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Automated clinical coding (ACC) has emerged as a promising alternative to manual coding. This study
proposes a novel human-in-the-loop (HITL) framework, CliniCoCo. Using deep learning capacities,
CliniCoCo focuses on how such ACC systems and human coders can work effectively and efficiently
together in real-world settings. Specifically, it implements a series of collaborative strategies at
annotation, training and user interaction stages. Extensive experiments are conducted using real-
world EMR datasets from Chinese hospitals. With automatically optimised annotation workloads, the
model can achieve F1 scores around 0.80-0.84. For an EMR with 30% mistaken codes, CliniCoCo can
suggest halving the annotations from 3000 admissions with an ignorable 0.01 F1 decrease. In human
evaluations, compared to manual coding, CliniCoCo reduces coding time by 40% on average and
significantly improves the correction rates on EMR mistakes (e.g., three times better on missing
codes). Senior professional coders’ performances can be boosted to more than 0.93 F1 score

from 0.72.

Clinical coding, as the fundamental task of transforming medical
information written in electronic medical records (EMRs) by clinicians
into structured codes, is a significant component of clinical research and
billing management'. Traditional clinical coding task is a resource-
intensive process which requires a group of specialised clinical coders to
manually conduct systematic code assignments for multi-source, multi-
modal raw medical records based on standard coding classification
systems consisting of thousands of candidate codes”. For example, the
most predominant coding classification systems is the ICD-10 (Inter-
national Classification of Diseases, Tenth Revision) which contains
around 68,000 diagnosis codes’. As a result, the whole coding process is
expensive, time-consuming, and error-prone. According to corre-
sponding statistics* and our interview with clinical coders in Tsinghua
Changgung Hospital, a clinical coder in a Chinese hospital usually codes
about 300 cases a month, i.e., 32-34 min per case as a full-time coder.
Such labour-intensive coding tasks may often accumulate to a backlog of
uncoded cases for months to clear’. In addition, the sampling survey
conducted by the National Health Commission of the PRC (NHC
China) in 2020° reveals the average accuracy of diagnosis coding in
tertiary and secondary hospitals is only about 66.6%, which is clearly not
ideal for enabling further healthcare administration and improvements
as well as secondary use for research’.

Giving the inefficiency and ineffectiveness of manual clinical coding,
automated clinical coding (ACC) has been considered a promising
approach to facilitate the management of medical records and clinical
research using routinely collected health data. In the natural language
processing (NLP) community, automated clinical coding is often treated asa
text classification task, which can be simply formulated as X — y, where X is
a piece of medical text from EMRs, and y € [0, 1]" is the label vector of the
corresponding codes. ACC based on unstructured free text, e.g., discharge
summary, can be defined as a multi-label text classification (MLTC) task,
while ACC based on structured text, e.g,, disease name and surgery name,
can be defined as a multi-class text classification task. In recent years, a series
of machine learning and deep learning-based methods for ACC, especially
for automatic ICD coding, have been proposed**™"”. These works focus on
improving representation performance by designing different representa-
tion architectures to model the hierarchical knowledge'”"” and external
medical knowledge'®"” of ICD taxonomy. Despite substantial developments
and improvements in recent years, the performance of existing repre-
sentation methods remains unsatisfactory for realising automated coding in
real-world scenarios. For example, the micro-F1 score of MSMN", one of
the SOTA ACC approaches in 2023, on the MIMIC-III 50 benchmark” is
only 72.5%. As a result, the adoption of end-to-end Al-based coding systems
in real-world settings is still rare, if exists at all.

'School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, China. 2Key Laboratory of
Trustworthy Distributed Computing and Service (BUPT), Ministry of Education, Beijing, China. ®Institute of Health Informatics, University College London,
London, UK. “Department of Electronic Engineering, Tsinghua University, Beijing, China. °College of Al, Tsinghua University, Beijing, China. ®*School of Health and

Wellbeing, the University of Glasgow, Glasgow, UK.

e-mail: fuxiangling@bupt.edu.cn; honghan.wu@glasgow.ac.uk

npj Digital Medicine | (2024)7:368


http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01363-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01363-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01363-7&domain=pdf
http://orcid.org/0009-0009-5672-7448
http://orcid.org/0009-0009-5672-7448
http://orcid.org/0009-0009-5672-7448
http://orcid.org/0009-0009-5672-7448
http://orcid.org/0009-0009-5672-7448
http://orcid.org/0000-0002-0213-5668
http://orcid.org/0000-0002-0213-5668
http://orcid.org/0000-0002-0213-5668
http://orcid.org/0000-0002-0213-5668
http://orcid.org/0000-0002-0213-5668
mailto:fuxiangling@bupt.edu.cn
mailto:honghan.wu@glasgow.ac.uk
www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-024-01363-7

Article

Recently, the emergence of human-in-the-loop (HITL) learning
paradigm has drawn wide and increasing attention from the medical
informatics community™’~*, which is viewed to as an exciting approach to
unlocking the full potential of AI by combining human and machine
intelligence’*”. Technically, HITL learning framework focuses on complex
and risky decision-making tasks, aiming at a harmonious balance between
efficiency and quality by incorporating human expertise with machine
intelligence®, which aligns well with the principle of clinical decision sup-
port setting. Hence, HITL has been utilised for multi-modal clinical
decision-making tasks, e.g., MRI-based knee lesion diagnosis, dialogue-
based sentiment analysis, and ECG reading study’>”. HITL has also been
embedded in the designs of clinical interfaces, providing task-specific,
visualised, and customised interactions to optimise the explainability and
usability of Al-based systems (section 2 in Supplementary Information)™ .
For practical deployments of ACC systems, Dong and colleagues suggested
that it is essential to consider the HITL approach to involve coders’
feedback'. While there seems a consensus on HITL being a potential enabler,
what is largely understudied is the question of how human and AI could
work efficiently and effectively together on the challenge coding task.

In this paper, we propose a novel HITL framework, CliniCoCo, for
human-AI Collaborative Clinical Coding in real-world scenarios. The
proposed CliniCoCo involves clinical coders’ feedback in the key stages of
the ACC system, i.e., data preprocessing stage, model training stage, and
clinical decision-making stage, and fully considers the complex medical
record characteristics and clinical process in Chinese hospitals. To our best
knowledge, this is the first work that systematically designs a HITL para-
digm for the task of ACC. The main contributions of this paper are sum-
marised as follows:

* To minimise the workload and maximise the effectiveness of manual
annotations, we propose a HITL collaborative strategy for code
annotation to implement an active-learning strategy. It involves the
adoption of semi-automatic dynamic & iterative collaborative
annotation module which effectively constructs automatic large-scale
noisy-labelled dataset and adaptively constructs manual small-scale
clean-labelled dataset.

* We propose a 3-step multi-label-oriented contrastive learning strategy
to fully leverage labelled datasets with different noise levels so as to
deeply enhance the representation performance of ACC. Moreover,
with the feature extractor obtaining the capability of distinguishing the
similarity between medical samples, the kKNN-optimised inference
module is designed to further involve coders’ priori medical knowledge
from representative samples and optimise the prediction results in a
HITL way.

