in an attractor network might encode the direction of the animal’s head, with the network
transitioning from one attractor state to another state as the animal turns.

Empirical evidence. There is growing evidence from neuroscience supporting the role of ring
attractors in neural processing. For example, electrophysiological recordings from head direction
cells (HDCs) of rodents have revealed a circular organization of these neurons, with neighbouring
HDCs encoding slightly different heading directions [38]]. Furthermore, studies have shown that
HDC activity can be influenced by sensory inputs, such as visual signals and vestibular signals, and
that these inputs can cause the network to update its representation of heading direction [37]]. [47]
showed model internal noise biases toward accuracy over speed, while environmental uncertainty
exhibits a U-shaped effect, where moderate uncertainty favors speed and extreme uncertainty favors
accuracy. [46]] demonstrated that biological navigation networks rely on attractor dynamics while
maintaining adaptability through continuous synaptic plasticity and sensory feedback.

Sensor fusion in ring attractors. Ring attractor networks provide a theoretical foundation for under-
standing cognitive functions such as spatial navigation, working memory, and decision-making. In
the context of action selection in RL, sensor fusion plays a pivotal role in augmenting the information-
processing capabilities of these networks. By combining data from various sensory modalities, ring
attractors create a more nuanced and robust representation of the environment, essential for adaptive
behaviors [24]. Research has elucidated the relationship between ring attractors and sensory inputs,
with the circular organisation of HDCs in rodents complemented by the convergence of visual and
vestibular inputs, highlighting the integrative nature of sensory information within the ring attractor
framework [51]].

Modulation by sensory inputs. Beyond the spatial domain, sensory input dynamically influences
the activity of ring attractor networks. Studies have shown that visual cues and vestibular signals not
only update the representation of heading direction but also contribute to the stability of attractor
states, allowing robust spatial memory and navigation [[12].

Sensor fusion for action selection. The concept of sensor fusion within the context of ring attractors
extends beyond traditional sensory modalities, encompassing diverse sources, such as proprioceptive
and contextual cues [23]]. Building on the foundation of ring attractor networks discussed earlier,
the integration of sensor fusion in the context of action selection involves fusing the action values
associated with each potential action within the ring attractor framework. In particular, sensory
information, previously shown to modulate the activity of ring attractor networks, extends its influence
to the representation of action values. The inclusion of sensory information reflects a higher cognitive
process, where the adaptable nature of ring attractor networks supports optimal decision-making and
action selection in complex environments.

A.2 Function Approximation for Q-Values
A.2.1 Motivation and Background

In RL, an agent optimizes behaviour by interacting with an environment modeled as a Markov
Decision Process (MDP), M = (S, A, P, R, ), where S is the state space, A is the action space,
P:S8xAxS — [0,1] is the state transition probability function, R : S x A x & — R is the
reward function, and y € [0, 1) denotes the discount factor. The agent seeks to learn a policy 7 (a | s),
which defines the probability of selecting action a in state s, that maximizes the expected discounted

return [34]:
J(m) =E; [Z vtn] ; (13)
t=0

where J() is the objective function representing the expected total return (performance measure)
of policy 7, T = (so, ag, o, $1, 01,71, - - -) represents a trajectory of states, actions, and rewards, r;
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is the reward received at time step ¢, v is the discount factor that balances immediate versus future
rewards, and the expectation is taken over trajectories sampled by following policy .

Action-value functions are foundational to various value-based RL algorithms. The action-value
function is defined as:

Q"(s,a) =E;

> q're | so=s, ag =a, w} , (14)

t=0

which quantifies the expected cumulative discounted reward when executing action « in state s and
subsequently following policy 7 for all future time steps.

This function satisfies a recursive relationship known as the Bellman equation [6]:

Qﬂ—(& a) = ]Es’,TNP,R

r—I—fwa(a’ | s’)Q”(s',a')] , (15)

where Ey .. p g denotes expectation with respect to the next state s’ and reward r following the
environment dynamics defined by P and R, and r + v, w(a’ | s)Q7(s’,a’) is the expected
immediate reward plus the discounted value of future actions. This forms the mathematical basis for
value iteration, policy iteration, Q-learning, and other dynamic programming and temporal-difference
methods used to compute or approximate Q™.

