

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INSES: INTELLIGENT NAVIGATION AND SIMILARITY ENHANCED SEARCH FOR KNOWLEDGE GRAPH REA- SONING

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 GraphRAG is increasingly adopted for converting unstructured corpora into graph
014 structure, enabling relational, multi-hop reasoning beyond chunk-level retrieval.
015 Most systems then reason over these graphs with classic graph algorithms. How-
016 ever, such traversal, tied to static connectivity and 'connected triple' paths, fre-
017 quently misses latent semantic links in real-world knowledge graphs (KG) that
018 are noisy, sparse, or incomplete. To address this gap, we introduce INSES (In-
019 telligent Navigation and Similarity Enhanced Search), a dynamic graph-reasoning
020 framework that couples LLM-guided navigation, which prunes noise and steers
021 triple selection with embedding-based similarity expansion to recover hidden links
022 and bridge gaps beyond explicit edges, turning search from a purely structural
023 walk into semantics-aware multi-hop reasoning. Additionally, since GraphRAG
024 style search generally incurs higher complexity than naïve RAG, we complement
025 INSES with a lightweight router that sends simple queries to naïve RAG and es-
026 calates complex multi-hop cases to INSES, balancing efficiency and reasoning
027 depth. Across multiple QA benchmarks, INSES consistently outperforms SOTA
028 RAG and GraphRAG baselines. Results highlight complementary strengths of
029 coarse-grained text retrieval for easy cases and fine-grained triple reasoning for
030 harder ones. On the MINE benchmark, INSES remains robust across KGs pro-
031 duced by KGGEN, GraphRAG, and OpenIE, improving accuracy by 5%, 10%,
032 and 27%. This work opens the door to adaptive, router-backed KG reasoning.

033 1 INTRODUCTION

034
035 Graph search is a fundamental problem in computer science, with applications spanning knowledge-
036 graph reasoning, social network analysis, bioinformatics, etc. Classical algorithms such as Depth
037 First Search (Yih et al., 2015), Breadth First Search (Sun et al., 2018), and Random Walk (Lao
038 & Cohen, 2010; Ristoski & Paulheim, 2016) are typically adapted to knowledge graphs (KG), op-
039 erating over entity-relation triples, rather than applied verbatim. Although effective in traditional
040 settings, such adaptations meet a mismatch in real-world scenarios whose semantics extend beyond
041 bare connectivity and whose structure is often noisy, error-prone, and incomplete. A key limitation
042 of traditional search lies in its reliance on static structures and traversal strategies. In real world
043 settings, knowledge graphs (KG) (Hogan et al., 2021; Ji et al., 2021; Paulheim, 2017) and social
044 networks (Newman, 2003; Easley et al., 2010), not only contain attributes (e.g., names, weights) but
045 can also incorporate embedding representations. However, on the other hand, these embeddings, to-
046 gether with the reasoning and decision-making capabilities of large language models (LLM) (Team
047 et al., 2023; Dubey et al., 2024; OpenAI, 2024; ZhipuAI, 2024), open new opportunities for more
048 intelligent and adaptive search: attribute-aware navigation and semantic control.

049
050 Recent GraphRAG's style pipelines organize corpora into graph representations to support multi-
051 hop reasoning (Saxena et al., 2020; Procko & Ochoa, 2024; Hu et al., 2025); at the same time,
052 LLM-guided/PPR variants refine traversal (Sun et al., 2024; Ma et al., 2025; Jimenez Gutierrez
053 et al., 2024). Yet in most systems, exploration is still governed by explicit edges and fixed neighbor-
054 hood budgets, which privileges connected-triplet locality and leaves semantically implied links
055 outside the traversed subgraph. As in the KG application, errors, redundancies, and missing links are
056 unavoidable when extracting structured knowledge from natural language. Even with advanced con-

struction methods such as OpenIE (Angeli et al., 2015), GraphRAG (Edge et al., 2024), or the more recent KGGEN (Mo et al., 2025), which employs iterative LLM-based clustering to reduce sparsity, imperfections remain. As a result, critical relationships may be lost or fragmented between similar but distinct entities. To illustrate this, let us examine an example. For an article titled "The Life Cycle of a Butterfly" in MINE benchmark(Mo et al., 2025), Table 1 shows some of the entity nodes generated when building KGs using KGGEN, GraphRAG, and OpenIE. Across all methods, we observe the presence of many similar entities, such as butterflies, adult butterflies, and female butterflies. During the reasoning process, some characteristics of butterflies can be generalized to adult butterflies, but some characteristics cannot and vice versa. So should these entity nodes be merged in the KG? If they are merged, information loss and errors may occur; if they are not merged, some important information may be missed during the reasoning process. This situation occurs because of the complexity and diversity of natural language. These latent semantic connections cannot be fully captured by explicit graph edges. However, it can be exploited through embedding similarity during search. That is, even butterflies and adult butterflies should be treated as distinct entities, they also share implicit connections. Such latent relationships are not easily captured by explicit graph edges, but they can and should be leveraged during search. By representing entities with embeddings and incorporating similarity-based expansion during search, we can dynamically enrich the graph and surface the hidden links needed for reasoning.

Table 1: Entity Nodes Generated by Different Methods

Method	Entity Nodes Generated by Different Methods
KGGEN	[“adult”, “adulthood”, “antennae”, “appearance”, “appreciation”, “balance”, “beauty”, “biodiversity”, “birds”, “body”, “butterfly”, “camouflage”, “caterpillar”, ..., “food”, “food source”, “host plants”, “life cycle”, “lifespan”, “plant populations”, “plants”, ...]
GraphRAG	[“egg stage”, “birds”, “adult butterflies”, “nectar”, “insects”, “pupa”, “host plants”, “larva stage”, “chrysalis”, “metamorphosis”, “female butterflies”, “pollination”, “reptiles”, “butterflies”, “caterpillar”, “butterfly”, ...]
OpenIE	[“They”, “egg to larva”, “specific host plants”, “journey filled”, “third stage”, “butterfly’s life cycle”, “lifespan ranging from few days to weeks”, “Life Cycle”, “changes”, “laid”, “twigs”, “Next time”, “to prepare for stage of its life cycle”, ..., “short lifespan ranging”, “lifespan ranging from days”, “prepare for stage of its life cycle”, “lifespan ranging from days to weeks”, “life cycle”, ...]

Building upon these considerations, we propose INSES (Intelligent Navigation and Similarity-Enhanced Search), a dynamic graph-reasoning framework that do the better reasoning over the graph. To counter the static-connectivity bias and reduce noise, an LLM navigator selects and prunes adjacent triples at each step, steering exploration toward evidence that answers the query rather than exhaustively walking neighborhoods. To mitigate incompleteness and aliasing, embedding-based similarity expansion temporarily augments the frontier with semantically proximate nodes, recovering hidden links not realized as explicit edges. These two components act in tandem, navigation prunes and guides; similarity recovers and connects, turning traversal from a purely structural walk into semantics-aware multi-hop reasoning over imperfect property graphs. To cap cost and avoid drift, INSES runs for a bounded number of iterations (small-world (Milgram et al., 1967) motivated), and we introduce a lightweight router: straightforward queries are answered with naïve RAG, while complex or low-confidence cases are escalated to INSES, balancing efficiency and depth.

We evaluate INSES on three multihop QA benchmarks and observe consistent gains over strong RAG and GraphRAG baselines across metrics, demonstrating robustness to dataset difficulty and reasoning depth. An ablation study shows that similarity-based expansion is the dominant contributor to accuracy, while a lightweight router provides further lift and helps contain cost. Moreover, routing analysis indicates that many shallow queries are efficiently handled by naïve RAG ($\approx 86\%$ on HotpotQA), reserving INSES for complex cases, aligning accuracy with efficiency. Finally, on the MINE benchmark, INSES remains effective across KGs built by KGGEN, GraphRAG, and OpenIE, improving mean accuracy by 5%, 10%, and 27%, respectively. We summarize the main contributions of this work as follows:

- 108 • We diagnose why explicit-edge, static-strategies exploration under-captures cross-entity re-
109 lations in noisy/incomplete KGs, motivating dynamic, semantics-aware search that couples
110 structure with similarity.
- 111 • We introduce INSES, which fuses LLM-guided navigation with similarity-based expansion
112 for on-the-fly augmentation and controlled traversal over property graphs.
- 113 • We design a lightweight router that preserves RAG-level efficiency on easy queries and
114 escalates complex/low-confidence cases to INSES, yielding better accuracy-cost trade-offs.
- 115 • We report consistent gains on MuSiQue/2Wiki/HotpotQA, robustness on MINE across
116 KGGEN/GraphRAG/OpenIE, and ablations showing similarity expansion as the main con-
117 tributor with routing providing additional improvements.
- 118
- 119
- 120

121 2 RELATED WORK

123 2.1 KNOWLEDGE GRAPH REASONING

125 Reasoning on knowledge graphs traditionally adapts search procedures (e.g., depth-/breadth-
126 oriented traversals, random walks) to operate over entity-relation triples rather than using general-
127 graph routines verbatim, which implicitly assumes that explicit edges are sufficient evidence trails
(Wang et al., 2013; Yih et al., 2015; Sun et al., 2018; Lao & Cohen, 2010; Ristoski & Paulheim,
128 2016). Recent graph-centric pipelines construct or reorganize structure and then guide exploration
129 for multi-hop reasoning: some form hierarchical/summary trees to route queries across levels (Sarthi
130 et al., 2024; Zhang et al., 2025); others induce community-structured subgraphs for summary-centric
131 retrieval (Edge et al., 2024); a third line dynamically constructs KGs and designs adaptive traversal
132 policies (Li et al., 2024; Wang et al., 2024); further variants couple traversal with LLM decision-
133 making (e.g., beam-style selection) (Sun et al., 2024; Ma et al., 2025) or employ importance-biased
134 walks for multi-hop retrieval (Gutiérrez et al., 2024). Despite these advances, exploration is still
135 largely governed by explicit connectivity and fixed local budgets, which under-captures cross-entity
136 evidence and overlooks latent semantic relations (e.g., aliasing among similar-but-distinct nodes)
137 that are not realized as direct triples. To move beyond edge-only locality and reduce noise from im-
138 perfect structure, INSES integrates LLM-guided navigation (pruning/steering triple selection using
139 attributes and semantics) with embedding-based similarity expansion (temporarily extending the
140 frontier with semantically proximate nodes to recover hidden links), turning structural walks into
141 semantics-aware multi-hop reasoning under bounded iterations.

