Under review as a conference paper at ICLR 2026

INSES: INTELLIGENT NAVIGATION AND SIMILARITY
ENHANCED SEARCH FOR KNOWLEDGE GRAPH REA-
SONING

Anonymous authors
Paper under double-blind review

ABSTRACT

GraphRAG is increasingly adopted for converting unstructured corpora into graph
structure, enabling relational, multi-hop reasoning beyond chunk-level retrieval.
Most systems then reason over these graphs with classic graph algorithms. How-
ever, such traversal, tied to static connectivity and ’connected triple’ paths, fre-
quently misses latent semantic links in real-world knowledge graphs (KG) that
are noisy, sparse, or incomplete. To address this gap, we introduce INSES (In-
telligent Navigation and Similarity Enhanced Search), a dynamic graph-reasoning
framework that couples LLM-guided navigation, which prunes noise and steers
triple selection with embedding-based similarity expansion to recover hidden links
and bridge gaps beyond explicit edges, turning search from a purely structural
walk into semantics-aware multi-hop reasoning. Additionally, since GraphRAG
style search generally incurs higher complexity than naive RAG, we complement
INSES with a lightweight router that sends simple queries to naive RAG and es-
calates complex multi-hop cases to INSES, balancing efficiency and reasoning
depth. Across multiple QA benchmarks, INSES consistently outperforms SOTA
RAG and GraphRAG baselines. Results highlight complementary strengths of
coarse-grained text retrieval for easy cases and fine-grained triple reasoning for
harder ones. On the MINE benckmark, INSES remains robust across KGs pro-
duced by KGGEN, GraphRAG, and OpenlE, improving accuracy by 5%, 10%,
and 27%. This work opens the door to adaptive, router-backed KG reasoning.

1 INTRODUCTION

Graph search is a fundamental problem in computer science, with applications spanning knowledge-
graph reasoning, social network analysis, bioinformatics, etc. Classical algorithms such as Depth
First Search (Yih et al., 2015), Breadth First Search (Sun et al., 2018), and Random Walk (Lao
& Cohen, 2010; Ristoski & Paulheim, 2016) are typically adapted to knowledge graphs (KG), op-
erating over entity—relation triples, rather than applied verbatim. Although effective in traditional
settings, such adaptations meet a mismatch in real-world scenarios whose semantics extend beyond
bare connectivity and whose structure is often noisy, error-prone, and incomplete. A key limitation
of traditional search lies in its reliance on static structures and traversal strategies. In real world
settings, knowledge graphs (KG) (Hogan et al., 2021; Ji et al., 2021; Paulheim, 2017) and social
networks (Newman, 2003; Easley et al., 2010), not only contain attributes (e.g., names, weights) but
can also incorporate embedding representations. However, on the other hand, these embeddings, to-
gether with the reasoning and decision-making capabilities of large language models (LLM) (Team
et al., 2023; Dubey et al., 2024; OpenAl, 2024; ZhipuAl, 2024), open new opportunities for more
intelligent and adaptive search: attribute-aware navigation and semantic control.

Recent GraphRAG’s style pipelines organize corpora into graph representations to support multi-
hop reasoning (Saxena et al., 2020; Procko & Ochoa, 2024; Hu et al., 2025); at the same time,
LLM-guided/PPR variants refine traversal (Sun et al., 2024; Ma et al., 2025; Jimenez Gutierrez
et al., 2024). Yet in most systems, exploration is still governed by explicit edges and fixed neigh-
borhood budgets, which privileges connected-triplet locality and leaves semantically implied links
outside the traversed subgraph. As in the KG application, errors, redundancies, and missing links are
unavoidable when extracting structured knowledge from natural language. Even with advanced con-

Under review as a conference paper at ICLR 2026

struction methods such as OpenlE (Angeli et al., 2015), GraphRAG (Edge et al., 2024), or the more
recent KGGEN (Mo et al., 2025), which employs iterative LLM-based clustering to reduce sparsity,
imperfections remain. As a result, critical relationships may be lost or fragmented between similar
but distinct entities. To illustrate this, let us examine an example. For an article titled “The Life
Cycle of a Butterfly” in MINE benchmark(Mo et al., 2025), Table 1 shows some of the entity nodes
generated when building KGs using KGGEN, GraphRAG, and OpenlE. Across all methods, we
observe the presence of many similar entities, such as butterflies, adult butterflies, and female but-
terflies. During the reasoning process, some characteristics of butterflies can be generalized to adult
butterflies, but some characteristics cannot and vice versa. So should these entity nodes be merged
in the KG? If they are merged, information loss and errors may occur; if they are not merged, some
important information may be missed during the reasoning process. This situation occurs because of
the complexity and diversity of natural language. These latent semantic connections cannot be fully
captured by explicit graph edges. However, it can be exploited through embedding similarity during
search. That is, even butterflies and adult butterflies should be treated as distinct entities, they also
share implicit connections. Such latent relationships are not easily captured by explicit graph edges,
but they can and should be leveraged during search. By representing entities with embeddings and
incorporating similarity-based expansion during search, we can dynamically enrich the graph and
surface the hidden links needed for reasoning.

Table 1: Entity Nodes Generated by Different Methods

Method Entity Nodes Generated by Different Methods

KGGEN ["adult”, adulthood”, “antennae”, “appearance”, “appreciation”, "balance”,
“beauty”, “biodiversity”, “birds”, “body”, “butterfly”, "camouflage”,
“caterpillar”, ..., ’food”, ”’food source”, "host plants”, "’life cycle”,

’lifespan”, ’plant populations”, ”’plants™, ...]

GraphRAG [“egg stage”, ’birds”, adult butterflies”, “nectar”, "insects”, ”pupa”, "host

plants”, “larva stage”, “chrysalis”, ”metamorphosis”, ’female butterflies”,

ERINET)

“pollination”, “reptiles”, ’butterflies”, caterpillar”, ”’butterfly”, ...]

9% 99 99 99

OpenlE ["They”, "egg to larva”, "specific host plants”, ’journey filled”, "third stage”,

“butterfly ’s life cycle”, ”lifespan ranging from few days to weeks’’, ’Life

Cycle”, “changes”, "laid”, "twigs”, "Next time”, ’to prepare for stage of its
life cycle”, ..., ’short lifespan ranging”, “’lifespan ranging from days”,
>’prepare for stage of its life cycle”, ”lifespan ranging from days to

weeks”, "’life cycle”, ...]

Building upon these considerations, we propose INSES (Intelligent Navigation and Similarity-
Enhanced Search), a dynamic graph-reasoning framework that do the better reasoning over the
graph. To counter the static-connectivity bias and reduce noise, an LLM navigator selects and prunes
adjacent triples at each step, steering exploration toward evidence that answers the query rather than
exhaustively walking neighborhoods. To mitigate incompleteness and aliasing, embedding-based
similarity expansion temporarily augments the frontier with semantically proximate nodes, recov-
ering hidden links not realized as explicit edges. These two components act in tandem, navigation
prunes and guides; similarity recovers and connects, turning traversal from a purely structural walk
into semantics-aware multi-hop reasoning over imperfect property graphs. To cap cost and avoid
drift, INSES runs for a bounded number of iterations (small-world (Milgram et al., 1967) motivated),
and we introduce a lightweight router: straightforward queries are answered with naive RAG, while
complex or low-confidence cases are escalated to INSES, balancing efficiency and depth.

We evaluate INSES on three multihop QA benchmarks and observe consistent gains over strong
RAG and GraphRAG baselines across metrics, demonstrating robustness to dataset difficulty and
reasoning depth. An ablation study shows that similarity-based expansion is the dominant contrib-
utor to accuracy, while a lightweight router provides further lift and helps contain cost. Moreover,
routing analysis indicates that many shallow queries are efficiently handled by naive RAG (= 86%
on HotpotQA), reserving INSES for complex cases, aligning accuracy with efficiency. Finally, on
the MINE benchmark, INSES remains effective across KGs built by KGGEN, GraphRAG, and
OpenlE, improving mean accuracy by 5%, 10%, and 27%, respectively. We summarize the main
contributions of this work as follows:

Under review as a conference paper at ICLR 2026

* We diagnose why explicit-edge, static-strategies exploration under-captures cross-entity re-
lations in noisy/incomplete KGs, motivating dynamic, semantics-aware search that couples
structure with similarity.

* We introduce INSES, which fuses LLM-guided navigation with similarity-based expansion
for on-the-fly augmentation and controlled traversal over property graphs.

* We design a lightweight router that preserves RAG-level efficiency on easy queries and
escalates complex/low-confidence cases to INSES, yielding better accuracy-cost trade-offs.

