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ABSTRACT

Text-to-3D generation based on score distillation of pre-trained 2D diffusion mod-
els has gained increasing interest, with variational score distillation (VSD) as a
remarkable example. VSD proves that vanilla score distillation can be improved
by introducing an extra score-based model, which characterizes the distribution
of images rendered from 3D models, to correct the distillation gradient. Despite
the theoretical foundations, VSD, in practice, is likely to suffer from slow and
sometimes ill-posed convergence. In this paper, we perform an in-depth investiga-
tion of the interplay between the introduced score model and the 3D model, and
find that there exists a mismatching problem between LoRA and 3D distributions
in practical implementation. We can simply adjust their optimization order to
improve the generation quality. By doing so, the score model looks ahead to the
current 3D state and hence yields more reasonable corrections. Nevertheless, naive
lookahead VSD may suffer from unstable training in practice due to the potential
over-fitting. To address this, we propose to use a linearized variant of the model
for score distillation, giving rise to the Linearized Lookahead Variational Score
Distillation (L2-VSD). L2-VSD can be realized efficiently with forward-mode
autodiff functionalities of existing deep learning libraries. Extensive experiments
validate the efficacy of L2-VSD, revealing its clear superiority over prior score
distillation-based methods. We also show that our method can be seamlessly
incorporated into any other VSD-based text-to-3D framework.

1 INTRODUCTION

3D content creation is important for a variety of applications, such as interactive gaming (Bruce
et al., 2024; Xia et al., 2024), cinematic arts (Conlen et al., 2023), AR/VR (Creed et al., 2023;
Li et al., 2024), and building simulated environments for training agents in robotics (Team et al.,
2024). However, it is still challenging and expensive to create a high-quality 3D asset as it requires a
high level of expertise. Therefore, automating this process with generative models has become an
important problem (Jiang, 2024), while remaining non-trivial due to the scarcity of training data and
the complexity of 3D representations.

Score distillation has emerged as an attractive way for 3D generation given textual condition (Poole
et al., 2022; Lin et al., 2023; Chen et al., 2023; Wang et al., 2023; 2024a). It leverages pretrained 2D
diffusion models (Ho et al., 2020; Rombach et al., 2022) to define priors to guide the evolvement
of 3D content without reliance on annotations. Score Distillation Sampling (SDS) (Poole et al.,
2022) is a seminal work in this line, but it is widely criticized that its generations suffer from the
over-smoothing issue. Variational Score Distillation (VSD) (Wang et al., 2023) remediates this by
introducing an extra model that captures the score of the images rendered from the 3D model to
correct the distillation gradient. However, VSD often requires a lengthy optimization through 3 stages:
NeRF generation, geometry refinement, and texture refinement. The outcomes obtained in the initial
stage are often blurry, prone to collapsing, and not directly applicable (Wei et al., 2023). Though
existing works begin to understand and improve SDS (Wang et al., 2024a; Yu et al., 2023; Katzir
et al., 2023), there are great but less efforts dedicated to improving the more promising VSD (Ma
et al., 2025; Wei et al., 2024).
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Figure 1: Comparison of convergence between VSD and L-VSD with an illustrative 2D Gaussian example.
In this toy example we consider x ∈ R2 from a single Gaussian distribution. We optimize q(x) towards ground
truth distribution p(x) and use r(x) to function as LoRA which is used to estimate q(x). This example validates
the existence of mismatching issue in VSD and we leave the details in Sec. 3.2.

To identify the root of VSD’s drawback, we conduct a comprehensive analysis of the interaction
between the introduced score model and 3D model revealing that adjusting their optimization order
can sometimes lead to a considerable enhancement in generation quality. This adjustment allows the
score model to look ahead to the current 3D state, resulting in more accurate and sensible corrections
for the distillation gradient. Yet, naive lookahead VSD can encounter unstable training due to the risk
of the score model overfitting the single 3D particle and the sampled camera view.

To address this issue, we formally compare the correction gradients before and after looking ahead
and identify two major differences—a linear first-order term and a high-order one. Upon closer
examination, we observe that the former accommodates subtle semantic information, whereas the
latter contains non-trivial high-frequency noises. Given these findings, we propose to use only the first-
order term for correction, yielding Linearized Lookahead Variational Score Distillation (L2-VSD), to
reliably and consistently boost the generation quality of VSD. L2-VSD is both easy to implement and
computationally efficient—the added linear term can be computed by only one additional forward
process of the score model under the scope of forward-mode automatic differentiation, which is
supported in many deep learning libraries (Paszke et al., 2017; Ketkar et al., 2021).

Through extensive experiments, we demonstrate the significant superiority of the proposed L2-VSD
in improving 3D generation quality compared to competing baseline methods, as shown in Fig. 7.
L2-VSD can even produce realistic generation results with low resolution directly in the first stage.
Moreover, we empirically show that L2-VSD can be seamlessly integrated into other VSD-based
3D generation pipelines and combined with other parallel techniques for VSD, e.g., Entropy Score
Distillation(ESD) (Wang et al., 2024a) which mitigates the Janus problem, for further improvement.

We summarize our technical contributions as follows:

• For VSD, a fundamental method in text-to-3D generation, we carefully identify the gaps
between its theory and implementation and analyze the potential impact the gaps may bring
us, providing a direction for possible improvements.

• We propose L2-VSD, an easy to implement and computationally efficient variant of VSD,
which mitigates the mismatching problem to some extent. We demonstrate its significant
improvement over baselines and comparable to other state-of-the-arts.

• We demonstrate that our method can be seamlessly combined with other VSD-based im-
proving techniques without much effort.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) are defined
with a forward diffusion process on data x ∈ Rd with a Gaussian transition kernel. The conditional
distribution at some timestep t ∈ [0, T ] usually satisfies

q(xt|x0) = N (xt;αtx0, σ
2
t I) (1)
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where x0 := x, and αt and σt are pre-defined noise schedules. DMs learn a reverse diffusion process,
specified by a parameterized distribution p(xt−1|xt) := N (xt−1;µψ(xt, t), σ

2
t I) with µψ as a neural

network (NN), to enable the sampling of generations from Gaussian noise. The training objective of
µψ is the variational lower bound of the log data likelihood. In practice, µψ is re-parameterized as a
denoising network ϵψ and the training loss can be further simplified as a Mean Squared Error (MSE)
form (Ho et al., 2020; Kingma et al., 2023):

LDiff := Ex,t,ϵ[ω(t)||ϵψ(αtx+ σtϵ, t)− ϵ||22], (2)

where x follows the data distribution, t is uniformly drawn from [0, T ], ϵ is a standard Gaussian noise,
and ω(t) is a time-dependent coefficient. ϵψ also inherently connects to score matching (Vincent,
2011; Song et al., 2020).

