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Abstract

Chain-of-Thought (CoT) has been proven ef-001
fective in enhancing the reasoning capabili-002
ties of large language models (LLMs). Re-003
cent advancements, such as OpenAI’s o1 and004
DeepSeek-R1, suggest that scaling up the005
length of CoT sequences during inference006
could further boost LLM reasoning perfor-007
mance. However, due to the autoregressive008
nature of LLM decoding, longer CoT outputs009
lead to a linear increase in inference latency, ad-010
versely affecting user experience, particularly011
when the CoT exceeds 10,000 tokens. To ad-012
dress this limitation, we analyze the seman-013
tic importance of tokens within CoT outputs014
and reveal that their contributions to reason-015
ing vary. Building on this insight, we propose016
TokenSkip, a simple yet effective approach017
that enables LLMs to selectively skip less im-018
portant tokens, allowing for controllable CoT019
compression. Extensive experiments across var-020
ious models and tasks demonstrate the effec-021
tiveness of TokenSkip in reducing CoT token022
usage while preserving strong reasoning per-023
formance. Notably, when applied to Qwen2.5-024
14B-Instruct, TokenSkip reduces reasoning to-025
kens by 40% (from 313 to 181) on GSM8K,026
with less than a 0.4% performance drop1.027

1 Introduction028

Chain-of-Thought (CoT) prompting (Nye et al.,029

2021; Wei et al., 2022; Kojima et al., 2022) has030

emerged as a cornerstone strategy for enhancing031

Large Language Models (LLMs) in complex rea-032

soning tasks. By eliciting step-by-step inference,033

CoT enables LLMs to decompose intricate prob-034

lems into manageable subtasks, thereby improv-035

ing their problem-solving performance (Yao et al.,036

2023; Wang et al., 2023; Zhou et al., 2023; Shinn037

et al., 2023). Recent advancements, such as Ope-038

nAI’s o1 (OpenAI et al., 2024) and DeepSeek-039

1All of our codes and checkpoints will be released to facil-
itate future research.
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Figure 1: In contrast to vanilla CoT that generates all rea-
soning tokens sequentially, TokenSkip enables LLMs
to skip tokens with less semantic importance (e.g., )
and learn shortcuts between critical reasoning tokens,
facilitating controllable CoT compression.

R1 (DeepSeek-AI et al., 2025), further demonstrate 040

that scaling up CoT lengths from hundreds to thou- 041

sands of reasoning steps could continuously im- 042

prove LLM reasoning. These breakthroughs have 043

underscored CoT’s potential to advance LLM ca- 044

pabilities, expanding the boundaries of AI-driven 045

problem-solving. 046

Despite its effectiveness, the increased length 047

of CoT sequences introduces substantial computa- 048

tional overhead. Due to the autoregressive nature 049

of LLM decoding, longer CoT outputs lead to pro- 050

portional increases in both inference latency and 051

memory footprints of key-value cache. Addition- 052

ally, the quadratic computational cost of attention 053

layers further exacerbates this burden. These is- 054

sues become particularly pronounced when CoT 055

sequences extend into thousands of reasoning steps, 056

resulting in significant computational costs and pro- 057

longed response times. While prior research has 058

explored methods for selectively skipping reason- 059

ing steps (Ding et al., 2024; Liu et al., 2024), recent 060

findings (Jin et al., 2024; Merrill and Sabharwal, 061

2024) suggest that such reductions may conflict 062

with test-time scaling (OpenAI, 2024; Snell et al., 063

2025), ultimately impairing LLM reasoning per- 064
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formance. Therefore, striking an optimal balance065