* We design multiple customised collaborative functions in the
clinical decision-making stage, including threshold adjustment,
heatmap visualisation, and similar reference retrieval to
consistently optimise the performance and usability of ACC in
clinical scenarios. A HITL iterative interface is developed for
CliniCoCo, which integrates and visualises the collaboration
designs in the whole process.

» Extensive experiments conducted on the real-world EMR
datasets we constructed from two tertiary Chinese hospitals
demonstrate the effectiveness of CliniCoCo under diverse
clinical settings. Extended quantitative analysis, pilot experi-
ments, and interviews based on the HITL interface are
conducted to test the utility and to observe the deployment of
CliniCoCo in complex clinical scenarios.

Preliminary background and overall framework

The clinical coding process in Chinese hospitals involves a two-step process:
in their routine care clinicians first fill free-text information into the EMR
system; then, at the coding stage clinical coders assign ICD codes for each
episode from the EMR data. For the coding task, the contributory infor-
mation from summary pages of inpatient EMRs is twofold. One comprises
an unstructured, long free text, describing chief complaint, medical history,

specialist condition, and auxiliary examination’. The other comprises a
structured short text, i.e,, a list of names, including primary disease names,
secondary disease names, and surgical procedures (section 1 in Supple-
mentary Information). While the structured short text seems directly giving
the coding information, however, it is often written informally (not fol-
lowing any controlled vocabularies), leading to the presence of a wide range
of name variants for the same diseases or procedures. It may also contain
inaccurate information, e.g., using a concept that is too broad (e.g., stroke
without specifying either ischaemic or haemorrhagic), wrong disease/pro-
cedure names, or missing key diagnostic information. Consequently,
structured short text alone cannot serve as the ground truth for coding. In
this study, clinical codes derived from such data is considered as noisy labels.
Figure 1 illustrates an anonymised and translated EMR example from an
Anhui provincial hospital.

This paper proposes a HITL framework, CliniCoCo, for realising and
optimising human-AI collaborative clinical coding for the aforementioned
clinical coding procedure and EMR characteristics. The overall framework
is depicted in Fig. 2. CliniCoCo implements a series of collaborative stra-
tegies to involve clinical coders’ inputs and feedback into all three stages of
the automated coding process. At the data preprocessing stage, a dynamic
and interactive process is implemented to seek inputs from human aiming
for collecting sufficient human-labelled data with minimised human
annotation efforts. At the training stage, a prior knowledge repository is
derived from human annotations as pairs of vector representation and
labels, which will facilitate improving the classification via a knowledge-
driven approach. At the deployment stage, explainable Al and threshold
adjustment mechanisms will assist clinical coders in coding with AT model’s
attentions and customisable suggestions.

The overall architecture design and collaborative strategies of the
CliniCoCo framework are shown in Fig. 3, which are described with details
and formalisation in “Methods”. In summary, (1) in the data preprocessing
stage, the dynamic and iterative collaborative annotation strategy is
designed, where large-scale noisy-labelled dataset and small-scale clean-
labelled dataset are automatically and adaptively constructed in a two-step
workflow, respectively; (2) in the model training stage, the three-step multi-
label contrastive learning training strategy is proposed to fully leverage
medical knowledge from EMR datasets with the different noise level, and the
kNN-based inference optimisation module is proposed to further involve
coders’ priori expertise in the model prediction; (3) in the clinical decision-
making stage, the interactive interface of CliniCoCo is developed, where a
series of customise HITL functions are integrated, including threshold
adjustment, heatmap visualisation, and similar reference retrieval.

Results

CliniCoCo was trained and evaluated on real-world semi-structured EMRs
from two Chinese tertiary hospitals. We first describe the curated datasets
and detailed construction method. Then, we conduct comparative experi-
ments and ablation studies to demonstrate the clinical utility of CliniCoCo
and the effectiveness of the specific collaborative strategies designed in
different modules. Furthermore, quantitative analysis and qualitative
interviews will be presented on data collected from (a) pilot experimentsin a
real-world setting and (b) interviews with clinical coders.

Datasets

Two sets of datasets were used in our comprehensive evaluations, shown as
output A and B on the right-hand side of Fig. 4. Briefly, Output A was used
for evaluating the overall performance of automated coding models and
Output B was for assessing different levels of noisy data and human
annotations in affecting model performances. As depicted Fig. 4, these
datasets were generated by an EMR simulator. The input to the simulator
was real-world EMRs from two Chinese hoipitals: a Hebei provincial hos-
pital (HPH) and an Anhui provincial hospital (APH). In the simulation
process, the raw EMRs were first fully annotated by human experts to form
the gold standard data. Such data then went through a two-step process to
introduce different levels of noise and annotations for mimic different
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Issues: Informally written, Vague compilation, Wrong compilation, Missing-cempilation

Gold Standard
163.903 — Hemorrhagic cerebral infarction.

G37.901 - Demyelinating disease of the central nervous system.

110.x00x002 - Hypertension.
E11.900 - Type 2 diabetes.
J98.414 — Pulmonary infection.

K76.-807 - Hepa%%e—eyst._

Q27.801 - Congenital spinal vascular malformation.

Structured Short Text
Primary Diagnosis:
Cerebral infarction
Secondary Diagnosis:

Disorder of Demyelination; Secondary Hypertension; NIDDM; Right lung infection

Unstructured Long Free Text
Chief Complaint:

Speech difficulties and limb weakness for over 20 days, worsening for the past 8 days.

Medical History:
Present illness:

The patient experienced speech difficulties and unsteady gait over 20 days prior to
admission, initially not taken seriously. A diagnosis of cerebral infarction was...

Past illness:
History of hypertension,

irregular blood pressure monitoring, type 2 diabetes treated

with metformin (irregular blood glucose monitoring)...

Personal status:

Born in the hometown, long-term residence in the current location...

Family status:

Healthy children. No family history of infectious diseases...

Specialist Condition:

Altered consciousness, tracheal

intubation,

inability to assess higher cortical

function, bilateral pupils equally dilated at approximately 2.5mm with light reflex...

Auxiliary Examination:
CT scan showed low-density lesions
infarctions in the brain...

in the brainstem and multiple small ischemic

Fig. 1| A translated semi-structured raw EMR sample from an Anhui provincial
hospital, including gold standard for diagnosis codes and names, and main
contributory records comprising structured short text and unstructured long

free text. The colour coding and text styles in the gold standard indicate the types of
corrections on the issues of informally written (using non-standardised terms) and
three types of mistakes from the structured short text are marked.

human-AI collaborative scenarios. The noise included three types of errors
or mismatches: as shown at the bottom right of the figure, (a) vague—the
correct diagnosis was replaced by a more general diagnostic code; (b) wrong
—the correct diagnose was replaced by another not clinically relevant code;
(c) missing—a diagnosis was removed. For Output A, we introduced a 30%
noise and 1:3 annotated data (25% of the data was manually annotated),
which was based on the NHC China’s 2020 report on the coding quality of
EMRs across China’. This was to reflect the realistic situation of model
performances in Chinese hospitals. Detailed statistics of the six datasets are
listed in Table 1. The 50/100-code datasets are constructed based on the label
distribution of the full set of ICD codes. We screened out primary diagnosis
codes and other frequently distributed secondary diagnosis codes, while
masked other diagnosis codes to make sure experimental conditions satisfy
the HITL setups in the data preprocessing stage. For Output B, we generated
a series of datasets using different levels of noise and annotations for
assessing the performances changes of our human-AlI collaborative fra-
mework, hopefully among others revealing the optimal collaborative setup.
Details of the setups are described in the subsection “Quantitative Analysis
of the Effort vs Effectiveness of Human Inputs”.