143 2.2 RETRIEVAL AUGMENTED GENERATION

145 Retrieval Augmented Generation (RAG) integrates retrieval into generation to ground LLMs in ex-
146 ternal knowledge, evolving from early retrieval-based QA (Chen et al., 2017; Karpukhin et al., 2020;
147 Guu et al., 2020) to end-to-end coupling of retrieval and generation (Lewis et al., 2020), with recent
148 advances using LLMs as retrievers (Yu et al., 2023; Sun et al., 2023) and finer retrieval granularity
149 such as propositions (Chen et al., 2024). In practice, RAG spans text-based, KG-based: text-based
150 variants retrieve semantically similar passages (Gao et al., 2023b; Zhao et al., 2024; Xiao et al.,
151 2025; Chen et al., 2025) but can miss deeper relational structure and include redundant context;
152 iterative schemes that interleave retrieval and reasoning (Shao et al., 2023; Trivedi et al., 2023; Wei
153 et al., 2022; Gao et al., 2023a) improve recall yet increase latency and risk error accumulation with-
154 out a reliable guide. Graph-based RAG offers more interpretable, precise structure (Wang et al.,
155 2024; Liang et al., 2025). Early work injected KG knowledge directly into model representations
156 (Peters et al., 2019; Liu et al., 2020), while more recent approaches augment LLMs externally by
157 translating relevant KG subgraphs into prompts (Wen et al., 2024; Dai et al., 2025; Zhang et al.,
158 2024), while these pipelines inherit KG incompleteness. Together, these trade-offs motivate systems
159 that preserve text-RAG efficiency on easy cases while invoking structured, semantics-aware reason-
160 ing when needed. We address this tension with a lightweight router that keeps easy, shallow queries
161 on standard RAG and escalates complex/low-confidence ones to INSES; once escalated, INSES’s
LLM navigation + similarity expansion directly targets static-connectivity blind spots by leveraging
attributes and embedding proximity during search.

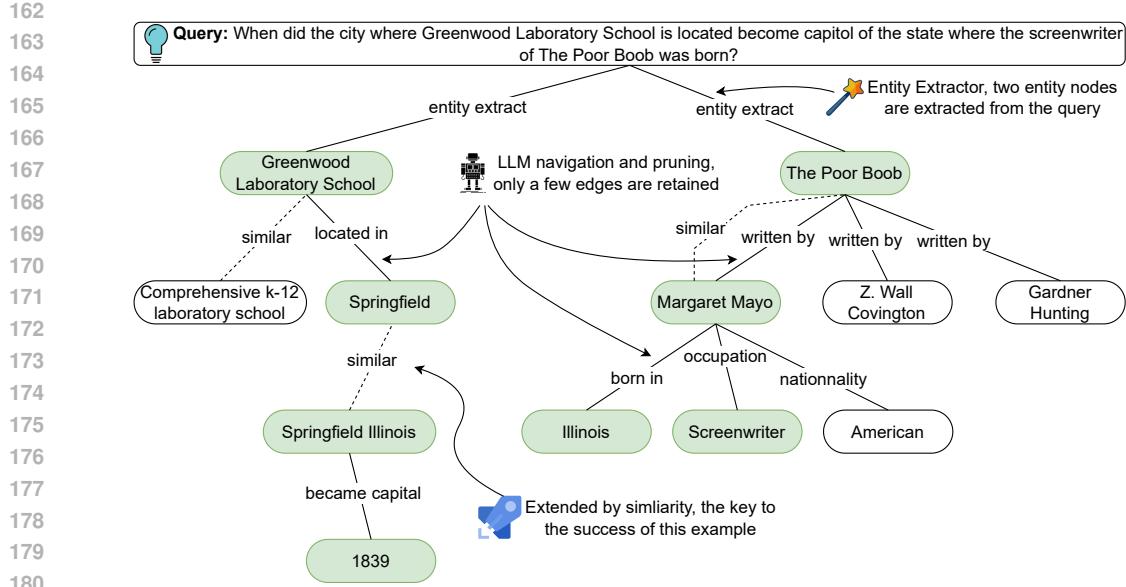


Figure 1: An example of INSES workflow. Solid edges denote explicit relations; dashed edges denote dynamically added similarity edges. Nodes/edges with green background aid answering query. LLM maps query entities (“Greenwood Laboratory School” and “The Poor Boob”) to initial nodes, picks relevant triples while pruning noise, and uses similarity expansion to recover latent links (e.g., “Springfield” → “Springfield Illinois”). Navigation and pruning discard spurious edges, while expansion reveals critical connections, together enabling more reliable multi-hop reasoning.

3 METHODOLOGY

As discussed above, we introduce intelligent navigation together with similarity-based expansion into traditional graph search to tackle multi-hop reasoning over KGs. We store KG as a property graph(Angles, 2018; Angles et al., 2017). Beyond basic node/edge connectivity, a property graph attaches rich attributes (e.g., textual descriptions, types) to nodes and edges, and each node further has an embedding representation. This allows search to exploit attribute filters and to fuse structural and embedding information, improving both efficiency and accuracy. We begin with formal definitions.

3.1 PRELIMINARIE

Definition 1. (*Property-Graph-based Knowledge Graph*)

$$KG = (V, E, \lambda_V, \lambda_E, \phi),$$

where V is the set of entity nodes; $E \subseteq V \times V$ is the set of semantic relation edges; λ_V and λ_E are attribute functions for nodes and edges; and $\phi : V \rightarrow \mathbb{R}^d$ maps each node to a d -dimensional embedding. For each edge $e = (u, v) \in E$, the corresponding knowledge triple is $(u, \lambda_E(e), v)$.

Definition 2. (*Multi-hop Search on Knowledge Graphs*)

Given a natural-language query q , multi-hop search (reasoning) aims to identify triples in the graph that are relevant to q and useful for answering it:

$$\mathcal{T}(q) = \{(u, \lambda_E(e), v) \in \mathcal{G} \mid \text{Relevant}((u, \lambda_E(e), v), q) = \text{True}\},$$

where $\mathcal{G} = \{(u, \lambda_E(e), v) \mid (u, v) \in E\}$ is the set of all triples, $\mathcal{T}(q)$ denotes the evidence triples for q , and $\text{Relevant}(\cdot, q)$ is a relevance function.

Traditional graph search can be applied to this task, but exhaustive traversal on large KGs is neither computationally feasible nor necessary. Advances in LLM, embeddings, and graph representation

learning enable a more intelligent, dynamic search. Node embeddings let us map nodes to a vector space and expand the graph via similarity; LLMs provide semantic-aware guidance to steer search and prune noise. Building on these ideas, we propose INSES, which couples LLM-guided decision making with similarity-based dynamic augmentation for effective search and reasoning in KGs.

High-level workflow. INSES first matches the query to semantically similar entity nodes via vector embeddings. It then iterates: at each step, (i) LLM selects informative triples from the neighbors of the current nodes, triples that directly support answering q or are promising for further exploration; (ii) a similarity module finds nodes most similar to the current nodes. The LLM-selected neighbors and similarity-based nodes are merged to form the next current nodes. These steps repeat until the answer is found or the iteration limits are reached. Figure 1 shows an example workflow of INSES.

3.2 STEP 1: EXTRACT INITIAL ENTITY NODES

Use an LLM to extract entities from q , that is:

$$\text{LLM}_{\text{Extractor}}(q) = \{m_i\}_{i=1}^k.$$

For each entity m_i , retrieve the entity node most similar in KG by cosine similarity to form the initial node set:

$$V_{\text{init}} = \left\{ v_i \mid v_i = \arg \max_{v \in V} \cos(\phi(m_i), \phi(v)), i = 1, \dots, k \right\}, \quad (1)$$

where $\phi(\cdot)$ denotes the embedding function consistent with the construction of KG .

3.3 STEP 2: LLM NAVIGATION

In this step, the adjacent triples of the current node, denoted by T_{adj} , are extracted and then pruned by LLM and judged whether they are sufficient to answer the question.

Initialize $V_{\text{current}} = V_{\text{init}}$, $T_{\text{selected}} = \emptyset$. Then

$$T_{\text{adj}} = \{(x, \lambda_E(e), y) \in \mathcal{G} \mid e = (x, y) \in E, x \in V_{\text{current}} \text{ or } y \in V_{\text{current}}\}. \quad (2)$$

An LLM acts as a navigator, that is,

$$\text{LLM}_{\text{Navigator}}(q, T_{\text{selected}}, T_{\text{adj}}) \rightarrow \begin{cases} \text{STOP}, & \text{if answerable;} \\ (T_{\text{new_selected}}, V_{\text{candidate}}), & \text{otherwise,} \end{cases} \quad (3)$$

where $T_{\text{new_selected}} \subseteq T_{\text{adj}}$ are newly selected triples and $V_{\text{candidate}}$ are endpoints of $T_{\text{new_selected}}$.

3.4 STEP 3: SIMILARITY-BASED EXPANSION AND AUGMENTATION

Compute similar nodes for each $u \in V_{\text{current}}$ and keep those above a threshold τ_{sim} :

$$V_{\text{sim}} = \left\{ v^*(u) = \arg \max_{v \in V \setminus \{u\}} \cos(\phi(u), \phi(v)) \mid \cos(\phi(u), \phi(v^*(u))) \geq \tau_{\text{sim}} \right\}. \quad (4)$$

Update V_{current} by merging candidates and removing visited nodes:

$$V_{\text{current}} \leftarrow (V_{\text{candidate}} \cup V_{\text{sim}}) \setminus V_{\text{visited}}.$$

This dynamically augments structure beyond explicit edges to capture latent semantic links.

