
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADVANCING TEXT-TO-3D GENERATION WITH LIN-
EARIZED LOOKAHEAD VARIATIONAL SCORE DISTIL-
LATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-3D generation based on score distillation of pre-trained 2D diffusion mod-
els has gained increasing interest, with variational score distillation (VSD) as a
remarkable example. VSD proves that vanilla score distillation can be improved
by introducing an extra score-based model, which characterizes the distribution
of images rendered from 3D models, to correct the distillation gradient. Despite
the theoretical foundations, VSD, in practice, is likely to suffer from slow and
sometimes ill-posed convergence. In this paper, we perform an in-depth investiga-
tion of the interplay between the introduced score model and the 3D model, and
find that there exists a mismatching problem between LoRA and 3D distributions
in practical implementation. We can simply adjust their optimization order to
improve the generation quality. By doing so, the score model looks ahead to the
current 3D state and hence yields more reasonable corrections. Nevertheless, naive
lookahead VSD may suffer from unstable training in practice due to the potential
over-fitting. To address this, we propose to use a linearized variant of the model
for score distillation, giving rise to the Linearized Lookahead Variational Score
Distillation (L2-VSD). L2-VSD can be realized efficiently with forward-mode
autodiff functionalities of existing deep learning libraries. Extensive experiments
validate the efficacy of L2-VSD, revealing its clear superiority over prior score
distillation-based methods. We also show that our method can be seamlessly
incorporated into any other VSD-based text-to-3D framework.

1 INTRODUCTION

3D content creation is important for a variety of applications, such as interactive gaming (Bruce
et al., 2024; Xia et al., 2024), cinematic arts (Conlen et al., 2023), AR/VR (Creed et al., 2023;
Li et al., 2024), and building simulated environments for training agents in robotics (Team et al.,
2024). However, it is still challenging and expensive to create a high-quality 3D asset as it requires a
high level of expertise. Therefore, automating this process with generative models has become an
important problem (Jiang, 2024), while remaining non-trivial due to the scarcity of training data and
the complexity of 3D representations.

Score distillation has emerged as an attractive way for 3D generation given textual condition (Poole
et al., 2022; Lin et al., 2023; Chen et al., 2023; Wang et al., 2023; 2024a). It leverages pretrained 2D
diffusion models (Ho et al., 2020; Rombach et al., 2022) to define priors to guide the evolvement
of 3D content without reliance on annotations. Score Distillation Sampling (SDS) (Poole et al.,
2022) is a seminal work in this line, but it is widely criticized that its generations suffer from the
over-smoothing issue. Variational Score Distillation (VSD) (Wang et al., 2023) remediates this by
introducing an extra model that captures the score of the images rendered from the 3D model to
correct the distillation gradient. However, VSD often requires a lengthy optimization through 3 stages:
NeRF generation, geometry refinement, and texture refinement. The outcomes obtained in the initial
stage are often blurry, prone to collapsing, and not directly applicable (Wei et al., 2023). Though
existing works begin to understand and improve SDS (Wang et al., 2024a; Yu et al., 2023; Katzir
et al., 2023), there are great but less efforts dedicated to improving the more promising VSD (Ma
et al., 2025; Wei et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

GT Dist. p(x)
Init Dist. qinit(x)
LoRA Init Dist. rinit(x)
Fitted Dist. q(x)
LoRA Dist. r(x)
Optimized Sample
Trajetory of Optimization

GT Dist. p(x)
Init Dist. qinit(x)
LoRA Init Dist. rinit(x)
Fitted Dist. q(x)
LoRA Dist. r(x)
Optimized Sample
Trajetory of Optimization

Figure 1: Comparison of convergence between VSD and L-VSD with an illustrative 2D Gaussian example.
In this toy example we consider x ∈ R2 from a single Gaussian distribution. We optimize q(x) towards ground
truth distribution p(x) and use r(x) to function as LoRA which is used to estimate q(x). This example validates
the existence of mismatching issue in VSD and we leave the details in Sec. 3.2.

To identify the root of VSD’s drawback, we conduct a comprehensive analysis of the interaction
between the introduced score model and 3D model revealing that adjusting their optimization order
can sometimes lead to a considerable enhancement in generation quality. This adjustment allows the
score model to look ahead to the current 3D state, resulting in more accurate and sensible corrections
for the distillation gradient. Yet, naive lookahead VSD can encounter unstable training due to the risk
of the score model overfitting the single 3D particle and the sampled camera view.