Effectiveness of CliniCoCo in automated clinical coding
The effect of overall representation method. Specifically, we repro-
duced multiple representation architectures of the representative ACC

baselines and utilised them to replace our proposed feature extractor in
CliniCoCo, including CAML'’, LAAT, Joint LAAT", and BERT-based
method proposed by Chen et al.” (section 3 in Supplementary Infor-
mation). The results are shown in Table 2. First, the overall HITL fra-
mework is applicable and effective for variants with diverse feature
extractors to have consistent performance. Compared with all the var-
iants in terms of F1 score, AUC, and Recall@5, our proposed CliniCoCo
achieves best performance under all the HPH and APH dataset settings,
which demonstrates the effectiveness of our designed feature extractor.
Moreover, the improvement of CliniCoCo compared with the BERT-
based approach (Chen et al.) demonstrates the contribution of the GNN
and Attention-based architecture. The two combined enhance the
representation by modelling the interactions of knowledge on con-
textualised representation from BERT. The overall performance achieved
by CliniCoCo (AUC ranging 0.93-0.97, F1 0.80-0.84) indicates the whole
architecture’s high effectiveness in facilitating the clinical coding task.
The results of CliniCoCo in full-size scenarios (i.e., including all ICD-
10 codes for training and test) are shown in Table 3. With a large amount of
uncommon diagnosis codes involved, our proposed CliniCoCo still per-
forms robustly and effectively with micro-F1 scores reaching 0.7336 and
0.7665. However, the macro F1 scores show a significant decrease on the
full-size datasets compared to the 50/100-label datasets. This drop is due to
the few-shot nature of many uncommon diagnosis codes in the full-size
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Fig. 2 | The overall HITL framework of CliniCoCo.
Clinical coders and the Al-based coding system can
deeply and mutually collaborate in all key stages of
the coding process.
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Fig. 3 | Architecture design and collaborative strategies of CliniCoCo. The fra-

mework comprises three stages: data preprocessing, model training and prediction,
and clinical decision-making, which are illustrated in each sub-figure, respectively.
(1) The data preprocessing stage gets inputs of raw EMRs and generates three types
of datasets: incomplete raw EMR, noisy-labelled data and human-labelled data. (2)

Model Training Stage

Using the three types of data outputs from stage 1, model training and prediction is
composed of a (a) 3-step multi-label contrastive learning strategy and (b) a kKNN-
based inference optimisation module. (3) The model-enabled decision-making is
conducted via an interactive interface supporting confidence-threshold adjustment,
interpretation (heatmap) visualisation, and similar reference retrieval are integrated.

Flowchart of the raw data quality control simulator

Error 1: Vague Error 2: Wrong

Real-world
quality control
statistics from

NHC China

Human
annotation

r________________________________I ::
1
HPH & APH i| Rule-based noisy Simulation of collaborative |![0.3/1:3! :
EMR datasets 1| introducti trat » i | ——— ! OutputA
w/ gold standard || AL ad ol GG data annotation process ! ! !
ey Err T e ! !
1

Datasets w/ different noise ratio
& annotation proportion setups

Fig. 4 | The flowchart of our proposed raw data quality control simulator utilised to construct the datasets in the experiments. Specifically, we first design a rule-based
automatic raw dataset construction strategy to control the noise ratio and error types in the raw datasets and then simulate the collaborative data annotation process.
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Table 1 | Statistics of our constructed datasets from real-world EMRs in two Chinese hospitals

HPH-50 APH-50 HPH-100 APH-100 HPH-full APH-full

Number of

# Doc. 10,223 9514 10,682 14,104 10,682 14,104

Avg # words per Doc. 728 1472 725 1051 725 1051

Avg # codes per Doc. 4.27 4.03 4.89 4.78 5.97 5.58

Total # codes 50 50 100 100 671 579
Completeness ratio of

# Specialist condition 65.27% 60.15% 62.27% 60.51% 62.27% 60.51%

# Auxiliary examination 47.76% 83.67% 47.13% 63.04% 47.13% 63.04%

Table 2| Performance (%) in AUC, F1 score, and Recall@5 of CliniCoCo and the variants with different ACC baselines adopted as
feature extractor and different noise-level datasets introduced for training

HPH-50 APH-50
AUC F1 Recall AUC F1 Recall
Variants Macro Micro Macro Micro R@5 Macro Micro Macro Micro R@5
CAML 86.83 90.42 67.92 75.48 76.94 85.60 89.27 66.72 74.83 72.89
LAAT 91.35 93.61 77.23 81.19 80.64 90.27 92.82 76.16 80.22 78.64
Joint LAAT 91.35 93.61 76.78 81.85 81.70 90.27 92.82 76.01 81.05 79.35
Chen et al. 90.53 93.14 76.61 82.94 82.03 89.69 92.35 75.83 82.70 80.57
w/o noisy-labelled 84.72 88.42 62.69 70.79 71.38 83.88 87.09 63.42 70.36 67.88
w/o raw incomplete 92.11 94.26 80.45 83.03 82.83 90.84 93.10 78.99 82.45 80.29
CliniCoCo 92.16 94.29 80.82 84.20 84.13 91.07 93.32 79.64 83.67 81.48
HPH-100 APH-100
AUC F1 Recall AUC F1 Recall
Variants Macro Micro Macro Micro R@5 Macro Micro Macro Micro R@5
CAML 88.56 92.04 64.20 75.26 74.82 90.31 94.87 64.05 74.92 75.23
LAAT 93.02 95.23 72.31 79.84 78.90 93.52 96.26 71.28 78.39 78.46
Joint LAAT 93.02 95.23 72.28 80.25 79.27 93.52 96.26 71.24 78.83 78.80
Chen et al. 92.97 95.65 71.85 80.97 79.38 91.69 95.33 70.83 79.24 79.32
w/o noisy-labelled 85.73 88.13 61.30 68.75 67.94 84.83 89.30 60.57 66.97 67.03
w/o raw incomplete 93.20 95.51 74.96 81.06 79.30 94.86 96.98 73.09 79.51 79.64
CliniCoCo 93.34 95.73 75.49 82.25 80.01 95.02 97.16 73.72 80.43 80.47
Table 3 | Performance in AUC, F1 score, and Recall@7/9 of CliniCoCo on full-label datasets
AUC F1 Recall
Macro Micro Macro Micro R@7 R@9
CliniCoCo HPH-full 0.9501 0.9796 0.2484 0.7665 0.7815 0.8222
APH-full 0.9596 0.9842 0.1994 0.7336 0.7900 0.8276

datasets and the limitation of the experimental conditions that the curated
samples cannot fully support our proposed dynamic and iterative colla-
borative annotation strategy for all diagnosis codes. That is, there are none or
few candidate cases in the dataset available for the collaborative annotation,
meaning many codes were never seen by the model in training. In real-world
scenarios, with a wider range of raw EMRs curated, the effectiveness of our
proposed HITL strategies for data annotation would be further reflected for
these few-shot codes. In addition, given that the Recall@9 on the two
datasets both exceed 0.82, the limitation on few-shot codes can be further
optimised based on the collaborative coding mechanisms designed in the
clinical decision-making stage.