The complete algorithm is shown in Algorithms 1 in the Appendix B.

270 3.5 COMPLEXITY CONTROL AND ROUTING
271

272 LLM-driven navigation introduces additional complexity, so we limit the number of navigation it-
273 erations to control cost, by default six, motivated by the theory of small world (Milgram et al.,
274 1967; Kleinberg, 2000). We also introduce a lightweight router that dispatches queries by estimated
275 complexity and confidence: simple queries are handled by a standard RAG pipeline with confi-
276 dence estimation, whereas multi-hop queries or cases with low confidence are escalated to INSES for
277 structured graph search and reasoning. This hybrid architecture balances efficiency with reasoning
278 ability. The analysis and demonstration of the routing mechanism and the related Algorithm 2 is
279 shown in Appendix C.

280 4 EXPERIMENTS
281282 4.1 DATASETS
283

284 To assess the effectiveness of INSES on graph search and reasoning, we conduct experiments on
285 three widely used multi-hop benchmarks: MuSiQue (Trivedi et al., 2022), 2WikiMultiHopQA (Ho
286 et al., 2020), and HotpotQA (Yang et al., 2018). For fairness, we follow the evaluation protocol of
287 previous work such as IRCoT (Trivedi et al., 2023), ensuring that all methods retrieve from the same
288 underlying corpus. To make the experiments computationally feasible while still representative, we
289 sample 1,000 queries from each dataset as our test set.

290 4.2 BASELINES
291

292 We compare our approach with three families of baselines. (i) LLM-only methods answer without
293 external retrieval, including Direct Prompting (Direct), the model outputs the final answer without
294 exemplars, and Few-shot CoT Prompting (Few-shot CoT) (Wei et al., 2022), where exemplars pro-
295 vide step-by-step rationales and final answers that the model emulates. (ii) Text-based RAG methods
296 retrieve from unstructured text and condition the LLM on retrieved snippets; we include the standard
297 Naïve RAG pipeline, HyDE (Gao et al., 2023a) (which generates a hypothetical document from the
298 query to guide retrieval), and IRCOT (Trivedi et al., 2023) (which interleaves iterative retrieval with
299 chain-of-thought prompting). (iii) Graph-based RAG methods retrieve and reason over structured
300 representations; we evaluate GraphRAG (Edge et al., 2024), LightRAG (Guo et al., 2024), RAP-
301 TOR (Sarthi et al., 2024) and SiReRAG (Zhang et al., 2025), which leverage graph/cluster structure
302 to aggregate evidence for multi-hop reasoning.

303 4.3 METRICS
304

306 We evaluate all methods using two complementary metrics:

307 **Exact Match (EM).** EM measures whether the predicted answer string exactly matches the ground
308 truth. This is a strict evaluation criterion that rewards only verbatim matches. While widely used in
309 QA benchmarks, EM often underestimates performance when semantically correct answers differ
310 slightly in surface form.

311 **LLM-as-a-Judge (LLM Judge).** To better capture semantic correctness, we adopt an evaluation
312 protocol in which a LLM acts as a judge. Given the query q , the ground truth answer, and the model
313 prediction, the LLM judge determines whether the prediction is semantically consistent with the
314 ground truth and can be considered a correct answer to q . This approach mitigates the limitations
315 of surface-level overlap and has recently been shown to be reliable and closely aligned with human
316 evaluation in multiple studies (Gu et al., 2024).

317 4.4 IMPLEMENTATION DETAILS
318

320 We follow a standard pipeline for constructing KGs from QA datasets. The constructed KG is stored
321 in the Neo4j graph database (Robinson et al., 2015; Francis et al., 2018). For system integration,
322 we adopt LlamaIndex (Liu, 2022), which offers a modular interface to connect LLMs, databases,
323 and retrieval components in a unified framework. For the embedding model, we use the lightweight
model bge-base-en-v1.5 (BAAI, 2024), chosen for its balance between accuracy and efficiency.

Unless otherwise specified, all experiments use GLM-4 ([ZhipuAI, 2024](#)) as the LLM backbone for reasoning, navigation, and answer generation. To evaluate the robustness of our approach, we also include ablation studies and comparisons with stronger models - GPT-4o ([OpenAI, 2024](#)).

4.5 MAIN RESULTS AND ANALYSIS

Table 2 reports the performance of all baselines and our proposed method on three datasets, which can be summarized as follows:

- Our proposed INSES + Router consistently outperforms all baselines on both EM and LLM Judge across all datasets. The strongest baseline, SiReRAG, approaches our scores on Musique but shows a clear gap on 2Wiki and a non-trivial gap on HotpotQA.
- Several graph-based variants (e.g., GraphRAG) fall short of Text RAG in these short, independent QA tasks. One reason is their reliance on cluster/community summaries as the basis for generation, an approach better suited to long, thematically related document sets than to brief factoid questions. In addition, as noted in the Introduction, there is no perfect procedure for text→KG conversion: real KGs are inevitably incomplete and noisy (missing/ambiguous links). Together with the granularity/organization mismatch, these factors imply different applicability regimes rather than an across-the-board advantage for graph methods. This motivates our routing design: since Text RAG is far cheaper than graph pipelines, routing between Text RAG and INSES balances both performance and cost.
- Most Text RAG baselines are relatively stable, and several perform strongly on HotpotQA; for example, Naïve RAG (Top-10) comes close to our method on that dataset. This supports the view that Text RAG excels on simpler or short-chain questions.
- In most cases, LLM Judge and EM track closely. Larger gaps occur primarily on HotpotQA, suggesting that its answer format affects exact string matching more than semantic consistency, making LLM Judge a useful complementary metric there.

Table 2: Performance comparison among baselines and INSES on three benchmark datasets in terms of EM and LLM Judge.

	Baseline methods	Musique		2Wiki		HotpotQA	
		EM	LLM Judge	EM	LLM Judge	EM	LLM Judge
<i>LLM only</i>	GLM-4 (Direct)	0.15	0.18	0.32	0.36	0.41	0.49
	GLM-4 (Few-shot CoT)	0.24	0.27	0.38	0.46	0.51	0.57
<i>Text-based</i>	Naïve RAG (Top-5)	0.31	0.29	0.39	0.43	0.62	0.71
	Naïve RAG (Top-10)	0.33	0.37	0.41	0.44	0.67	0.77
	HyDE	0.21	0.31	0.45	0.46	0.57	0.63
	IRCot	0.25	0.42	0.38	0.43	0.37	0.48
<i>Graph-based</i>	GraphRAG (Top-5)	0.23	0.24	0.38	0.35	0.43	0.63
	GraphRAG (Top-10)	0.26	0.36	0.50	0.43	0.47	0.61
	LightRAG	0.38	0.42	0.58	0.58	0.67	0.77
	Raptor	0.32	0.35	0.52	0.47	0.68	0.70
	SiReRAG	0.44	0.43	0.48	0.53	0.61	0.75
Ours	INSES + Router	0.46	0.47	0.67	0.71	0.68	0.80

The experiment results highlight the adaptability and robustness of our approach and illustrates the complementary strengths of text RAG and graph-based RAG. Text RAG operates over relatively coarse-grained units (e.g., text chunks) with lower construction and retrieval costs, while KG-based methods operate at the finer granularity of triples, leading to higher construction and retrieval overhead but greater reasoning precision. These results also validate the design of our router mechanism: simple queries can be efficiently handled by Naive RAG, while more complex multihop reasoning queries benefit from the graph-based search of INSES.

4.6 ABLATION STUDY

To better understand the contribution of each component in INSES, we conduct a step-wise ablation study. Specifically, we evaluate the following settings: **(i)** using only the LLM Navigator; **(ii)** adding

378 Similarity Enhancement on top of the LLM Navigator; and **(iii)** further incorporating the Router.
 379 All three variants employ GLM-4 as the underlying LLM. In addition, we test GPT-4o as a stronger
 380 backbone to examine the sensitivity of INSES to the choice of LLM.
 381

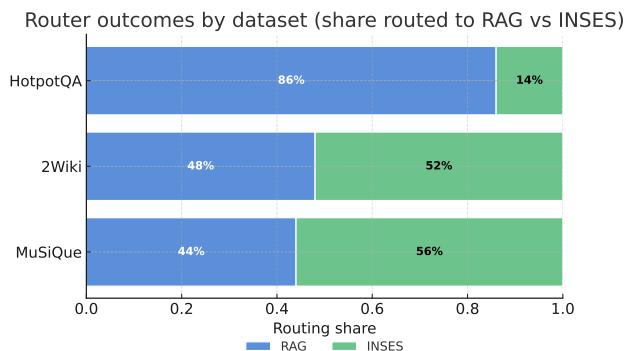
382 Table 3 shows that similarity-based expansion makes the largest contribution, yielding substantial
 383 improvements of 0.12 (EM) on MuSiQue, 0.07 (EM) on 2Wiki, and 0.05(EM) on HotpotQA. These
 384 gains are more pronounced on complex queries, while simpler queries (often ≤ 2 -hop) benefit less
 385 since multi-hop reasoning is not required. The router provides additional improvements, though
 386 smaller than those brought about by the similarity expansion. Switching from GLM-4 to GPT-4o
 387 leads to only modest gains, suggesting that the navigation and similarity enhancement themselves
 388 are the dominant factors; once the LLM is sufficiently competent, stronger backbones deliver dimin-
 389 ishing returns.
 390

391 Finally, the HotpotQA results reveal a key insight: naïve RAG already performs well on simpler
 392 cases, sometimes outperforming graph search, which highlights the router’s particular value. By
 393 assigning straightforward queries to Naïve RAG and applying INSES to complex reasoning tasks,
 394 the system strikes a balance between cost and performance.
 395