* We report consistent gains on MuSiQue/2Wiki/HotpotQA, robustness on MINE across
KGGEN/GraphRAG/OpenlE, and ablations showing similarity expansion as the main con-
tributor with routing providing additional improvements.

2 RELATED WORK

2.1 KNOWLEDGE GRAPH REASONING

Reasoning on knowledge graphs traditionally adapts search procedures (e.g., depth-/breadth-
oriented traversals, random walks) to operate over entity—relation triples rather than using general-
graph routines verbatim, which implicitly assumes that explicit edges are sufficient evidence trails
(Wang et al., 2013; Yih et al., 2015; Sun et al., 2018; Lao & Cohen, 2010; Ristoski & Paulheim,
2016). Recent graph-centric pipelines construct or reorganize structure and then guide exploration
for multi-hop reasoning: some form hierarchical/summary trees to route queries across levels (Sarthi
etal., 2024; Zhang et al., 2025); others induce community-structured subgraphs for summary-centric
retrieval (Edge et al., 2024); a third line dynamically constructs KGs and designs adaptive traversal
policies (Li et al., 2024; Wang et al., 2024); further variants couple traversal with LLM decision-
making (e.g., beam-style selection) (Sun et al., 2024; Ma et al., 2025) or employ importance-biased
walks for multi-hop retrieval (Gutiérrez et al., 2024). Despite these advances, exploration is still
largely governed by explicit connectivity and fixed local budgets, which under-captures cross-entity
evidence and overlooks latent semantic relations (e.g., aliasing among similar-but-distinct nodes)
that are not realized as direct triples. To move beyond edge-only locality and reduce noise from im-
perfect structure, INSES integrates LLM-guided navigation (pruning/steering triple selection using
attributes and semantics) with embedding-based similarity expansion (temporarily extending the
frontier with semantically proximate nodes to recover hidden links), turning structural walks into
semantics-aware multi-hop reasoning under bounded iterations.

2.2 RETRIEVAL AUGMENTED GENERATION

Retrieval Augmented Generation (RAG) integrates retrieval into generation to ground LLMs in ex-
ternal knowledge, evolving from early retrieval-based QA (Chen et al., 2017; Karpukhin et al., 2020;
Guu et al., 2020) to end-to-end coupling of retrieval and generation (Lewis et al., 2020), with recent
advances using LLMs as retrievers (Yu et al., 2023; Sun et al., 2023) and finer retrieval granularity
such as propositions (Chen et al., 2024). In practice, RAG spans text-based, KG-based: text-based
variants retrieve semantically similar passages (Gao et al., 2023b; Zhao et al., 2024; Xiao et al.,
2025; Chen et al., 2025) but can miss deeper relational structure and include redundant context;
iterative schemes that interleave retrieval and reasoning (Shao et al., 2023; Trivedi et al., 2023; Wei
et al., 2022; Gao et al., 2023a) improve recall yet increase latency and risk error accumulation with-
out a reliable guide. Graph-based RAG offers more interpretable, precise structure (Wang et al.,
2024; Liang et al., 2025). Early work injected KG knowledge directly into model representations
(Peters et al., 2019; Liu et al., 2020), while more recent approaches augment LLMs externally by
translating relevant KG subgraphs into prompts (Wen et al., 2024; Dai et al., 2025; Zhang et al.,
2024), while these pipelines inherit KG incompleteness. Together, these trade-offs motivate systems
that preserve text-RAG efficiency on easy cases while invoking structured, semantics-aware reason-
ing when needed. We address this tension with a lightweight router that keeps easy, shallow queries
on standard RAG and escalates complex/low-confidence ones to INSES; once escalated, INSES’s
LLM navigation + similarity expansion directly targets static-connectivity blind spots by leveraging
attributes and embedding proximity during search.

Under review as a conference paper at ICLR 2026

Query: When did the city where Greenwood Laboratory School is located become capitol of the state where the screenwriter
= of The Poor Boob was born?

— Entity Extractor, two entity nodes
entity extract entity extract are extracted from the query

Greenwood ﬁi LLM navigation and pruning,
Laboratory School AL only a few edges are retained

5|m|lar Iocated ”l_/ S|m|Iar W”ﬂen by written by written by
omprehenswe k-1 Z. Wall Gardner
laboratory school Spnngfleld Margaret Wikye Covington Hunting

snm|lar occu patlon

The Poor Boob

born in nationnality

Spnngfleld lllinois lllinois Screenwriter

became capital o
Extended by simliarity, the key to

the success of this example

1839

Figure 1: An example of INSES workflow. Solid edges denote explicit relations; dashed edges
denote dynamically added similarity edges. Nodes/edges with green background aid answering
query. LLM maps query entities (“Greenwood Laboratory School” and “The Poor Boob”) to initial
nodes, picks relevant triples while pruning noise, and uses similarity expansion to recover latent
links (e.g., “Springfield” — “Springfield Illinois”). Navigation and pruning discard spurious edges,
while expansion reveals critical connections, together enabling more reliable multi-hop reasoning.

3 METHODOLOGY

As discussed above, we introduce intelligent navigation together with similarity-based expansion
into traditional graph search to tackle multi-hop reasoning over KGs. We store KG as a property
graph(Angles, 2018; Angles et al., 2017). Beyond basic node/edge connectivity, a property graph at-
taches rich attributes (e.g., textual descriptions, types) to nodes and edges, and each node further has
an embedding representation. This allows search to exploit attribute filters and to fuse structural and
embedding information, improving both efficiency and accuracy. We begin with formal definitions.

3.1 PRELIMINARIE

Definition 1. (Property-Graph-based Knowledge Graph)
KG = (V7Ea)‘V> AE7 ¢)>

where V is the set of entity nodes;, EE C 'V x V is the set of semantic relation edges; Ay and \g
are attribute functions for nodes and edges; and ¢ : V- — R maps each node to a d-dimensional
embedding. For each edge e = (u,v) € E, the corresponding knowledge triple is (u, Ag(e),v).

Definition 2. (Multi-hop Search on Knowledge Graphs)

Given a natural-language query q, multi-hop search (reasoning) aims to identify triples in the graph
that are relevant to q and useful for answering it:

T(q) = {(u, Ar(e),v) € G | Relevant((u, Ag(e), v), ¢) = True},

where G = {(u, Ag(e),v) | (u,v) € E} is the set of all triples, T (q) denotes the evidence triples
for q, and Relevant(-, q) is a relevance function.

Traditional graph search can be applied to this task, but exhaustive traversal on large KGs is neither
computationally feasible nor necessary. Advances in LLM, embeddings, and graph representation

Under review as a conference paper at ICLR 2026

learning enable a more intelligent, dynamic search. Node embeddings let us map nodes to a vector
space and expand the graph via similarity; LLMs provide semantic-aware guidance to steer search
and prune noise. Building on these ideas, we propose INSES, which couples LLM-guided decision
making with similarity-based dynamic augmentation for effective search and reasoning in KGs.

High-level workflow. INSES first matches the query to semantically similar entity nodes via vector
embeddings. It then iterates: at each step, (i) LLM selects informative triples from the neighbors of
the current nodes, triples that directly support answering g or are promising for further exploration;
(ii) a similarity module finds nodes most similar to the current nodes. The LLM-selected neighbors
and similarity-based nodes are merged to form the next current nodes. These steps repeat until the
answer is found or the iteration limits are reached. Figure | shows an example workflow of INSES.

3.2 STEP 1: EXTRACT INITIAL ENTITY NODES

Use an LLM to extract entities from ¢, that is:

LLMExtractor (Q) = {mz }f:l .

For each entity m;, retrieve the entity node most similar in K'G by cosine similarity to form the
initial node set:

Vine = {vi | vi = argmax cos(¢(my), §(v)), i = L.k}, (M
where ¢(-) denotes the embedding function consistent with the construction of KG.

3.3 STEP 2: LLM NAVIGATION

In this step, the adjacent triples of the current node, denoted by T4, are extracted and then pruned
by LLM and judged whether they are sufficient to answer the question.

Initialize Veurrent = Vinit> Tselected = &. Then

Tadj = {(IvAE(e)ay) €g ‘ €= (l’,y) €FE, v€ VamentOry € chrrem}~ 2)

An LLM acts as a navigator, that is,

STOP, if answerable;
(Tnew,se]ecleda Vcandidate)a otherwise,

LLMNavigator (Qa ﬂelectem Tadj) - { (3)

where Thew selected © Taqj are newly selected triples and Veangigae are endpoints of Theyw selected-

3.4 STEP 3: SIMILARITY-BASED EXPANSION AND AUGMENTATION

Compute similar nodes for each u € Vyen and keep those above a threshold 7,

Viim = {v*(u) =arg max cos(¢(u),d(v)) ’ cos(¢(u), p(v*(u))) = Tsim}- “4)

veV\{u}

Update V_yrent by merging candidates and removing visited nodes:

Véurrent — (V;:andidate U V;im) \ V:/isited-

This dynamically augments structure beyond explicit edges to capture latent semantic links.