between CoT efficiency and reasoning accuracy066

remains a critical open challenge.067

In this work, we delve into CoT efficiency and068

seek the answer to an important question: “Does069

every token in the CoT output contribute equally to070

deriving the answer?” We empirically analyze the071

semantic importance of tokens within CoT outputs072

and reveal that their contributions to the reasoning073

performance vary, as depicted in Figure 2. Building074

on this insight, we introduce TokenSkip, a simple075

yet effective approach that enables LLMs to skip076

less important tokens within CoT sequences and077

learn shortcuts between critical reasoning tokens,078

thereby allowing for controllable CoT compression079

with adjustable ratios. Specifically, as shown in080

Figure 1, TokenSkip constructs compressed CoT081

training data with various compression ratios, by082

pruning unimportance tokens from original LLM083

CoT trajectories. Then, it conducts a general super-084

vised fine-tuning process on target LLMs with this085

training data, facilitating LLMs to automatically086

trim redundant tokens during reasoning.087

We conduct extensive experiments across var-088

ious models, including LLaMA-3.1-8B-Instruct089

and the Qwen2.5-Instruct series, using two widely090

recognized math reasoning benchmarks: GSM8K091

and MATH-500. The results validate the effec-092

tiveness of TokenSkip in compressing CoT out-093

puts while maintaining robust reasoning perfor-094

mance. Notably, Qwen2.5-14B-Instruct exhibits095

almost NO performance drop (less than 0.4%) with096

a 40% reduction in token usage on GSM8K. On097

the challenging MATH-500 dataset, LLaMA-3.1-098

8B-Instruct effectively reduces CoT token usage099

by 30% with a performance decline of less than100

4%, resulting in a 1.4× inference speedup. Further101

analysis underscores the coherence of TokenSkip102

in specified compression ratios and its potential103

scalability with stronger compression techniques.104

TokenSkip is distinguished by its low training105

cost. For Qwen2.5-14B-Instruct, TokenSkip fine-106

tunes only 0.2% of the model’s parameters using107

LoRA. The size of the compressed CoT training108

data is no larger than that of the original training109

set, with 7,473 examples in GSM8K and 7,500110

in MATH. The training is completed in approxi-111

mately 2 hours for the 7B model and 2.5 hours for112

the 14B model on two 3090 GPUs. These char-113

acteristics make TokenSkip an efficient and repro-114

ducible approach, suitable for use in efficient and115

cost-effective LLM deployment.116

To sum up, our key contributions are: 117

1. To the best of our knowledge, this work is 118

the first to investigate the potential of enhanc- 119

ing CoT efficiency through token skipping, 120

inspired by the varying semantic importance 121

of tokens in CoT trajectories of LLMs. 122

2. We introduce TokenSkip, a simple yet effec- 123

tive approach that enables LLMs to skip re- 124

dundant tokens within CoTs and learn short- 125

cuts between critical tokens, facilitating CoT 126

compression with adjustable ratios. 127

3. Our experiments validate the effectiveness of 128

TokenSkip. When applied to Qwen2.5-14B- 129

Instruct, TokenSkip reduces reasoning tokens 130

by 40% (from 313 to 181) on GSM8K, with 131

less than a 0.4% performance drop. 132

2 Background and Preliminaries 133

In this section, we discuss the relevant research 134

background and present preliminary studies on to- 135

ken efficiency in CoT sequences, exploring its im- 136

pact on the reasoning performance of LLMs. 137

2.1 Token Importance 138

We first investigate a critical research question to 139

CoT efficiency: “Does every token in the CoT out- 140

put contribute equally to deriving the answer?” In 141

other words, we would like to know if there is any 142

token redundancy in CoT sequences that could be 143

eliminated to improve CoT efficiency. 144

Token redundancy has been recognized as a 145

longstanding and fundamental issue in LLM ef- 146

ficiency (Hou et al., 2022; Zhang et al., 2023; Lin 147

et al., 2024; Chen et al., 2024). Recently, it has gar- 148

nered intensive research attention in prompt com- 149

pression (Li et al., 2023; Jiang et al., 2023; Pan 150

et al., 2024), which focuses on removing redundant 151

tokens from input prompt to reduce API token us- 152

age. To address this issue, Selective Context (Li 153

et al., 2023) proposed to measure the importance 154

of tokens in a piece of text based on the semantic 155

confidence of LLMs: 156

I1 (xi) = − logP (xi | x<i;θML
) , (1) 157

where x = {xi}ni=1 is the given text, xi denotes 158

a token, and ML denotes the LLM used to com- 159

pute the confidence of each token. Intuitively, such 160

measurement could be seamlessly applied to CoT 161

tokens generated by LLMs. We show an example 162

of this measurement in Figure 2. 163
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Problem: Marcus is half of Leo’s age and five years
younger than Deanna. Deanna is 26. How old is Leo?

Chain-of-Thought: Let’sbreakitdownstepbystep:1.
Deannais26yearsold.2.Marcusisfiveyearsyoungerthan
Deanna,soMarcusis26-5=21yearsold.3.Marcusishalf
ofLeo’sage , soLeo’sage is twiceMarcus ’sage .4.Since
Marcusis21,Leo’sageis2x21=42. (Selective Context)

Chain-of-Thought: Let’sbreakitdownstepbystep:1.
Deannais26yearsold.2.Marcusisfiveyearsyoungerthan
Deanna,soMarcusis26-5=21yearsold.3.Marcusishalf
ofLeo’sage , soLeo’sage is twiceMarcus ’sage .4.Since
Marcusis21,Leo’sageis2x21=42. (LLMLingua-2)

Final Answer: 42.

Figure 2: Visualization of token importance within a
CoT sequence, with darker colors indicating higher val-
ues. This figure compares two token importance mea-
surements: Selective Context and LLMLingua-2.

Despite its simplicity, LLMLingua-2 (Pan et al.,164

2024) argued that there exist two major limitations165

in the aforementioned measurement that hinder the166

compression performance. Firstly, as shown in167

Figure 2, the intrinsic nature of LLM perplexity168

leads to lower importance measures (i.e., higher169

confidence) for tokens at the end of the sentence.170

Such position dependency impacts the factual im-171

portance measurement of each token. Furthermore,172

the unidirectional attention mechanism in causal173

LMs may fail to capture all essential information174

needed for token importance within the text.175

To tackle these limitations, LLMLingua-2 intro-176

duced utilizing a bidirectional BERT-like LM (De-177

vlin et al., 2019) for token importance measure-178

ment. It utilizes GPT-4 (OpenAI, 2023) to label179

each token as “important” or not and trains the bidi-180

rectional LM with a token classification objective.181

The token importance is measured by the predicted182

probability of each token:183

I2 (xi) = P (xi | x≤n;θMB
) , (2)184

where MB denotes the bidirectional LM.185

In this study, we apply LLMLingua-2 as the to-186

ken importance measurement to LLM CoT outputs.187

Similar to plain text, we observe that the semantic188

importance of tokens within CoT outputs varies,189

as shown in Figure 2. For instance, mathematical190

equations tend to have a greater contribution to the191

final answer, consistent with recent research (Ma192

et al., 2024). In contrast, semantic connectors such193

as “so” and “since” generally contribute less. These194

findings highlight the token redundancy in LLM195

Revovering the Compressed Chain-of-Thought

Compressed CoT: break down Deanna 26 Marcus
five younger 26 - 5 21 Marcus half Leo’s age twice
Marcus Marcus 21, Leo’s age 2 x 21 = 42.