Classifier-free guidance (CFG) (Ho & Salimans, 2022). We can augment the model ϵψ with an extra
input, the condition y, to characterize the corresponding conditional distribution, leaving ϵψ(xt, t, ∅)
account for the original unconditional one. Then, we can resort to CFG to further boost the quality of
conditional generation. Typically, CFG leverages the following term in the sampling process:

ϵ̂ψ(xt, t, y) := (1 + s)ϵψ(xt, t, y)− sϵψ(xt, t, ∅) (3)

where s > 0 refers to a guidance scale.

2.2 TEXT-TO-3D GENERATION WITH SCORE DISTILLATION

Text-to-3D generation aims to identify the parameters θ ∈ RN of a 3D model given a text condition
y. Neural radiance field (NeRF) (Mildenhall et al., 2020) is a typical 3D representation based on
neural networks. In particular, NeRF renders a new view of the scene with the input of a sequence of
images as known views. Additionally, textured mesh can be applied to represent the geometry of a
3D object with triangle meshes and textures with color on the mesh surface.

Denote g(θ, c) as the differential rendering function projecting the 3D scene to a 2D image given a
camera angle c. Score distillation approaches for text-to-3D generations demand the image sample
g(θ, c) to respect the prior specified by a text-to-2D diffusion model ϵpretrain(·, ·, y) pretrained on
vast real text-image pairs, based on which the optimization goal is constructed (Poole et al., 2022;
Wang et al., 2023; 2024a; Yu et al., 2023; Tang et al., 2024; Yang et al., 2023; Katzir et al., 2023).

Score Distillation Sampling (SDS) (Poole et al., 2022) updates the 3D model using view-dependent
prompt yc:

∇θLSDS(θ) := Et,ϵ,c[ω(t)(ϵpretrain(xt, t, yc)− ϵ)
∂g(θ, c)

∂θ
], (4)

where c is a randomly sampled camera angle and xt := αtg(θ, c) + σtϵ. The gradient is a simplifi-
cation of that of the denoising objective w.r.t. θ (Poole et al., 2022). Intuitively, it encourages the
rendered images to move toward the high-probability regions of the pretrained model, thus a good 3D
model emerges. SDS is a seminal work in the line of text-to-3D generation, but it is sensitive to the
CFG scale s (Ho & Salimans, 2022). A small s often results in over-smooth outcomes, whereas a
large s leads to over-saturation.

Variational Score Distillation (VSD) (Wang et al., 2023) addresses the issue of SDS with a thorough
theoretical analysis and proposes a new algorithm. In particular, apart from the pretrained model
ϵpretrain(xt, t, y) for capturing the data distribution, VSD introduces a tunable model ϵϕ(xt, t, c, y),
often instantiated as a LoRA (Hu et al., 2021) adaptation of ϵpretrain, to account for the distribution
of images rendered from all possible 3D models given condition y and camera angle c. We refer the
introduced model as the LoRA model hereinafter. VSD proves the LoRA model can reliably correct
the original distillation gradient.

VSD, in practice, usually considers only a single 3D particle θ and performs an iterative optimization
of θ and ϕ until convergence. More specifically, let θi and ϕi denote the parameters at i-th training
iteration. VSD updates θi with the following gradient:

∇θiLV SD(θi) := Et,ϵ,c
[
w(t)(ϵpretrain(xt, t, y)− ϵϕi

(xt, t, c, y))
∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
, (5)

where xt = αtg(θi, c) + σtϵ. To avoid more than once differentiable rendering of the 3D model for
efficiency, VSD updates ϕi still with g(θi, c) while using a different noisy state xt′ = αt′g(θi, c) +

3
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(a) VSD: From left to right, the results correspond to
setting γ to 1, 2, 5, and 10. We can observe that the
quality of the model is not fundamentally improved.

(b) L-VSD: From left to right, the first three results cor-
respond to setting γ to 1, 2, and 5; the last corresponds
to scaling the learning rate by 0.1 with γ = 1.

Figure 2: Qualitative Examples of training LoRA model for multiple steps per optimization iteration for
VSD and L-VSD.

σt′ϵ
′. The learning objective is the denoising loss defined in Equation (2), whose gradient is:

∇ϕiLV SD(ϕi) := Et′,ϵ′,c [(ϵϕi(xt′ , t
′, c, y)− ϵ′)Jϕi(xt′ , t

′, c, y)] . (6)

where Jϕi
(xt′ , t

′, c, y) :=
∂ϵϕ(xt′ ,t

′,c,y)
∂ϕ |ϕ=ϕi

and we omit some time-dependent scaling factor.

Apart from the compromise to maintain one 3D particle for efficiency, the practical algorithm of
VSD exhibits several significant gaps from the theory: 1) one-step update cannot guarantee ϕ to
converge in each iteration, and 2) the updates to θi are computed given the LoRA model ϕi, which
characterizes the distribution associated with the previous 3D state θi−1 instead of θi. We hypothesize
these are probably the root of the unstable performance and sometimes corrupted outcomes of VSD,
and perform an in-depth investigation regarding them below.

3 DIAGNOSE THE ISSUES OF VSD

To assess whether the identified gaps contribute to the issues of VSD, we conduct two sets of
experiments in this section. As introduced in Sec 2.2, we analyze the impact of convergence of LoRA
in Sec 3.1; then, we correct the optimization order to see the consequences in Sec 3.2; lastly, we
combine these two factors to check if they are interfered in Sec 3.3. We provide an illustrative 2D
Gaussian example for better understanding and to evaluate the effectiveness of lookahead in Sec 3.2.
We base the implementation on the open-source framework threestudio (Guo et al., 2023).

3.1 MAKE THE LORA MODEL BETTER CONVERGED? MAYBE NO.

Assumption. The one-step update in vanilla VSD cannot guarantee the LoRA model to converge
well, thus possibly harming the effectiveness of score distillation. We assume updating the LoRA
model for γ (γ > 1) steps in each iteration could alleviate the pathology.
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Figure 3: Loss of the LoRA model during training
given various γ. When increasing γ, the loss is rela-
tively lower, while also showing periodic changes.

Experiments Setting. We evaluate the effects
of various γ, including 1, 2, 5, and 10. In each
step, we optimize the LoRA model with differ-
ent noisy images under different views. Unless
otherwise specified, we take NeRF as the default
3D representation and use a simple prompt "a
delicious hamburger" in the study. We keep all
other hyper-parameters the same as the vanilla
VSD. Usually, the whole VSD process contains
multiple stages, where in the first stage a NeRF
is constructed and then the geometry and texture
are refined respectively. We directly report the
first-stage learning outcomes because it estab-
lishes the foundation for the following parts.