The complete algorithm is shown in Algorithms | in the Appendix B.

Under review as a conference paper at ICLR 2026

3.5 COMPLEXITY CONTROL AND ROUTING

LLM-driven navigation introduces additional complexity, so we limit the number of navigation it-
erations to control cost, by default six, motivated by the theory of small world (Milgram et al.,
1967; Kleinberg, 2000). We also introduce a lightweight router that dispatches queries by estimated
complexity and confidence: simple queries are handled by a standard RAG pipeline with confi-
dence estimation, whereas multihop queries or cases with low confidence are escalated to INSES for
structured graph search and reasoning. This hybrid architecture balances efficiency with reasoning
ability. The analysis and demonstration of the routing mechanism and the related Algorithm 2 is
shown in Appendix C.

4 EXPERIMENTS

4.1 DATASETS

To assess the effectiveness of INSES on graph search and reasoning, we conduct experiments on
three widely used multi-hop benchmarks: MuSiQue (Trivedi et al., 2022), 2WikiMultiHopQA (Ho
et al., 2020), and HotpotQA (Yang et al., 2018). For fairness, we follow the evaluation protocol of
previous work such as IRCoT (Trivedi et al., 2023), ensuring that all methods retrieve from the same
underlying corpus. To make the experiments computationally feasible while still representative, we
sample 1,000 queries from each dataset as our test set.

4.2 BASELINES

We compare our approach with three families of baselines. (i) LLM-only methods answer without
external retrieval, including Direct Prompting (Direct), the model outputs the final answer without
exemplars, and Few-shot CoT Prompting (Few-shot CoT) (Wei et al., 2022), where exemplars pro-
vide step-by-step rationales and final answers that the model emulates. (ii) Text-based RAG methods
retrieve from unstructured text and condition the LLM on retrieved snippets; we include the standard
Naive RAG pipeline, HyDE (Gao et al., 2023a) (which generates a hypothetical document from the
query to guide retrieval), and IRCoT (Trivedi et al., 2023) (which interleaves iterative retrieval with
chain-of-thought prompting). (iii) Graph-based RAG methods retrieve and reason over structured
representations; we evaluate GraphRAG (Edge et al., 2024), LightRAG (Guo et al., 2024), RAP-
TOR(Sarthi et al., 2024) and SiReRAG (Zhang et al., 2025), which leverage graph/cluster structure
to aggregate evidence for multi-hop reasoning.

4.3 METRICS

We evaluate all methods using two complementary metrics:

Exact Match (EM). EM measures whether the predicted answer string exactly matches the ground
truth. This is a strict evaluation criterion that rewards only verbatim matches. While widely used in
QA benchmarks, EM often underestimates performance when semantically correct answers differ
slightly in surface form.

LLM-as-a-Judge (LLM Judge). To better capture semantic correctness, we adopt an evaluation
protocol in which a LLM acts as a judge. Given the query ¢, the ground truth answer, and the model
prediction, the LLM judge determines whether the prediction is semantically consistent with the
ground truth and can be considered a correct answer to gq. This approach mitigates the limitations
of surface-level overlap and has recently been shown to be reliable and closely aligned with human
evaluation in multiple studies (Gu et al., 2024).

4.4 IMPLEMENTATION DETAILS

We follow a standard pipeline for constructing KGs from QA datasets. The constructed KG is stored
in the Neo4j graph database (Robinson et al., 2015; Francis et al., 2018). For system integration,
we adopt Llamalndex (Liu, 2022), which offers a modular interface to connect LLMs, databases,
and retrieval components in a unified framework. For the embedding model, we use the lightweight
model bge-base-en-v1.5 (BAAI, 2024), chosen for its balance between accuracy and efficiency.

Under review as a conference paper at ICLR 2026

Unless otherwise specified, all experiments use GLM-4 (ZhipuAl, 2024) as the LLM backbone for
reasoning, navigation, and answer generation. To evaluate the robustness of our approach, we also
include ablation studies and comparisons with stronger models - GPT-40 (OpenAl, 2024).

4.5 MAIN RESULTS AND ANALYSIS

Table 2 reports the performance of all baselines and our proposed method on three datasets, which
can be summarized as follows:

* Our proposed INSES + Router consistently outperforms all baselines on both EM and LLM
Judge across all datasets. The strongest baseline, SiReRAG, approaches our scores on
Musique but shows a clear gap on 2Wiki and a non-trivial gap on HotpotQA.

 Several graph-based variants (e.g., GraphRAG) fall short of Text RAG in these short, in-
dependent QA tasks. One reason is their reliance on cluster/community summaries as the
basis for generation, an approach better suited to long, thematically related document sets
than to brief factoid questions. In addition, as noted in the Introduction, there is no perfect
procedure for text—KG conversion: real KGs are inevitably incomplete and noisy (miss-
ing/ambiguous links). Together with the granularity/organization mismatch, these factors
imply different applicability regimes rather than an across-the-board advantage for graph
methods. This motivates our routing design: since Text RAG is far cheaper than graph
pipelines, routing between Text RAG and INSES balances both performance and cost.

* Most Text RAG baselines are relatively stable, and several perform strongly on HotpotQA;
for example, Naive RAG (Top-10) comes close to our method on that dataset. This supports
the view that Text RAG excels on simpler or short-chain questions.

* In most cases, LLM Judge and EM track closely. Larger gaps occur primarily on Hot-
potQA, suggesting that its answer format affects exact string matching more than semantic
consistency, making LLM Judge a useful complementary metric there.

Table 2: Performance comparison among baselines and INSES on three benchmark datasets in terms
of EM and LLM Judge.

. Musique 2Wiki HotpotQA
Baseline methods EM LL?\/I Judge EM LLMJudge EM IE)LM Tudge
LLM only GLM-4 (Direct) 0.15 0.18 032 0.36 041 0.49
GLM-4 (Few-shot CoT) 0.24 0.27 0.38 0.46 0.51 0.57
Naive RAG (Top-5) 031 0.29 039 0.43 0.62 0.71
Toxt-based Nave RAG (Top-10) 0.3 0.37 041 0.44 0.67 0.77
HyDE 0.21 0.31 0.45 0.46 0.57 0.63
IRCoT 0.25 0.42 0.38 0.43 0.37 0.48
GraphRAG (Top-3) 0.23 024 038 035 0.43 0.63
Graph-based CTPRRAG (Top-10) 0.26 0.36 0.50 0.43 0.47 0.61
LightRAG 0.38 0.42 0.58 0.58 0.67 0.77
Raptor 0.32 0.35 0.52 0.47 0.68 0.70
SiReRAG 0.44 0.43 0.48 0.53 0.61 0.75
Ours INSES + Router 0.46 0.47 0.67 0.71 0.68 0.80

The experiment results highlight the adaptability and robustness of our approach and illustrates the
complementary strengths of text RAG and graph-based RAG. Text RAG operates over relatively
coarse-grained units (e.g., text chunks) with lower construction and retrieval costs, while KG-based
methods operate at the finer granularity of triples, leading to higher construction and retrieval over-
head but greater reasoning precision. These results also validate the design of our router mechanism:
simple queries can be efficiently handled by Naive RAG, while more complex multihop reasoning
queries benefit from the graph-based search of INSES.

4.6 ABLATION STUDY

To better understand the contribution of each component in INSES, we conduct a step-wise ablation
study. Specifically, we evaluate the following settings: (i) using only the LLLM Navigator; (ii) adding

Under review as a conference paper at ICLR 2026

Similarity Enhancement on top of the LLM Navigator; and (iii) further incorporating the Router.
All three variants employ GLM-4 as the underlying LLM. In addition, we test GPT-40 as a stronger
backbone to examine the sensitivity of INSES to the choice of LLM.

Table 3 shows that similarity-based expansion makes the largest contribution, yielding substantial
improvements of 0.12 (EM) on MuSiQue, 0.07 (EM) on 2Wiki, and 0.05(EM) on HotpotQA. These
gains are more pronounced on complex queries, while simpler queries (often <2-hop) benefit less
since multi-hop reasoning is not required. The router provides additional improvements, though
smaller than those brought about by the similarity expansion. Switching from GLM-4 to GPT-40
leads to only modest gains, suggesting that the navigation and similarity enhancement themselves
are the dominant factors; once the LLM is sufficiently competent, stronger backbones deliver dimin-
ishing returns.