Recovered Compressed CoT: Let’s break it down
step by step. Deanna is 26 years old. Marcus is five
years younger than Deanna: M = D - 5. Marcus’s age:
M = 26 - 5 = 21. Marcus is half of Leo’s age: M = L
/ 2. Leo is twice Marcus’s age: L = 2M. Leo’s age: L
= 2 x 21 = 42.

Figure 3: Recovering the compressed CoT for GSM8K
math word problem using LLaMA-3.1-8B-Instruct.

CoT outputs and the substantial potential to en- 196

hance CoT efficiency by trimming this redundancy. 197

2.2 CoT Recovery 198

We further explore the following research question: 199

“Are LLMs capable of restoring the CoT process 200

from compressed outputs?” The answer is yes. As 201

shown in Figure 3 and detailed in Appendix A, 202

examples restored from compressed CoTs using 203

LLaMA-3.1-8B-Instruct demonstrate that LLMs 204

could effectively comprehend the semantic infor- 205

mation encoded in the compressed CoT and restore 206

the CoT process. This capability ensures that the 207

interpretability of compressed CoTs is maintained. 208

Additionally, when required by users, the complete 209

CoT process can be recovered and presented. 210

In summary, the empirical analysis above under- 211

scores the potential of trimming redundant tokens 212

to enhance CoT efficiency, as well as the ability 213

of LLMs to restore CoT from compressed outputs. 214

However, enabling LLMs to autonomously skip re- 215

dundant CoT tokens and identify shortcuts between 216

critical reasoning tokens presents a non-trivial chal- 217

lenge. To the best of our knowledge, this work is 218

the first to explore CoT compression through token 219

skipping. In the following sections, we present our 220

proposed methodology in detail. 221

3 TokenSkip 222

We introduce TokenSkip, a simple yet effective ap- 223

proach that enables LLMs to skip less important to- 224

kens, enabling controllable CoT compression with 225

adjustable ratios. This section demonstrates the 226

details of our methodology, including token prun- 227

ing (§3.1), training (§3.2), and inference (§3.3). 228
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Figure 4: Illustration of TokenSkip. During the training phase, TokenSkip first generates CoT trajectories from the
target LLM. These CoTs are then compressed to a specified ratio, γ, based on the semantic importance of tokens.
TokenSkip fine-tunes the target LLM using compressed CoTs, enabling controllable CoT inference at the desired γ.

3.1 Token Pruning229

The key insight behind TokenSkip is that “each230

reasoning token contributes differently to deriving231

the answer.” To enhance CoT efficiency, we pro-232

pose to trim redundant tokens from LLM CoT out-233

puts and fine-tune LLMs using these trimmed CoT234

trajectories. The token pruning process is guided235

by the concept of token importance, as detailed in236

Section 2.1.237

Specifically, given a target LLM M, one of its238

CoT trajectories c = {ci}mi=1, and a desired com-239

pression ratio γ ∈ [0, 1], TokenSkip first calculates240

the semantic importance of each CoT token I (c),241

as defined in Eq (2). The tokens are then ranked242

in descending order based on their importance val-243

ues. Next, the γ-th percentile of these importance244

values is computed, representing the threshold for245

token pruning:246

Iγ = np.percentile ([I (c1) , .., I (cm)] , γ) . (3)247

Finally, CoT tokens with an importance value248

greater than or equal to Iγ are retained in the com-249

pressed CoT trajectory:250

c̃ = {ci | I (ci) ≥ Iγ} , 1 ≤ i ≤ m. (4)251

3.2 Training252

Given a training dataset D with N samples and a253

target LLM M, we first obtain N CoT trajectories254

with M. Then, we filter out trajectories with incor-255

rect answers to ensure the high quality of training256

data. For the remaining CoT trajectories, we prune257

each CoT with a randomly selected compression258

ratio γ, as demonstrated in Section 3.1. For each259

⟨question, compressed CoT, answer⟩, we inserted260

the compression ratio γ after the question. Finally,261

each training sample is formatted as follows:262

Q [EOS] γ [EOS] Compressed CoT A,263

where ⟨Q,A⟩ indicates the ⟨question, answer⟩ pair. 264

Formally, given a question x, compression ratio 265

γ, and the output sequence y = {yi}li=1, which 266

includes the compressed CoT c̃ and the answer a, 267

we fine-tunes the target LLM M, enabling it to 268

perform chain-of-thought in a compressed pattern 269

by minimizing 270

L =
l∑

i=1

logP (yi | x, γ,y<i;θM) , (5) 271

where y = {c̃1, · · · , c̃m′ , a1, · · · , at}. Note that 272

the compression is performed solely on CoT se- 273

quences, and we keep the answer a = {ai}ti=1 274

unchanged. To preserve LLMs’ reasoning capabili- 275

ties, we also include a portion of the original CoT 276

trajectories in the training data, with γ set to 1. 277

3.3 Inference 278

The inference of TokenSkip follows autoregres- 279

sive decoding. Compared to original CoT outputs 280

that may contain redundancy, TokenSkip facili- 281

tates LLMs to skip unimportant tokens during the 282

chain-of-thought process, thereby enhancing rea- 283

soning efficiency. Formally, given a question x 284

and the compression ratio γ, the input prompt of 285

TokenSkip follows the same format adopted in 286

fine-tuning, which is Q [EOS] γ [EOS]. The LLM 287

M sequentially predicts the output sequence ŷ: 288

ŷ = argmax
y∗

l′∑
j=1

logP (yj | x, γ,y<j ;θM) , 289

where ŷ = {ĉ1, · · · , ĉm′′ , â1, · · · , ât′} denotes the 290

output sequence, which includes CoT tokens ĉ and 291

the answer â. We illustrate the training and infer- 292

ence process of TokenSkip in Figure 4. 293
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4 Experiments294