396 Table 3: Ablation study on three datasets.
 397

398 INSES	399 Musique		400 2Wiki		401 HotpotQA	
	402 EM	403 LLM Judge	404 EM	405 LLM Judge	406 EM	407 LLM Judge
408 GLM-4 (Direct)	409 0.15	410 0.18	411 0.32	412 0.36	413 0.41	414 0.49
415 GPT-4o (Direct)	416 0.28	417 0.35	418 0.54	419 0.57	420 0.49	421 0.65
422 Naïve RAG (Top-5)	423 0.31	424 0.29	425 0.39	426 0.43	427 0.62	428 0.71
429 w/ LLM Navigator	430 0.32	431 0.35	432 0.57	433 0.51	434 0.53	435 0.62
436 w/ LLM Navigator + Similarity Enhance	437 0.44	438 0.45	439 0.63	440 0.61	441 0.58	442 0.69
443 w/ LLM Navigator + Similarity Enhance + Router	444 0.46	445 0.47	446 0.67	447 0.71	448 0.68	449 0.80
450 w/ LLM Navigator + Similarity Enhance + Router (GPT-4o)	451 0.48	452 0.49	453 0.69	454 0.73	455 0.68	456 0.79

408 4.7 ROUTING BEHAVIOR ANALYSIS



422 Figure 2: Proportion of queries routed to RAG vs. INSES across three datasets.
 423

424 To further understand how the router balances efficiency and reasoning accuracy, we analyze the
 425 proportion of queries assigned to RAG versus INSES across different datasets. This analysis pro-
 426 vides insight into the practical role of the router: whether it effectively delegates simple queries to
 427 lightweight retrieval while reserving graph-based reasoning for complex cases.
 428

429 Figure 2 reports the fraction of queries routed to RAG and INSES on each dataset. The high share of
 430 RAG on HotpotQA (86%) indicates that many validation queries can be solved by shallow retrieval;
 431 consequently, the marginal benefit of graph search is smaller in this dataset. In contrast, MuSiQue
 432 and 2Wiki show near-balanced routing. This observation aligns with our ablation results (Table 3),
 433 where similarity-based expansion and multi-hop search yield larger gains on more complex queries.
 434

432
433

4.8 ROBUSTNESS AND ADAPTABILITY OF INSES

434
435
436
437
438

To assess the robustness and adaptability of INSES in KGs of different structure and quality, we evaluate it on the MINE benchmark introduced in KGGGEN (Mo et al., 2025). MINE contains 100 articles (each article contains approximately 1,000 words) covering 100 diverse topics, including history, art, science, ethics, and psychology. Each article is associated with 15 factual statements that are grounded in the article.

439
440
441
442
443
444
445

For each article, three KGs are generated by KGGGEN, GraphRAG (Edge et al., 2024), and OpenIE (Angeli et al., 2015), respectively. Then use the native retriever of each method to retrieve supporting triples for the 15 factual statements. An LLM then judges whether the retrieved triples are sufficient to infer the target fact; a query is scored 1 if sufficient (correct), otherwise 0. The accuracy per article is the number of correct queries divided by 15, and we report accuracies across all 100 articles. For comparison, INSES is also run on each of the three KGs, with the same evaluation procedure. To align with KGGGEN’s setting, we use GPT-4o to judge.

446
447
448
449
450
451
452

Figure 3 compares the query accuracy distributions of INSES versus KGGGEN, GraphRAG, and OpenIE in 100 articles. In terms of mean accuracy, INSES improves by +0.05 on KGs built by KGGGEN, +0.10 on GraphRAG, and +0.27 on OpenIE. In particular, KGGGEN, GraphRAG, and OpenIE represent three distinct paradigms of KG construction and produce graphs with markedly different structure and quality. However, INSES consistently outperforms each corresponding baseline in all KGs, indicating strong adaptability, due to its effective integration of similarity-based expansion with LLM-guided search navigation.

453
454

An analysis of the substantial structural and size differences among KGs constructed by different methods is provided in the Appendix A.

455

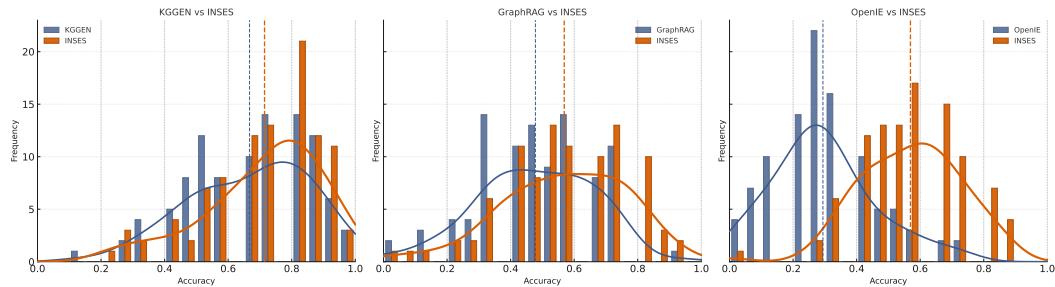
456
457
458
459
460
461
462
463
464

Figure 3: Accuracy distributions comparison across INSES on KGs built by different methods.

465
466
467

5 CONCLUSION

468
469

In this work, we present INSES, a multi-hop reasoning algorithm for knowledge graphs (KGs) that couples LLM-guided navigation with embedding-based similarity expansion to more effectively search real-world graphs. INSES incrementally selects informative triples while augmenting the local neighborhood with semantically similar nodes, mitigating sparsity and missing links in practical KGs. To balance efficiency with reasoning depth, we introduce a query router that detects easy cases and dispatches them to lightweight RAG, reserving INSES for genuinely multi-hop or ambiguous queries. This modular design keeps efficiency on routine inputs while preserving strong reasoning capability when complex compositional evidence is required.

470
471
472
473
474
475
476
477
478
479
480
481

Extensive experiments demonstrate that INSES consistently outperforms state-of-the-art baselines. Ablation studies confirm that LLM navigation, similarity-based expansion, and the router all contribute meaningfully to performance. These results highlight the adaptability and robustness of INSES for various KG reasoning tasks.

482
483
484
485

Looking ahead, our work opens up several directions. First, refinement of similarity expansion with stronger noise control and learning-based selection. Second, the similarity expansion and LLM navigation introduced in the INSES algorithm can be used not only in KG reasoning scenarios but also in other graph search scenarios.

486 REPRODUCIBILITY STATEMENT
487

488 A complete description of the model and retrieval workflow is provided in Section 3 & 4, with the it-
489 erative decision loop specified in Algorithm 1 and complexity notes in Appendix B. All hyperparam-
490 eters, prompts, and inference settings are listed in Section 4 and Appendix, and we report the exact
491 model identifiers and versions for external LLMs/embedding model. Dataset details for MuSiQue,
492 2Wiki, and HotpotQA, including splits and all preprocessing steps, are documented in Section 4
493 and Appendix A, and corresponding codes are included in the supplementary materials. Our eval-
494 uation protocol (EM, LLM-Judge), decision criteria, and aggregation procedures are described in
495 Section 4. To enable end-to-end replication, we provide an downloadable code archive (supplemen-
496 tary materials) that contains exact configuration files, fixed commit hash, and one-command scripts
497 to reproduce results, as well as an environment specification (requirements.txt) and containers for
498 Neo4j and Qdrant via docker-compose.yml. Instructions for running all experiments with the re-
499 leased processed JSONs and for regenerating results from raw data are included in the README in
500 the supplementary materials.

501 REFERENCES
502

503 Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D Manning. Leveraging linguistic
504 structure for open domain information extraction. In *Proceedings of the 53rd Annual Meeting*
505 *of the Association for Computational Linguistics and the 7th International Joint Conference on*
506 *Natural Language Processing (Volume 1: Long Papers)*, pp. 344–354, 2015.

508 Renzo Angles. The property graph database model. 2018.

510 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Domagoj Vrgoč.
511 Foundations of modern query languages for graph databases. *ACM Computing Surveys (CSUR)*,
512 50(5):1–40, 2017.

513 BAAI. Bge-base-en-v1.5: English text embedding model. <https://huggingface.co/BAAI/bge-base-en-v1.5>, 2024. Based on: Xiao et al., arXiv:2309.07597 (2023).

516 Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
517 domain questions. In *55th Annual Meeting of the Association for Computational Linguistics, ACL*
518 2017, pp. 1870–1879. Association for Computational Linguistics (ACL), 2017.

520 Shengyuan Chen, Chuang Zhou, Zheng Yuan, Qinggang Zhang, Zeyang Cui, Hao Chen, Yilin Xiao,
521 Jiani Cao, and Xiao Huang. You don’t need pre-built graphs for rag: Retrieval augmented
522 generation with adaptive reasoning structures. *arXiv preprint arXiv:2508.06105*, 2025.

523 Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,
524 and Dong Yu. Dense x retrieval: What retrieval granularity should we use? In *Proceedings of*
525 *the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 15159–15177,
526 2024.

528 Xinbang Dai, Yuncheng Hua, Tongtong Wu, Yang Sheng, Qiu Ji, and Guilin Qi. Large language
529 models can better understand knowledge graphs than we thought. *Knowledge-Based Systems*,
530 312:113060, 2025.

531 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
532 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
533 *arXiv e-prints*, pp. arXiv–2407, 2024.

535 David Easley, Jon Kleinberg, et al. *Networks, crowds, and markets: Reasoning about a highly*
536 *connected world*, volume 1. Cambridge university press Cambridge, 2010.

538 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
539 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.

540 Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
 541 Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An evolv-
 542 ing query language for property graphs. In *Proceedings of the 2018 international conference on*
 543 *management of data*, pp. 1433–1445, 2018.

544

545 Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
 546 relevance labels. In *Proceedings of the 61st Annual Meeting of the Association for Computational*
 547 *Linguistics (Volume 1: Long Papers)*, pp. 1762–1777, 2023a.

548

549 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
 550 Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
 551 *arXiv preprint arXiv:2312.10997*, 2023b.

552

553 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
 554 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint*
 555 *arXiv:2411.15594*, 2024.

556

557 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
 558 augmented generation. *arXiv preprint arXiv:2410.05779*, 2024.

559

560 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: neuro-
 561 biologically inspired long-term memory for large language models. In *Proceedings of the 38th*
 562 *International Conference on Neural Information Processing Systems*, pp. 59532–59569, 2024.