Results. We present the training loss of the LoRA model in Fig. 3 to indicate the convergence and the
final generations in Fig. 2a to reflect if the issues still exist. As shown, although the loss curves for
various γ share a periodic rise and fall, the loss of a larger γ (e.g., 5 or 10) is floating in a relatively
smaller range, and γ = 5 roughly makes LoRA model converge. However, as shown in Fig. 2a,
it’s hard to tell if the shape becomes relatively more reasonable and the overall quality of the 3D
model does not witness a continual improvement as γ rises.Thereby, we conclude that improving the
convergence of the LoRA model on the original VSD is not sufficient, thus being not the key factor.
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3.2 MAKE THE LORA MODEL LOOKAHEAD? MAYBE YES!

Assumption. As shown in Equation (5), the updates to θi are computed given ϕi, which characterizes
the distribution associated with θi−1 instead of θi. This is inconsistent with Theorem 2 of (Wang
et al., 2023), where the LoRA model should first adapt to the current 3D model (i.e., θi) to serve as a
reliable score estimator for the corresponding distribution. Fixing such a mismatch may address the
issues of VSD.

Experiments Setting. We update ϕi first to obtain ϕi+1, based on which θi is updated. We name
such a modification Lookahead-VSD (L-VSD) because it makes the LoRA model look ahead for one
step compared to the original VSD. All other parameters are kept unchanged.

Results. We show the result in the first column of Fig. 2b. Intuitively, the rendered image has clearer
edges compared to those in Fig. 2a. Besides, inspecting the optimization process, we find L-VSD
acquires the geometries and textures for the 3D model more quickly than VSD, and the loss of the
3D model in L-VSD with γ = 1 floats in a similar level to VSD with γ = 10. These results validate
the necessity for the LoRA model to look ahead during the optimization of VSD. However, we also
observe that the 3D model can easily suffer from being over-saturated as optimization continues,
which means the 3D models can not converge with normal shapes and colors in L-VSD.

Illustrative Example. It seems weird and self-contradictory with only the unsatisfied results above.
Here we provide an illustrative 2D Gaussian example in Fig. 1, to show the existence of mismatching
problem, the effectiveness of lookahead, and point out the possible reason that harms the performance
of L-VSD. In this experiment, we assume that θ = x ∈ R2, and preset a Gaussian distribution
as ground truth, which should be taken as the pretrained distribution. We randomly initialize the
parameterized distribution q(x), and use another Gaussian distribution r(x) to approximate q, which
can be interpreted as LoRA in VSD. In each iteration, we randomly sample xsample from q(x),
which is similar to differentiable rendering in VSD, and then use the mean and variance of Gaussian
distribution to calculate the optimization direction. The learning trajectories are illustrated in Fig. 1.
The results confirm the mismatching problem of VSD which hinders the distribution matching process.
Correcting the optimization order can lead to better results. But, if we overfit the r(x) on the samples
xsample, the results cannot converge normally towards the region of p(x) when timestep is small,
which usually lead to color saturation in text-to-3D generation (Huang et al., 2023; Tang et al., 2024).
This evidence supports our finding with the L-VSD above. More illustrative examples are provided
in Appendix. A and complete runnable code can be found in Appendix. F.

3.3 LOOKAHEAD × CONVERGENCE? DEFINITELY NO.

From the above studies, we learn that fitting the LoRA model to the 3D model first is essential for
VSD while enhancing the convergence of the LoRA model is also beneficial to some degree. Here
we conduct additional experiments to find out the consequence of combining these two factors.
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Figure 4: The norm of the LoRA prediction ||ϵϕ||
varies w.r.t. training iteration at various γ in L-VSD.

Based on the setting of L-VSD in Sec. 3.2, we
increase the LoRA training steps γ to 2 and 5.
We also perform a study where the learning rate
of LoRA is scaled to 1/10 of the original one
to indicate under-convergence. Fig. 2b exhibits
the results. As shown, increasing γ in L-VSD
exacerbates the phenomenon of over-saturation
and makes the geometry and texture easier to
collapse, while decreasing the learning rate of
the LoRA model somehow improves the quality
of the generation.

These deviate from our expectations. To chase a
deeper understanding, we examine the output of
the LoRA by inspecting its norm ||ϵϕ||, and plot
its variation during training in Fig. 4. We observe that the norm rapidly drops to zero for L-VSD with
γ = 5, which implies ill-posed convergence. The underlying reason is probably that we maintain
only one single 3D particle training of LoRA for efficiency, thus the distribution to fit by the LoRA
model is biased. The pathology is more obvious for L-VSD when optimizing LoRA more intensively.
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Figure 5: Visualization of ∆ϵfirst and ∆ϵhigh. The left column in each group represents the decoded first-order
term while the right column represents the decoded high-order term. Prompt for each group: (left) "a delicious
hamburger"; (mid) "an astronaut riding a horse";(right) "an Iron man".
Besides, we note that the trick of reducing the learning rate, despite being effective in this case, is
unstable when handling harder prompts. Please refer to Appendix C.1 for more failure cases.

Conclusion Although lookahead is important for generating 3D models with clear outlines and
realistic texture, the risk is the possibility of the LoRA model over-fitting on the isolated particle,
which sometimes exhibits flaws on geometry and texture after each optimization step. Given these,
this work tries to figure out a way to interpolate between original VSD with relatively stable formation
process and L-VSD with higher-quality outcomes.

4 METHODOLOGY

In Sec 4.1, we conduct a rigorous comparison between VSD and L-VSD and perform thorough
studies to gain an understanding of their difference. Please also refer to Appendix A for an illustrative
overview about training pipelines of VSD and L-VSD to understand their difference better. We then
derive the novel Linearized Lookahead VSD (L2-VSD) in Sec. 4.2.

4.1 COMPARE VSD WITH L-VSD

We first lay out the details of the update rules of L-VSD. Concretely, L-VSD first updates ϕi with

ϕi+1 = ϕi − 2η∆ϕi , ∆ϕi := (ϵϕi(xt′ , t
′, c, y)− ϵ′)Jϕi(xt′ , t

′, c, y) (7)

where η denotes the learning rate of the LoRA model.

Then, L-VSD updates θi with the updated LoRA model ϵϕi+1
:

∇θiLL−V SD(θi) = Et,ϵ,c
[
w(t)(ϵpretrain(xt, t, y)− ϵϕi+1(xt, t, c, y))

∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
. (8)

We can decompose ϵϕi+1
(xt, t, c, y) by Taylor series to understand the gap between the update rule

of VSD (Equation (5)) and that of L-VSD (Equation (8)) for θi:

ϵϕi+1(xt, t, c, y) = ϵϕi(xt, t, c, y) + (ϕi+1 − ϕi)J
T
ϕi
(xt, t, c, y) + . . .