4.1 Experimental Setup295

Models and Datasets We primarily evaluate296

our method using LLaMA-3.1-8B-Instruct (Dubey297

et al., 2024) and Qwen2.5-Instruct series (Yang298

et al., 2024). The evaluation leverages two widely-299

used math reasoning benchmarks: GSM8K (Cobbe300

et al., 2021) and MATH (Hendrycks et al., 2021).301

For training, we use the respective training sets302

from both datasets. Regarding the MATH dataset,303

due to the computation cost, we assess our method304

on a subset, MATH-500, which is identical to the305

test set used in Lightman et al. (2024). The sub-306

set comprises 500 representative problems, and we307

find that its evaluation yields results comparable to308

those from the full dataset.309

Implementation Details We utilize LLMLingua-310

2 (Pan et al., 2024) as the token importance met-311

ric to generate our compressed CoT training data.312

The compression ratio γ is randomly selected from313

{0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for each training sam-314

ple. We adopt LoRA (Hu et al., 2022), an efficient315

and reproducible approach that has been widely316

verified as effective in LLM fine-tuning, to train317

our models. The rank r is set to 8, and the scaling318

parameter α is set to 16. TokenSkip is character-319

ized by its low training cost, with training taking320

∼2 hours for the 7B model and ∼2.5 hours for the321

14B model on 3090 GPUs. During inference, the322

maximum number of tokens max_len is set to 512323

for GSM8K and 1024 for MATH2. All experiments324

are conducted using Pytorch 2.1.0 on 2×NVIDIA325

GeForce RTX 3090 GPU (24GB) with CUDA 12.1,326

and an Intel(R) Xeon(R) Platinum 8370C CPU with327

32 cores. We include more implementation details328

in Appendix B.1.329

Baselines In our main experiments, we compare330

TokenSkip to two commonly used length control331

baselines: 1) Prompt-based Reduction. In this332

approach, we instruct the LLM to reduce a fixed333

proportion of output tokens in the CoT process.334

Specifically, we append a prompt such as “Please335

reduce 50% of the words in your Chain-of-Thought336

process.” to the input instruction. 2) Truncation.337

This method involves brute-force length truncation,338

where the maximum number of output tokens is339

restricted, compressing the CoT output to a fixed340

2Since many samples reach the maximum length when
testing TokenSkip on MATH-500, we adjust its length budget
to max_len×γ, with no adjustment for GSM8K.
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Figure 5: Compression performance of TokenSkip on
Qwen2.5-Instruct models. Qwen2.5-14B-Instruct shows
almost no performance drop with 40% token trimming.

ratio. These baselines are referred to as Prompt 341

and Truncation in Table 1, respectively. 342

Evaluation Metrics We evaluate TokenSkip us- 343

ing three widely used metrics: accuracy, the num- 344

ber of CoT tokens, and inference latency per sam- 345

ple. Model performance is assessed using scripts 346

from DeepSeek-Math3. Greedy decoding is em- 347

ployed to generate the outputs from the target LLM. 348

Inference latency is measured on a single NVIDIA 349

3090 GPU with a batch size of 1. In addition to 350

these metrics, we report the actual compression ra- 351

tio of the CoTs to assess whether the compression 352

aligns with the specified ratio. 353

4.2 Main Results 354

The performance of TokenSkip on GSM8K using 355

the Qwen2.5-Instruct series4 is illustrated in Fig- 356

ure 5. As the model scale increases, there is less 357

performance degradation at higher compression 358

ratios, indicating that larger LLMs are better at 359

identifying shortcuts between critical reasoning to- 360

kens, enabling more efficient CoT generation. No- 361

tably, Qwen2.5-14B-Instruct exhibits almost NO 362

performance drop (less than 0.4%) with 40% token 363

trimming. Even at a compression ratio of 0.5, the 364

model maintains strong reasoning capabilities, with 365

only 2% performance degradation. These results 366

highlight the substantial potential of TokenSkip to 367

reduce CoT token usage and accelerate reasoning 368

in large-scale LLMs. Due to computational con- 369

straints, experiments with larger models are not 370

conducted and are left for future exploration. 371

We further compare TokenSkip with two widely 372

3https://github.com/deepseek-ai/DeepSeek-Math
4For detailed results, please refer to Appendix B.2.
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Methods Ratio GSM8K MATH-500

Accuracy ↑ Tokens ↓ Latency (s) ↓ ActRatio Accuracy ↑ Tokens ↓ Latency (s) ↓ ActRatio

Original - 86.2(0.0↓) 213.17 5.961.0× - 48.6(0.0↓) 502.60 16.371.0× -

Prompt
0.9 84.1(2.1↓) 226.37 6.121.0× 1.06 48.6(0.0↓) 468.04 15.391.1× 0.93
0.7 84.9(1.3↓) 209.39 5.511.1× 0.98 48.4(0.4↓) 472.13 15.551.1× 0.94
0.5 83.7(2.5↓) 188.82 4.971.2× 0.89 47.8(0.4↓) 471.11 15.481.1× 0.94