563

564 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: retrieval-
 565 augmented language model pre-training. In *Proceedings of the 37th International Conference on*
 566 *Machine Learning*, pp. 3929–3938, 2020.

567

568 Haoyu Han, Harry Shomer, Yu Wang, Yongjia Lei, Kai Guo, Zhigang Hua, Bo Long, Hui Liu,
 569 and Jiliang Tang. Rag vs. graphrag: A systematic evaluation and key insights. *arXiv preprint*
 570 *arXiv:2502.11371*, 2025.

571

572 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 573 qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th Interna-*
 574 *tional Conference on Computational Linguistics*, pp. 6609–6625, 2020.

575

576 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, Claudio Gutier-
 577 rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al.
 578 Knowledge graphs. *ACM Computing Surveys (Csur)*, 54(4):1–37, 2021.

579

580 Yunlong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. GRAG: Graph
 581 retrieval-augmented generation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings*
 582 *of the Association for Computational Linguistics: NAACL 2025*, pp. 4145–4157, Albuquerque,
 583 New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-
 584 7. doi: 10.18653/v1/2025.findings-naacl.232. URL <https://aclanthology.org/2025.findings-naacl.232/>.

585

586 Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S Yu. A survey on knowledge
 587 graphs: Representation, acquisition, and applications. *IEEE transactions on neural networks and*
 588 *learning systems*, 33(2):494–514, 2021.

589

590 Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
 591 ologically inspired long-term memory for large language models. *Advances in Neural Information*
 592 *Processing Systems*, 37:59532–59569, 2024.

593

594 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 595 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
 596 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*
 597 (*EMNLP*). Association for Computational Linguistics, 2020.

598

599 Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In *Proceedings of the*
 600 *thirty-second annual ACM symposium on Theory of computing*, pp. 163–170, 2000.

594 Ni Lao and William W Cohen. Relational retrieval using a combination of path-constrained random
 595 walks. *Machine learning*, 81(1):53–67, 2010.
 596

597 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 598 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 599 ation for knowledge-intensive nlp tasks. In *Proceedings of the 34th International Conference on*
 600 *Neural Information Processing Systems*, pp. 9459–9474, 2020.

601 Dawei Li, Shu Yang, Zhen Tan, Jae Baik, Sukwon Yun, Joseph Lee, Aaron Chacko, Bojian Hou,
 602 Duy Duong-Tran, Ying Ding, et al. Dalk: Dynamic co-augmentation of llms and kg to answer
 603 alzheimer’s disease questions with scientific literature. In *Findings of the Association for Com-*
 604 *putational Linguistics: EMNLP 2024*, pp. 2187–2205, 2024.

605

606 Lei Liang, Zhongpu Bo, Zhengke Gui, Zhongshu Zhu, Ling Zhong, Peilong Zhao, Mengshu Sun,
 607 Zhiqiang Zhang, Jun Zhou, Wenguang Chen, et al. Kag: Boosting llms in professional domains
 608 via knowledge augmented generation. In *Companion Proceedings of the ACM on Web Conference*
 609 2025, pp. 334–343, 2025.

610 Jerry Liu. LlamaIndex. https://github.com/jerryliu/llama_index, 2022. Ac-
 611 cessed: 2025-07-30.

612 Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. K-bert:
 613 Enabling language representation with knowledge graph. In *Proceedings of the AAAI conference*
 614 *on artificial intelligence*, volume 34, pp. 2901–2908, 2020.

615

616 Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
 617 Guo. Think-on-graph 2.0: Deep and faithful large language model reasoning with knowledge-
 618 guided retrieval augmented generation. In *Proceedings of the 2025 International Conference on*
 619 *Learning Representations (ICLR)*, 2025.

620 Stanley Milgram et al. The small world problem. *Psychology today*, 2(1):60–67, 1967.
 621

622 Belinda Mo, Kyssen Yu, Joshua Kazdan, Proud Mpala, Lisa Yu, Chris Cundy, Charilaos Kanatsoulis,
 623 and Sanmi Koyejo. Kggen: Extracting knowledge graphs from plain text with language models.
 624 *arXiv preprint arXiv:2502.09956*, 2025.

625

626 Mark EJ Newman. The structure and function of complex networks. *SIAM review*, 45(2):167–256,
 627 2003.

628 OpenAI. Gpt-4o: Openai’s most advanced model. <https://openai.com/index/gpt-4o/>,
 629 2024. Accessed: 2024-07-29.

630 Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods.
 631 semantic web 8, 3 (2017), 489–508. URL <http://ub-madoc.bib.uni-mannheim.de/41515>, 2017.

632

633 Matthew E Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh, and
 634 Noah A Smith. Knowledge enhanced contextual word representations. In *Proceedings of the 2019*
 635 *Conference on Empirical Methods in Natural Language Processing and the 9th International*
 636 *Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 43–54, 2019.

637

638 Tyler Thomas Procko and Omar Ochoa. Graph retrieval-augmented generation for large language
 639 models: A survey. In *2024 Conference on AI, Science, Engineering, and Technology (AIxSET)*,
 640 pp. 166–169. IEEE, 2024.

641

642 Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data mining. In *Inter-*
 643 *national semantic web conference*, pp. 498–514. Springer, 2016.

644

645 Ian Robinson, Jim Webber, and Emil Eifrem. *Graph databases: new opportunities for connected*
 646 *data.* ” O’Reilly Media, Inc.”, 2015.

647

648 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
 649 ning. Raptor: Recursive abstractive processing for tree-organized retrieval. In *The Twelfth Inter-*
 650 *national Conference on Learning Representations*, 2024.

648 Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering
 649 over knowledge graphs using knowledge base embeddings. In *Proceedings of the 58th annual*
 650 *meeting of the association for computational linguistics*, pp. 4498–4507, 2020.

651 Zhihong Shao, Yeyun Gong, Minlie Huang, Nan Duan, Weizhu Chen, et al. Enhancing retrieval-
 652 augmented large language models with iterative retrieval-generation synergy. In *The 2023 Con-*
 653 *ference on Empirical Methods in Natural Language Processing*, 2023.

654 Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
 655 William Cohen. Open domain question answering using early fusion of knowledge bases and
 656 text. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-*
 657 *cessing*, pp. 4231–4242, 2018.

658 Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,
 659 Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
 660 language model on knowledge graph. In *Proceedings of the 2024 International Conference on*
 661 *Learning Representations (ICLR)*, 2024.

662 Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
 663 and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
 664 agents. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-*
 665 *cessing*, pp. 14918–14937, 2023.

666 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 667 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 668 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

669 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 670 questions via single-hop question composition. *Transactions of the Association for Computational*
 671 *Linguistics*, 10:539–554, 2022.

672 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 673 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *61st*
 674 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2023.

675 William Yang Wang, Kathryn Mazaitis, and William W Cohen. Programming with personalized
 676 pagerank: a locally groundable first-order probabilistic logic. In *Proceedings of the 22nd ACM*
 677 *international conference on Information & Knowledge Management*, pp. 2129–2138, 2013.

678 Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
 679 prompting for multi-document question answering. In *Proceedings of the AAAI conference on*
 680 *artificial intelligence*, volume 38, pp. 19206–19214, 2024.

681 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 682 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 683 *neural information processing systems*, 35:24824–24837, 2022.

684 Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of
 685 thoughts in large language models. In *Proceedings of the 62nd Annual Meeting of the Association*
 686 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 10370–10388, 2024.

687 Yilin Xiao, Chuang Zhou, Qinggang Zhang, Su Dong, Shengyuan Chen, and Xiao Huang. Lag:
 688 Logic-augmented generation from a cartesian perspective. *arXiv preprint arXiv:2508.05509*,
 689 2025.

690 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 691 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 692 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language*
 693 *Processing*, pp. 2369–2380, 2018.

694 Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via staged
 695 query graph generation: Question answering with knowledge base. In *Proceedings of the Joint*
 696 *Conference of the 53rd Annual Meeting of the ACL and the 7th International Joint Conference on*
 697 *Natural Language Processing of the AFNLP*, 2015.

702 Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu. Augmentation-adapted retriever improves
703 generalization of language models as generic plug-in. In *The 61st Annual Meeting Of The Asso-*
704 *ciation For Computational Linguistics*, 2023.

705
706 Nan Zhang, Prafulla Kumar Choubey, Alexander Fabbri, Gabriel Bernadett-Shapiro, Rui Zhang,
707 Prasenjit Mitra, Caiming Xiong, and Chien-Sheng Wu. Sirerag: Indexing similar and related
708 information for multihop reasoning. In *The Thirteenth International Conference on Learning
709 Representations*, 2025.

710 Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
711 Knowledge graph based prompting for large language models. *Advances in Neural Information
712 Processing Systems*, 37:6052–6080, 2024.

713 Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K Qiu, and Lili Qiu. Retrieval aug-
714 mented generation (rag) and beyond: A comprehensive survey on how to make your llms use
715 external data more wisely. *arXiv preprint arXiv:2409.14924*, 2024.

716
717 ZhipuAI. Glm-4: An advanced large language model. <https://chatglm.cn>, 2024. Accessed:
718 2025-09.