In environments with large or continuous state-action spaces, storing tabular representations of Q(s, a)
becomes infeasible due to memory constraints and the inability to visit all state-action pairs sufficiently
often. Even in moderately sized discrete domains, function approximation is often employed to
leverage generalization across similar states or actions, thereby speeding up learning and reducing
data requirements. By using function approximators, RL algorithms can handle high-dimensional
inputs and share learned structure across different parts of the state-action space.

A.2.2 General Formulation

Q-functions are approximated using parameterized functions Q(s, a; ), where 6 € R? are learnable

weights:
Q(s,a;0) =~ Q" (s,a), (16)

where the target Q™ could be the Q-function of the current policy (policy evaluation) or the optimal
Q-function Q* (control). The goal is to learn € such that Q(s, a;6) closely estimates the target
Q-values across the relevant state-action space.

Parameters 6 are typically updated through stochastic gradient descent to minimize a loss function.
For instance, using the mean squared Bellman error:

L(0) =Esa,rs [(7‘ +ymaxQ(s',a';0') = Q(s, a; 9))2} , (17)

where 6’ represents parameters of a target network that is periodically updated to match 6 (in deep Q-
learning algorithms such as DQN [26]], or 8’ = 6 in simpler settings like traditional Q-learning). The
term r + v max, Q(s,a’; 0") is often called the “target” value, while Q(s, a; 0) is the “prediction”.
The parameters are updated according to:

9t+1 = Ht - aV(;ﬁ(Qt), (18)

where « is the learning rate, and V¢ £(0;) is the gradient of the loss function with respect to 6. In
practice, these updates are performed using stochastic gradient descent or variants on mini-batches of
experience to improve computational efficiency and stability.

A.2.3 Linear Function Approximation

A straightforward approach is linear function approximation, where state-action pairs are mapped
into a feature space via a feature function ¢ : S x A — R?, and Q-values are computed as:

Q(s,a;0) = 0" ¢(s,a). (19)

This formulation is computationally efficient and, under specific conditions, enjoys theoretical
convergence guarantees in on-policy settings [35)]. However, linear approximation’s representational
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capacity is fundamentally constrained by the chosen feature representation ¢(s,a). For discrete
action spaces, an alternative formulation represents a separate linear function for each action:

Q(s,a;0) =0, ¢(s), (20)

where ¢(s) € R? is a state feature vector and §, € R? is a parameter vector specific to action a.

The transition from linear to neural approximation typically retains this foundational structure while
enhancing the feature extraction process. Instead of relying on handcrafted features, neural networks
learn feature representations automatically through their hidden layers.

A.2.4 Neural Function Approximators

To capture richer, nonlinear dependencies, neural networks can be used to parameterize Q-functions.
In the field of DRL, for any state-action pair (s, a), the Q-value Q(s, a) can be expressed as a function
of the input state through a function approximation algorithm ®g(s). This notation evolves from the
linear case but generalizes to allow for arbitrary nonlinear transformations of the input. Formally:

Q(s,a) = Pp(s) = G—Fx(s)7 21

where z(s) corresponds to the (learned) feature representation of the state s (e.g., the outputs of the
penultimate layer), and 6 represents the weights of the final layer.

With this design, neural networks learn both the feature extraction (z(s)) and the final mapping (6)
end-to-end through backpropagation, enabling highly expressive function approximators that can
generalize across large or complex state-action domains.

A.3 Policy Gradient Methods with Ring Attractors

While previous sections focused on value-based methods, ring attractors can also enhance policy
gradient methods, such as Proximal Policy Optimization (PPO) [29]. The integration follows similar
principles, but adapts to the unique characteristics of policy-based approaches [36].