The effect of introduced noisy datasets. As is shown in Table 2, the
introduction of the noisy-labelled dataset and raw incomplete dataset both
contribute to the performance improvements of CliniCoCo, which
demonstrates that the rich medical knowledge implicit in the noisy datasets
are effectively leveraged through our proposed 3-step multi-label contrastive
learning strategy. Notably, the large-scale noisy-labelled dataset has a more
significant effect on CliniCoCo than the raw incomplete dataset. Given the
similar numbers of samples they contain, it can be reasoned that unsu-
pervised contrastive learning has a weaker impact on the clinical free text,
while our proposed MLTC-oriented supervised contrastive learning seems
more capable at knowledge mining with the intervention of noisy labels.
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Label distribution in HPH-50 & APH-50

Chapter-level label distribution in HPH-50 & APH-50
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Fig. 5 | Statistics of fine and coarse-grained label distribution in the datasets HPH-50 and

Long-tailed label distribution can be observed in both datasets.

»>
o]

'H-50. The coarse-grained labels denote clinical codes in units of chapters.

Table 4 | Chapter-level coding performance in micro-F1 score of CliniCoCo and its variant without adopting collaborative

annotation strategy

Setting Dataset Chapter-level diagnosis
| E J K z N D
CliniCoCo HPH-50 0.8473 0.8689 0.7943 0.8244 0.8573 0.8254 0.8241
APH-50 0.8238 0.8582 0.8252 0.7992 0.7211 0.7864 0.8672
Collaborative annotation w/o HPH-50 0.8475 0.8693 0.8012 0.8210 0.8302 0.8067 0.8087
APH-50 0.8218 0.8611 0.8179 0.7956 0.6883 0.7745 0.8423
Difference value HPH-50 —0.0002 —0.0004 —0.0069 +0.0034 +0.0271 +0.0187 +0.0154
APH-50 +0.0021 —0.0029 +0.0073 +0.0036 +0.0328 +0.0119 +0.0249
(¢} C R G B [
CliniCoCo HPH-50 0.7188 0.8117 0.7824 N/A N/A N/A
APH-50 N/A 0.7455 0.7486 0.8287 0.8213 0.8286
Collaborative annotation w/o HPH-50 0.6925 0.7946 0.7506 N/A N/A N/A
APH-50 N/A 0.7222 0.7264 0.8043 0.8002 0.8019
Difference value HPH-50 +0.0263 +0.0171 +0.0318 N/A N/A N/A
APH-50 N/A +0.0233 +0.0222 +0.0244 +0.0211 +0.0267

Specific titles of each chapter are listed at the bottom of the table.

The effect of collaborative annotation strategy. Given the uneven
distribution characteristics of clinical codes in dataset, from the third
aspect, we further evaluate the effectiveness of our proposed HITL fra-
mework in units of chapter-level diagnoses by introducing collaborative
annotation strategy in the data preprocessing stage. Figure 5 presents the
fine and coarse-grained label distributions of HPH-50 and APH-50,
while Table 4 presents corresponding chapter-level performance in the
two datasets. Specifically, in the variant without collaborative annotation
setting, we only keep the initialisation operation of patch selection, where
35 candidate samples of each label are selected from the noisy-labelled
dataset for further annotation, while the left candidate samples are all
randomly selected. It can be seen that the performance of CliniCoCo
varies among different chapters of diseases, which is overall consistent
with the long-tailed effect of the datasets revealed in Fig. 5. However, all
main chapter-level performances are robust. This may benefit from our
designed dynamic and iterative collaborative annotation strategy which
adaptively orients the manual annotation based on the statistics of label

distribution in a clean-labelled dataset. In particular, more substantial
improvements are observed in chapters with small samples, especially
those chapters in the second and third rows of the table.

Quantitative analysis of the effort vs effectiveness of

human inputs

To analyse the trade-off between annotation efforts and their overall
effectiveness in facilitating ACC, here we conduct experiments by quanti-
fying the annotation quality from two perspectives of dataset characteristics,
i.e., the proportion between datasets with different noise levels and the noise
ratio in the noisy raw datasets.

Specifically, we sampled ten cases of dataset annotation settings on
HPH-50. The detailed dataset distribution, noise ratio, and corresponding
F1 score of each case are shown in Fig. 6. To reflect the effect of dataset
distribution on model training more explicitly, here we get rid of the KNN-
based inference and only present the feature extractor-based performance.
First, it can be seen from case 3 and 9 that the proportion of clean-labelled
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Fig. 6 | Detailed dataset distribution of ten cases
and their corresponding micro-F1 performance
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dataset, namely human-based annotation efforts, still plays a crucial role in
the process of representation training. However, the results of case 1,2 and 4
reveal that owing to the enhancement by contrastive learning training
strategy, the continuous augmentation of the noisy-labelled dataset intro-
duced in the training process does alleviate the drawback of limited scale of
the clean-labelled dataset to a great extent, which exactly caters to our
objective to release the lacked labour of manual annotation. Quantitatively,
for HPH-50 EMR dataset with 30% noise ratio setting, the optimal anno-
tation effort is labelling 1500 admissions, i.e., 1:3 manual versus automatic
annotation proportion, which can achieve a F1 score of 0.8294, while more
manual labelling than this, however, is not cost-effective. For example, 1500
more annotated admissions would only increase the F1 score by 0.0137.
Meanwhile, based on case 4, 7 and 8, the introduction of raw incomplete
dataset works only when the sample quantity reaches a certain magnitude,
which is expected to take bigger effect in real-world scenarios with more
accessible raw EMRs introduced.

Last but not least, an obvious negative correlation between the noise
ratio in the raw datasets and the representation performance can be observed
from cases 3 to 6, which reveals that the performance of CliniCoCo is sensitive
to the quality of structured short text in raw EMRs. That is to say, the coding
performance of the HITL framework directly depends on the normalisation
and completeness of raw records written by clinicians. Despite recognising
the significance to strengthen the writing skills and lower the noise ratio in
raw EMR text, we need to further seek the trade-off between the efforts and
effectiveness of clinicians’ inputs from the perspective of clinical EMR
management. More specifically, as is shown in Fig. 6, a marked slowdown in
growth of the performance with the decrease of noise ratio can be observed,
which reveals the noise ratio ranging from 0.2 to 0.3 as a potentially most cost-
effective benchmark for clinicians to keep balance between coding efficiency
and coding quality regarding EMR management, and thereby can be treated
as a quantified metric for further EMR quality improvement. Furthermore, in
case 10, we used the model trained on a setup of case 4 and evaluated the
performance on a test set extracted from the raw EMRs to evaluate model
effectiveness in a real-world scenario. CliniCoCo achieves a F1 score of
0.8140, within the region of F1 scores between cases 4 and 5. This implies that
the real-world EMRs having an error rate ranging from 0.3 to 0.4.

Pilot experiments and interviews

Apart from evaluating the effectiveness of CliniCoCo from the perspective
of representation performance, more attention should we pay to observe the
clinical deployment and interaction of the HITL framework. Therefore, our
aim is further extended to address the question: “How does CliniCoCo
perform to realise human-AlI collaboration when deployed in real-world
clinical coding scenarios?”. We conducted a real-world pilot study involving
nine clinical coders from an independent tertiary hospital in Jiangsu Pro-
vince, China, to evaluate the effect of our proposed HITL framework in a
real-world setting with diverse scenarios.