Finally, the HotpotQA results reveal a key insight: naive RAG already performs well on simpler
cases, sometimes outperforming graph search, which highlights the router’s particular value. By
assigning straightforward queries to Naive RAG and applying INSES to complex reasoning tasks,
the system strikes a balance between cost and performance.

Table 3: Ablation study on three datasets.

INSES Musique 2Wiki HotpotQA
EM LLMJudge EM LLM Judge EM LLM Judge
GLM-4 (Direct) 0.15 0.18 0.32 0.36 0.41 0.49
GPT-40 (Direct) 0.28 0.35 0.54 0.57 0.49 0.65
Naive RAG (Top-5) 0.31 0.29 0.39 0.43 0.62 0.71
w/ LLM Navigator 0.32 0.35 0.57 0.51 0.53 0.62
w/ LLM Navigator + Similarity Enhance 0.44 0.45 0.63 0.61 0.58 0.69
w/ LLM Navigator + Similarity Enhance + Router 0.46 0.47 0.67 0.71 0.68 0.80
w/ LLM Navigator + Similarity Enhance + Router (GPT-40) 0.48 0.49 0.69 0.73 0.68 0.79

4.7 ROUTING BEHAVIOR ANALYSIS

Router outcomes by dataset (share routed to RAG vs INSES)

HotpotQA

2Wiki

MuSiQue

0.0 0.2 0.4 0.6 0.8 1.0
Routing share
. RAG mam INSES

Figure 2: Proportion of queries routed to RAG vs. INSES across three datasets.

To further understand how the router balances efficiency and reasoning accuracy, we analyze the
proportion of queries assigned to RAG versus INSES across different datasets. This analysis pro-
vides insight into the practical role of the router: whether it effectively delegates simple queries to
lightweight retrieval while reserving graph-based reasoning for complex cases.

Figure 2 reports the fraction of queries routed to RAG and INSES on each dataset. The high share of
RAG on HotpotQA (86%) indicates that many validation queries can be solved by shallow retrieval;
consequently, the marginal benefit of graph search is smaller in this dataset. In contrast, MuSiQue
and 2Wiki show near-balanced routing. This observation aligns with our ablation results (Table 3),
where similarity-based expansion and multi-hop search yield larger gains on more complex queries.

Under review as a conference paper at ICLR 2026

4.8 ROBUSTNESS AND ADAPTABILITY OF INSES

To assess the robustness and adaptability of INSES in KGs of different structure and quality, we
evaluate it on the MINE benchmark introduced in KGGEN (Mo et al., 2025). MINE contains 100
articles (each article contains approximately 1,000 words) covering 100 diverse topics, including
history, art, science, ethics, and psychology. Each article is associated with 15 factual statements
that are grounded in the article.

For each article, three KGs are generated by KGGEN, GraphRAG (Edge et al., 2024), and OpenlE
(Angeli et al., 2015), respectively. Then use the native retriever of each method to retrieve supporting
triples for the 15 factual statements. An LLM then judges whether the retrieved triples are sufficient
to infer the target fact; a query is scored 1 if sufficient (correct), otherwise 0. The accuracy per article
is the number of correct queries divided by 15, and we report accuracies across all 100 articles. For
comparison, INSES is also run on each of the three KGs, with the same evaluation procedure. To
align with KGGEN’s setting, we use GPT-4o0 to judge.

Figure 3 compares the query accuracy distributions of INSES versus KGGEN, GraphRAG, and Ope-
nlE in 100 articles. In terms of mean accuracy, INSES improves by +0.05 on KGs built by KGGEN,
+0.10 on GraphRAG, and +0.27 on OpenlE. In particular, KGGEN, GraphRAG, and OpenlE rep-
resent three distinct paradigms of KG construction and produce graphs with markedly different
structure and quality. However, INSES consistently outperforms each corresponding baseline in all
KGs, indicating strong adaptability, due to its effective integration of similarity-based expansion
with LLM-guided search navigation.

An analysis of the substantial structural and size differences among KGs constructed by different
methods is provided in the Appendix A.

KGGEN vs INSES GraphRAG vs INSES OpenlE vs INSES
i i !

B GraphRAG = OpeniE
= INSES

.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Accuracy distributions comparison across INSES on KGs built by different methods.

5 CONCLUSION

In this work, we present INSES, a multi-hop reasoning algorithm for knowledge graphs (KGs) that
couples LLM-guided navigation with embedding-based similarity expansion to more effectively
search real-world graphs. INSES incrementally selects informative triples while augmenting the lo-
cal neighborhood with semantically similar nodes, mitigating sparsity and missing links in practical
KGs. To balance efficiency with reasoning depth, we introduce a query router that detects easy cases
and dispatches them to lightweight RAG, reserving INSES for genuinely multi-hop or ambiguous
queries. This modular design keeps efficiency on routine inputs while preserving strong reasoning
capability when complex compositional evidence is required.

Extensive experiments demonstrate that INSES consistently outperforms state-of-the-art baselines.
Ablation studies confirm that LLM navigation, similarity-based expansion, and the router all con-
tribute meaningfully to performance. These results highlight the adaptability and robustness of
INSES for various KG reasoning tasks.

Looking ahead, our work opens up several directions. First, refinement of similarity expansion with
stronger noise control and learning-based selection. Second, the similarity expansion and LLM
navigation introduced in the INSES algorithm can be used not only in KG reasoning scenarios but
also in other graph search scenarios.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

A complete description of the model and retrieval workflow is provided in Section 3 & 4, with the it-
erative decision loop specified in Algorithm | and complexity notes in Appendix B. All hyperparam-
eters, prompts, and inference settings are listed in Section 4 and Appendix, and we report the exact
model identifiers and versions for external LLMs/embedding model. Dataset details for MuSiQue,
2Wiki, and HotpotQA, including splits and all preprocessing steps, are documented in Section 4
and Appendix A, and corresponding codes are included in the supplementary materials. Our eval-
uation protocol (EM, LLM-Judge), decision criteria, and aggregation procedures are described in
Section 4. To enable end-to-end replication, we provide an downloadable code archive (supplemen-
tary materials) that contains exact configuration files, fixed commit hash, and one-command scripts
to reproduce results, as well as an environment specification (requirements.txt) and containers for
Neo4j and Qdrant via docker-compose.yml. Instructions for running all experiments with the re-
leased processed JSONSs and for regenerating results from raw data are included in the README in
the supplementary materials.

REFERENCES

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D Manning. Leveraging linguistic
structure for open domain information extraction. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 344-354, 2015.

Renzo Angles. The property graph database model. 2018.

Renzo Angles, Marcelo Arenas, Pablo Barcel, Aidan Hogan, Juan Reutter, and Domagoj Vrgoc.
Foundations of modern query languages for graph databases. ACM Computing Surveys (CSUR),
50(5):1-40, 2017.

BAAI. Bge-base-en-v1.5: English text embedding model. https://huggingface.co/
BAAT /bge—-base—en-vl.5, 2024. Based on: Xiao et al., arXiv:2309.07597 (2023).

Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. In 55th Annual Meeting of the Association for Computational Linguistics, ACL
2017, pp. 1870-1879. Association for Computational Linguistics (ACL), 2017.

Shengyuan Chen, Chuang Zhou, Zheng Yuan, Qinggang Zhang, Zeyang Cui, Hao Chen, Yilin Xiao,
Jiannong Cao, and Xiao Huang. You don’t need pre-built graphs for rag: Retrieval augmented
generation with adaptive reasoning structures. arXiv preprint arXiv:2508.06105, 2025.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,
and Dong Yu. Dense x retrieval: What retrieval granularity should we use? In Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 15159-15177,
2024.

Xinbang Dai, Yuncheng Hua, Tongtong Wu, Yang Sheng, Qiu Ji, and Guilin Qi. Large language
models can better understand knowledge graphs than we thought. Knowledge-Based Systems,
312:113060, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

David Easley, Jon Kleinberg, et al. Networks, crowds, and markets: Reasoning about a highly
connected world, volume 1. Cambridge university press Cambridge, 2010.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,

Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

10

https://huggingface.co/BAAI/bge-base-en-v1.5
https://huggingface.co/BAAI/bge-base-en-v1.5

Under review as a conference paper at ICLR 2026

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An evolv-
ing query language for property graphs. In Proceedings of the 2018 international conference on
management of data, pp. 1433-1445, 2018.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1762-1777, 2023a.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2023b.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. arXiv preprint arXiv:2410.05779, 2024.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: neuro-
biologically inspired long-term memory for large language models. In Proceedings of the 38th
International Conference on Neural Information Processing Systems, pp. 59532-59569, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: retrieval-
augmented language model pre-training. In Proceedings of the 37th International Conference on
Machine Learning, pp. 3929-3938, 2020.