719 Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He, Yongwei Zhang,
720 Sicong Liang, Xilin Liu, Yuchi Ma, et al. In-depth analysis of graph-based rag in a unified
721 framework. *arXiv preprint arXiv:2503.04338*, 2025.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	CONTENTS		
757			
758	1	Introduction	1
759			
760	2	Related Work	3
761	2.1	Knowledge Graph Reasoning	3
762			
763	2.2	Retrieval Augmented Generation	3
764			
765	3	Methodology	4
766	3.1	Preliminarie	4
767			
768	3.2	Step 1: Extract initial entity nodes	5
769			
770	3.3	Step 2: LLM Navigation	5
771			
772	3.4	Step 3: Similarity-based expansion and augmentation	5
773			
774	3.5	Complexity Control and Routing	6
775	4	Experiments	6
776	4.1	Datasets	6
777			
778	4.2	Baselines	6
779			
780	4.3	Metrics	6
781			
782	4.4	Implementation Details	6
783			
784	4.5	Main Results and Analysis	7
785			
786	4.6	Ablation Study	7
787			
788	4.7	Routing Behavior Analysis	8
789			
790	4.8	Robustness and Adaptability of INSES	9
791	5	Conclusion	9
792			
793	Reproducibility Statement		10
794			
795	A	Extended Analysis of the Incompleteness of Various Knowledge Graphs	16
796			
797	B	Implementation Details of the INSES Algorithm	16
798			
799	C	Text RAG vs. Graph-based RAG, and Why a Router is Sensible	19
800			
801	D	Case Study of INSES Algorithm	20
802			
803	E	Implementation Details of Using LLM as Question Answerer	24
804			
805	F	Implementation Details of Naïve RAG	25
806			
807	G	Implementation Details of LLM as A Judge	26
808			
809			

APPENDIX

- [A](#) A Extended Analysis of the Incompleteness of Various Knowledge Graphs
- [B](#) Implementation Details of the INSES Algorithm
- [C](#) Text RAG vs. Graph-based RAG, and Why a Router is Sensible
- [D](#) Case Study of INSES Algorithm
- [E](#) Implementation Details of Using LLM as Question Answerer
- [F](#) Implementation Details of Naïve RAG
- [G](#) Implementation Details of LLM as A Judge

A A EXTENDED ANALYSIS OF THE INCOMPLETENESS OF VARIOUS KNOWLEDGE GRAPHS

In the Introduction, we used a concrete example to analyze the differences among knowledge graphs produced by different methods and the issues they entail. We now examine this question at a broader scale and from a quantitative perspective, to better understand the heterogeneity and challenges present in real-world graphs.

Figure 4 compares the average sizes of knowledge graphs generated by three methods on MINE dataset (Mo et al., 2025): KGGEN (nodes=102, edges=72), GraphRAG (nodes=14, edges=13), and OpenIE (nodes=189, edges=265). The spread is substantial: relative to GraphRAG, OpenIE yields about $13.5 \times$ more nodes and $20 \times$ more edges, with KGGEN in between. The implied average degree ranges from 1.41 for KGGEN and 1.96 for GraphRAG to 2.80 for OpenIE, revealing a clear gradient from sparse to denser graphs. These discrepancies indicate that different extraction paradigms produce markedly different graph topologies: compact graphs risk incompleteness, whereas larger graphs are more susceptible to ambiguity and noise. Consequently, search algorithms for real-world KGs should be both adaptive and robust to such variability, as well as to missing edges and fuzzy surface forms. In this context, combining LLM-guided navigation (semantic filtering, relevance-driven pruning, and error suppression) with similarity-based expansion (to recover latent links, aliases, and paraphrases) is necessary and complementary: the former keeps the search precise, while the latter prevents missed connections in imperfect graphs.

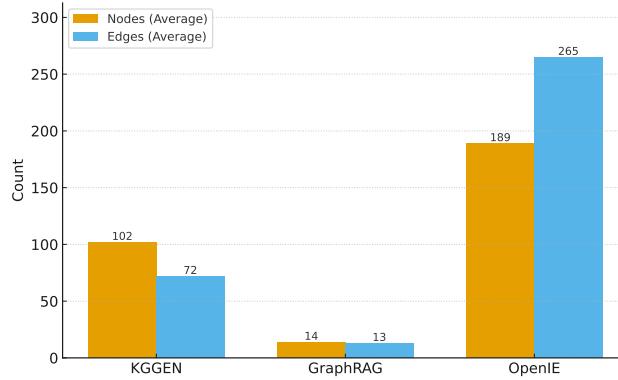


Figure 4: Average size of knowledge graphs generated by three different methods on the MINE dataset (100 articles). Bars report the mean number of nodes and edges per graph produced by KGGEN, GraphRAG, and OpenIE. The large spread across methods highlights the heterogeneity of KGs built from the same corpus, underscoring the need for search-and-reasoning algorithms that are adaptive and robust to incompleteness, ambiguity, and noise.

B IMPLEMENTATION DETAILS OF THE INSES ALGORITHM

The INSES algorithm is shown in Algorithm 1.

864 Equation 1 in Algorithm 1 uses an LLM to extract entities in the query q . The relevant prompts are
 865 shown in Table 4.
 866

867 Equation 3 in Algorithm 1 uses an LLM to navigate graph search. The relevant prompts are shown
 868 in Table 5.
 869

870 Table 6 presents a template that allows LLM to answer questions based on retrieved triples.
 871

Algorithm 1 Intelligent Navigation and Similarity Enhanced Search (INSES)

872 Input: Property knowledge graph $KG = (V, E, \lambda_V, \lambda_E, \phi)$, query q stated in natural language
 873

Output: A set of triples $T_{selected}$ that are helpful in answering q

```

874 1: Use Equation 1 and query  $q$  to establish the initial node set  $V_{init}$ 
875 2:  $V_{visited} = \{\}$ 
876 3:  $T_{selected} = \{\}$ 
877 4:  $V_{current} = V_{init}$ 
878 5: while  $iteration < max\_iter$  and  $V_{current} \neq \emptyset$  do
879 6:    $V_{visited} = V_{visited} \cup V_{current}$ 
880 7:   Get adjacent triples  $T_{adj}$  using Equation 2
881 8:   Use Equation 3 to let LLM select triples from  $T_{adj}$ , determine
882   whether the current information is sufficient and return  $T_{new\_selected}$  and  $V_{candidate}$ 
883 9:    $T_{selected} = T_{selected} \cup T_{new\_selected}$ 
884 10:  if sufficient then
885 11:    break
886 12:  end if
887 13:  Use Equation 4 to find similar nodes  $V_{sim}$ 
888 14:  ( $V_{current} = V_{candidate} \cup V_{sim}$ ) \  $V_{visited}$ 
889 15:   $iteration = iteration + 1$ 
890 16: end while
891 17: return  $T_{selected}$ 

```

892 Table 4: LLM Extract Entities Prompt
 893

LLM Extract Entities Prompt

894 Your task is to extract several entities from the given query, so they can be used to search a
 895 knowledge graph for clues relevant to answering the query.
 896

897 Return only the entities you extract, separated by commas, with no other text.
 898

899 Query: {query}
 900

901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918
919

Table 5: LLM Navigation Prompt

920

LLM Navigation Prompt

921

Your task is to provide support for complex queries and multi-hop reasoning in the knowledge graph. Based on the following query, the visited nodes and the selected triplets, as well as the current nodes and their adjacent triplets, select the triplet numbers (separated by commas) from the adjacent triplets of the current nodes that help answer the query.

922

Selection criteria: Select the triplets that are most relevant to the query and most likely to help answer it.

923

Then determine:

924

1. Based on the visited nodes, the selected triplets, and the triplets you just selected, is this information sufficient to answer the query?

925

2. If so, answer "sufficient";

926

3. If not, answer "insufficient";

927

Your response must be in JSON format with two fields:

928

"determination": "sufficient/insufficient",

929

"selection": "triplet numbers, e.g., 1, 2, 3"

930

Query: {query}

931

The visited nodes:

932

{chr(10).join(visited_nodes_info) if visited_nodes_info else 'none'}

933

The selected triplets and their corresponding source text:

934

{chr(10).join(all_selected_triplets_info) if all_selected_triplets_info else 'none'}

935

The current nodes:

936

{chr(10).join(current_nodes_info) if current_nodes_info else 'none'}

937

The adjacent triplets and their corresponding source text:

938

{chr(10).join(current_triplets_info) if current_triplets_info else 'none'}

939

Table 6: LLM Answer Question With Retrieved Triples Prompt

940

LLM Answer Question With Retrieved Triples Prompt

941

You are a helpful assistant that provides accurate and concise answers based on the provided knowledge graph information.

942

Please answer the following query: {query}

943

The following information is extracted from a knowledge graph, which contains entities, relationships, and relevant text:

944

{context}

945

Your response must be in JSON format with two fields:

946

1. "reasoning": Your step-by-step reasoning process based on the knowledge graph information.

947

Explain how the entities and relationships help answer the query.

948

2. "answer": The final answer to the query, as concise as possible without unnecessary explanations.

949

Example response format:

950

{

951

"reasoning": "Step 1: Identified entity X and its relationship to entity Y. Step 2: Found that entity Z is connected to both X and Y. Step 3: Based on these relationships, concluded that...",

952

"answer": "Concise answer here"

953

}

954

JSON Response:

972 C TEXT RAG VS. GRAPH-BASED RAG, AND WHY A ROUTER IS SENSIBLE
973

974 Prior work (Han et al., 2025; Zhou et al., 2025) and our experiments indicate that GraphRAG is not
975 uniformly superior to Text RAG. Table 7 contrasts the two paradigms. The two paradigms differ at
976 a structural level, which naturally leads to distinct strengths and usage regimes.
977

978 Table 7: RAG vs. GraphRAG: comparison of pipeline, capabilities, and costs
979

980 Dimension	981 Text RAG	982 GraphRAG
983 Data form & indexing	984 Chunk raw text and retrieve via dense vectors; preserves original wording and details	985 Extract entities/relations or community structure to build a graph, then retrieve by graph and aggregate subgraphs/communities
986 Retrieval characteristics	987 Strong at in-place factual recall via semantic similarity; sensitive to type words and relation templates; well-suited to short-chain reasoning	988 Connects evidence across segments via explicit structure; better for long chains/hierarchical reasoning and thematic/context integration
989 Strengths (tasks)	990 Single-hop and ≤ 2 -hop factual QA with rich details; pulling key snippets across documents	991 Multi-hop (≥ 3) and long-range reasoning; contextual summarization/thematic synthesis; structured evidence integration
992 Generation trade-offs	993 Higher context relevance and lower noise; more focused coverage in creative/synthesis tasks	994 Broader evidence recall and coverage, but more redundancy; typical trade-off: coverage \uparrow vs. relevance \downarrow in creative tasks
995 Efficiency & cost	996 Low build/query cost; shorter prompts	997 Higher graph construction cost; retrieval/aggregation tends to inflate prompt length, increasing cost (varies by implementation)
998 Implementation variants	999 Classic dense retrieval with optional reranking, HyDE, hybrid (sparse+dense) retrieval	1000 KG-style triple retrieval, community-based global/local retrieval, mixed nodes (concepts/passage), etc.
1001 Common failure modes	1002 Long-range/cross-document reasoning is hard; chunk boundaries hide global structure	1003 Detail loss/missing or ambiguous links and noise during graph construction can cause retrieval drift; global summarization may lose fine details
1004 Routing & hybrid use	1005 Well-suited to factual/detail-oriented queries on its own	1006 Well-suited to reasoning/multi-hop queries; can be integrated with or selectively routed alongside Text RAG for complementarity

1013 **When Text RAG tends to win (≤ 2 hops).** For most ≤ 2 -hop queries, the *answer's immediate*
1014 *neighborhood* is either (i) *explicitly mentioned* in the query, or (ii) *strongly evoked* by type/semantic
1015 *cues* in the query. This explains why Text RAG often suffices:
1016

1017 • **Converging 2-hop** ($A \rightarrow \text{Ans} \leftarrow C$): the answer node is directly adjacent to two entities
1018 named in the query. Chunks that mention the answer along with A or C are readily retrieved
1019 by dense similarity. For example:

1020 **Q:** Who authored *Pride and Prejudice* and was the sister of Cassandra Austen?