Experimental settings. For human participants, a total of nine coders
are recruited. Based on their years of working experience, the partici-
pants were divided into 3 groups, i.e., seniors (more than 5 years), juniors
(1-5years), and interns (less than 1 year). Each participant was tasked to
use the system in only one of the three configurations (detailed below).
All participants worked on the same set of 10 EMR samples. Such 10
EMRs were randomly selected from the test set of HPH-100 following
two criteria: (1) Each diagnosis code should appear up to two times in the
set, and (2) the samples should contain codes with all high (top 15),
middle (ranked No. 16-45), and low-frequencies (ranked No. 46-100)
according to the label distribution in HPH-100. Before the experiment
started, the participants had a chance try out the system and get familiar
with different functions using an independent EMR sample. Detailed
distribution of the experimental setups in the pilot study are shown in
Fig. 7a.

Regarding the coding scenarios, three distinct configurations were
designed, including (1) HITL ACC mode, (2) simplified ACC mode, and (3)
manual coding mode. Specifically, the HITL ACC mode is exactly based on
our proposed framework CliniCoCo to conduct human-ATI collaborative
clinical coding. The simplified ACC mode gets rid of all the collaborative
strategies and customised functions designed in the key stages of ACC,
thereby only providing “black-box™ Al-based prediction results for coding
support. The manual coding mode performs as a traditional hospital
information system which presents only raw EMR dataset and requires
coders to retrieve and select all related clinical codes.
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Fig. 7 | Fine-grained evaluations on the coding results from the pilot study.
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Quantitative analysis. For evaluating the effectiveness among different
configurations, Fig. 7b—d illustrates the results quantified by recall, precision,
and time used for coding. Specifically, both ACC settings led to higher recall
and precision rates among coders with varying levels of experience, while
coders operating under the HITL ACC mode further outperformed those
using the simplified mode, highlighting the effectiveness of collaborative
strategies in key stages of the ACC process. In terms of efficiency, both ACC
settings required shorter coding time. They took around 10-12 min per case,
which was about 30-40% reduction of time needed per case compared manual
coding. However, the averaged coding time under HITL ACC mode was
slightly longer than that of the simplified ACC mode, which may be due to the
adjustment operations of customised functions integrated in the interface.
We further evaluated the inter and intra-variability. Specifically, inter-
variability depicts how clinical coders deal with noisy EMR data, while intra-
variability depicts how clinical coders with different coding experience.
From inter-variability, the impact of human-AI collaborative coding on
different types of coding errors is illustrated in Fig. 7e. Compared with the
HITL mode, the manual coding mode demonstrated significant (50% on
average) lower accuracy on cases with errors, particularly for missing codes.

From intra-variability, the most significant improvement was observed
among intern coders with 0.26 increases in recall and 0.25 increases in
precision on average (see Fig. 7b, c). However, as shown in Fig. 7f, the
collaborative coding results performed by intern coders still fall short
compared to the averaged ROC curve which denotes the performance only
based on CliniCoCo framework. This discrepancy is primarily due to the
interns’ limited coding knowledge. In contrast, the senior and junior clinical
coders outperform both the human-only and Al-only setups, which
demonstrates the positive impact of collaborative coding approach. Within
each setup, the intern-HITL had the highest recall variability (0.25, Q3-Q1
on recall) and junior-simplified had the lowest (0.04). The intern-manual
had the highest precision variability (0.26) and senior-HITL had the lowest
(0.15). Overall, senior-HITL had the highest recall (0.95) and precision
(0.95) with a small in-group variance.

Qualitative interview. Furthermore, we interviewed the clinical coders
and interns to assess the usability of our developed interfaces for Clin-
iCoCo in real-world scenarios. Detailed preferences and evaluations of
the interviewees are summarised as below. (1) Regarding the layout of the
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system, they prefer separated presentation of the predicted results based
on structured short text and long free text, which would make the pre-
dicted results easy to understand and compatible with traditional coding
process. (2) In addition, they affirm the function which presents the
retrieved representative similar samples from the datastore as reference,
which may be contributive especially for the less experienced clinical
coders. (3) Regarding the threshold adjustment function, they tend to
prefer turning down the threshold a little bit for better recall perfor-
mance. This may be because they want more information provided due to
trust issue and to reduce search operations. (4) All interviewees give an
overall positive assessment on CliniCoCo in terms of its clinical utility for
human-AI collaboration. Given the unsatisfactory status of clinical
coding in Chinese hospitals’, it is expected that the deployment of
CliniCoCo would optimise the coding efficiency and quality by a large
margin, especially in the secondary hospitals.

Discussion

This study focuses on optimising the adoption and deployment of ACC
systems in complex real-world clinical scenarios which involves numerous
unexploited noisy raw clinical text and frequent coder-computer interaction
for clinical decision-making, proposing a novel HITL framework Clin-
iCoCo to transfer the paradigm from automated to human-AI collaborative
clinical coding.

To incorporate clinical coders’ inputs effectively and efficiently, the
three key stages of ACC systems are designed in CliniCoCo to fit with the
medical record characteristics and facilitate clinical coding process in real-
world scenarios. First, to minimise manual labelling effort, the dynamic and
iterative collaborative annotation strategy is designed in data preprocessing
stage to automatically construct large-scale noisy-labelled dataset and
adaptively construct small-scale clean-labelled dataset, while the 3-step
MLTC-oriented contrastive learning training strategy and the similar
reference retrieval module are designed in model training stage to sequen-
tially leverage the medical knowledge implicit in datasets with different noise
levels and priori samples. Therefore, the annotation workload is minimised
while the coding effectiveness is maximised. Second, to utilise human’s
knowledge in improving the collaborative coding accuracy, a series of HITL
functions are designed in the clinical decision-making stage and are inte-
grated in an interactive interface. All these combined are aimed to optimise
the performance, explainability, and usability of the coding system to fit in
complex clinical coding decision support scenarios.

Different to studies pursuing the improvements on the SOTA per-
formance of Al-based ACC methods, this study aims to establish a general
paradigm for human-AI collaborative clinical coding that is compatible
with and adaptable to diverse complex real-world clinical scenarios.
Therefore, to comprehensively evaluate CliniCoCo under different clinical
circumstances, an EMR data quality control simulator is designed to
populate EMRs with different noise ratio and error types as well as different
levels of annotations.