A.3.1 Proximal Policy Optimization with Ring Attractors

In standard PPO, the policy is directly parameterized by a neural network that outputs action
probabilities. When integrating ring attractors, we modify this structure to incorporate the spatial
relationships between actions through the ring topology.

Ring Attractor Policy Network. For PPO integration, we adapt the DL ring attractor structure from
Section[3.2] While the value-based methods use the network to process Q-values, in PPO we process
policy logits. For a policy network with parameters 6, the initial policy logits are computed as:

Z(s) = Dy(s) (22)

This parallels Section where Q(s,a) = ®y(s) represents the output of the network for value-
based methods. The difference is that Z(s) represents policy logits rather than action-values.

These logits are then processed through the ring attractor using the same weighted connection
structure. The input signal V (s) uses Z(s) as input and follows the same form as in Eq. (I2):

_d(m,n)

V($)mn = %Z(S)Twl_’H = %Z(S)Te b) (23)

m,n

Similarly, the hidden state U (v) maintains the same recurrent dynamics as in Eq. (I2). The key
difference occurs in the final output layer, where instead of scaling the output to represent Q-values,
we apply a softmax function to directly obtain action probabilities:

m(als) = softmax(tanh((V(s) + U(v)))) (24)
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A.3.2 Policy Gradient Experimental Results

As shown in Figure[d] PPO [29] with ring attractors (PPO-RA) demonstrates significant performance
improvements over standard PPO in the OpenAl Gym Super Mario Bros environment [15]].

o0 Learning speed comparison: OpenAl Gym — Super Mario Bros

— PPO PPO-RA PPO-RA Performance vs PPO
PPO STD PPO-RASTD PO

Max: +161.4%
1750 lax: +16
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1250
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Figure 4: Performance comparison: PPO-RA vs standard PPO in OpenAI Gym Super Mario Bros
environment [15] with discrete action space, demonstrating adaptability to complex, game-like
scenarios. The plot shows PPO-RA (red) consistently outperforming standard PPO (blue), with
shaded regions representing standard deviation across 10 averaged seeds.

Our experimental results reveal an average performance increase of +71.4% over standard PPO, with
a final performance improvement of +67.5% and a maximum performance gain of +161.4% during
training. These results demonstrate that the spatial awareness provided by ring attractors is beneficial
across different RL paradigms, not just value-based methods. The performance gains in PPO-RA can
be attributed to more efficient policy updates due to the preservation of spatial relationships between
actions, smoother policy gradients resulting from the structured representation of the action space,
and enhanced exploration through the natural diffusion of policy preferences across similar actions in
the ring.

PPO-RA converges faster and achieves higher rewards than standard PPO. This suggests that ring
attractors provide a general enhancement mechanism applicable to multiple RL approaches, show-
casing that their utility may extend beyond the value-based methods explored in previous sections.

A.4 Validating Ring Attractor Contributions Through Ablation Studies

A.4.1 Exogenous Ring Attractor Model Ablation Study

To isolate the impact of the ring attractor structure, we conducted an ablation study comparing our
full BDQNRA model against versions with the action space overlay in an incorrect distribution in
the ring, Fig. [5] This incorrect distribution involves randomly rearranging the placement of actions
within the ring, disrupting the natural topology of the action space.

For instance, this could mean placing opposing or unrelated actions side by side in the ring, such as
pairing “move left” with “move down” instead of its natural opposite “move right”. More generally,
this incorrect distribution breaks the inherent relationships between actions that are typically preserved
in the ring structure.
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Ablation Study: OpenAl Gym - Super Mario Bros

BDQN —— BDQNRA-RM —— BDQNRA-UA
BDQN STD BDQNRA-RM STD BDQNRA-UA STD
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1e6

Figure 5: Ablation study comparing BDQN variants in OpenAl Gym Super Mario Bros [15]. The plot
shows cumulative reward over 1 million frames for three models: Standard BDQN [1]]; BDQNRA-UA
with RA and Uncertainty Awareness (UA) implementing both the ring attractor behavior policy from
Section [3.1.2] and the uncertainty quantification model from Section [3.1.3}] and BDQNRA-RM,
applying the same concepts from BDQNRA-UA, but randomly distributing the action space across
the ring in each experiment. Displaying mean episodic returns over 10 averaged seeds.