Truncation
0.9 70.2(26.0↓) 202.06 5.291.1× 0.95 47.8(0.8↓) 440.33 14.561.1× 0.88
0.7 25.9(60.3↓) 149.99 3.971.5× 0.70 45.0(3.6↓) 386.89 12.851.3× 0.77
0.5 7.0(79.2↓) 103.69 2.952.0× 0.49 27.4(21.2↓) 283.70 9.401.7× 0.56

TokenSkip

1.0 86.7(0.5↑) 213.60 5.981.0× 1.00 48.2(0.4↓) 504.79 16.431.0× 1.00
0.9 86.1(0.1↓) 198.01 5.651.1× 0.93 47.8(0.8↓) 448.31 15.261.1× 0.89
0.8 84.3(1.9↓) 169.89 5.131.2× 0.80 47.3(1.3↓) 398.94 13.391.2× 0.79
0.7 82.5(3.7↓) 150.12 4.361.4× 0.70 46.7(1.9↓) 349.13 11.551.4× 0.69
0.6 81.1(5.1↓) 129.38 3.811.6× 0.61 42.0(6.6↓) 318.36 10.581.6× 0.63
0.5 78.2(8.0↓) 113.05 3.401.8× 0.53 40.2(8.4↓) 292.17 9.671.7× 0.58

Table 1: Experimental results of TokenSkip on LLaMA-3.1-8B-Instruct. We report accuracy, average CoT token
count (Tokens), average latency per sample, and actual compression ratio (ActRatio) for comparison.

used length control baselines — prompt-based re-373

duction and truncation. The experimental results374

are presented in Table 1. As shown, prompt-based375

reduction fails to achieve the specified compres-376

sion ratio, with the actual ratio exceeding 0.89 even377

when the target is set to 0.5. While truncation378

adheres to the specified ratio, it results in signifi-379

cant degradation in reasoning performance. Specif-380

ically, at a compression ratio of 0.5, truncation381

causes a 79% accuracy drop on GSM8K and a 21%382

drop on MATH-500. In contrast, TokenSkip en-383

sures adherence to the specified compression ratio384

(see Figure 6) while preserving strong reasoning385

capabilities. Notably, TokenSkip achieves an ac-386

tual compression ratio of 0.53 on GSM8K with387

only a 10% performance drop, resulting in a 1.8×388

speedup in average latency. On the challenging389

MATH-500 dataset, TokenSkip effectively reduces390

CoT token usage by 30% with a performance drop391

of less than 4%. These results validate the effec-392

tiveness of TokenSkip.393

4.3 Analysis394

Compression Ratio In our main results, we fo-395

cus on compression ratios greater than 0.5. To396

further investigate the performance of TokenSkip397

at lower compression ratios, we train an additional398

variant, denoted as More Ratio, with extra com-399

pression ratios of 0.3 and 0.4. As shown in Fig-400

ure 6, the ratio adherence of models largely de-401

grades at these lower ratios. We attribute this de-402

cline to the excessive trimming of reasoning tokens,403

which likely causes a loss of critical information in404

the completions, hindering the effective training of405

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression Ratio

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
ct

ua
l R

at
io

TokenSkip
More Ratio

Figure 6: Comparison of ratio adherence across differ-
ent compression ratio settings. The experimental results
are obtained with LLaMA-3.1-8B-Instruct on GSM8K.

LLMs to learn CoT compression. Furthermore, we 406

observe that the overall adherence of More Ratio 407

is not as good as TokenSkip with the default set- 408

tings, which further supports our hypothesis. 409

Importance Metric Figure 7 presents a perfor- 410

mance comparison of TokenSkip across different 411

token importance metrics. In addition to the met- 412

rics discussed in Section 2.1, we include GPT-4o5 413

as a strong token importance metric for comparison. 414

Specifically, for a given CoT trajectory, we prompt 415

GPT-4o to trim redundant tokens according to a 416

specified compression ratio, without adding any 417

additional tokens. Additionally, we ask GPT-4o to 418

suggest the optimal compression format of the CoT 419

trajectory, referred to as GPT-4o-Optimal in Fig- 420

ure 7. We incorporate all training data generated by 421

GPT-4o to train a variant of TokenSkip. We use the 422

“[optimal]” token to prompt the model, obtaining 423

the results of GPT-4o-Optimal. 424

As illustrated in Figure 7, TokenSkip utilizing 425

5We use the gpt-4o-2024-08-06 version for experiments.
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Figure 7: Performance comparison of TokenSkip us-
ing different token importance metrics, evaluated with
LLaMA-3.1-8B-Instruct on GSM8K.