Based on the constructed datasets, experiments in “Results” evaluate
CliniCoCo firstly from a macro perspective, which demonstrates the effec-
tiveness of the representation architecture, the introduced different types of
noisy datasets, and the dynamic and iterative collaborative annotation
strategy. Results in Table 2 reveal that CliniCoCo is competent for clinical
coding tasks in real-world scenarios, performing robust on whether overall or
chapter-level coding results. Experiments in section 4 in Supplementary
Information evaluate CliniCoCo more from a human-AI collaborative
perspective, demonstrating the effectiveness and figuring out the optimal
technical setups of each module in the HITL framework in terms of lever-
aging multi-source medical knowledge. Given that Doktorchik et al.” con-
ducted a qualitative evaluation of clinically coded data quality in nine
provinces across Canada, revealing incomplete and disorganised clinical
documentation the main issue which limits the quality of clinical coding from
health information manager perspectives, while Campbell and Giadresco.*
emphasised the role change of clinical coders and restructuring of coding
workflow as a result of computer-assisted clinical coding technology™, we

believe our proposed HITL framework CliniCoCo can have positive effects
on transforming the current clinical coding paradigms to a great extent by
effectively optimising the two main challenges in real-world scenarios: (a)
how to leverage numerous incomplete and noisy EMR data without adequate
annotation workload and (b) how to deeply involve clinical coders’ expertise
and feedback into ACC workflow.

Furthermore, our study simulates various clinical settings in
real-world scenarios and conducts quantitative analysis of the utility
of CliniCoCo, aiming to figure out the trade-off between annotation
efforts and their overall effectiveness in facilitating ACC. The results
among simulation cases reveal the dominance of limited manual
annotation workload, which, however can be significantly optimised
by leveraging the automatically constructed raw and noisy-labelled
datasets based on our designed multi-step contrastive learning-based
strategy. Therefore, the optimal setup of annotation efforts can be
quantified based on the noise ratio of EMR datasets, e.g., 1:3 manual
versus automatic annotation for 30% noise HPH-50 dataset. More-
over, we highlight the effect of the quality of EMR inputs, which is
directly influenced by clinicians’ note dictating skills and quality. By
quantifying the noise ratio in the structured short text, we identify a
cost-effective benchmark for balancing coding efficiency and quality,
which is a noise ratio ranging from 0.2 to 0.3. With the objective to
realise human-AI collaboration for clinical coding, apart from
introducing HITL learning framework into ACC system, strength-
ening the training and guidelines of clinicians is another fundamental
approach which should be put emphasis on***. As is revealed by the
audit of clinical coding accuracy conducted by Nouraei et al.”’ on
30,127 patients in the UK, clinical coding is prone to subjectivity,
variability, and error, which in part explains the fact that data
modelling has been of limited utility in predicting clinical coding.
Therefore, this benchmark which includes quantitative metrics of
manual annotation efforts and raw EMR quality can provide valuable
insights for future improvement of EMR management and the
development of policy protocols in Chinese hospitals.

In addition, in-depth clinical observations of the deployment of Clin-
iCoCo are also conducted from a fine-grained perspective as shown in section
5 in Supplementary Information. First, CliniCoCo performs better on pri-
mary diagnosis compared to secondary diagnoses, primarily due to higher
correlation and frequency in clinical text. Second, the section of medical
history is observed a biggest impact on coding inference, where the subsec-
tions of present and past illness contribute the most. Third, benefiting from
the flexible architecture and training strategy, CliniCoCo shows good
adaptability when dealing with heterogeneous EMR contexts governed by
different regulations, which suggests a potential inter-regional utility for
coding among provinces in China under the transfer learning setting. Fur-
thermore, code distributions might be different between regions and coun-
tries due to multiple factors including population composition, climate,
economy, education and culture. Therefore, based on the adaptability of
CliniCoCo, a comprehensive generalisability analysis of pretrained ACC
models could be conducted in a diverse set of new settings, preferably across
nations.

Last but not least, pilot experiments involving nine clinical coders were
conducted to further verify the utility of human-AI collaborations in real-
world coding scenarios. Compared with manual coding mode and “black-
box” ACC mode, our HITL ACC mode can optimise both the effectiveness
and efficiency of coding by clinical coders. More specifically, from inter-
variability, we observed a significant optimisation for the missing mistakes
in clinical text, and the collaborative manner overall helped clinical coders
less susceptible to various types of noise inherent in the structured text of
EMRs. From intra-variability, the most significant improvements were
observed on intern coders. However, compared to senior and junior coders
who excelled on collaborative manner mode, the intern in HITL mode
performed slightly worse than the Al-based coding system. This may arise
from the misalignment between the coding proficiency of intern coders and
the performance of the AI system.
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Despite extensive experiments and analyses we conducted which
demonstrate the effectiveness and clinical utility of our proposed
HITL framework CliniCoCo, further work can be extended for the
research on human-AI collaborative clinical coding. Specifically, a
more fine-grained and comprehensive case study with more clinical
coders participate should be conducted to deeply analyse (a) how AI-
based system impact on inter-variability and intra-variability of
clinical coders, (b) how clinical coders react to the support of Al-
based system in the decision-making process, and (c) what is the best
collaborative setting for the clinical coding task. Additionally, the
EMR heterogeneity is inherent in the Chinese health system. Dif-
ferent provincial regions in China follow different guidelines, writing
styles, and taxonomy version. This poses a significant challenge for
an ACC system to be applicable across regions, warranting much-
needed future studies on enhancing and optimising the robustness
and generalisation of (HITL-) ACC. In future work, we aim to further
observe and take into account of the differences of coding preference,
quality, and patient characteristics across regions, which may parti-
cularly benefit dedicated EMR managements for billing purpose, e.g.,
inter-provincial payment. As a consistent research objective of this
work, based on our developed CliniCoCo system, we plan to further
invite clinical coders in Chinese tertiary hospitals to conduct a case
study in real-world scenarios to address the questions above.

Methods

In this section, we illustrate the detailed architectures of the HITL colla-
borative strategies designed in the three key stages of CliniCoCo and the
quality control simulator proposed for further quantitative analysis.

Dynamic and Iterative collaborative annotation

Given the inferior quality of raw EMRs and the labour-intensive
nature of labelling procedure, the capacity of expert coders to
annotate ground truths is constrained in a small scale. Therefore, in
the data preprocessing stage, a HITL collaborative annotation strat-
egy is designed to dynamically and iteratively collaborate the manual
annotation by clinical coders. With the objective to improve the
labelling efficiency, the semi-automatic strategy comprises two
branches. First, large-scale noisy dataset is automatically annotated
based on structured short text with the adoption of the unsupervised
SimCSE-based” similarity computing module, aiming to perform fast
and coarse annotation on wide range of raw EMRs. Second, small-
scale clean dataset is manually annotated by clinical coders with the
adoption of dynamic and iterative annotation strategy which adap-
tively allocate candidate EMRs from noisy dataset, aiming to provide
dynamic knowledge orientation for local manual annotation.

Automatic large-scale noisy data annotation. Semi-structured raw
EMRs contain pieces of structured short text, e.g., primary and
secondary disease names. Such information is incomplete and
flawed, which, however, can be fast-mapped to part of the coding
results of the EMRs. Based on this assumption, here we construct a
similarity computing module, where [CLS] token from pretrained
BERT is firstly utilised to initialise the embedding of each piece of
disease name text, and unsupervised SimCSE is then adopted for
training of feature extractor. The loss function of the training pro-
cess is shown below.
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where k% is the positive sample representation for 4,%, which is encoded
with different dropout masks. 7 is a temperature hyperparameter and
sim(hy, hy) is the cosine similarity.
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We then utilise standard disease names from ICD taxonomy as the
prototype text for each diagnosis code, and then conduct similarity com-
puting for automatic ICD code assignment. Since the contexts in each piece
of disease name is quite short and each piece may correlate with only one
code, the automatic coding model can be simply trained based on unsu-
pervised SimCSE with high accuracy. The coding results can cover a wide
range of raw EMRs and thereby being used as the noisy labels of the
unstructured free text in EMRs.