Haoyu Han, Harry Shomer, Yu Wang, Yongjia Lei, Kai Guo, Zhigang Hua, Bo Long, Hui Liu,
and Jiliang Tang. Rag vs. graphrag: A systematic evaluation and key insights. arXiv preprint
arXiv:2502.11371, 2025.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
ga dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pp. 6609-6625, 2020.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’ Amato, Gerard De Melo, Claudio Gutier-
rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al.
Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1-37, 2021.

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. GRAG: Graph
retrieval-augmented generation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings
of the Association for Computational Linguistics: NAACL 2025, pp. 4145-4157, Albuquerque,
New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-
7. doi: 10.18653/v1/2025.findings-naacl.232. URL https://aclanthology.org/2025.
findings—-naacl.232/.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S Yu. A survey on knowledge
graphs: Representation, acquisition, and applications. /IEEE transactions on neural networks and
learning systems, 33(2):494-514, 2021.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
ologically inspired long-term memory for large language models. Advances in Neural Information
Processing Systems, 37:59532-59569, 2024.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Dangqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2020.

Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pp. 163—170, 2000.

11

https://aclanthology.org/2025.findings-naacl.232/
https://aclanthology.org/2025.findings-naacl.232/

Under review as a conference paper at ICLR 2026

Ni Lao and William W Cohen. Relational retrieval using a combination of path-constrained random
walks. Machine learning, 81(1):53—-67, 2010.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktédschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, pp. 9459-9474, 2020.

Dawei Li, Shu Yang, Zhen Tan, Jae Baik, Sukwon Yun, Joseph Lee, Aaron Chacko, Bojian Hou,
Duy Duong-Tran, Ying Ding, et al. Dalk: Dynamic co-augmentation of llms and kg to answer
alzheimer’s disease questions with scientific literature. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pp. 2187-2205, 2024.

Lei Liang, Zhongpu Bo, Zhengke Gui, Zhongshu Zhu, Ling Zhong, Peilong Zhao, Mengshu Sun,
Zhigiang Zhang, Jun Zhou, Wenguang Chen, et al. Kag: Boosting llms in professional domains
via knowledge augmented generation. In Companion Proceedings of the ACM on Web Conference
2025, pp. 334-343, 2025.

Jerry Liu. Llamalndex. https://github.com/jerryjliu/llama_index, 2022. Ac-
cessed: 2025-07-30.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. K-bert:
Enabling language representation with knowledge graph. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 2901-2908, 2020.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
Guo. Think-on-graph 2.0: Deep and faithful large language model reasoning with knowledge-
guided retrieval augmented generation. In Proceedings of the 2025 International Conference on
Learning Representations (ICLR), 2025.

Stanley Milgram et al. The small world problem. Psychology today, 2(1):60-67, 1967.

Belinda Mo, Kyssen Yu, Joshua Kazdan, Proud Mpala, Lisa Yu, Chris Cundy, Charilaos Kanatsoulis,
and Sanmi Koyejo. Kggen: Extracting knowledge graphs from plain text with language models.
arXiv preprint arXiv:2502.09956, 2025.

Mark EJ Newman. The structure and function of complex networks. SIAM review, 45(2):167-256,
2003.

OpenAl Gpt-40: Openai’s most advanced model. https://openai.com/index/gpt—40/,
2024. Accessed: 2024-07-29.

Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods.
semantic web 8, 3 (2017), 489-508. URL http://ub-madoc. bib. uni-mannheim. de/41515, 2017.

Matthew E Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A Smith. Knowledge enhanced contextual word representations. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-1IJCNLP), pp. 43-54, 2019.

Tyler Thomas Procko and Omar Ochoa. Graph retrieval-augmented generation for large language
models: A survey. In 2024 Conference on Al, Science, Engineering, and Technology (AIxSET),
pp. 166-169. IEEE, 2024.

Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data mining. In Interna-
tional semantic web conference, pp. 498-514. Springer, 2016.

Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases: new opportunities for connected
data. > O’Reilly Media, Inc.”, 2015.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
ning. Raptor: Recursive abstractive processing for tree-organized retrieval. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

12

https://github.com/jerryjliu/llama_index
https://openai.com/index/gpt-4o/

Under review as a conference paper at ICLR 2026

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering
over knowledge graphs using knowledge base embeddings. In Proceedings of the 58th annual
meeting of the association for computational linguistics, pp. 4498-4507, 2020.

Zhihong Shao, Yeyun Gong, Minlie Huang, Nan Duan, Weizhu Chen, et al. Enhancing retrieval-
augmented large language models with iterative retrieval-generation synergy. In The 2023 Con-
ference on Empirical Methods in Natural Language Processing, 2023.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
William Cohen. Open domain question answering using early fusion of knowledge bases and
text. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pp- 4231-4242, 2018.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,
Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. In Proceedings of the 2024 International Conference on
Learning Representations (ICLR), 2024.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 14918-14937, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539-554, 2022.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023.

William Yang Wang, Kathryn Mazaitis, and William W Cohen. Programming with personalized
pagerank: a locally groundable first-order probabilistic logic. In Proceedings of the 22nd ACM
international conference on Information & Knowledge Management, pp. 2129-2138, 2013.

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
prompting for multi-document question answering. In Proceedings of the AAAI conference on
artificial intelligence, volume 38, pp. 19206-19214, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of
thoughts in large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 10370-10388, 2024.

Yilin Xiao, Chuang Zhou, Qinggang Zhang, Su Dong, Shengyuan Chen, and Xiao Huang. Lag:
Logic-augmented generation from a cartesian perspective. arXiv preprint arXiv:2508.05509,
2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369-2380, 2018.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via staged
query graph generation: Question answering with knowledge base. In Proceedings of the Joint
Conference of the 53rd Annual Meeting of the ACL and the 7th International Joint Conference on
Natural Language Processing of the AFNLP, 2015.

13

Under review as a conference paper at ICLR 2026

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu. Augmentation-adapted retriever improves
generalization of language models as generic plug-in. In The 61st Annual Meeting Of The Asso-
ciation For Computational Linguistics, 2023.

Nan Zhang, Prafulla Kumar Choubey, Alexander Fabbri, Gabriel Bernadett-Shapiro, Rui Zhang,
Prasenjit Mitra, Caiming Xiong, and Chien-Sheng Wu. Sirerag: Indexing similar and related
information for multihop reasoning. In The Thirteenth International Conference on Learning
Representations, 2025.

Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
Knowledge graph based prompting for large language models. Advances in Neural Information
Processing Systems, 37:6052—-6080, 2024.

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K Qiu, and Lili Qiu. Retrieval aug-
mented generation (rag) and beyond: A comprehensive survey on how to make your llms use
external data more wisely. arXiv preprint arXiv:2409.14924, 2024.

ZhipuAl. Glm-4: An advanced large language model. https://chatglm. cn, 2024. Accessed:
2025-009.

Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He, Yongwei Zhang,
Sicong Liang, Xilin Liu, Yuchi Ma, et al. In-depth analysis of graph-based rag in a unified
framework. arXiv preprint arXiv:2503.04338, 2025.

14

https://chatglm.cn

Under review as a conference paper at ICLR 2026

2% CONTENTS

757

758 .

759 1 Introduction

760

761 2 Related Work

762 2.1 Knowledge Graph Reasoning
763

764 2.2 Retrieval Augmented Generation Lo
765

766 3 Methodology

e 3.1 Preliminarieo e e e e e
768

769 3.2 Step I: Extractinitial entitynodes oo
770 3.3 Step2: LLM Navigation vt i e
771

772 3.4 Step 3: Similarity-based expansion and augmentation
773 3.5 Complexity Controland Routing
774

775 4 Experiments

776

777 4.1 Datasetso oo e e e e e e e e e e e e e e e e e e
778 42 Baselines e e e e
779 .

780 4.3 MEMICS .« v v ot e e e e e e e e e e e e e e
781 4.4 TImplementation Details e
;22 4.5 Main Results and Analysis Lo
784 4.6 Ablation Study e
785 4.7 Routing Behavior Analysis v v i i
786

787 4.8 Robustness and Adaptability of INSES
788

789 5 Conclusion

790

71 Reproducibility Statement

792

;22 A A Extended Analysis of the Incompleteness of Various Knowledge Graphs

795 . .)