= ϵϕi(xt, t, c, y) + (−2η∆ϕiJ
T
ϕi
(xt, t, c, y))︸ ︷︷ ︸

∆ϵfirst

+O(∆2
ϕi
)︸ ︷︷ ︸

∆ϵhigh

. (9)
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Figure 6: The norm of various scores during the train-
ing of L-VSD.

Namely, both the first-order term ∆ϵfirst and
the high-order one ∆ϵhigh may contribute to
the fast formation of geometry and texture in
L-VSD.

To disentangle their effects, we opt to plot
how their norms vary during the training pro-
cedure. In particular, we set η to 0.01. We
leave how to estimate ∆ϵfirst to the next subsec-
tion and compute ∆ϵhigh by ϵϕi+1

(xt, t, c, y)−
ϵϕi

(xt, t, c, y)−∆ϵfirst. As illustrated in Fig. 6,
||∆ϵhigh|| is significantly larger than ||∆ϵfirst||.
It is even larger than the norm of the entire
LoRA model ||ϵϕ||, which means that ϵϕi+1

is
probably dominated by ∆ϵhigh. Moreover, the
norm of ∆ϵhigh varies in a considerable range,
which indicates much greater randomness than the first-order term.
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To obtain a more intuitive understanding of the two terms, we also pass them through the decoder
of the pretrained DM (because we experiment with latent DMs (Rombach et al., 2022)) to obtain
visualizations of them, presented in Fig. 5. As shown, the visualization of ∆ϵfirst indicates an object
shape corresponding to the prompt while ∆ϵhigh is more random and we cannot witness any semantic
information within it.

Based on all the above observations and inferences, we wonder whether ∆ϵfirst is the essential
component for the appealing generations, and keeping it can improve score distillation further.
We answer to this in the next subsection.

4.2 LINEARIZED LOOKAHEAD VSD

Let ϵlin
ϕi+1

(xt, t, c, y) := ϵϕi(xt, t, c, y)+∆ϵfirst. In fact, it corresponds to performing one-step SGD
with (xt′ , t

′) under the denoising loss (Equation (2)) to update the following linear noise-prediction
model:

ϵlin
ϕ (xt, t, c, y) = ϵϕi

(xt, t, c, y) + (ϕ− ϕi)J
T
ϕi
(xt, t, c, y). (10)

Due to the low complexity of the linear model, the risk of overfitting to the current training data is
low, which properly addresses the problem of the original L-VSD. With these understandings, our
method boils down to using only the linearized lookahead correction ϵlin

ϕi+1
(xt, t, c, y) for estimating

the score function of noisy rendered images of θi. i.e.,

∇θiL
∗(θi) = Et,ϵ,c

[
w(t)

(
ϵpretrain(xt, t, y)− ϵlin

ϕi+1
(xt, t, c, y)

) ∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
= Et,ϵ,c

[
w(t)

(
ϵpretrain(xt, t, y)− ϵϕi(xt, t, c, y) + 2η∆ϕiJ

T
ϕi
(xt, t, c, y)

) ∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
= Et,ϵ,c

[
w(t)

(
ϵpretrain(xt, t, y)− ϵϕi(xt, t, c, y)

+ 2η(ϵϕi(xt′ , t
′, c, y)− ϵ′)

[
Jϕi(xt′ , t

′, c, y)JT
ϕi
(xt, t, c, y)

] )∂g(θ, c)
∂θ

∣∣∣
θ=θi

]
.

(11)
Viewing Jϕi

(xt′ , t
′, c, y)JTϕi

(xt, t, c, y) ∈ Rd×d as a pre-conditioning matrix, the above update rule
involves two score contrast terms—one corresponds to the original VSD objective and the other
accounts for a linearized lookahead correction for practical iterative optimization.

Moreover, we clarify the term ∆ϵfirst := −2η∆ϕi
JTϕi

(xt, t, c, y) is friendly to estimate. Concretely,
∆ϕi

is exactly the gradient to update the LoRA model, which a backward pass can calculate. Then, the
vector-Jacobian product ∆ϕi

JTϕi
(xt, t, c, y) can be realized by a forward pass of the score model using

forward-mode automatic differentiation, which is equipped in many deep learning frameworks (Paszke
et al., 2017) As a result, L2-VSD only needs a single additional forward pass of the LoRA model per
iteration compared to VSD, which is much more efficient than updating the LoRA multiple times.
More importantly, we can even use only the entities associated with the last layer of the LoRA model
for estimating the vector-Jacobian product to achieve a trade-off between quality and efficiency.

5 EXPERIMENTS

5.1 SETTINGS

In this section, we evaluate the efficacy of our proposed Linearized Lookahead VSD method on
text-guided 3D generation. Our baseline approaches include SDS, VSD, ESD (Entropy Score Distil-
lation) (Wang et al., 2024a), and VSD-based HiFA (Zhu et al., 2023), which include representative
state-of-the-art methods. For a fair comparison, all experiments are benchmarked under the open-
source framework threestudio (Guo et al., 2023). To clearly demonstrate the superior performance
brought by our method, we compare both the results produced with high resolution and low resolution.
Please refer to Appendix B.1 for more implementation details.

5.2 QUALITATIVE COMPARISON

We compare our generation results with SDS, VSD, ESD, L-VSD and HiFA both in high resolution
of 256 and low resolution of 64. We present some representative results without bias in Fig. 7 and
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Figure 7: Qualitative comparison with high resolution of 256. L2-VSD can generate meticulously
detailed and realistic 3D assets from easy to very complex prompts and scenes. L2-VSD tends to
yield more complete structures than HiFA.

Figure 8: More Qualitative comparison with high resolution.
Fig. 15, and we refer readers to Appendix C for results of L-VSD and more cases, as L-VSD tends to
fail in generating complete objects. It’s noteworthy that we consider our method as a baseline similar
to SDS and VSD. ESD and HiFA are state-of-the-arts based on VSD, which try to improve certain
properties of generation quality by introducing novel techniques. We compare with them in order
to position our performance more rigorously. We demonstrate in Sec. 5.5 that our methods can be
seamlessly combined with other techniques like ESD and HiFA. Compared with VSD and its variant
ESD, our results have significantly more realistic appearances and reasonable geometry. Moreover,
our method has better convergence, which means our results are more robust to optimization and do
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not suffer from generating floaters in space. It’s clearly shown that with our linearized lookahead
correction term, even only trained with low-resolution rendering settings, we can generate 3D scenes
with realistic and detailed appearances. In conclusion, our method surpasses the other baseline
methods significantly with linearized lookahead and achieves comparable results with state-of-the-art.