Adaptive small-scale clean data annotation. On the basis of numerous
noisy-labelled EMRs, small-scale manual annotation is conducted to
construct clean dataset. Here we design the HITL collaborative strategy to
minimise the workload and maintain all codes distributed evenly in the
clean dataset. The strategy put coders in the annotation loop and adap-
tively adjust the coding orientation to instruct coders deal with demanded
candidate EMRs samples. Specifically, in the clean data annotation
procedure, each coder is initially allocated with a patch of candidate
EMRs where every ICD code appears in at least two pieces of EMR
samples based on the noisy labels annotated previously. To ensure the
robustness of allocated EMR samples, adjustable threshold is set for
random selection from the noisy-labelled dataset based on the prediction
confidence of the similarity module. Then, more patches will be itera-
tively selected for manual annotation. Based on the updated statistics of
label distribution in the clean-labelled dataset, dynamic annotation
orientation will be provided to coders, which means that upcoming
patches will continuously select candidate samples containing inade-
quate ICD codes from the noisy-labelled dataset and then be allocated to
coders. The loop of patch selection ends when every ICD code appears in
at least s pieces of samples in clean-labelled dataset. As a result, the
collaborative strategy enables adequate and even-distributed clean-
labelled dataset with minimum labour required.

3-Step MLTC-oriented contrastive learning training

In the case of limited data annotation capacity, how to fully leverage
numerous noisy-labelled raw EMR dataset and exploit their implicit rich
medical knowledge is the kernel to improve the representation performance
of ACC methods. Focusing on the MLTC setting of the ACC task, we
propose a 3-step contrastive learning strategy to deeply enhance the
representation method based on EMR datasets with different noise levels.
The motivations of the proposed contrastive learning-based training are
twofold. First, compared with traditional MLTC loss, binary cross entropy
(BCE), which measures the mapping correlation between medical text and
ICD labels, contrastive learning loss, however, measures the mapping cor-
relation between medical text. Under the circumstance that labels of the
noisy-labelled dataset are roughly correct, the noisy labels remain robust for
effective measure of the distance between medical text, while may fail to
correctly reflect the specific mapping correlation between medial text and
codes. Second, contrastive learning loss measures the distance between
medical text based on similarity computing, e.g., cosine similarity, which
means that contrastive learning-based training can involve medical text with
diverse ICD labels. Therefore, the size of training set can be remarkably
augmented, compared with the primitive training set with limited number
of candidate labels. Our proposed contrastive learning strategy effectively
assess the relative similarity correlation between medical text with complex
overlapping status of multiple labels. On the basis of different noise levels,
samples in EMR dataset are divided into three groups and then utilised for
model training and refinement step by step, i.e., incomplete raw samples
without disease information, automatic noisy-labelled samples, and manual
clean-labelled samples. The framework of the whole contrastive learning-
based training process is shown in Fig. 3. In this subsection, we first describe
the basic architecture of the feature extractor. Then we illustrate the detailed
training designs in multiple steps.

Architecture of feature extractor. As is shown in Fig. 3, we construct a
GNN-based feature extractor performing MLTC under inductive

npj Digital Medicine | (2024)7:368

10


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-024-01363-7

Article

condition. Within the representation process, a piece of free text is first
encoded by pretrained BERT in unit of document and words, respec-
tively. Specifically, by adopting convolutional embedding mode, each
token in the context is encoded through a sliding window in length 512.
Then, a word-level graph is constructed for the text, where each node
denotes a word in the context and the edges are connected according to
co-occurrence between words within a fixed-size sliding window. After
graph construction, a GGNN module* is adopted for global information
interaction, following with a readout module which aggregates the node
vectors based on attention mechanism and generate final document-level
representation. The readout functions are shown below.

h, =o(f, (h})) © tanh(f, (h})) @)
1

where h, denotes a node vector. f; and f, are two multi-layer perceptrons for
performing soft attention on nodes. Both averaging and maxpooling are
conducted to aggregate weighted nodes for graph-level representation hg.

Pretraining with incomplete raw samples. Apart from the noisy and
clean-labelled datasets collaboratively annotated, more accessible sam-
ples are from incomplete raw EMRs which lacks structured disease names
for automatic annotation. To leverage the medical knowledge in these
samples, we first design an unsupervised contrastive learning loss to
pretrain the feature extractor. Different from unsupervised SimCSE using
dropout masks, here we utilise the aggregated representation of the fea-
ture extractor as the original sample, while utilise the [CLS] token vector
as the corresponding positive sample. The detailed function is listed
below.
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where hECLS]; denotes the positive pair based on [CLS] token. £, denotes the
loss function in the first step.

Training with large-scale noisy-labelled samples. Subsequently, we
further train the pretrained feature extractor based on large-scale noisy-
labelled samples. Existing supervised contrastive learning loss simply
narrow distances between samples from the same class and push away
samples from different classes, which, however, cannot deal with the
complex overlapping status of medical text containing multiple labels.
Therefore, here we propose the MLTC-oriented supervised contrastive
learning loss where a dynamic coefficient based on the label similarity is
designed to assess the relative correlation between samples in fine grain.

Specifically, given a minibatch in size b where z; and y; denotes the
representation and label vector of one sample in the minibatch, respectively,
we first conduct dot product of samples’ label vectors to calculate the label
similarity C;; between samples. Then, we conduct normalisation on C;; as the
dynamic coefficient f; to quantify the fine-grained relative correlation
between samples in a minibatch. During each batch of training process, the
dynamic coefficient is utilised to weigh each sample pair of contrastive
learning loss and the whole minibatch loss L.on would be the summation of
all sample pairs. As a result, the more correlated sample pairs will be
assigned with higher dynamic coefficient and thereby contributing more
explicitly in the numerators to be optimised closer, while the less correlated
sample pair may only appear in the denominators of other terms when the
dynamic coefficient is close to 0 and thereby being continuously optimised

farther. Detailed loss functions are shown as below.
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where g(i) = {klk € {1,2,--- ,b}, k=i and d(. , . ) denotes Euclidean
distance. In addition, considering the applicability of our proposed loss for
incomplete samples. Here we combine both supervised and unsupervised
contrastive learning loss for the training with large-scale noisy-labelled
dataset. The loss function in this step is shown below.

‘CZ = Y‘le_con + 6£us_c0n (8)

where the parameters y and § control the trade-off between losses. £,
denotes the overall loss function in the second step.

Refinement with small-scale clean-labelled samples. Being con-
sistent with the previous training process, further refinement can be
conducted based on small-scale clean-labelled samples. Given the cap-
ability of clean samples to accurately reflect the mapping correlation
between medical samples and ICD codes, in this step, we further combine
BCE loss with supervised and unsupervised contrastive learning loss to
refine the feature extractor. In addition, a per-label attention mechanism
is also adopted to improve model explainablity. The loss function in this
step is shown below. As a result, the whole training process is incremental
to leverage datasets with different noise levels by applying different joint
loss functions in three steps.