LLMLingua-2 (Pan et al., 2024) outperforms the426

variant with Selective Context (Li et al., 2023),427

which aligns with our demonstrations in Section428

2.1. Additionally, incorporating GPT-4o for token429

importance measurement further enhances com-430

pression performance, suggesting that a more ro-431

bust CoT compressor could improve TokenSkip432

even further. However, the API costs associated433

with GPT-4o make it impractical for processing434

large datasets. In contrast, LLMLingua-2, which435

includes a BERT-size model, offers a cost-effective436

and efficient alternative for training TokenSkip.437

Furthermore, GPT-4o-Optimal achieves a better438

balance between reasoning accuracy and CoT to-439

ken reduction, emphasizing the potential of flexible440

compression ratios in CoT generation — an avenue441

we plan to explore in future work.442

Length Budget As outlined in Section 4.1, we443

adjust the maximum length budget to max_len×γ444

when evaluating TokenSkip on MATH-500, ensur-445

ing a fair comparison of compression ratios. How-446

ever, this brute-force length truncation inevitably447

impacts the reasoning performance of LLMs, as448

LLMs are unable to complete the full generation.449

In this analysis, we explore whether LLMs can450

“think” more effectively using a compressed CoT451

format. Specifically, we evaluate TokenSkip under452

the same length budget as the original LLM (e.g.,453

1024 for MATH-500). The experimental results,454

shown in Figure 8, demonstrate a significant per-455

formance improvement of TokenSkip under this456

length budget, compared to those adjusted by com-457

pression ratios. Notably, with compression ratios458

of 0.7, 0.8, and 0.9, TokenSkip outperforms the459

original LLM, yielding an absolute performance in-460
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Figure 8: Performance comparison of TokenSkip with
varying maximum length constraints, evaluated with
LLaMA-3.1-8B-Instruct on the MATH-500 dataset.

crease of 1.3 to 2.6 points. These findings highlight 461

TokenSkip’s potential to enhance the reasoning ca- 462

pabilities of LLMs within the same length budget. 463

Case Study Figure 9 presents several exam- 464

ples of TokenSkip, derived from the test sets of 465

GSM8K and MATH-500. These examples clearly 466

illustrate that TokenSkip allows LLMs to learn 467

shortcuts between critical reasoning tokens, rather 468

than generating shorter CoTs from scratch. For 469

instance, in the first case, TokenSkip facilitates 470

LLaMA-3.1-8B-Instruct to skip semantic connec- 471

tors such as “of ” and “the”, as well as expressions 472

that contribute minimally to the reasoning, such as 473

the first sentence. Notably, we observe that numeric 474

values and mathematical equations are prioritized 475

for retention in most cases. This finding aligns 476

with recent research (Ma et al., 2024), which sug- 477

gests that mathematical expressions may contribute 478

more significantly to reasoning than CoT in natural 479

language. Furthermore, we find that TokenSkip 480

does not reduce the number of reasoning steps but 481

instead trims redundant tokens within those steps. 482

5 Related Work 483

Efficient CoT While Chain-of-Thought (CoT) 484

enhances task performance by simulating human- 485

like reasoning patterns, its reasoning steps intro- 486

duce significant computational overhead. As a re- 487

sult, researchers have sought methods to reduce 488

this overhead while retaining the benefits of CoT. 489

One intuitive approach is to simplify, skip (Mar- 490

conato et al., 2024; Ding et al., 2024; Liu et al., 491

2024), or generate thinking steps in parallel (Ning 492

et al., 2023) to improve efficiency. Another strat- 493

egy involves compressing reasoning steps into con- 494

tinuous latent representations (Goyal et al., 2024; 495

Deng et al., 2024; Hao et al., 2024; Cheng and 496

Van Durme, 2024), allowing LLMs to reason with- 497

out explicitly generating discrete word tokens. To 498

minimize the generation of redundant natural lan- 499
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LLaMA-3.1-8B-Instruct

Question:
Toula went to the bakery and bought various types 
of pastries. She bought 3 dozen donuts which cost 
$68 per dozen, 2 dozen mini cupcakes which cost 
$80 per dozen, and 6 dozen mini cheesecakes for 
$55 per dozen. How much was the total cost?

Original CoT (180 tokens):
To find the total cost, we need to calculate the cost 
of each type of pastry and then add them 
together.\n\nStep 1: Calculate the cost of the 
donuts\n3 dozen donuts cost $68 per dozen, so 
the total cost of the donuts is:\n3 x $68 = 
$204\n\nStep 2: Calculate the cost of the mini 
cupcakes\n2 dozen mini cupcakes cost $80 per 
dozen, so the total cost of the mini cupcakes is:\n2 
x $80 = $160…Step 4: Add the costs of all the 
pastries together to find the total cost\n$204 + 
$160 + $330 = $694

Compressed CoT (115 tokens):
Step 1: Calculate cost donuts Toula bought 3 
dozen donuts $68 per dozen cost 3 * $68 = $204 
Step 2: Calculate cost mini cupcakes bought 2 
dozen cupcakes $80 per dozen cost 2 * $80 = 
$160 Step 3: Calculate cost mini cheesecakes 
bought 6 dozen cheesecakes $55 per dozen cost 6 
* $55 = $330 Step 4: Calculate total cost add cost 
donuts cupcakes cheesecakes total cost $204 + 
$160 + $330 = $694.

Qwen2.5-14B-Instruct

Question:
Janet’s ducks lay 16 eggs per day. She eats three 
for breakfast every morning and bakes muffins for 
her friends every day with four. She sells the 
remainder at the farmers' market daily for $2 per 
fresh duck egg. How much in dollars does she 
make every day at the farmers' market?

Original CoT (248 tokens):
To determine how much Janet makes every day at
the farmers' market, we need to follow these 
steps:\n\n1. **Calculate the total number of eggs
laid per day:**\n   Janet's ducks lay 16 eggs per 
day.\n\n2. **Determine the number of eggs Janet 
uses each day:**\n   - Janet eats 3 eggs for 
breakfast every day.\n   - Janet bakes muffins using 
4 eggs every day.\n   - Total eggs used per day = 3
(for breakfast) + 4 (for baking) = 7 eggs.\n\n…, 
Janet makes \\(\\boxed{18}\\) dollars every day at 
the farmers' market.