796 B Implementation Details of the INSES Algorithm

797

798 C Text RAG vs. Graph-based RAG, and Why a Router is Sensible
799

800 D Case Study of INSES Algorithm

801

802 E
803
804
805
806
807 G Implementation Details of LLM as A Judge
808

809

Implementation Details of Using LLM as Question Answerer

F Implementation Details of Naive RAG

15

w

o Y, N Y N U

O© 0 9 9 O O &

Under review as a conference paper at ICLR 2026

APPENDIX

* A A Extended Analysis of the Incompleteness of Various Knowledge Graphs
* B Implementation Details of the INSES Algorithm

e C Text RAG vs. Graph-based RAG, and Why a Router is Sensible

* D Case Study of INSES Algorithm

* E Implementation Details of Using LLM as Question Answerer

* F Implementation Details of Naive RAG

* G Implementation Details of LLM as A Judge

A A EXTENDED ANALYSIS OF THE INCOMPLETENESS OF VARIOUS
KNOWLEDGE GRAPHS

In the Introduction, we used a concrete example to analyze the differences among knowledge graphs
produced by different methods and the issues they entail. We now examine this question at a broader
scale and from a quantitative perspective, to better understand the heterogeneity and challenges
present in real-world graphs.

Figure 4 compares the average sizes of knowledge graphs generated by three methods on MINE
dataset (Mo et al., 2025): KGGEN (nodes=102, edges=72), GraphRAG (nodes=14, edges=13), and
OpenlE (nodes=189, edges=265). The spread is substantial: relative to GraphRAG, OpenlE yields
about 13.5x more nodes and 20x more edges, with KGGEN in between. The implied average de-
gree ranges from 1.41 for KGGEN and 1.96 for GraphRAG to 2.80 for OpenlE, revealing a clear gra-
dient from sparse to denser graphs. These discrepancies indicate that different extraction paradigms
produce markedly different graph topologies: compact graphs risk incompleteness, whereas larger
graphs are more susceptible to ambiguity and noise. Consequently, search algorithms for real-world
KGs should be both adaptive and robust to such variability, as well as to missing edges and fuzzy sur-
face forms. In this context, combining LLM-guided navigation (semantic filtering, relevance-driven
pruning, and error suppression) with similarity-based expansion (to recover latent links, aliases, and
paraphrases) is necessary and complementary: the former keeps the search precise, while the latter
prevents missed connections in imperfect graphs.

300+ Nodes (Average)
Edges (Average)
265

200 189

102
72
50

14 13

KGéEN Grap‘hRAG OpénIE

Figure 4: Average size of knowledge graphs generated by three different methods on the MINE
dataset (100 articles). Bars report the mean number of nodes and edges per graph produced by
KGGEN, GraphRAG, and OpenlE. The large spread across methods highlights the heterogeneity of

KGs built from the same corpus, underscoring the need for search—and-reasoning algorithms that
are adaptive and robust to incompleteness, ambiguity, and noise.

B IMPLEMENTATION DETAILS OF THE INSES ALGORITHM

The INSES algorithm is shown in Algorithm I.

16

Under review as a conference paper at ICLR 2026

Equation 1 in Algorithm | uses an LLM to extract entities in the query ¢g. The relevant prompts are
shown in Table 4.

Equation 3 in Algorithm 1 uses an LLM to navigate graph search. The relevant prompts are shown
in Table 5.

Table 6 presents a template that allows LLM to answer questions based on retrieved triples.

Algorithm 1 Intelligent Navigation and Similarity Enhanced Search (INSES)

Input: Property knowledge graph KG = (V, E, Ay, Ag, ¢), query ¢ stated in natural language
Output: A set of triples Tsejecteq that are helpful in answering g
1: Use Equation 1 and query q to establish the initial node set V;,,;+
2: Vvisited = {}
3: Tselected = {}
4: Vewrrent = Vinit
5: while iteration < max_iter and Vioyrrent 7# @ do
Vivisited = Vaisited U Veurrent
Get adjacent triples T,4; using Equation 2
Use Equation 3 to let LLM select triples from T, 4;, determine
whether the current information is sufficient and return 7,c., seiected aNd Viegndidate
9: Tselected = Tselected U Tnew,selected
10: if sufficient then
11: break
12: endif
13: Use Equation 4 to find similar nodes V;,,
14: (chur'rent = chandidate U Vszm) \ Vvisited
15: tteration = iteration + 1
16: end while
17: return Tsejected

P =RD

Table 4: LLM Extract Entities Prompt

LLM Extract Entities Prompt

Your task is to extract several entities from the given query, so they can be used to search a
knowledge graph for clues relevant to answering the query.
Return only the entities you extract, separated by commas, with no other text.

Query: {query}

17

Under review as a conference paper at ICLR 2026

Table 5: LLM Navigation Prompt

LLM Navigation Prompt

Your task is to provide support for complex queries and multi-hop reasoning in the knowledge
graph. Based on the following query, the visited nodes and the selected triplets, as well as the
current nodes and their adjacent triplets, select the triplet numbers (separated by commas) from the
adjacent triplets of the current nodes that help answer the query.

Selection criteria: Select the triplets that are most relevant to the query and most likely to help
answer it.

Then determine:

1. Based on the visited nodes, the selected triplets, and the triplets you just selected, is this
information sufficient to answer the query?

2. If so, answer “’sufficient™;

3. If not, answer “insufficient’;

Your response must be in JSON format with two fields:

99, 99

”determination”: “’sufficient/insufficient”,

9, 9

“selection”: “triplet numbers, e.g., 1, 2, 37

Query: {query}

The visited nodes:

{chr(10).join(visited_nodes_info) if visited_nodes_info else *none’ }

The selected triplets and their corresponding source text:
{chr(10).join(all_selected_triplets_info) if all_selected_triplets_info else *none’ }
The current nodes:

{chr(10).join(current_nodes_info) if current_nodes_info else "none’ }

The adjacent triplets and their corresponding source text:
{chr(10).join(current_triplets_info) if current_triplets_info else "none’ }

Table 6: LLM Answer Question With Retrieved Triples Prompt

LLM Answer Question With Retrieved Triplets Prompt

You are a helpful assistant that provides accurate and concise answers based on the provided
knowledge graph information.
Please answer the following query: {query}

The following information is extracted from a knowledge graph, which contains entities,
relationships, and relevant text:
{context}

Your response must be in JSON format with two fields:

1. “reasoning”: Your step-by-step reasoning process based on the knowledge graph information.
Explain how the entities and relationships help answer the query.

2. ”answer”: The final answer to the query, as concise as possible without unnecessary
explanations.

Example response format:

{{

“reasoning”: ”Step 1: Identified entity X and its relationship to entity Y. Step 2: Found that entity Z
is connected to both X and Y. Step 3: Based on these relationships, concluded that...”,

”answer”: ”Concise answer here”

i3

JSON Response:

18

Under review as a conference paper at ICLR 2026

C TEXT RAG vS. GRAPH-BASED RAG, AND WHY A ROUTER IS SENSIBLE

Prior work (Han et al., 2025; Zhou et al., 2025) and our experiments indicate that GraphRAG is not
uniformly superior to Text RAG. Table 7 contrasts the two paradigms. The two paradigms differ at
a structural level, which naturally leads to distinct strengths and usage regimes.

Table 7: RAG vs. GraphRAG: comparison of pipeline, capabilities, and costs

Dimension

Text RAG

GraphRAG

Data form & indexing

Retrieval characteris-

tics

Strengths (tasks)

Generation trade-offs

Efficiency & cost

Implementation vari-
ants

Common failure
modes
Routing & hybrid use

Chunk raw text and retrieve via
dense vectors; preserves original
wording and details

Strong at in-place factual recall
via semantic similarity; sensitive to
type words and relation templates;
well-suited to short-chain reasoning
Single-hop and <2-hop factual QA
with rich details; pulling key snip-
pets across documents

Higher context relevance and lower
noise; more focused coverage in
creative/synthesis tasks
Low build/query cost; shorter
prompts

Classic dense retrieval with op-
tional reranking, HyDE, hybrid
(sparse+dense) retrieval

Long-range/cross-document rea-
soning is hard; chunk boundaries
hide global structure

Well-suited to handling
factual/detail-oriented queries
on its own

Extract entities/relations or com-
munity structure to build a graph,
then retrieve by graph and aggre-
gate subgraphs/communities
Connects evidence across segments
via explicit structure; better for
long chains/hierarchical reasoning
and thematic/context integration
Multi-hop (>3) and long-range
reasoning; contextual summariza-
tion/thematic synthesis; structured
evidence integration

Broader evidence recall and cover-
age, but more redundancy; typical
trade-off: coverage 1 vs. relevance
J in creative tasks

Higher graph construction cost;
retrieval/aggregation tends to in-
flate prompt length, increasing cost
(varies by implementation)

KG-style triple retrieval,
community-based global/local
retrieval, mixed nodes (con-

cepts/passages), etc.