A.4.2 Deep Learning Ring Attractor Model Ablation Study

This ablation study focused on isolating the impact of the ring-shaped connectivity in our RNN-based
ring attractor model. The key aspect of our experiment was to remove the circular weight distribution
in both the forward pass (input-to-hidden connections) and the recurrent connections (hidden-to-
hidden), while maintaining all other aspects of the RNN architecture. This approach allows us to
directly assess the contribution of the spatial ring structure to the model’s performance.

Ablation study: RNN ring attractor implementation - Atari 100K PacMan Ablation study: RNN ring attractor implementation - Atari 100K Chopper Command

—— EffZeroRA 2500 | —— EffZeroRA
EffZeroRA STD EffZeroRA STD
—— EffZeroRNN —— EffZeroRNN
EffZeroRNN STD EffZeroRNN STD
EffZero EffZero
EffZero STD 2000 EffZero STD

Cumulative Reward
Cumulative Reward

A

o ,> e 3 B o
Steps Steps

Figure 6: Ablation study results comparing the performance of the full RNN-based ring attractor
model against a version with the circular weight distribution removed. The graph illustrates a
significant performance drop for the Ms Pacman and Chopper Command environments in the Atari
100K benchmark [5]. This emphasizes the role of the circular topology in encoding spatial information
and enhancing learning. Displaying mean episodic returns over 10 averaged seeds.

In our original model, the weights between neurons were determined by a distance-dependent function
that created a circular topology. This function assigned stronger connections between neurons that
were close together in the ring and weaker connections between distant neurons. For the ablation,
we replaced this distance-dependent weight function with standard weight matrices for both the
input-to-hidden and hidden-to-hidden connections. This modification effectively transforms our ring
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attractor RNN into a standard RNN, where the weights are not constrained by the circular topology.
We retained other key elements of the model, such as the learnable time constant and the non-linear
transformation, to isolate the effect of the ring structure specifically.

A.4.3 Deep Learning Ring Attractor Model Evolution

In this appendix section, we analyze model dynamics with both forward pass (V(s)) and hidden-
to-hidden (U (v)) weights made trainable, rather than the standard approach of fixed forward pass
connections, as presented in Section[3.2] As shown in Fig.[7] the forward-pass connections preserve
the ring structure over training time, with strong distance-dependent decay patterns maintained
throughout the learning process. This may indicate that the network naturally favors maintaining
spatial topology for transmitting sensory information on a per-frame basis.
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(Input to Hidden)

Step M 0 Weight Matrix 1o Ring Architecture Weight vs Distance Profile
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Figure 7: Evolution of forward pass weights showing preserved distance-dependent decay over
training time, maintaining ring structure for spatial information transmission.

The hidden-to-hidden connections, depicted in Fig. [8] exhibit markedly different behavior. These
connections evolve beyond their initial ring structure, developing specialized patterns that enable the
encoding of environment-specific relationships between neurons in the hidden space. This flexibility
in hidden-layer connectivity supports the learning of complex action relationships while building
upon the structured spatial representation from the forward pass.
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These findings validate our standard implementation approach described in Section [3.2] where
forward pass connections are fixed and only hidden-to-hidden weights remain trainable. The natural
preservation of ring structure in trainable forward weights suggests that this topology is inherently

beneficial for processing spatial information, while adaptable hidden weights enable the task-specific
learning demonstrated in our experimental results, Section
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Figure 8: Development of hidden-to-hidden connections over time, demonstrating emergence of
learned relationships between neurons beyond initial ring topology.

A.5 Attractor Dynamics Validation

To validate the preservation of CANN dynamics in our DL implementation, we conducted controlled
experiments examining the temporal evolution of neural states under dynamic input conditions. Ring

attractors, as demonstrated in biological systems [18] [38]], maintain stable activity patterns through
recurrent connectivity that enables persistent neural states [16].