5.3 QUANTITATIVE COMPARISON

We follow previous work (Poole et al., 2022; Yu et al., 2023) to quantitatively evaluate the generation
quality using the angle of CLIP similarity (Hessel et al., 2021) and Frechet Inception Distance
(Heusel et al., 2017) and list the results in Table 1. Specifically, the CLIP similarity measures
the cosine similarity between the rendered image embeddings of the generated 3D object and the
text embeddings, and we calculate the angle. The FID measures the distance between the image
distribution by randomly rendering 3D representation and the text-conditioned image distribution
from the pretrained diffusion model. We use prompts from the gallery of DreamFusion to ensure no
man-made bias in evaluation. Please refer to Appendix B.1 for more metric computation details.

Table 1: Quantitative Comparison. (↓) means the lower the better. We measure the scenes across
20 prompts, which are randomly sampled from DreamFusion’s gallery and include scenes shown in
Fig. 7, Fig. 15 and Fig. 8. The quantitative results align with the qualitative results.

SDS ESD VSD L-VSD HiFA L2-VSD

Averaged CLIP sim (↓) 0.305 0.316 0.324 0.337 0.313 0.285
Averaged FID (↓) 372.35 315.15 301.54 496 292.88 284.06

5.4 ABLATION STUDY

5.4.1 ABLATION ON η

We conduct an ablation study on the choice of η, showing the results in Fig. 9a, where only η changes
while other parameters are unchanged. We still use the simple prompt “a delicious hamburger”. It’s
demonstrated that our method is robust to the scale of η. It’s worth noting that even if the norm of
first-order term ∆ϵfirst is only at the scale of 1e-2 when we set η to 1e-3, the results still improve
a lot. So, even a minor correction for each iteration can lead to incredible improvement in such a
long-term optimization. Ablation on high-order term correction can be found in Appendix C.1.

(a) Ablation on the η in ∆ϵfirst. From left to right,
the results correspond to setting η to 1e-3, 1e-2, 0.1,
and 1 respectively.

(b) Ablation on last-layer approximation. From left
to right, the results also correspond to those in (a), but
use a last-layer approximation for estimating ∆ϵfirst.

Figure 9: Qualitative results of ablation studies.

5.4.2 ABLATION ON LAST-LAYER APPROXIMATION

Table 2: Computation effi-
ciency. We present the time cost
in each iteration. We measure
the average time on the threestu-
dio framework.

Time cost (s/iteration)

VSD ∼ 0.7
L2-VSD ∼ 1.0

L2-VSD (last-layer) ∼ 0.8

As stated above, we can use only the entities associated with the
last layer of the LoRA model to further reduce additional time costs.
Admittedly, this approach may result in performance loss. As the cor-
rection term is calculated with the Jacobian matrixs of LoRA model,
if only use the last-layer gradients to approximate the correction, we
actually ignore the variable updates within other layers, thus losing
accuracy. We present the corresponding results in Fig. 9b. Although
the outcomes tend to generate floaters, the realism of results still gets
largely improved. Also, we believe the floaters can be eliminated in the following geometry refine-
ment stage. We compare the computation efficiency with the baseline VSD in Table 2. We can save
much computation time cost by only using this approximation.
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ESD 𝐿2-ESD ESD 𝐿2-ESD

Figure 10: Examples of combining ESD with L2-VSD. We can observe that in the case of “sunflower”, by
combining our method, we obtain a reasonable sunflower rather than a “sunball”. In the case of “bulldozer”,
with a linearized lookahead, ESD can generate additional elements like bricks.

Figure 11: Examples of combining HiFA with L2-VSD. The colors are more realistic and the appearance of
our method’s results aligns better with the prompts.

5.5 CONNECTION WITH OTHER DIFFUSION DISTILLATION METHODS

ESD (Wang et al., 2024a) is dedicated to solving the Janus problem based on VSD. It maximizes the
entropy of different views of the generated results, encouraging diversity across views. The gradient
of ESD is theoretically equivalent to adopting CFG (Ho & Salimans, 2022) trick upon VSD, i.e.

∇θiLESD(θi) = Et,ϵ,c

[
w(t)(ϵpretrain(xt, t, y)− λϵϕi(xt, t, ∅, y)− (1− λ)ϵϕi(xt, t, c, y))

∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
,

(12)
where λ is a scaling factor. Our method can also be incorporated into ESD. We name this as L2-ESD.

We present the corresponding results in Fig. 10. The prompts we use are “a sunflower on a flowerpot”
and “a bulldozer made out of toy bricks” respectively. To avoid unnecessary trials, we simply set λ to
0.5, which is recommended in ESD. As we can observe, compared with ESD, the 3D results are more
photo-realistic with distinct shapes.
HiFA (Zhu et al., 2023) is a state-of-the-art approach for high-quality 3D generation in a single-stage
training based on basic methods. It distills denoising scores from pretrained models in both the
image and latent spaces and proposes several techniques to improve NeRF generation, which are
orthogonal to our method. We demonstrate our method’s compatibility by combining with HiFA,
naming as L2-HiFA. We present the results in Fig. 11. The prompts we use are “an elephant skull”
and “Pumpkin head zombie, skinny, highly detailed, photorealistic” respectively.

In conclusion, it’s believed that L2-VSD can be combined with other parallel techniques in the future.

6 DISCUSSION, CONCLUSION AND LIMITATION

In this paper, we dive deep into the theory of VSD, having a comprehensive understanding of inner
process and identify two potential directions for improvement. In terms of the algorithm formulation,
we propose Linearized Lookahead Variational Score Distillation(L2-VSD), a novel framework based
on VSD that achieves state-of-the-art results on text-to-3D generation. The linearized lookahead term
enables us to benefit from both better convergence and lookahead for next iteration. More importantly,
our method can be incorporated into any VSD-based framework in the future.

Limitations and broader impact. Firstly, although L2-VSD achieves remarkable improvement on
text-to-3D results, the generation process still takes hours of time, which is a common issue for score
distillation based methods. We believe orthogonal improvements on distillation accelerating (Zhou
et al., 2023) can mitigate this problem. Secondly, while we find the first-order term shows regular
pattern and some similarity may exist between our method and SiD (Zhou et al., 2024), which is
briefly discussed in Appendix E, we have not yet been able to formulate a distribution-based objective
that guides this optimization. Investigating the underlying reasons is of significant interest in the
future. Lastly, as for broader impact, like other generative models, our method may be utilized to
generate fake and malicious contents, which needs more attention and caution.
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A ILLUSTRATIVE OVERVIEW
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(a) Update pipeline of VSD
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(b) Update pipeline of L-VSD
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(c) Update pipeline of L2-VSD

Figure 12: Overview of VSD, L-VSD and L2-VSD training.