Detail loss/missing or ambiguous
links and noise during graph con-
struction can cause retrieval drift;
global summarization may lose fine
details

Well-suited to reasoning/multi-hop
queries; can be integrated with or
selectively routed alongside Text
RAG for complementarity

When Text RAG tends to win (<2 hops).

For most <2-hop queries, the answer’s immediate

neighborhood is either (i) explicitly mentioned in the query, or (ii) strongly evoked by type/semantic

cues in the query. This explains why Text RAG often suffices:

* Converging 2-hop (A — Ans < C): the answer node is directly adjacent to two entities
named in the query. Chunks that mention the answer along with A or C are readily retrieved
by dense similarity. For example:

Q: Who authored Pride and Prejudice and was the sister of Cassandra Austen?
Reasoning: Pride and Prejudice — JANE AUSTEN <— Cassandra Austen.
Answer: Jane Austen.

Vector retrieval readily surfaces chunks where Jane Austen anchors both query mentions.

* Chained 2-hop (A — B — Ans): even if B and Ans are not named, the query typically
carries type cues that pull the right evidence in embedding space. Such type/entity clusters

19

Under review as a conference paper at ICLR 2026

and relation patterns are well captured by modern embeddings, so relevant chunks co-
mentioning B and Ans are frequently surfaced. For example:

Q: What river flows through the city that is home to the Eiffel Tower?
Reasoning: Eiffel Tower — PARIS — SEINE.
Answer: Seine.

The answer is tightly tied to a query cue (“river”), which embeddings capture reliably.

Hence, with appropriate chunking (e.g., 256—1024 tokens with overlap), Text RAG handles many
factual and <2-hop queries efficiently while preserving fine-grained details.

When GraphRAG is needed (>3 hops / long-range). As the hop length grows, queries rarely
contain all answer-adjacent entities; explicit multi-hop connectivity in a KG becomes valuable for
exposing long-range correlations. However, the text—graph step can introduce detail loss, miss-
ing/ambiguous links, and noise. In practice, search may stall or drift on incomplete graphs, and
some facts may be literally absent from the graph, even though they exist in the source text. There-
fore, knowledge graphs are more suitable for long-range multi-hop reasoning but at the same time
require some enhancement methods, such as property graphs and similarity-based extensions.

Why a router between Text RAG and GraphRAG. A router lets each method specialize: Text
RAG serves the abundant simple cases cheaply and with high fidelity to source wording, while
GraphRAG is reserved for genuinely multi-hop (>3) or long-range problems where explicit struc-
ture is advantageous. This not only balances quality and cost (simple queries dominate real work-
loads; GraphRAG is costlier to build/query) but also improves robustness: when type cues suffice,
dense retrieval excels; when structural chaining is essential, graph reasoning takes over. In our sys-
tem, this routing criterion aligns with the structural characteristics above and reflects the empirical
boundary between the two regimes.

The Router algorithm is shown in Algorithm 2.

Algorithm 2 Router Algorithm

Input: A Naive RAG system with a vector database, a knowledge graph KG = (V, E, Ay, \g, ¢),
query ¢ stated in natural language
Output: A set of text or a set of triples that are helpful in answering ¢

1: Use LLM to determine if q is related to multi-hop (>3) search

2: if False then
3: route to the Naive RAG
4: Naive RAG gives an answer with con fidence
5. if confident > Confidenceipreshord then
6: return the results given by Naive RAG
7. else
8: route to running INSES on KG
9: endif
10: else
11: route to running INSES on KG
12: end if

13: return the results given by INSES

D CASE STUDY OF INSES ALGORITHM

Table 8 is an example of INSES search without similarity expansion.
Table 9 is an example of INSES search with similarity expansion.

Below we analyze a concrete run of the INSES algorithm to illustrate how LLM navigation and
similarity expansion work in practice. Table8 shows the execution without similarity expansion,
while Table9 shows the full INSES run with similarity expansion enabled. Comparing the two,
Table 8 fails to reach the correct answer yet demonstrates the effectiveness of LLM-based navigation;

20

Under review as a conference paper at ICLR 2026

Table 9 succeeds, highlighting the effectiveness of similarity expansion and showing that during
navigation the LLM not only selects relevant information but also filters out errors introduced by
similarity expansion. A detailed analysis follows.

From Table 8, the initial entities extracted from the query “Who was the spouse
of a leading speaker against slavery and publisher of an antislavery newspaper?”’ are
four: [‘leading speaker against slavery’, ‘antislavery newspaper’, ‘spouse’, ‘publisher’]. Us-
ing embedding similarity, these are matched to four nodes in the graph to form Vjy:
[‘Opponent of slavery’, ‘Anti-slavery newspaper’, ‘Husband and wife’, ‘Newspaper publisher’].

In iteration O, the LLM selects three triples from the neighborhood of these four entity nodes
(recorded as Thew.selected)- This shows that the LLM navigates and prunes well, avoiding a flood
of irrelevant triples. One reason is that rich attribute information in the property graph provides
strong support for LLM decision-making; another is that, given the context, choosing relevant clues
among available information is not a particularly hard task, so the LLM can keep the search breadth
within a reasonable range.

In iteration 1, the LLM selects only one triple (again recorded in Tjey selected): “The North Star —
Published by — Frederick Douglass”. Consequently, the candidate set for the next step is a single
node, Vandidae = [‘Frederick Douglass’].

In iteration 2, from the neighborhood of node “Frederick Douglass” the LLM again selects only one
triple—"“The North Star — Published by — Frederick Douglass”—which had already been visited
before. In other words, the opposite-end node of this triple has already been explored. No new
candidate nodes are generated in this round, i.e., Viangigae = &. The search therefore terminates
without finding the correct answer. Overall, the process shows that LLM navigation is efficient and
does not select excessive irrelevant information.

Now consider the process in Table 9. Iterations 0, 1, and 2 proceed similarly to Table 8 but with
similarity expansion applied at each round. The LLM’s core selections remain essentially the same
as in Table 8, and it promptly filters out errors introduced by similarity expansion. In Table 8§,
iteration 2 produces no new candidates and the search stops. In contrast, in Table 9’s iteration
2, the current node “Frederick Douglass” yields a new node via similarity expansion—*“Frederick
Douglass Memorial and Historical Association”—and this newly surfaced node is precisely what
leads to the final correct answer.

In iteration 3, the LLM selects the triple “Helen Pitts Douglass — Created — Frederick Douglass
Memorial and Historical Association,” whose opposite-end node is “Helen Pitts Douglass.” In it-
eration 4, the LLM again selects a single triple—“Helen Pitts Douglass — Is — Second wife of
Frederick Douglass”—which directly points to the correct answer. Note that in iterations 3 and 4
the LLM selects very few triples (only one each time) and is not distracted by irrelevant nodes intro-
duced through similarity expansion; instead, it filters them out in a timely manner. This demonstrates
that combining LLM navigation with similarity expansion is highly effective: similarity expansion
can surface latent links, while LLM navigation can promptly prune potential errors introduced by
that expansion.

An additional observation is that the final triple “Helen Pitts Douglass — Is — Second wife of
Frederick Douglass” implies that “Second wife of Frederick Douglass” is modeled as a node in the
KG. This also explains why the process in Table 8 failed to find the correct answer: in the constructed
KG, “Frederick Douglass” and “Second wife of Frederick Douglass” are two separate nodes. As
noted in the Introduction, it is difficult to convert natural-language information into a perfect KG.
In this example, the fact “Helen Pitts Douglass is the second wife of Frederick Douglass” can be
represented either as “Helen Pitts Douglass — Is — Second wife of Frederick Douglass” or as
“Helen Pitts Douglass — Is the second wife of — Frederick Douglass,” and both representations
are reasonable. Such situations are common in KGs. If search and reasoning over a KG rely only
on exact structural links, potential connections may be missed. Introducing similarity expansion is
therefore an effective way to mitigate ambiguity and incompleteness.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Search without similarity expansion

Iteration The relevant status of each iteration

Query Who was the spouse of a leading speaker against slavery and publisher of an antislav-
ery newspaper?

Entities [’leading speaker against slavery’, , ’spouse’, *publisher’]

Vinit [’Opponent of slavery’, , ’Husband and wife’, ’Newspaper
publisher’]

iter=0 Veurrent: ["Opponent of slavery’, _, ’Husband and wife’,
"Newspaper publisher’].
Thew._selected: | Thomas spottswood hinde — Occupation — Opponent of slavery’,

, ’Enos bronson — Was — News-

paper publisher’].
Veandidate: [Thomas spottswood hinde-, ’Enos bronson’]

iter=1 Veurrent: ['Thomas spottswood hinde’ ’Enos bronson’].
— [_J
‘/candzdate [

iter=2 ‘/cur'r'ent [
Tcusetcctea [_1
‘/candzdate []

Answer Not Found.