We present four experimental tables tracking hidden states and outputs across all eight neurons
(DLN1-DLNB8) in the ring attractor. Tables 2] and [3] examine pre-training dynamics under a two-
stimulus protocol with asymmetric (K2 = 0.1 - K1) and matched (K; = K») input amplitudes,
respectively, demonstrating the network’s ability to maintain stable attractor states and transition
smoothly between them. Tables @ and [5|present post-training dynamics after 315,000 and 750,000

training steps in the OpenAl highway , revealing how task-specific learning modifies the ring
attractor structure while preserving attractor properties.
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A.5.1 Experimental Protocol

We present four experimental tables that track hidden states and outputs across all eight neurons
(DLN1-DLNBS) in the ring attractor. The experimental setup consisted of an 8-neuron ring config-
uration with parameters tuned for single stable bump formation: 7 = 120.0 (temporal integration
constant) and 5 = 22.0 (output scaling). The protocol involved an initial Gaussian input centered
on neuron 2 for t € [1,6], followed by an instantaneous transition to a Gaussian input centered
on neuron 5 for ¢ > 7. This experiment tests the network’s ability to maintain stable attractor
states and transition smoothly between them, as predicted by theoretical models of ring attractor
dynamics [17]]. Tables[2]and[3]assess pre-training dynamics under this two-stimulus protocol with
asymmetric (K, = 0.1 - K1) and matched (K; = K5) input amplitudes, respectively. Tables [4]and
[3] present post-training dynamics after 315,000 and 750,000 training steps in the OpenAl Highway
environment [21]], revealing how task-specific learning modifies the ring attractor structure while
preserving fundamental attractor properties.

A.5.2 Preservation of Attractor Dynamics

Table 2] presents the temporal evolution of the DL-based ring attractor under the two-stimulus protocol
with asymmetric input amplitudes where Ko = 0.1 - K, following the input signal formulation in
Eq. 5] Despite the order-of-magnitude difference in input strength, the network transitions between
attractor states. During the initial phase (steps 1-6), neuron 2 maintains the highest output values
(Out = 55.21), forming a stable activity bump. Following the input shift at step 7, the argmax
tracks positions through intermediate neurons (2 — 2 — 3 — 4 — 5 over steps 7-11), exhibiting the
characteristic temporal resistence of ring attractors [42]. By step 12, neuron 5 stabilizes at Output
~ 5.19 despite the weaker input signal. Table [3] presents the same protocol with matched input
amplitudes (K7 = K3). The dynamics exhibit three characteristic phases consistent with CANN
behavior [4]. During the initial attractor formation phase (¢ € [1, 6]), the network maintains a stable
activity bump centered at neuron 2, with the argmax operation consistently identifying the correct
peak location. The hidden state magnitudes remain comparable between the two stable phases (DLN2
Hidden ~ 0.77 at step 1 vs. DLNS5 Hidden ~ 0.64 at step 12), confirming that the asymmetries
observed in Table [2arise from input differences rather than structural biases. Following the input shift
att = 7, the network demonstrates smooth state transition dynamics (¢ € [7, 11]), where the activity
bump migrates from neuron 2 to neuron 5. The network subsequently converges to a new stable
attractor state (¢t € [12, 14]), settling into a configuration centered at neuron 5. This temporal lag
reflects the 7 = 120.0 integration constant and should demonstrate the network’s ability to maintain
stable representations while integrating new information.