1021 **Reasoning:** *Pride and Prejudice* \rightarrow JANE AUSTEN \leftarrow Cassandra Austen.

1022 **Answer:** Jane Austen.

1023 Vector retrieval readily surfaces chunks where Jane Austen anchors both query mentions.
1024

1025 • **Chained 2-hop** ($A \rightarrow B \rightarrow \text{Ans}$): even if B and Ans are not named, the query typically
carries *type cues* that pull the right evidence in embedding space. Such type/entity clusters

1026 and relation patterns are well captured by modern embeddings, so relevant chunks co-
 1027 mentioning B and Ans are frequently surfaced. For example:

1028 **Q:** What river flows through the city that is home to the Eiffel Tower?

1029 **Reasoning:** Eiffel Tower → PARIS → SEINE.

1030 **Answer:** Seine.

1031 The answer is tightly tied to a query cue (“river”), which embeddings capture reliably.

1032
 1033 Hence, with appropriate chunking (e.g., 256–1024 tokens with overlap), **Text RAG handles many**
 1034 **factual and ≤ 2 -hop queries efficiently while preserving fine-grained details.**

1035
 1036 **When GraphRAG is needed (≥ 3 hops / long-range).** As the hop length grows, queries rarely
 1037 contain all answer-adjacent entities; *explicit multi-hop connectivity* in a KG becomes valuable for
 1038 exposing long-range correlations. However, the text→graph step can introduce *detail loss, missing/ambiguous links, and noise*. In practice, search may stall or drift on incomplete graphs, and
 1039 some facts may be literally absent from the graph, even though they exist in the source text. Therefore,
 1040 knowledge graphs are more suitable for long-range multi-hop reasoning but at the same time
 1041 require some enhancement methods, such as property graphs and similarity-based extensions.

1042
 1043 **Why a router between Text RAG and GraphRAG.** A *router* lets each method specialize: **Text**
 1044 **RAG** serves the abundant simple cases cheaply and with high fidelity to source wording, while
 1045 **GraphRAG** is reserved for *genuinely multi-hop (≥ 3) or long-range* problems where explicit structure
 1046 is advantageous. This not only **balances quality and cost** (simple queries dominate real work-
 1047 loads; GraphRAG is costlier to build/query) but also improves robustness: when type cues suffice,
 1048 dense retrieval excels; when structural chaining is essential, graph reasoning takes over. In our sys-
 1049 tem, this routing criterion aligns with the structural characteristics above and reflects the empirical
 1050 boundary between the two regimes.

1051 The Router algorithm is shown in Algorithm 2.

1052 **Algorithm 2** Router Algorithm

1053 Input: A Naïve RAG system with a vector database, a knowledge graph $KG = (V, E, \lambda_V, \lambda_E, \phi)$,
 1054 query q stated in natural language

1055 Output: A set of text or a set of triples that are helpful in answering q

1056 1: Use LLM to determine if q is related to multi-hop (≥ 3) search
 1057 2: **if** False **then**
 1058 3: route to the Naïve RAG
 1059 4: Naïve RAG gives an answer with *confidence*
 1060 5: **if** *confident* $> Confidence_{threshold}$ **then**
 1061 6: return the results given by Naïve RAG
 1062 7: **else**
 1063 8: route to running INSES on KG
 1064 9: **end if**
 1065 10: **else**
 1066 11: route to running INSES on KG
 1067 12: **end if**
 1068 13: return the results given by INSES

1070
 1071
 1072 **D CASE STUDY OF INSES ALGORITHM**

1073 Table 8 is an example of INSES search without similarity expansion.

1074 Table 9 is an example of INSES search with similarity expansion.

1075 Below we analyze a concrete run of the INSES algorithm to illustrate how LLM navigation and
 1076 similarity expansion work in practice. Table8 shows the execution without similarity expansion,
 1077 while Table9 shows the full INSES run with similarity expansion enabled. Comparing the two,
 1078 Table 8 fails to reach the correct answer yet demonstrates the effectiveness of LLM-based navigation;

1080 Table 9 succeeds, highlighting the effectiveness of similarity expansion and showing that during
 1081 navigation the LLM not only selects relevant information but also filters out errors introduced by
 1082 similarity expansion. A detailed analysis follows.

1083 From Table 8, the initial entities extracted from the query “Who was the spouse
 1084 of a leading speaker against slavery and publisher of an antislavery newspaper?” are
 1085 four: ['leading speaker against slavery', 'antislavery newspaper', 'spouse', 'publisher']. Using
 1086 embedding similarity, these are matched to four nodes in the graph to form V_{init} :
 1087 ['Opponent of slavery', 'Anti-slavery newspaper', 'Husband and wife', 'Newspaper publisher'].
 1088

1089 In iteration 0, the LLM selects three triples from the neighborhood of these four entity nodes
 1090 (recorded as $T_{\text{new_selected}}$). This shows that the LLM navigates and prunes well, avoiding a flood
 1091 of irrelevant triples. One reason is that rich attribute information in the property graph provides
 1092 strong support for LLM decision-making; another is that, given the context, choosing relevant clues
 1093 among available information is not a particularly hard task, so the LLM can keep the search breadth
 1094 within a reasonable range.

1095 In iteration 1, the LLM selects only one triple (again recorded in $T_{\text{new_selected}}$): “The North Star →
 1096 Published by → Frederick Douglass”. Consequently, the candidate set for the next step is a single
 1097 node, $V_{\text{candidate}} = [\text{Frederick Douglass}]$.

1098 In iteration 2, from the neighborhood of node “Frederick Douglass” the LLM again selects only one
 1099 triple—“The North Star → Published by → Frederick Douglass”—which had already been visited
 1100 before. In other words, the opposite-end node of this triple has already been explored. No new
 1101 candidate nodes are generated in this round, i.e., $V_{\text{candidate}} = \emptyset$. The search therefore terminates
 1102 without finding the correct answer. Overall, the process shows that LLM navigation is efficient and
 1103 does not select excessive irrelevant information.

1104 Now consider the process in Table 9. Iterations 0, 1, and 2 proceed similarly to Table 8 but with
 1105 similarity expansion applied at each round. The LLM’s core selections remain essentially the same
 1106 as in Table 8, and it promptly filters out errors introduced by similarity expansion. In Table 8,
 1107 iteration 2 produces no new candidates and the search stops. In contrast, in Table 9’s iteration
 1108 2, the current node “Frederick Douglass” yields a new node via similarity expansion—“Frederick
 1109 Douglass Memorial and Historical Association”—and this newly surfaced node is precisely what
 1110 leads to the final correct answer.

1111 In iteration 3, the LLM selects the triple “Helen Pitts Douglass → Created → Frederick Douglass
 1112 Memorial and Historical Association,” whose opposite-end node is “Helen Pitts Douglass.” In it-
 1113 eration 4, the LLM again selects a single triple—“Helen Pitts Douglass → Is → Second wife of
 1114 Frederick Douglass”—which directly points to the correct answer. Note that in iterations 3 and 4
 1115 the LLM selects very few triples (only one each time) and is not distracted by irrelevant nodes intro-
 1116 duced through similarity expansion; instead, it filters them out in a timely manner. This demonstrates
 1117 that combining LLM navigation with similarity expansion is highly effective: similarity expansion
 1118 can surface latent links, while LLM navigation can promptly prune potential errors introduced by
 1119 that expansion.

1120 An additional observation is that the final triple “Helen Pitts Douglass → Is → Second wife of
 1121 Frederick Douglass” implies that “Second wife of Frederick Douglass” is modeled as a node in the
 1122 KG. This also explains why the process in Table 8 failed to find the correct answer: in the constructed
 1123 KG, “Frederick Douglass” and “Second wife of Frederick Douglass” are two separate nodes. As
 1124 noted in the Introduction, it is difficult to convert natural-language information into a perfect KG.
 1125 In this example, the fact “Helen Pitts Douglass is the second wife of Frederick Douglass” can be
 1126 represented either as “Helen Pitts Douglass → Is → Second wife of Frederick Douglass” or as
 1127 “Helen Pitts Douglass → Is the second wife of → Frederick Douglass,” and both representations
 1128 are reasonable. Such situations are common in KGs. If search and reasoning over a KG rely only
 1129 on exact structural links, potential connections may be missed. Introducing similarity expansion is
 1130 therefore an effective way to mitigate ambiguity and incompleteness.