Lygcg = Z —ylog(3) — (1 —y) log(1 - 3) (9)
leC

E3 = H‘CBCE + y»cml_con + 6‘Cus_con (10)

where J; denotes the predicted probabilities of .. £; denotes the overall loss
function in the third step. 6, y and § are the controllable hyperparameters.

kNN-optimised inference involving priori expertise

With a series of contrastive learning loss designed for training, it is expected
that the feature extractor has obtained the capability to distinguish the
coding correlation between medical samples. Moreover, in view of limited
number and the authority of clean-labelled datasets, it is necessary to fully
refer to existing representative diagnostic cases so that the prediction results
can better conform to priori clinical diagnosis logic and thereby being more
explainable. Therefore, we further put clinical coders into the loop of model
prediction by involving coders’ priori medical expertise during the code
inference.

As is shown in Fig. 3, aiming to integrate the coders’ priori medical
expertise, we first construct a datastore based on the samples in clean-
labelled dataset. All samples in the datastore are collected in format of
D' = {(h;y,) }:.il, where h; and y; denote the feature extractor-based
representation and the labels of one sample. In the inference stage, for each
piece of medical text to be predicted, a KNN mechanism is conducted to
retrieve top-k correlated representative samples from the datastore. The
corresponding clean labels are then collected and weighed based on the
relative similarity correlation. Finally, the combined kNN-based predicted
results are integrated to optimise the feature extractor-based prediction
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Fig. 8 | The interactive interface of CliniCoCo in the clinical decision-making stage. Our designed customised functions of threshold adjustment, heatmap visualisation,

and similar reference retrieval are presented in the interface sample, respectively.

results. The formulas of optimised model prediction are shown below.

e~ d(hif™)/

o = 7zje—d(hj‘f(x))/‘r (11)
k
Yian = Z“i)’i (12)
i=1
y= M’kNN +(1- A))A/Mo (13)

where a; is the coefficient to assess the similarity between predicted medical
text and retrieved samples. d(. , . ) denotes Euclidean distance. y, and ¥y,
denote the kNN-based and feature extractor-based prediction results,
respectively. A is the parameter that controls the trade-off between
prediction results.

Customised collaborative clinical decision-making

With frequent interactions between coding system and clinical coders
involved, clinical decision-making stage is the most explicit presentation of
human-AI collaboration. Therefore, the design of the interactive interface
directly determines the practical deployment of the Al-based system in the
real-world scenarios. Under the circumstance that existing ACC method
cannot satisfy fully automated decision-making, interactive interface
requires consistent optimisation to involve more coders’ feedback. Aiming
to further improve the performance, explainability, and usability of the
coding system, here we propose four customised collaborative functions
which are integrated into the coder-centred interface of CliniCoCo to
support coder’ decision-making from different perspectives.

Confidence-threshold adjustment. Based on the prediction confidence
from the Al-based coding model, the threshold adjustment function is
designed for coders’ to control the number of the presented candidate
codes. A slider ranging from 0 to 1is laid out in the interface for custo-
mised adjustment. As a result, clinical coders can easily balance the Recall
and Precision of the coding model for each specific coding task according
to their preference.

Heatmap visualisation. The explainability of the coding system is cru-
cial to clinical practice in terms of efficiency and trustworthiness. To help
coders better understand the inference logic from EMR text, heatmap
visualisation is designed based on confidences from the per-label atten-
tion mechanism. As a result, code-specific associated evidence can be
highlighted in the interface to support coders read medical text.

Similar reference retrieval. As a consistent HITL function of kNN-
optimised inference module designed for coding prediction, similar
reference retrieval is developed provide the specific content and coding
results of the top k retrieved EMR samples for clinical coders in decision-
making stage. Although retrieved priori expertise has been integrated
into the representation method, we believe that presenting the related
inference sources in a more explicit way can contribute to the explain-
ability of the system and help clinical coders better understand and trust
the Al-based predicted coding results.

HITL interactive interface development. Based on our proposed HITL
framework CliniCoCo, we further develop the interactive interfaces for
human-AI collaborative clinical coding, which integrate all the HITL
collaborative designs introduced above. Specifically, Fig. 8 presents a
specific interface instance in the clinical decision-making stage where
the medical text is simply translated from a real EMR sample in APH.
The interfaces are built with Vue for the front-end and the python web
framework Django for the web API, and are deployed for coders to
conduct further case study in real-world clinical scenarios. Detailed
layout of the HITL functions is confirmed according to the interview
with clinical coders in Chinese tertiary hospitals. Our designed HITL
modules for data annotation in the data preprocessing stage are also
integrated in the system. In addition, auxiliary tools, e.g., coding timers
and questionnaire, are developed for pilot experiments and further
case study.

Raw data quality control simulator for quantitative analysis
Aiming to evaluate the overall framework and the designed training stra-
tegies in diverse clinical settings, here we extendedly propose a raw data
quality control simulator to quantitatively and precisely control the noise
ratio and error types in the raw datasets, and then simulate the data
annotation process.
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Specifically, in terms of quality control, we design a rule-based auto-
matic raw dataset construction strategy where all informally written cases of
all disease names are collected from raw EMRs as a case set. Then, given the
hierarchical characteristics of ICD taxonomy, we regularly generate noisy
short text for each sample based on the informal case set and the gold
standard labels in the datasets, which can be summarised into three types,
ie., vague, wrong, and missing compilation. First, regarding vague compi-
lation, we randomly change the raw disease name to a informally written
disease name which belongs to one of its upper-level codes. Second,
regarding wrong compilation, we randomly change the raw disease name to
a informally written disease name which belongs to one of its same-level
codes. Third, regarding missing compilation, we simply delete the raw
disease name in the EMR. The generation of noisy labels for all samples
follows specific noise ratio variable.

In terms of the annotation process, with quality control in EMR
datasets finished, we can then conduct the semi-automatic data annotation
strategy as we designed in the data preprocessing stage, where large-scale
noisy-labelled dataset and small-scale clean-labelled dataset are sequentially
constructed. Specifically, here we simply use the gold standard labels to
simulate manual coding operations by clinical coders.

Experimental settings

In terms of experimental settings, in the data preprocessing stage, we collect
more than 5000 mentions of disease names from the structured short text
section to conduct the pretraining of the similarity computing module
utilised for automatic noisy data annotation, and the accuracy of the module
achieves 0.9 on the candidate codes.

In the training stage, the initial learning rate is 0.001, the number of
epochs is 100, the Adam optimisation is with a 0.001 of weight decay, and
the batch size is 64. Pretrained BERT-Chinese-base™ is utilised as the
initialised encoder in the similarity computing module and the feature
extractor. The size of the sliding window in the feature extractor is set as 3.
The number of graph layers in the feature extractor is set as 3. Regarding the
hyperparameters adjusting the proportion among loss functions and pre-
diction outputs, Ois set as 1, y is set as 0.5, § is set as 0.02, k is set as 3, and A is
set as 0.3.

For data splits, all datasets were divided 6:2:2 for training, validation,
and test set. The results in the figures and tables were derived from eva-
luations on test sets only. In terms of the evaluation metrics, macro and
micro-averaged AUC, F1 score and Recall@k (R@k) are utilised in the
experiments to measure the compared methods. Specifically, AUC denotes
the area under the ROC curve (receiver operating characteristic curve), and
Recall@k denotes the recall of the top-k predicted labels with the highest
predictive probabilities.
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