Tables[]and 5| present post-training dynamics after 315,000 and 750,000 training steps in the Highway
environment, respectively. In Table[d] following the input shift at step 7, the peak transitions from
neuron 2 (step 2, Output ~ 36.94) through neuron 4 (step 8, Output ~ 33.67) to neuron 5 (steps
9-14, Output ~ 33.73). The hidden states include negative values (e.g., DLN5 Hidden = —0.06 at
convergence), indicating that task-specific learning has modified internal dynamics while maintaining
the output behavior necessary for action selection. The attractor state of a neuron is determined by
the aggregate influence of all incoming connections through the hidden-to-hidden weights. As the
hidden state undergoes transformation through v, = f(Wpy, - by + b)), negative or non-maximal
hidden values can produce the appropriate output behavior after passing through the tanh activation
and scaling parameter (3. Table [5]shows stabilization of these learned dynamics at 750k steps, with
similar structural features confirming that the adaptations represent stable task-specific encoding
rather than transient learning dynamics. Neuron 6, corresponding to the “move backwards” action
in Highway, consistently shows lower activation values across both checkpoints (Output ~ 22.46 at
step 1 in Tabled)), reflecting the penalty associated with this action.

A.5.3 Analysis

The preservation of attractor dynamics post-training aligns with findings in biological systems, where
synaptic plasticity modifies connection strengths while maintaining functional circuit properties [37,
24]. We may infer from these experimental results that our DL implementation preserves essential
CANN dynamics while enabling task-specific adaptation through learning. The maintained bump
migration and state persistence properties, combined with the evidence of spatial representations
provided in the ablation studies in Section[A.4] indicate that performance improvements stem from
the ring attractor’s inherent spatial encoding capabilities and attractor states rather than merely
adding recurrent connections. The preservation of attractor-like dynamics post-training, despite
substantial weight evolution away from the initial Gaussian profile, reveals several computational
mechanisms at work. The architecture maintains spatial awareness through the explicit ring topology:
the circular arrangement of neurons preserves spatial relationships between actions throughout
training, as evidenced by the natural preservation of distance-dependent weights in the input-to-
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hidden connections and the smooth bump migration patterns observed across all experimental
conditions in Section[A4] The ablation studies demonstrate that removing the ring structure causes
performance to drop below baseline levels, confirming that spatial encoding provides functionally
significant advantages over standard RNNs and feed-forward networks. Simultaneously, the learnable
T parameter introduces temporal filtering dynamics that serve distinct functions across training phases.
During early training, the results suggest that the architecture also functions as a low-pass filter,
where 7 creates momentum that reduces jitter in action exploration and enables the agent to reach
distant state-space regions more efficiently.

A.6 Deep Learning Ring Attractor Recurrent Neural Network Modeling

As seen before, excitatory neurons are organized in a circular pattern, with connection weights
between neurons determined by a distance-weighted function mimicking the synaptic connection
of biological neurons. Fig. Q]illustrates the structured connectivity of the RNN, which mimics the
circular topology of biological ring attractors.
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Figure 9: RNN modeling ring attractor synaptic connections: The top panel shows the forward pass
(input-to-hidden) as the agent output layer. The bottom panel depicts the hidden-to-hidden recurrent
connection between inference time steps. Weighted connections are illustrated for the sample neuron
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A.7 Deep Learning Ring Attractor Model Implementation Details

As presented in Section both the input-to-hidden connections V (s) and hidden-to-hidden connec-
tions U (v) are constructed using the distance-dependent weight functions defined in Eq. (12).
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These equations establish the circular topology of the ring attractor and determine how information
flows through the network. However, a special case arises when dealing with neutral actions in certain
Atari games, requiring a modification to the standard distance function.

A.7.1 Neutral Inhibitory Action Implementation

For games in the Atari benchmark with neutral actions (like *no-op’), the ring attractor maintains
its circular structure with a neutral action positioned centrally. This central position creates equal
connections of strength 1 to all other actions in the ring, as if it were a direct neighbor to each action
simultaneously. The distance between the neutral action n and any other action m is fixed at 1:

1 if m or n is the neutral action
dim,n) =<7 . (25)
d(m,n), otherwise,
where d(m, n) remains as defined in Eq. (I2)) for all other action pairs. The weight matrices wr_, i
and wy_, y maintain the same exponential decay based on this distance function.