We present an illustrative overview about the updating pipeline of VSD, L-VSD and L2-VSD
respectively. As stated in Sec 2.2, we use θi and ϕi to represent the 3D and the LoRA models at ith
iteration respectively. We use arrows with different colors to represent state transition dependency.
We argue that red dashed arrow pointing from ϕi to θi is important for better results’ quality.

More illustrative 2D gaussian examples. To gain a more complete view about the convergence
of VSD, we conduct two additional gaussian experiments as shown in Fig. 13 and Fig. 14. In the
example of Sec. 3.2, we only sample one point to keep as the same in ProlificDreamer, in which only
one view of 3D object is rendered. In Fig. 13, we increase the number to 4, finding that the error
introduced by optimization order could be mitigated to some extent. This evidence enlightens us that
VSD with multi-view estimation may perform better, part of which has been proved in MVDream
(Shi et al., 2023). Besides, we also show the bad convergence if we overfit LoRA model on current
sampled views in Fig. 14. It’s worth noting that the distribution tends to lie between the intersection
of two gaussian modals, making the views more saturated, which is coherent to the finding in Sec. 3.3.
We provide the reproducible example code in Appendix. F.

B EXPERIMENT IMPLEMENTATION

B.1 MAIN EXPERIMENTS DETAILS

Qualitative Results. In this section, we provide more details on the implementation of L2-VSD
and the compared baseline methods. All of them are implemented under the threestudio framework
directly in the first stage coarse generation, without geometry refinement and texture refinement,
following (Wang et al., 2024b). For the coarse generation stage, we adopt foreground-background
disentangled hash-encoded NeRF (Müller et al., 2022) as the underlying 3D representation. All
scenes are trained for 15k steps for the coarse stage, in case of geometry or texture collapse. At each
interation, we randomly render one view. Different from classic settings, we adjust the rendering
resolution directly as 64 × 64 in the low resolution experiments. And increase to 256 × 256
resolution in the high resolution experiments. All of our experiments are conducted on a single
NVIDIA GeForce RTX 3090.

Quantitative Results. To compute FID (Heusel et al., 2017), we sample N images using pretrained
latent diffusion model given text prompts as the ground truth image dataset, and render N views
uniformly distributed over a unit sphere from the optimized 3D scene as the generated image dataset.
Then standard FID is computed between these two sets of images. To compute CLIP similarity, we
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GT Dist. p(x)
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Figure 13: Comparison of VSD and L-VSD with more render samples. In this example, we sample 4 points
in each iteration.

,

GT Dist. p(x)
Init Dist. qinit(x)
LoRA Init Dist. rinit(x)
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LoRA Dist. r(x)
Optimized Sample
Trajetory of Optimization

GT Dist. p(x)
Init Dist. qinit(x)
LoRA Init Dist. rinit(x)
Fitted Dist. q(x)
LoRA Dist. r(x)
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Figure 14: Exploring the impact of r(x) overfitting on rendered samples. In this example, r(x) is delta
distribution as we overfit it on x in each iteration.
render 120 views from the generated 3D representations, and for each view, we obtain an embedding
vector and text embedding vector through the image and text encoder of a CLIP model. We use the
CLIP ViT-B/16 model (Radford et al., 2021).

B.2 HIGH ORDER ∆ϵhighOMPUTATION DETAILS

As mentioned above in Sec.4.1, we can comppute ∆ϵhigh as ϵϕi+1
(xt, t, c, y) − ϵϕi

(xt, t, c, y) −
∆ϵfirst. In practice, we implement this computation during the training process of L-VSD. We copy
an additional LoRA model to restore the LoRA parameters before being updated. Then in each
optimization iteration for θi, the LoRA model performs forward passes for three times to calculate
the ϵϕi , ϵϕi+1 and ∆ϵfirst respectively.

C MORE EXPERIMENT RESULTS

C.1 FAILURE CASES PRODUCED BY L-VSD

We show an example of failure case produced by L-VSD in Fig. 16. We can observe that the upper
one becomes over-saturated faster than the below one. Though the below one collapses much slower,
it can’t converge to a realistic case. Also, we provide all the L-VSD results in Fig. 17, which reflects
the unstable generation quality by naive L-VSD.

C.2 GENERALIZATION ON OTHER REPRESENTATIONS

We provide the results generated in the second "geometry refinement" and third "texture refinement"
stage in Fig. 18 and Fig. 19. In Fig. 18, the 3D objects are initialized with the results in the first stage.
While in Fig. 19, we control the geometry initialization to be the same for our method and VSD,
thus directly comparing the texture generation quality. In Fig. 19, VSD generates destroyed car with
random red color, connecting destroyed car with a fire but our method generates more purely. And
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Figure 15: Qualitative comparison with low resolution of 64. L2-VSD can generate highly detailed
3D assets even with low resolution, while the other baselines (except for HiFA), suffering from
geometry-texture co-training, tend to be blurry and have floaters.

Figure 16: Visualization of Failure Process. The upper row result is generated with original learning rate while
the lower one is generated with scaling the learning rate by 0.1. Each row corresponds to a continue optimization
process. Our prompt is "an astronaut riding a horse".

the texture of hand and the bowl in the bottom is also more realistic. As these two stages represent in
mesh, we believe this comparison reflects the generalization of our method on other representations.

C.3 LOSS CURVE COMPARISON AT INITIAL STAGES

As requested by Reviewer YuaJ, we show the loss curve in Fig. 20a. As shown by the curve, the loss
is in similar level at the start of distillation, which is probably because the objects don’t form into
clear shape yet. So the predicted noises are all likely to be gaussian.

Also, as suggested by Review LcCM, we test on multiple samples and measure the average LoRA
loss to provide more convincing results, which is shown in Fig. 20b. The conclusion holds as the
same as in the section. 3.1. Also, we provide one sample "crown" other than "hamburger" to augment
the proof.

C.4 ABLATION OF GENERATION WITH HIGH-ORDER TERM

We provide the results of one important ablation experiment in Fig. 22. We compare the results
produced by VSD, L2-VSD and HL-VSD(high-order lookahead VSD). In HL-VSD, we use the
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Figure 17: Results of L-VSD. These results are generated with the same prompts in Fig. 7 and Fig. 15. As
we can observe, naive L-VSD usually fails in generating realistic objects, which is supported by our Gaussian
example in Sec. 3.2.

Figure 18: Comparison at second and third stages. We initial the objects with first-stage’s results
and compare the geometry and texture refinement. As shown in the figure, the geometry generated by
our method is more complete and texture generated by our method is much more realistic.

high-order term instead of the linear term to correct the score. As shown in the figure, the results
all collapse and become irrecognizable, which proves the effectiveness and necessity of linearied
lookahead.