To address this issue, we formally compare the correction gradients before and after looking ahead
and identify two major differences—a linear first-order term and a high-order one. Upon closer
examination, we observe that the former accommodates subtle semantic information, whereas the
latter contains non-trivial high-frequency noises. Given these findings, we propose to use only the first-
order term for correction, yielding Linearized Lookahead Variational Score Distillation (L2-VSD), to
reliably and consistently boost the generation quality of VSD. L2-VSD is both easy to implement and
computationally efficient—the added linear term can be computed by only one additional forward
process of the score model under the scope of forward-mode automatic differentiation, which is
supported in many deep learning libraries (Paszke et al., 2017; Ketkar et al., 2021).

Through extensive experiments, we demonstrate the significant superiority of the proposed L2-VSD
in improving 3D generation quality compared to competing baseline methods, as shown in Fig. 7.
L2-VSD can even produce realistic generation results with low resolution directly in the first stage.
Moreover, we empirically show that L2-VSD can be seamlessly integrated into other VSD-based
3D generation pipelines and combined with other parallel techniques for VSD, e.g., Entropy Score
Distillation(ESD) (Wang et al., 2024a) which mitigates the Janus problem, for further improvement.

We summarize our technical contributions as follows:

• For VSD, a fundamental method in text-to-3D generation, we carefully identify the gaps
between its theory and implementation and analyze the potential impact the gaps may bring
us, providing a direction for possible improvements.

• We propose L2-VSD, an easy to implement and computationally efficient variant of VSD,
which mitigates the mismatching problem to some extent. We demonstrate its significant
improvement over baselines and comparable to other state-of-the-arts.

• We demonstrate that our method can be seamlessly combined with other VSD-based im-
proving techniques without much effort.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) are defined
with a forward diffusion process on data x ∈ Rd with a Gaussian transition kernel. The conditional
distribution at some timestep t ∈ [0, T] usually satisfies

q(xt|x0) = N (xt;αtx0, σ
2
t I) (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where x0 := x, and αt and σt are pre-defined noise schedules. DMs learn a reverse diffusion process,
specified by a parameterized distribution p(xt−1|xt) := N (xt−1;µψ(xt, t), σ

2
t I) with µψ as a neural

network (NN), to enable the sampling of generations from Gaussian noise. The training objective of
µψ is the variational lower bound of the log data likelihood. In practice, µψ is re-parameterized as a
denoising network ϵψ and the training loss can be further simplified as a Mean Squared Error (MSE)
form (Ho et al., 2020; Kingma et al., 2023):

LDiff := Ex,t,ϵ[ω(t)||ϵψ(αtx+ σtϵ, t)− ϵ||22], (2)

where x follows the data distribution, t is uniformly drawn from [0, T], ϵ is a standard Gaussian noise,
and ω(t) is a time-dependent coefficient. ϵψ also inherently connects to score matching (Vincent,
2011; Song et al., 2020).

Classifier-free guidance (CFG) (Ho & Salimans, 2022). We can augment the model ϵψ with an extra
input, the condition y, to characterize the corresponding conditional distribution, leaving ϵψ(xt, t, ∅)
account for the original unconditional one. Then, we can resort to CFG to further boost the quality of
conditional generation. Typically, CFG leverages the following term in the sampling process:

ϵ̂ψ(xt, t, y) := (1 + s)ϵψ(xt, t, y)− sϵψ(xt, t, ∅) (3)

where s > 0 refers to a guidance scale.

2.2 TEXT-TO-3D GENERATION WITH SCORE DISTILLATION

Text-to-3D generation aims to identify the parameters θ ∈ RN of a 3D model given a text condition
y. Neural radiance field (NeRF) (Mildenhall et al., 2020) is a typical 3D representation based on
neural networks. In particular, NeRF renders a new view of the scene with the input of a sequence of
images as known views. Additionally, textured mesh can be applied to represent the geometry of a
3D object with triangle meshes and textures with color on the mesh surface.

Denote g(θ, c) as the differential rendering function projecting the 3D scene to a 2D image given a
camera angle c. Score distillation approaches for text-to-3D generations demand the image sample
g(θ, c) to respect the prior specified by a text-to-2D diffusion model ϵpretrain(·, ·, y) pretrained on
vast real text-image pairs, based on which the optimization goal is constructed (Poole et al., 2022;
Wang et al., 2023; 2024a; Yu et al., 2023; Tang et al., 2024; Yang et al., 2023; Katzir et al., 2023).