For example, in games like Seaquest or Asterix, this central positioning means the “no-op” action
has consistent, strong connections to all directional actions. This arrangement preserves the spatial
relationships between directional actions while ensuring the neutral action remains equally accessible
from any game state. The constant distance of 1 to all other actions makes transitioning to or from
the neutral action as natural as moving between adjacent directional actions in the ring.

A.7.2 Deep Learning Double Ring Attractor Equations

For a double ring configuration in our DL implementation as presented in the experiments, Section
.2 the weighted connections are defined as follows:

Let Vdouble ¢ R2NX2ZM pe the complete input-to-hidden weight matrix for both rings, where N is
the number of output neurons per ring and M is the number of input features per ring. The matrix is
structured as:

double __ Vll KV12
v B [HV21 sz] ’ (26)

where V11 = V22 = V12 = V21, k = 0.1 is the cross-coupling learnable parameter initialised to
0.1. This allows the network to learn the optimal strength of interaction between the two rings during
training.

Developing from Eq. (I2)), each ring maintains identical connectivity patterns, preserving the spatial
relationships of their respective action dimensions, each submatrix V;; represents:

1
Vi’imnzf
Vi =+

where d(m, n) is defined as per the forward pass weighted connections in Eq. (12).

Dy (s)Temdlmm/A, 27)

Similarly, let Udeuble ¢ R2NX2N pe the complete hidden-to-hidden weight matrix:

double __ Uy kU12
U - |:’43U21 Uzz} (28)
For primary connections (U1; and Ugy):
[Uiilmn = h(v)"emdmm/, (29)

where d(m,n) is defined as per the hidden state weighted connections in Eq. (12).
The complete forward pass for both rings is given by:
1 T T K T T
“®p(s¢)" Vir +h—1(v)" Upr E£@p(s¢)” Vig + khyi—1(v)" Up
) = t h KT T b
Q(s,a) = ftan <|:.,.(I)0(5t)TV21 + khi—1(v)T Uy %¢0(5t)TV22 + hi—1(v)T Uy
(30)

where 7 is the learnable time constant; [ is the learnable scaling factor; ®y(s;) is the feature
representation of state s;; h;—1(v) is the previous hidden state; and x = 0.1 is the coupling strength
between rings.
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The cross-coupling matrices («V12, kV21, kU12, and kU21) maintain a circular topology similar
to the individual rings. A neuron at a particular position in the first ring connects most strongly to the
neuron at the corresponding position in the second ring, with connection strength decreasing based
on circular distance. This structured cross-coupling preserves spatial alignment between the two
action dimensions while allowing semi-independent operation through the learnable coupling factor
x. The final output provides action-values for both action dimensions simultaneously, preserving
spatial relationships within each ring while allowing weak coupling between them.

A.7.3 Extension to N Ring Configurations

The double ring implementation extends to R rings through a block matrix structure, where each
ring encodes a distinct action dimension. For R rings, the architecture uses block matrices Vi, €
RENXEM and Upug € REN*EN with diagonal blocks preserving individual ring dynamics and
off-diagonal blocks handling cross-ring interactions via coupling parameter x, as seen in Section
While computational complexity scales as O(R?), selective coupling between only related
dimensions creates a sparse structure with effective O(R) complexity. This makes the approach
viable for complex action spaces where actions decompose into multiple semi-independent planes,
for example, in games that combine movement, combat, and resource-management dimensions.

A.8 Models and Environments Implementation

Table 6: Implementation details for ring attractor architectures across environments. The table shows
the environment (Env); ring configuration (Ring); number of actions or continuous 1D action space
(Actions); inhibitory neuron placed equidistant to other neurons for “no action” term (Inhib); whether
uncertainty estimation is used (Uncert); the implemented model (Model); and type of Neural Network
used (Type).