D OTHER RELATED WORKS

D.1 TEXT-TO-IMAGE DIFFUSION MODELS

Text-to-image diffusion models (Ramesh et al., 2021; 2022) are essential for text-to-3D generation.
These models incorporate text embeddings during the iterative denoising process. Leveraging large-
scale image-text paired datasets, they address text-to-image generation tasks. Latent diffusion models
(Rombach et al., 2022), which diffuse in low-resolution latent spaces, have gained popularity due to
reduced computation costs. Additionally, text-to-image diffusion models find applications in various
computer vision tasks, including text-to-3D (Ramesh et al., 2022; Singer et al., 2023), image-to-3D
(Xu et al., 2023a), text-to-svg (Jain et al., 2023), and text-to-video (Khachatryan et al., 2023; Singer
et al., 2022).
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Figure 19: Comparison on texture representation. We use VSD and our method to generate texture
conditioned on the same geometry initialization. Prompts: (Upper)"a completely destroyed car"
;(Bottom)"a zoomed out DSLR photo of a pair of floating chopsticks picking up noodles out of a
bowl of ramen".
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Figure 20: More Loss Curve.
,

Figure 21: VSD LoRA Comparison.

D.2 TEXT-TO-3D GENERATION WITHOUT 2D-SUPERVISION

Text-to-3D generation techniques have evolved beyond relying solely on 2D supervision. Researchers
explore diverse approaches to directly create 3D shapes from textual descriptions. Volumetric
representations, such as 3D-GAN (Sun et al., 2020) and Occupancy Networks (Mescheder et al.,
2019), use voxel grids (Sun et al., 2022; Liu et al., 2019). Point cloud generation methods, like
PointFlow (Yang et al., 2019) and AtlasNet (Vakalopoulou et al., 2018), work with sets of 3D
points. Implicit surface representations, exemplified by DeepVoxels (Sitzmann et al., 2019) and
SIREN (Sitzmann et al., 2020), learn implicit functions for shape surfaces. Additionally, graph-based
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Figure 22: Results comparison with using high-order term. Prompts: (upper)"A rotary telephone
carved out of wood" ;(Bottom)"a DSLR photo of an exercise bike in a well lit room"

approaches (GraphVAE (Simonovsky & Komodakis, 2018), GraphRNN (You et al., 2018)) capture
relationships between parts using graph neural networks.

D.3 ADVANCEMENTS IN 3D SCORE DISTILLATION TECHNIQUES

Various techniques enhance score distillation effectiveness. Magic3D (Lin et al., 2023) and Fantasia3D
(Chen et al., 2023) disentangle geometry and texture optimization using mesh and DMTet (Shen et al.,
2021). TextMesh (Tsalicoglou et al., 2023) and 3DFuse (Seo et al., 2023) employ depth-conditioned
text-to-image diffusion priors for geometry-aware texturing. Score debiasing (Hong et al., 2023)
and Perp-Neg (Zhao et al., 2023) refine text prompts for better 3D generation. Researchers also
explore timestep scheduling (DreamTime (Huang et al., 2023), RED-Diff (Mardani et al., 2023)) and
auxiliary losses (CLIP loss (Xu et al., 2023b), adversarial loss (Oikarinen et al., 2021)) to improve
score distillation.

E DISCUSSION

Score Identity Distillation (SiD) (Zhou et al., 2024) Apart from direct comparison with the text-
to-3D score distillation method, our method can draw some similarities with some 2D diffusion
distillation methods. SiD reformulates forward diffusion as semi-implicit distributions and leverages
three score-related identities to create an innovative loss mechanism. The weighted loss is expressed
as:

L̃SiD(θi) = −α
w(t)

σ4
t

||ϵpretrain(xt, t)− ϵϕ(xt, t)||22

+
w(t)

σ4
t

(ϵpretrain(xt, t)− ϵϕ(xt, t))
T (ϵϕ(xt, t)− ϵ)

(13)

where xt = g(θi).Compared with the original VSD loss, the additional term in SiD has an important
factor (ϵϕ − ϵ), which corrects the original loss in a projected direction. This factor also exists in our
term, so we assume that our first-order term shares some similarity with this correction term.

F GAUSSIAN EXAMPLE CODE

1 import os
2 import math
3 import random
4 import numpy as np
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5 from tqdm import tqdm, trange
6 import matplotlib.pyplot as plt
7

8 import torch
9 import torch.nn as nn

10 import torch.nn.functional as F
11 from torch.optim.lr_scheduler import LambdaLR
12

13 def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps,
num_training_steps, min_lr=0., num_cycles: float = 0.5):

14

15 def lr_lambda(current_step):
16 if current_step < num_warmup_steps:
17 return float(current_step) / float(max(1, num_warmup_steps))
18 progress = float(current_step - num_warmup_steps) / float(max(1,

num_training_steps - num_warmup_steps))
19 return max(min_lr, 0.5 * (1.0 + math.cos(math.pi *

float(num_cycles) * 2.0 * progress)))
20

21 return LambdaLR(optimizer, lr_lambda, -1)
22

23 def seed_everything(seed):
24 random.seed(seed)
25 os.environ[’PYTHONHASHSEED’] = str(seed)
26 np.random.seed(seed)
27 torch.manual_seed(seed)
28 torch.cuda.manual_seed(seed)
29

30 def sample_gassian(mu, sigma, N_samples=None, seed=None):
31 assert N_samples is not None or seed is not None
32 if seed is None:
33 seed = torch.randn((N_samples, d), device=mu.device)
34 samples = mu + torch.matmul(seed, sigma.t())
35 return samples
36

37 # Core function: compute score function of perturbed Gaussian
distribution

38 # \nabla \log p_t(x_t) = -(Simga^{-1} + sigma_t^2 I) (x_t - \alpha_t *
\mu)

39 def calc_perturbed_gaussian_score(x, mu, sigma, alpha_noise,
sigma_noise):

40 if mu.ndim == 1:
41 mu = mu[None, ...] # [d] -> [1, d]
42 if sigma.ndim == 2:
43 sigma = sigma[None, ...] # [d, d] -> [1, d, d]
44

45 mu = mu * alpha_noise[..., None] # [B, d]
46 sigma = torch.matmul(sigma, sigma.permute(0, 2, 1)) # [1, d, d]
47 sigma = (alpha_noise**2)[..., None, None] * sigma # [B, d, d]
48 sigma = sigma + (sigma_noise**2)[..., None, None] *

torch.eye(sigma.shape[1], device=sigma.device)[None, ...] # [B,
d, d]