1131
 1132
 1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150

Table 8: Search without similarity expansion

1151	Iteration	The relevant status of each iteration
1152	Query	Who was the spouse of a leading speaker against slavery and publisher of an antislavery newspaper?
1153	Entities	['leading speaker against slavery', 'antislavery newspaper', 'spouse', 'publisher']
1154	V_{init}	['Opponent of slavery', 'Anti-slavery newspaper', 'Husband and wife', 'Newspaper publisher']
1155	iter=0	$V_{current}$: ['Opponent of slavery', 'Anti-slavery newspaper', 'Husband and wife', 'Newspaper publisher']. $T_{new_selected}$: ['Thomas spottswood hinde → Occupation → Opponent of slavery', 'The north star → Is → Anti-slavery newspaper', 'Enos bronson → Was → Newspaper publisher']. $V_{candidate}$: ['Thomas spottswood hinde', 'The north star', 'Enos bronson']
1156	iter=1	$V_{current}$: ['Thomas spottswood hinde', 'The north star', 'Enos bronson']. $T_{new_selected}$: ['The north star → Published by → Frederick douglass']. $V_{candidate}$: ['Frederick douglass']
1157	iter=2	$V_{current}$: ['Frederick douglass']. $T_{new_selected}$: ['The north star → Published by → Frederick douglass']. $V_{candidate}$: []
1158	Answer	Not Found.
1159		
1160		
1161		
1162		
1163		
1164		
1165		
1166		
1167		
1168		
1169		
1170		
1171		
1172		
1173		
1174		
1175		
1176		
1177		
1178		
1179		
1180		
1181		
1182		
1183		
1184		
1185		
1186		
1187		

1188

1189

1190

1191

1192

1193

1194

1195

Table 9: Search with similarity expansion

1196

1197	Iteration	The relevant status of each iteration
1198	Query	Who was the spouse of a leading speaker against slavery and publisher of an antislavery newspaper?
1199	Entities	['leading speaker against slavery', 'antislavery newspaper', 'spouse', 'publisher']
1200	V_{init}	['Opponent of slavery', 'Anti-slavery newspaper', 'Husband and wife', 'Newspaper publisher']
1201	iter=0	$V_{current}$: ['Opponent of slavery', 'Anti-slavery newspaper', 'Husband and wife', 'Newspaper publisher']. $T_{new_selected}$: ['Thomas spottswood hinde → Occupation → Opponent of slavery', 'The north star → Is → Anti-slavery newspaper', 'Enos bronson → Was → Newspaper publisher']. $V_{candidate}$: ['Thomas spottswood hinde', 'The north star', 'Enos bronson']. V_{sim} : ['Pro-slavery southerner', 'Liberty party paper', 'Husbands and wives', 'Newspaper of record']
1202	iter=1	$V_{current}$: ['Thomas spottswood hinde', 'The north star', 'Enos bronson', 'Pro-slavery southerner', 'Liberty party paper', 'Husbands and wives', 'Newspaper of record']. $T_{new_selected}$: ['The north star → Published by → Frederick douglass']. $V_{candidate}$: ['Frederick douglass']. V_{sim} : ['Newspaper editor', 'The toronto star', 'Opponent of slavery', 'Federalist party', 'Husband and wife', 'Country's newspaper of record']
1203	iter=2	$V_{current}$: ['Frederick douglass', 'Newspaper editor', 'The toronto star', 'Federalist party', 'Country's newspaper of record']. $T_{new_selected}$: ['The north star → Published by → Frederick douglass']. $V_{candidate}$: []. V_{sim} : ['Frederick douglass memorial and historical association', 'Weekly newspaper', 'Federalists', 'Newspaper of record']
1204	iter=3	$V_{current}$: ['Frederick douglass memorial and historical association', 'Weekly newspaper', 'Federalists']. $T_{new_selected}$: ['Helen pitts douglass → Created → Frederick douglass memorial and historical association']. $V_{candidate}$: ['Helen pitts douglass']. V_{sim} : ['Frederick douglass', 'English language weekly newspaper', 'Federalist party']
1205	iter=4	$V_{current}$: ['Helen pitts douglass', 'English language weekly newspaper']. $T_{new_selected}$: ['Helen pitts douglass → Is → Second wife of frederick douglass']. $V_{candidate}$: ['Second wife of frederick douglass'].
1206	Answer	Helen Pitts Douglass

1236

1237

1238

1239

1240

1241

1242 **E IMPLEMENTATION DETAILS OF USING LLM AS QUESTION ANSWERER**
12431244 For clarity about the experimental baselines, we also provide exact prompts. Table 10 lists the LLM
1245 only (Direct) prompt, and Table 11 lists the LLM only (Few-shot CoT) prompt.
12461247 Table 10: LLM only (Direct) Prompt
12481249 **LLM only (Direct) Prompt**
12501251 You are a helpful assistant that answers questions based on your own knowledge.
12521253 Question: {question}
12541255 Please provide your response in the following JSON format:
12561257 "answer": "Your final answer"
12581260 Table 11: LLM only (Few-shot CoT) Prompt
12611262 **LLM only (Few-shot CoT) Prompt**
12631264 You are a helpful assistant that answers questions based on your own knowledge. Below are several
1265 examples of chain of thought. You can refer to these examples to think about the question and give
1266 the correct answer.
12671268 Your answer must be returned in JSON format with two fields: "reasoning" and "answer". The
1269 "reasoning" field should contain your step-by-step reasoning process, and the "answer" field should
1270 contain the final answer. The "answer" field should be as concise as possible and should not
1271 contain unnecessary explanations.
12721273 Examples of Chain of Thought:
12741275 Q: What language is primarily spoken in the country whose capital is Madrid?
1276 A: First, the country whose capital is Madrid is Spain. Second, the primary language of Spain is
1277 Spanish. The answer is {Spanish}.
1278 Q: Who painted The Starry Night and famously cut off part of his ear?
1279 A: First, The Starry Night was painted by Vincent van Gogh. Second, the artist who cut off part of
1280 his ear is Vincent van Gogh. The answer is {Vincent van Gogh}.
1281 Q: What continent contains the country whose capital is Nairobi?
1282 A: First, Nairobi is the capital of Kenya. Second, Kenya is located in Africa. The answer is
1283 {Africa}.
1284 Q: Which composer wrote The Magic Flute and was born in Salzburg?
1285 A: First, The Magic Flute was composed by Wolfgang Amadeus Mozart. Second, Mozart was born
1286 in Salzburg. The answer is {Wolfgang Amadeus Mozart}.
1287 Q: What element has the chemical symbol Fe and is used to make steel?
1288 A: First, the chemical symbol Fe stands for iron. Second, iron is commonly used to make steel.
1289 The answer is {Iron}.
1290 Q: Which planet is known as the Red Planet and has the volcano Olympus Mons?
1291 A: First, the Red Planet is Mars. Second, Olympus Mons is a volcano on Mars. The answer is
1292 {Mars}.
12931294 Question: {question}
12951296 Please provide your response in the following JSON format:
12971298 "reasoning": "Your step-by-step reasoning process"
1299 "answer": "Your final answer"
1300

1296 F IMPLEMENTATION DETAILS OF NAÏVE RAG
12971298 We implement Naïve RAG using the Qdrant vector database as the storage backend and the embed-
1299 ding model bge-base-en-v1.5. For each dataset, we collect all available context passages, embed
1300 them, and store the embeddings in Qdrant. Each context is kept at its original granularity from the
1301 dataset; no additional splitting or merging is performed. Table 12 provides the prompt used by RAG
1302 at inference time.1303
1304 Table 12: Naïve RAG Prompt1305
1306 **Naïve RAG Prompt**1307 You are a helpful assistant that provides accurate and concise answers based on the provided
1308 context.

1310 Please answer the following query: {query}

1312 Context information is below:

1313 {context}

1314 Your response must be in JSON format with three fields:

1315 1. "reasoning": Your step-by-step reasoning process based on the context.
1316 2. "answer": The final answer to the query, as concise as possible without unnecessary
1317 explanations.1318 3. "confidence": The confidence level of your answer, where 0 means no confidence and 1 means
1319 complete certainty. If you cannot derive a reasonable answer from the provided context, the
1320 returned confidence level should be low.

1322 Example response format:

1323 {
1324 "reasoning": "Step 1: ... Step 2: ... Step 3: ...",
1325 "answer": "Concise answer here",
1326 "confidence": 0.8
1327 }

1328 JSON Response:

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 G IMPLEMENTATION DETAILS OF LLM AS A JUDGE

1351
 1352 We employ LLM-as-a-judge in two parts of our experiments. In Sections 4.5 and 4.6, an LLM judge
 1353 assesses, for each query, whether the answer of a method is consistent with the ground truth; the
 1354 corresponding prompt is provided in Table 13. In Section 4.8, the LLM judge evaluates whether the
 1355 triples selected by each method faithfully express the stated fact; the prompt for this setting appears
 1356 in Table 14.

1357 Table 13: Implementation Details of LLM as a judge in Section 4.5 and 4.6

1359 **LLM as a judge Prompt**

1360
 1361 You are an expert evaluator. Your task is to determine if the predicted answer is semantically
 1362 equivalent to the ground truth answer for the given question.

1363
 1364 Question: {question}

1365 Ground Truth Answer: {ground_truth}

1366 Predicted Answer: {prediction}

1367
 1368 Instructions: - Compare the predicted answer and the ground truth answer in the context of the
 1369 question.

1370 - They are considered equivalent if they convey the same meaning, even if the wording is different.

1371 - Respond in JSON format with two keys:

1372 "is_equivalent": true or false,

1373 "explanation": a brief explanation for your decision.

1374
 1375 Example response:

1376 {{

1377 "is_equivalent": true,

1378 "explanation": "Both answers correctly state that the capital of France is Paris."

1379 }}

1380 Important: Only output the JSON object and nothing else.

1382 Table 14: Implementation Details of LLM as a judge in Section 4.8

1384 **LLM as a judge Prompt**

1385
 1386 You are an evaluator that checks if the Correct Answer can be deduced from the information in the
 1387 context."

1388 Context:

1389 {context}

1390 Correct Answer:

1391 {correct_answer}

1392 Task: Determine whether the Context contains the information stated in the Correct Answer.

1393 Respond with "1" if yes, and "0" if no. Do not provide any explanation, just the number.

1395

1396

1397

1398

1399

1400

1401

1402

1403