Game Configuration Implementation
Environment Ring Actions Inhib. Uncert. Model Type
Highway Single  Continuous No Yes BDQNRA-UA CTRNN
Mario Bros Single 8 No Yes BDQNRA-UA CTRNN
Highway Single 8 No No DDQNRA DL-RNN
Mario Bros Single 8 No No DDQNRA DL-RNN
Alien Double 18 Yes No EffZeroRA DL-RNN
Asterix Single 9 Yes No EffZeroRA DL-RNN
Bank Heist Double 18 Yes No EffZeroRA DL-RNN
BattleZone Double 18 Yes No EffZeroRA DL-RNN
Boxing Double 18 Yes No EffZeroRA DL-RNN
Chopper C. Double 18 Yes No EffZeroRA DL-RNN
Crazy Climber Single 9 Yes No EffZeroRA DL-RNN
Freeway Double 18 Yes No EffZeroRA DL-RNN
Frostbite Double 18 Yes No EffZeroRA DL-RNN
Gopher Double 18 Yes No EffZeroRA DL-RNN
Hero Double 18 Yes No EffZeroRA DL-RNN
Jamesbond Double 18 Yes No EffZeroRA DL-RNN
Kangaroo Double 18 Yes No EffZeroRA DL-RNN
Krull Double 18 Yes No EffZeroRA DL-RNN
Kung Fu M. Double 18 Yes No EffZeroRA DL-RNN
Ms Pacman Single 9 Yes No EffZeroRA DL-RNN
Private Eye Double 18 Yes No EffZeroRA DL-RNN
Road Runner Double 18 Yes No EffZeroRA DL-RNN
Seaquest Double 18 Yes No EffZeroRA DL-RNN

We provide implementation details for both our models and the tested environments. For model
implementations, EffZeroRA was applied across the Atari benchmark suite, while BDQNRA-UA
and DDQNRA were specifically implemented for Highway and Mario Bros. Table [6] details the
configuration of action spaces and ring architectures for each environment. The environments
required different ring configurations based on their control schemes, ranging from single-ring
implementations for basic movement to double-ring setups for more complex action spaces that
combine movement and specialized actions. Each ring topology was designed to preserve the natural
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relationships between actions, with central inhibitory actions included where appropriate as “no
action”.

A.8.1 Computational Resources

For the Atari 100K benchmark [5]] experiments, we utilized a high-performance computing cluster
equipped with 10 NVIDIA A100 GPUs (each with 80 GB memory), 512 GB of RAM, and 128
Intel Xeon CPU cores running at 2.4 GHz. The cluster environment enabled parallel execution of
experiments across multiple seeds and games simultaneously, with training times ranging from 8 to
10 hours per game, depending on complexity.

For the other environments, Highway [21] and Super Mario Bros [15], we employed a local worksta-
tion with an Intel Xeon processor (28 cores, 2.1 GHz), 125 GB RAM, and dual NVIDIA RTX A5000
GPUs (total 48 GB combined memory). Training on the local machine typically required 6-12 hours
per environment, with the CTRNN implementation incurring additional computational overhead as
noted in Section4. 1} All experiments were conducted using PyTorch 1.12 with CUDA 11.6. The
total computational cost is estimated at approximately 8,000 GPU-hours across all experiments and
ablation studies.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Abstract and contributions in Section
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]
Justification: See Sections [ [5]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.

Guidelines:
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Sections [3} @] [A.4.1] [A.4.2] [A-8and link to code in Abstract.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See link to code and implementation in Abstract.

Guidelines:
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» The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Sections [} [A.8]and link to code in Abstract.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Sections [} [A.3.2] [A4.1] [A.42]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section [A.8.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The authors confirm that the research adheres to the NeurIPS Code of Ethics
and that anonymity has been preserved.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work presents a biologically inspired reinforcement learning method
evaluated solely in simulated environments, without application to real-world systems or
human subjects. As such, it does not pose any identifiable societal risks or impacts at this
stage.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no risks for this matter.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Sections 3 @] [A.3.2] [A.4.1] [A4.2)

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See Sections [3} @] [A.3.2] and link to code (anonymized assets) in Abstract.

Guidelines:
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* The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.
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well as details about compensation (if any)?
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may be required for any human subjects research. If you obtained IRB approval, you
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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