Compressed CoT (138 tokens):
determine Janet makes selling duck eggs at 
farmers' market follow steps 1. **Calculate total 
number eggs laid per day Janet's ducks lay 16 eggs 
per day **Determine number eggs used each day 
Janet eats 3 eggs breakfast bakes muffins uses 4 
eggs eggs used per day 3 + 4 = 7 …4. **Calculate 
revenue from selling eggs Janet sells each egg for 
$2 revenue per day 9  2 = 18  Janet makes {18} 
dollars every day at farmers' market.

LLaMA-3.1-8B-Instruct

Question:

Simplify $\\sqrt{242}$.

Original CoT (252 tokens):

Step 1:  To simplify $\\sqrt{242}$, we need to find
the largest perfect square that divides 
$242$.\nStep 2:  We start by finding the prime 
factorization of $242$. This involves breaking 
down $242$ into its prime factors.\nStep 3:  The 
prime factorization of $242$ is $2 \\cdot 11^2$. 
This means that $242$ can be expressed as the 
product of $2$ and $11$ squared.\nStep 4:  Now, 
we can simplify the square root of $242$ by taking 
the square root of the perfect square factor, 
which is $11^2$.\nStep 5:  Taking the square root 
of $11^2$ gives us $11$, as the square root of a 
number squared is …Step 7:  So, the simplified 
form of $\\sqrt{242}$ is $\\boxed{11\\sqrt{2}}$.

Compressed CoT (142 tokens):

Step 1: simplify $\\sqrt{242}$ find perfect square 
factor Step 2: prime factorization $242$ $2 11^2$ 
Step 3: perfect square factor $\\sqrt{242}$ 
$\\sqrt{2 11^2}$ Step 4: property square root 
multiply separate Step 5: $\\sqrt{2 11^2} = 
\\sqrt{2} \\sqrt{11^2}$ Step 6: $\\sqrt{11^2} = 
11$ Step 7: $\\sqrt{242} = \\sqrt{2}  11$ Step 8: 
simplify $\\sqrt{242}$ $\\boxed{11\\sqrt{2}}$

Figure 9: Three CoT compression examples from TokenSkip. For each sample, we list the question, original CoT
outputs from corresponding LLMs, and the compressed CoT by TokenSkip. The tokens that appear in both the
original CoT and the compressed CoT are highlighted in red.

guage information that has minimal impact on rea-500

soning, Hu et al. (2023) implements structured syn-501

tax and symbols, while Han et al. (2024) guides502

token consumption through dynamic token budget503

estimation. Similarly, Kang et al. (2024) prompts504

larger LLMs (i.e., GPT-4) to directly compress CoT,505

then fine-tunes LLMs to reason using these com-506

pressed CoTs. In contrast, this work focuses on507

pruning CoT tokens based on their semantic impor-508

tance. Additionally, TokenSkip leverages a small509

LM for token pruning, significantly reducing com-510

putational overhead.511

Prompt Compression As LLMs advance in their512

zero-shot capabilities, the growing demand for513

complex instructions and long-context prompts514

has led to substantial computational and memory515

challenges in processing lengthy inputs. To ad-516

dress this bottleneck, researchers have explored517

various prompt compression techniques. One intu-518

itive approach involves using a lightweight LM519

to generate more concise, semantically similar520

prompts (Chuang et al., 2024). However, given that521

explicit natural language representations often con-522

tain redundant information, some researchers have523

turned to implicit continuous tokens to represent524

task prompts (Wingate et al., 2022; Mu et al., 2024)525

and long-context inputs (Chevalier et al., 2023; Ge526

et al., 2024; Mohtashami and Jaggi, 2023). Other 527

approaches focus on directly compressing input 528

prompts by filtering and retaining high-informative 529

tokens (Li et al., 2023; Jiang et al., 2023; Pan 530

et al., 2024). For instance, Selective Context uses 531

the perplexity of LLMs to measure token impor- 532

tance and removes tokens deemed less important. 533

LLMLingua-2 (Pan et al., 2024) introduces a small 534

bidirectional language model for token importance 535

measurement and trains this LM with GPT-4 com- 536

pression data, which serves as the token importance 537

metric in this work. 538

6 Conclusion 539

This work introduces TokenSkip, a simple yet ef- 540

fective approach for controllable Chain-of-Thought 541

(CoT) compression. TokenSkip is built upon the 542

semantic importance of CoT tokens — By selec- 543

tively skipping less important tokens while pre- 544

serving critical ones, TokenSkip enables LLMs 545

to generate compressed CoTs with adjustable ra- 546

tios, thereby striking an expected balance between 547

reasoning efficiency and accuracy. Extensive ex- 548

periments across various LLMs and tasks validate 549

the effectiveness of TokenSkip. We hope our in- 550

vestigations in token skipping will offer valuable 551

insights for advancing efficient CoT research and 552

inspire future studies in this area. 553
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Limitations554