Score Distillation Sampling (SDS) (Poole et al., 2022) updates the 3D model using view-dependent
prompt yc:

∇θLSDS(θ) := Et,ϵ,c[ω(t)(ϵpretrain(xt, t, yc)− ϵ)
∂g(θ, c)

∂θ
], (4)

where c is a randomly sampled camera angle and xt := αtg(θ, c) + σtϵ. The gradient is a simplifi-
cation of that of the denoising objective w.r.t. θ (Poole et al., 2022). Intuitively, it encourages the
rendered images to move toward the high-probability regions of the pretrained model, thus a good 3D
model emerges. SDS is a seminal work in the line of text-to-3D generation, but it is sensitive to the
CFG scale s (Ho & Salimans, 2022). A small s often results in over-smooth outcomes, whereas a
large s leads to over-saturation.

Variational Score Distillation (VSD) (Wang et al., 2023) addresses the issue of SDS with a thorough
theoretical analysis and proposes a new algorithm. In particular, apart from the pretrained model
ϵpretrain(xt, t, y) for capturing the data distribution, VSD introduces a tunable model ϵϕ(xt, t, c, y),
often instantiated as a LoRA (Hu et al., 2021) adaptation of ϵpretrain, to account for the distribution
of images rendered from all possible 3D models given condition y and camera angle c. We refer the
introduced model as the LoRA model hereinafter. VSD proves the LoRA model can reliably correct
the original distillation gradient.

VSD, in practice, usually considers only a single 3D particle θ and performs an iterative optimization
of θ and ϕ until convergence. More specifically, let θi and ϕi denote the parameters at i-th training
iteration. VSD updates θi with the following gradient:

∇θiLV SD(θi) := Et,ϵ,c
[
w(t)(ϵpretrain(xt, t, y)− ϵϕi

(xt, t, c, y))
∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
, (5)

where xt = αtg(θi, c) + σtϵ. To avoid more than once differentiable rendering of the 3D model for
efficiency, VSD updates ϕi still with g(θi, c) while using a different noisy state xt′ = αt′g(θi, c) +

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) VSD: From left to right, the results correspond to
setting γ to 1, 2, 5, and 10. We can observe that the
quality of the model is not fundamentally improved.

(b) L-VSD: From left to right, the first three results cor-
respond to setting γ to 1, 2, and 5; the last corresponds
to scaling the learning rate by 0.1 with γ = 1.

Figure 2: Qualitative Examples of training LoRA model for multiple steps per optimization iteration for
VSD and L-VSD.

σt′ϵ
′. The learning objective is the denoising loss defined in Equation (2), whose gradient is:

∇ϕiLV SD(ϕi) := Et′,ϵ′,c [(ϵϕi(xt′ , t
′, c, y)− ϵ′)Jϕi(xt′ , t

′, c, y)] . (6)

where Jϕi
(xt′ , t

′, c, y) :=
∂ϵϕ(xt′ ,t

′,c,y)
∂ϕ |ϕ=ϕi

and we omit some time-dependent scaling factor.

Apart from the compromise to maintain one 3D particle for efficiency, the practical algorithm of
VSD exhibits several significant gaps from the theory: 1) one-step update cannot guarantee ϕ to
converge in each iteration, and 2) the updates to θi are computed given the LoRA model ϕi, which
characterizes the distribution associated with the previous 3D state θi−1 instead of θi. We hypothesize
these are probably the root of the unstable performance and sometimes corrupted outcomes of VSD,
and perform an in-depth investigation regarding them below.

3 DIAGNOSE THE ISSUES OF VSD

To assess whether the identified gaps contribute to the issues of VSD, we conduct two sets of
experiments in this section. As introduced in Sec 2.2, we analyze the impact of convergence of LoRA
in Sec 3.1; then, we correct the optimization order to see the consequences in Sec 3.2; lastly, we
combine these two factors to check if they are interfered in Sec 3.3. We provide an illustrative 2D
Gaussian example for better understanding and to evaluate the effectiveness of lookahead in Sec 3.2.
We base the implementation on the open-source framework threestudio (Guo et al., 2023).

3.1 MAKE THE LORA MODEL BETTER CONVERGED? MAYBE NO.

Assumption. The one-step update in vanilla VSD cannot guarantee the LoRA model to converge
well, thus possibly harming the effectiveness of score distillation. We assume updating the LoRA
model for γ (γ > 1) steps in each iteration could alleviate the pathology.