22

Under review as a conference paper at ICLR 2026

Table 9: Search with similarity expansion

Iteration The relevant status of each iteration
Query ‘Who was the spouse of a leading speaker against slavery and publisher of an antislav-
ery newspaper?
Entities [’leading speaker against slavery’, ’antislavery newspaper’, spouse’, "publisher’]
Vinit [’Opponent of slavery’, ’Anti-slavery newspaper’, "Husband and wife’, ’Newspaper
publisher’]
iter=0 Veurrent: ['Opponent of slavery’, ’Anti-slavery newspaper’, Husband and wife’,
"Newspaper publisher’].
Thew.selected: | Thomas spottswood hinde — Occupation — Opponent of slavery’,
"The north star — Is — Anti-slavery newspaper’, ’Enos bronson — Was — Newspa-
per publisher’].
Veandidate: [Thomas spottswood hinde’, *The north star’, ’Enos bronson’].
Vsim: ['Pro-slavery southerner’, ’Liberty party paper’, 'Husbands and wives’,
"Newspaper of record’]
iter=1 Veurrent: ['Thomas spottswood hinde’, *The north star’, Enos bronson’, ’Pro-
slavery southerner’, ’Liberty party paper’, 'Husbands and wives’, "Newspaper of
record’].
Thew._selected: [The north star — Published by — Frederick douglass’].
Veandidate: | Frederick douglass’].
Vsim: [’Newspaper editor’, *The toronto star’, ’Opponent of slavery’, ’Federalist
party’, "Husband and wife’, "Country’s newspaper of record”]
iter=2 Vewrrent: [, "Newspaper editor’, *The toronto star’, *Federalist
party’, ”Country’s newspaper of record”].
Thew._selected: | The north star — Published by — Frederick douglass’].
‘/candidate: []
Viim: , “Weekly newspa-
per’, *Federalists’, ’Newspaper of record’]
newspaper’, "Federalists’].
Tt | "Helen pitts douglass — Created — Frederick douglass memorial and
historical association” |.
‘/candidate: []
Vsim: ['Frederick douglass’, ’English language weekly newspaper’, 'Federalist
party’]
iter=4 Vewrrent: [_, ’English language weekly newspaper’].
Lt || "Helen pitts douglass — Is — Second wife of frederick douglass” |
Answer Helen Pitts Douglass

23

Under review as a conference paper at ICLR 2026

E IMPLEMENTATION DETAILS OF USING LLM AS QUESTION ANSWERER

For clarity about the experimental baselines, we also provide exact prompts. Table 10 lists the LLM
only (Direct) prompt, and Table 11 lists the LLM only (Few-shot CoT) prompt.

Table 10: LLM only (Direct) Prompt

LLM only (Direct) Prompt

You are a helpful assistant that answers questions based on your own knowledge.

Question: {question}
Please provide your response in the following JSON format:

“answer”: ”Your final answer”

Table 11: LLM only (Few-shot CoT) Prompt

LLM only (Few-shot CoT) Prompt

You are a helpful assistant that answers questions based on your own knowledge. Below are several
examples of chain of thought. You can refer to these examples to think about the question and give
the correct answer.

Your answer must be returned in JSON format with two fields: “reasoning” and "answer”. The
“reasoning” field should contain your step-by-step reasoning process, and the “answer” field should
contain the final answer. The “answer” field should be as concise as possible and should not
contain unnecessary explanations.

Examples of Chain of Thought:

Q: What language is primarily spoken in the country whose capital is Madrid?

A: First, the country whose capital is Madrid is Spain. Second, the primary language of Spain is
Spanish. The answer is {Spanish}.

Q: Who painted The Starry Night and famously cut off part of his ear?

A: First, The Starry Night was painted by Vincent van Gogh. Second, the artist who cut off part of
his ear is Vincent van Gogh. The answer is {Vincent van Gogh}.

Q: What continent contains the country whose capital is Nairobi?

A: First, Nairobi is the capital of Kenya. Second, Kenya is located in Africa. The answer is
{Africa}.

Q: Which composer wrote The Magic Flute and was born in Salzburg?

A: First, The Magic Flute was composed by Wolfgang Amadeus Mozart. Second, Mozart was born
in Salzburg. The answer is {Wolfgang Amadeus Mozart}.

Q: What element has the chemical symbol Fe and is used to make steel?

A: First, the chemical symbol Fe stands for iron. Second, iron is commonly used to make steel.
The answer is {Iron}.

Q: Which planet is known as the Red Planet and has the volcano Olympus Mons?

A: First, the Red Planet is Mars. Second, Olympus Mons is a volcano on Mars. The answer is
{Mars}.

Question: {question}
Please provide your response in the following JSON format:

“reasoning”: ~Your step-by-step reasoning process”’
“answer”: ”Your final answer”

24

Under review as a conference paper at ICLR 2026

F IMPLEMENTATION DETAILS OF NAIVE RAG

We implement Naive RAG using the Qdrant vector database as the storage backend and the embed-
ding model bge-base-en-v1.5. For each dataset, we collect all available context passages, embed
them, and store the embeddings in Qdrant. Each context is kept at its original granularity from the
dataset; no additional splitting or merging is performed. Table 12 provides the prompt used by RAG
at inference time.

Table 12: Naive RAG Prompt

Naive RAG Prompt

You are a helpful assistant that provides accurate and concise answers based on the provided
context.

Please answer the following query: {query}

Context information is below:
{context}

Your response must be in JSON format with three fields:

1. ’reasoning”: Your step-by-step reasoning process based on the context.

2. ”answer”: The final answer to the query, as concise as possible without unnecessary
explanations.

3. ”confidence”: The confidence level of your answer, where 0 means no confidence and 1 means
complete certainty. If you cannot derive a reasonable answer from the provided context, the
returned confidence level should be low.

Example response format:

“reasoning”: ”Step 1: ... Step 2: ... Step 3: .7,
“answer”: ’Concise answer here”,
”confidence”: 0.8

}

JSON Response:

25

Under review as a conference paper at ICLR 2026

G IMPLEMENTATION DETAILS OF LLM AS A JUDGE

We employ LL.M-as-a-judge in two parts of our experiments. In Sections 4.5 and 4.6, an LLM judge
assesses, for each query, whether the answer of a method is consistent with the ground truth; the
corresponding prompt is provided in Table 13. In Section 4.8, the LLM judge evaluates whether the
triples selected by each method faithfully express the stated fact; the prompt for this setting appears
in Table 14.

Table 13: Implementation Details of LLM as a judge in Section 4.5 and 4.6

LLM as a judge Prompt

You are an expert evaluator. Your task is to determine if the predicted answer is semantically
equivalent to the ground truth answer for the given question.

Question: {question}
Ground Truth Answer: {ground_truth}
Predicted Answer: {prediction}

Instructions: - Compare the predicted answer and the ground truth answer in the context of the
question.

- They are considered equivalent if they convey the same meaning, even if the wording is different.
- Respond in JSON format with two keys:

“is_equivalent”: true or false,

“explanation”: a brief explanation for your decision.

Example response:

{

“is_equivalent”: true,
“explanation”: ”Both answers correctly state that the capital of France is Paris.”

1

Important: Only output the JSON object and nothing else.

Table 14: Implementation Details of LLM as a judge in Section 4.8

LLM as a judge Prompt

You are an evaluator that checks if the Correct Answer can be deduced from the information in the
context.”

Context:
{context}

Correct Answer:
{correct_answer}

Task: Determine whether the Context contains the information stated in the Correct Answer.
Respond with 1" if yes, and ”0” if no. Do not provide any explanation, just the number.

26

	Introduction
	Related Work
	Knowledge Graph Reasoning
	Retrieval Augmented Generation

	Methodology
	Preliminarie
	Step 1: Extract initial entity nodes
	Step 2: LLM Navigation
	Step 3: Similarity-based expansion and augmentation
	Complexity Control and Routing

	Experiments
	Datasets
	Baselines
	Metrics
	Implementation Details
	Main Results and Analysis
	Ablation Study
	Routing Behavior Analysis
	Robustness and Adaptability of INSES

	Conclusion
	Reproducibility Statement
	A Extended Analysis of the Incompleteness of Various Knowledge Graphs
	Implementation Details of the INSES Algorithm
	Text RAG vs. Graph-based RAG, and Why a Router is Sensible
	Case Study of INSES Algorithm
	Implementation Details of Using LLM as Question Answerer
	Implementation Details of Naïve RAG
	Implementation Details of LLM as A Judge