Due to computational constraints, experiments with555

larger LLMs, such as Qwen2.5-32B-Instruct and556

Qwen2.5-72B-Instruct, were not conducted. We557

believe that TokenSkip could achieve a more fa-558

vorable trade-off between reasoning performance559

and CoT token usage on these models. Addition-560

ally, the token importance measurement used in561

our study, derived from the LLMLingua-2 com-562

pressor (Pan et al., 2024), was not specifically563

trained on mathematical data. This limitation may564

affect the compression effectiveness, as the model565

is not optimized for handling numerical tokens and566

mathematical expressions. Furthermore, experi-567

ments with long-CoT LLMs, such as QwQ-32B-568

Preview, were also excluded due to computational569

constraints. We plan to explore these aspects in570

future work, as we anticipate that TokenSkip ’s571

potential can be further realized in these contexts.572

Ethics Statement573

The datasets used in our experiment are publicly574

released and labeled through interaction with hu-575

mans in English. In this process, user privacy is576

protected, and no personal information is contained577

in the dataset. The scientific artifacts that we used578

are available for research with permissive licenses.579

And the use of these artifacts in this paper is consis-580

tent with their intended use. Therefore, we believe581

that our research work meets the ethics of ACL.582
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Appendix874

A CoT Recovery875

In this section, we provide the detailed prompt for876

our recovery experiments, which is illustrated in877

Figure 10. Besides, we present the CoT recov-878

ery result from GPT-4o (OpenAI, 2023) in Fig-879

ure 11. The recovered results demonstrate that880

GPT-4o could understand the compressed CoT con-881

tent and correctly restore the original CoT process.882

Input Prompt for CoT Recovery

Could you please recover the following compressed
Chain-of-Thought output of a mathematical question
to its original full content?

The question is:
Marcus is half of Leo’s age and five years younger
than Deanna. Deanna is 26. How old is Leo?

The compressed Chain-of-Thought:
break down Deanna 26 Marcus five years younger 26
- 5 21 Marcus half Leo’s age Leo twice Marcus’s age
Marcus 21, Leo’s age 2 x 21 = 42.

Original Full Chain-of-Thought:

Figure 10: Input prompt for LLaMA-3.1-8B-Instruct
designed to recover the compressed CoT from a GSM8K
math problem.

Revovering the Compressed Chain-of-Thought

Compressed CoT: break down Deanna 26 Marcus
five younger 26 - 5 21 Marcus half Leo’s age twice
Marcus Marcus 21, Leo’s age 2 x 21 = 42.

Recovered CoT: 1. We know that Deanna is 26 years
old. 2. Marcus is five years younger than Deanna.
So, Marcus’s age is 26− 5 = 21. 3. Marcus is also
half of Leo’s age, which means Leo’s age is twice
Marcus’s age. 4. Since Marcus is 21 years old, Leo’s
age is 2× 21 = 42. So, Leo is 42 years old.

Figure 11: Recovering the compressed CoT for GSM8K
math word problem using GPT-4o.

B Experimental Details883

B.1 Implementation Details884

We utilize LLMLingua-2 (Pan et al., 2024) as the to-885

ken importance metric to generate our compressed886

CoT training data. The compression ratio γ is ran-887

domly selected from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}888

for each training sample. We adopt LoRA (Hu889

et al., 2022) to train our models. The rank r is set890

to 8, and the scaling parameter α is set to 16. We891

train the models for 3 epochs on both datasets. The892

peak learning rate is set to 5e-5, following a cosine 893

decay schedule. We use AdamW (Loshchilov and 894

Hutter, 2019) for optimization, with a warmup ratio 895

of 0.1. We implement our training process using 896

the LLaMA-Factory (Zheng et al., 2024) library. In- 897

ference for both our method and all baselines is per- 898

formed using the Huggingface transformers pack- 899

age. During inference, the maximum number of 900

tokens max_len is set to 512 for GSM8K and 1024 901

for MATH. All experiments are conducted using 902

Pytorch 2.1.0 on 2×NVIDIA GeForce RTX 3090 903

GPU (24GB) with CUDA 12.1, and an Intel(R) 904

Xeon(R) Platinum 8370C CPU with 32 cores. 905

B.2 Detailed Results with Qwen 906

We provide detailed experimental results of the 907

Qwen2.5-Instruct series evaluated on GSM8K in 908

Table 2. As the model scale increases, there is 909

less performance degradation at higher compres- 910

sion ratios, indicating that larger LLMs are better 911

at identifying shortcuts between critical reasoning 912

tokens, enabling more efficient CoT generation. 913

Scale Methods Ratio Accuracy Tokens ActRatio

3B

Original - 83.7(0.0↓) 314.87 -

TokenSkip

1.0 83.4(0.3↓) 318.79 1.00
0.9 83.2(0.5↓) 262.99 0.83
0.8 81.6(2.1↓) 250.71 0.79
0.7 80.1(3.6↓) 233.03 0.73
0.6 77.3(6.4↓) 199.55 0.63
0.5 74.4(9.3↓) 170.55 0.54

7B

Original - 91.4(0.0↓) 297.83 -

TokenSkip

1.0 91.7(0.3↑) 295.78 1.00
0.9 91.1(0.3↓) 254.77 0.86
0.8 90.1(1.3↓) 237.27 0.80
0.7 89.9(1.5↓) 216.73 0.73
0.6 87.9(3.5↓) 178.07 0.60
0.5 86.0(5.4↓) 151.44 0.51

14B

Original - 93.1(0.0↓) 313.11 -

TokenSkip

1.0 93.0(0.1↓) 314.55 1.00
0.9 93.3(0.2↑) 269.22 0.86
0.8 93.2(0.1↑) 247.24 0.79
0.7 93.4(0.3↑) 218.62 0.70
0.6 92.7(0.4↓) 180.68 0.57
0.5 91.4(1.7↓) 156.85 0.50

Table 2: Experimental results on the Qwen2.5-Instruct
series. We report accuracy, average CoT token count,
and actual compression ratio (ActRatio) for comparison.
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