0 1000 2000 3000 4000 5000 6000
Optimization Iterations of theta

0.0

0.2

0.4

0.6

0.8

1.0

Lo
RA

 L
os

s

= 1
= 2
= 5
=10

1000 1002 1004 1006 1008 1010
0.0

0.1

0.2

0.3

Figure 3: Loss of the LoRA model during training
given various γ. When increasing γ, the loss is rela-
tively lower, while also showing periodic changes.

Experiments Setting. We evaluate the effects
of various γ, including 1, 2, 5, and 10. In each
step, we optimize the LoRA model with differ-
ent noisy images under different views. Unless
otherwise specified, we take NeRF as the default
3D representation and use a simple prompt "a
delicious hamburger" in the study. We keep all
other hyper-parameters the same as the vanilla
VSD. Usually, the whole VSD process contains
multiple stages, where in the first stage a NeRF
is constructed and then the geometry and texture
are refined respectively. We directly report the
first-stage learning outcomes because it estab-
lishes the foundation for the following parts.

Results. We present the training loss of the LoRA model in Fig. 3 to indicate the convergence and the
final generations in Fig. 2a to reflect if the issues still exist. As shown, although the loss curves for
various γ share a periodic rise and fall, the loss of a larger γ (e.g., 5 or 10) is floating in a relatively
smaller range, and γ = 5 roughly makes LoRA model converge. However, as shown in Fig. 2a,
it’s hard to tell if the shape becomes relatively more reasonable and the overall quality of the 3D
model does not witness a continual improvement as γ rises.Thereby, we conclude that improving the
convergence of the LoRA model on the original VSD is not sufficient, thus being not the key factor.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 MAKE THE LORA MODEL LOOKAHEAD? MAYBE YES!

Assumption. As shown in Equation (5), the updates to θi are computed given ϕi, which characterizes
the distribution associated with θi−1 instead of θi. This is inconsistent with Theorem 2 of (Wang
et al., 2023), where the LoRA model should first adapt to the current 3D model (i.e., θi) to serve as a
reliable score estimator for the corresponding distribution. Fixing such a mismatch may address the
issues of VSD.

Experiments Setting. We update ϕi first to obtain ϕi+1, based on which θi is updated. We name
such a modification Lookahead-VSD (L-VSD) because it makes the LoRA model look ahead for one
step compared to the original VSD. All other parameters are kept unchanged.

Results. We show the result in the first column of Fig. 2b. Intuitively, the rendered image has clearer
edges compared to those in Fig. 2a. Besides, inspecting the optimization process, we find L-VSD
acquires the geometries and textures for the 3D model more quickly than VSD, and the loss of the
3D model in L-VSD with γ = 1 floats in a similar level to VSD with γ = 10. These results validate
the necessity for the LoRA model to look ahead during the optimization of VSD. However, we also
observe that the 3D model can easily suffer from being over-saturated as optimization continues,
which means the 3D models can not converge with normal shapes and colors in L-VSD.

Illustrative Example. It seems weird and self-contradictory with only the unsatisfied results above.
Here we provide an illustrative 2D Gaussian example in Fig. 1, to show the existence of mismatching
problem, the effectiveness of lookahead, and point out the possible reason that harms the performance
of L-VSD. In this experiment, we assume that θ = x ∈ R2, and preset a Gaussian distribution
as ground truth, which should be taken as the pretrained distribution. We randomly initialize the
parameterized distribution q(x), and use another Gaussian distribution r(x) to approximate q, which
can be interpreted as LoRA in VSD. In each iteration, we randomly sample xsample from q(x),
which is similar to differentiable rendering in VSD, and then use the mean and variance of Gaussian
distribution to calculate the optimization direction. The learning trajectories are illustrated in Fig. 1.
The results confirm the mismatching problem of VSD which hinders the distribution matching process.
Correcting the optimization order can lead to better results. But, if we overfit the r(x) on the samples
xsample, the results cannot converge normally towards the region of p(x) when timestep is small,
which usually lead to color saturation in text-to-3D generation (Huang et al., 2023; Tang et al., 2024).
This evidence supports our finding with the L-VSD above. More illustrative examples are provided
in Appendix. A and complete runnable code can be found in Appendix. F.

3.3 LOOKAHEAD × CONVERGENCE? DEFINITELY NO.

From the above studies, we learn that fitting the LoRA model to the 3D model first is essential for
VSD while enhancing the convergence of the LoRA model is also beneficial to some degree. Here
we conduct additional experiments to find out the consequence of combining these two factors.