49 inv_sigma = torch.inverse(sigma) # [B, d, d]
50 return torch.matmul(inv_sigma, (mu - x)[..., None]).squeeze(-1) # [B,

d, d] @ [B, d, 1] -> [B, d, 1] -> [B, d]
51

52 # data dimension
53 N = 256
54 d = 2
55 ndim = d
56 lora_steps = 10
57 # set the hyperparameters
58 seed = 0
59 dist_0 = 10
60 lr = 1e-2
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61 min_lr = 0
62 weight_decay = 0
63 warmup_steps = 100
64 total_steps = 2000
65 scheduler_type = ’cosine’
66 lambda_coeff = 1.0
67 method = ’l-vsd’ # or ’real-vsd’, ’vsd’
68 output_dir = ’’
69 logging_steps = 10
70

71 device = torch.device(’cuda:0’)
72 seed_everything(seed)
73

74 # groundtruth distribution
75 p_mu = torch.rand(d, device=device) # uniform random in [0, 1] x [0, 1]
76 p_sigma = torch.rand((d, d), device=device) + torch.eye(d,

device=device) # positive semi-definite
77

78 # diffusion coefficients
79 beta_start = 0.0001
80 beta_end = 0.02
81

82 # parametric distribution to optimize
83 q_mu = nn.Parameter(torch.rand(d, device=device) * dist_0 + p_mu)
84 q_sigma = nn.Parameter(torch.rand(d, d, device=device))
85

86 r_mu = nn.Parameter(torch.zeros(d, device=device)).to(device)
87 r_sigma = nn.Parameter(torch.zeros(d, d, device=device)).to(device)
88

89 optimizer = torch.optim.AdamW([q_mu, q_sigma], lr=lr,
weight_decay=weight_decay)

90 scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps,
int(total_steps*1.5), min_lr) if scheduler_type == ’cosine’ else None

91

92 # set the optimizer and scheduler of LoRA model
93 r_optimizer = torch.optim.AdamW([r_mu, r_sigma], lr=5*lr,

weight_decay=weight_decay)
94

95 # saving checkpoints
96 state_dict = []
97 N_render = 4
98 # store per-step samples. fixed seed for visualization
99 vis_seed = torch.randn((1, N, d), device=device)

100 vis_seed_true = torch.randn((1, N, d), device=device)
101 vis_seed2 = torch.randn((1, N, d), device=device)
102 vis_samples = [] # [steps, p+q, N_samples, N_dim]
103 # x_previous = 0
104

105 for i in trange(total_steps + 1):
106 optimizer.zero_grad()
107

108 # sample time steps and compute noise coefficients
109 betas_noise = torch.rand(N_render, device=device) * (beta_end -

beta_start) + beta_start
110 alphas_noise = torch.cumprod(1.0 - betas_noise, dim=0)
111 sigmas_noise = ((1 - alphas_noise) / alphas_noise) ** 0.5
112

113 # sample from g(x) = q_mu + q_sigma @ c, c ~ N(0, I)
114 x = sample_gassian(q_mu, q_sigma, N_samples=N_render)
115 # sample gaussian noise
116 eps = torch.randn((N_render, d), device=device)
117 # diffuse and perturb samples
118 x_t = x * alphas_noise[..., None] + eps * sigmas_noise[..., None]
119

120 # w(t) coefficients
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121 w = ((1 - alphas_noise) * sigmas_noise)[..., None]
122

123 # compute score distillation update
124 if method == ’l-vsd’:
125 xp = x.detach()
126 for j in range(lora_steps):
127 r_optimizer.zero_grad()
128 q_muo = q_mu.detach()
129 q_sigmao = q_sigma.detach()
130 loss_r = F.mse_loss(q_muo, r_mu, reduction="sum") +

F.mse_loss(q_sigmao, r_sigma, reduction="sum")
131

132 loss_r.backward()
133 r_optimizer.step()
134

135 with torch.no_grad():
136 # \nabla \log p_t(x_t)
137 score_p = calc_perturbed_gaussian_score(x_t, p_mu, p_sigma,

alphas_noise, sigmas_noise)
138

139 if method == ’sds’:
140 # -[\nabla \log p_t(x_t) - eps]
141 grad = -w * (score_p - eps)
142 elif method == ’vsd’:
143 # \nabla \log q_t(x_t | c) - centering trick
144 cond_mu = x.detach()
145 cond_sigma = torch.zeros_like(q_sigma)
146 score_q = calc_perturbed_gaussian_score(x_t, cond_mu,

cond_sigma, alphas_noise, sigmas_noise)
147

148 # -[\nabla \log p_t(x_t) - \nabla \log q_t(x_t | c)]
149 grad = -w * (score_p - score_q)
150 elif method == ’real-vsd’ or method == ’l-vsd’:
151 cond_mu = r_mu.detach()
152 cond_sigma = r_sigma.detach()
153 score_q_appx = calc_perturbed_gaussian_score(x_t, cond_mu,

cond_sigma, alphas_noise, sigmas_noise)
154

155 grad = -w * (score_p - score_q_appx)
156

157 # reparameterization trick for backpropagation
158 # d(loss)/d(latents) = latents - target = latents - (latents - grad)

= grad
159 grad = torch.nan_to_num(grad)
160 target = (x_t - grad).detach()
161 loss = 0.5 * F.mse_loss(x_t, target, reduction="sum") / N_render
162

163 loss.backward()
164 optimizer.step()
165 if scheduler is not None:
166 scheduler.step()
167

168

169 if method == ’real-vsd’:
170 r_mu_previous = r_mu.detach()
171 r_sigma_previous = r_sigma.detach()
172 xp = x.detach()
173 for j in range(lora_steps):
174 r_optimizer.zero_grad()
175 q_muo = q_mu.detach()
176 q_sigmao = q_sigma.detach()
177 loss_r = F.mse_loss(q_muo, r_mu, reduction="sum") +

F.mse_loss(q_sigmao, r_sigma, reduction="sum")
178

179 loss_r.backward()
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180 r_optimizer.step()
181

182 # logging
183 if i % logging_steps == 0:
184 state_dict.append({
185 ’step’: i,
186 ’q_mu’: q_mu.detach().cpu().numpy(),
187 ’q_sigma’: q_sigma.detach().cpu().numpy(),
188 })
189

190 # save sample positions
191 with torch.no_grad():
192 p_samples = sample_gassian(p_mu, p_sigma, seed=vis_seed_true[0])
193 p_samples = p_samples.detach().cpu().numpy()
194

195 q_samples = sample_gassian(q_mu, q_sigma, seed=vis_seed[0])
196 q_samples = q_samples.detach().cpu().numpy()
197

198 if method == ’real-vsd’:
199 r_samples = sample_gassian(r_mu_previous, r_sigma_previous,

seed=vis_seed2[0])
200 r_samples = r_samples.detach().cpu().numpy()
201 else:
202 r_samples = sample_gassian(r_mu, r_sigma, seed=vis_seed2[0])
203 r_samples = r_samples.detach().cpu().numpy()
204

205 vis_samples.append(np.stack([p_samples, q_samples, r_samples],
0))
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