0 2000 4000 6000 8000 10000
Optimization Iteration of theta

0

20

40

60

80

100

120

140

Lo
RA

 P
re

di
ct

io
n

No
rm

L-VSD = 1e-5
L-VSD = 1
L-VSD = 2
L-VSD = 5
VSD

Figure 4: The norm of the LoRA prediction ||ϵϕ||
varies w.r.t. training iteration at various γ in L-VSD.

Based on the setting of L-VSD in Sec. 3.2, we
increase the LoRA training steps γ to 2 and 5.
We also perform a study where the learning rate
of LoRA is scaled to 1/10 of the original one
to indicate under-convergence. Fig. 2b exhibits
the results. As shown, increasing γ in L-VSD
exacerbates the phenomenon of over-saturation
and makes the geometry and texture easier to
collapse, while decreasing the learning rate of
the LoRA model somehow improves the quality
of the generation.

These deviate from our expectations. To chase a
deeper understanding, we examine the output of
the LoRA by inspecting its norm ||ϵϕ||, and plot
its variation during training in Fig. 4. We observe that the norm rapidly drops to zero for L-VSD with
γ = 5, which implies ill-posed convergence. The underlying reason is probably that we maintain
only one single 3D particle training of LoRA for efficiency, thus the distribution to fit by the LoRA
model is biased. The pathology is more obvious for L-VSD when optimizing LoRA more intensively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Visualization of ∆ϵfirst and ∆ϵhigh. The left column in each group represents the decoded first-order
term while the right column represents the decoded high-order term. Prompt for each group: (left) "a delicious
hamburger"; (mid) "an astronaut riding a horse";(right) "an Iron man".
Besides, we note that the trick of reducing the learning rate, despite being effective in this case, is
unstable when handling harder prompts. Please refer to Appendix C.1 for more failure cases.

Conclusion Although lookahead is important for generating 3D models with clear outlines and
realistic texture, the risk is the possibility of the LoRA model over-fitting on the isolated particle,
which sometimes exhibits flaws on geometry and texture after each optimization step. Given these,
this work tries to figure out a way to interpolate between original VSD with relatively stable formation
process and L-VSD with higher-quality outcomes.

4 METHODOLOGY

In Sec 4.1, we conduct a rigorous comparison between VSD and L-VSD and perform thorough
studies to gain an understanding of their difference. Please also refer to Appendix A for an illustrative
overview about training pipelines of VSD and L-VSD to understand their difference better. We then
derive the novel Linearized Lookahead VSD (L2-VSD) in Sec. 4.2.

4.1 COMPARE VSD WITH L-VSD

We first lay out the details of the update rules of L-VSD. Concretely, L-VSD first updates ϕi with

ϕi+1 = ϕi − 2η∆ϕi , ∆ϕi := (ϵϕi(xt′ , t
′, c, y)− ϵ′)Jϕi(xt′ , t

′, c, y) (7)

where η denotes the learning rate of the LoRA model.

Then, L-VSD updates θi with the updated LoRA model ϵϕi+1
:

∇θiLL−V SD(θi) = Et,ϵ,c
[
w(t)(ϵpretrain(xt, t, y)− ϵϕi+1(xt, t, c, y))

∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
. (8)

We can decompose ϵϕi+1
(xt, t, c, y) by Taylor series to understand the gap between the update rule

of VSD (Equation (5)) and that of L-VSD (Equation (8)) for θi:

ϵϕi+1(xt, t, c, y) = ϵϕi(xt, t, c, y) + (ϕi+1 − ϕi)J
T
ϕi
(xt, t, c, y) + . . .

= ϵϕi(xt, t, c, y) + (−2η∆ϕiJ
T
ϕi
(xt, t, c, y))︸ ︷︷ ︸

∆ϵfirst

+O(∆2
ϕi
)︸ ︷︷ ︸

∆ϵhigh

. (9)

0 2000 4000 6000 8000 10000
Optimization Steps of theta

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

No
rm

s

60

80

100

120

140

160

180

200

first order linear

high order norm high

pretrain norm pretrain

lora prediction norm i

Figure 6: The norm of various scores during the train-
ing of L-VSD.

Namely, both the first-order term ∆ϵfirst and
the high-order one ∆ϵhigh may contribute to
the fast formation of geometry and texture in
L-VSD.

To disentangle their effects, we opt to plot
how their norms vary during the training pro-
cedure. In particular, we set η to 0.01. We
leave how to estimate ∆ϵfirst to the next subsec-
tion and compute ∆ϵhigh by ϵϕi+1

(xt, t, c, y)−
ϵϕi

(xt, t, c, y)−∆ϵfirst. As illustrated in Fig. 6,
||∆ϵhigh|| is significantly larger than ||∆ϵfirst||.
It is even larger than the norm of the entire
LoRA model ||ϵϕ||, which means that ϵϕi+1

is
probably dominated by ∆ϵhigh. Moreover, the
norm of ∆ϵhigh varies in a considerable range,
which indicates much greater randomness than the first-order term.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To obtain a more intuitive understanding of the two terms, we also pass them through the decoder
of the pretrained DM (because we experiment with latent DMs (Rombach et al., 2022)) to obtain
visualizations of them, presented in Fig. 5. As shown, the visualization of ∆ϵfirst indicates an object
shape corresponding to the prompt while ∆ϵhigh is more random and we cannot witness any semantic
information within it.

Based on all the above observations and inferences, we wonder whether ∆ϵfirst is the essential
component for the appealing generations, and keeping it can improve score distillation further.
We answer to this in the next subsection.

4.2 LINEARIZED LOOKAHEAD VSD

Let ϵlin
ϕi+1

(xt, t, c, y) := ϵϕi(xt, t, c, y)+∆ϵfirst. In fact, it corresponds to performing one-step SGD
with (xt′ , t

′) under the denoising loss (Equation (2)) to update the following linear noise-prediction
model:

ϵlin
ϕ (xt, t, c, y) = ϵϕi

(xt, t, c, y) + (ϕ− ϕi)J
T
ϕi
(xt, t, c, y). (10)

Due to the low complexity of the linear model, the risk of overfitting to the current training data is
low, which properly addresses the problem of the original L-VSD. With these understandings, our
method boils down to using only the linearized lookahead correction ϵlin

ϕi+1
(xt, t, c, y) for estimating

the score function of noisy rendered images of θi. i.e.,

∇θiL
∗(θi) = Et,ϵ,c

[
w(t)

(
ϵpretrain(xt, t, y)− ϵlin

ϕi+1
(xt, t, c, y)

) ∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
= Et,ϵ,c

[
w(t)

(
ϵpretrain(xt, t, y)− ϵϕi(xt, t, c, y) + 2η∆ϕiJ

T
ϕi
(xt, t, c, y)

) ∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
= Et,ϵ,c

[
w(t)

(
ϵpretrain(xt, t, y)− ϵϕi(xt, t, c, y)

+ 2η(ϵϕi(xt′ , t
′, c, y)− ϵ′)

[
Jϕi(xt′ , t

′, c, y)JT
ϕi
(xt, t, c, y)

])∂g(θ, c)
∂θ

∣∣∣
θ=θi

]
.

(11)
Viewing Jϕi

(xt′ , t
′, c, y)JTϕi

(xt, t, c, y) ∈ Rd×d as a pre-conditioning matrix, the above update rule
involves two score contrast terms—one corresponds to the original VSD objective and the other
accounts for a linearized lookahead correction for practical iterative optimization.

Moreover, we clarify the term ∆ϵfirst := −2η∆ϕi
JTϕi

(xt, t, c, y) is friendly to estimate. Concretely,
∆ϕi

is exactly the gradient to update the LoRA model, which a backward pass can calculate. Then, the
vector-Jacobian product ∆ϕi

JTϕi
(xt, t, c, y) can be realized by a forward pass of the score model using

forward-mode automatic differentiation, which is equipped in many deep learning frameworks (Paszke
et al., 2017) As a result, L2-VSD only needs a single additional forward pass of the LoRA model per
iteration compared to VSD, which is much more efficient than updating the LoRA multiple times.
More importantly, we can even use only the entities associated with the last layer of the LoRA model
for estimating the vector-Jacobian product to achieve a trade-off between quality and efficiency.

5 EXPERIMENTS

5.1 SETTINGS

In this section, we evaluate the efficacy of our proposed Linearized Lookahead VSD method on
text-guided 3D generation. Our baseline approaches include SDS, VSD, ESD (Entropy Score Distil-
lation) (Wang et al., 2024a), and VSD-based HiFA (Zhu et al., 2023), which include representative
state-of-the-art methods. For a fair comparison, all experiments are benchmarked under the open-
source framework threestudio (Guo et al., 2023). To clearly demonstrate the superior performance
brought by our method, we compare both the results produced with high resolution and low resolution.
Please refer to Appendix B.1 for more implementation details.

5.2 QUALITATIVE COMPARISON

We compare our generation results with SDS, VSD, ESD, L-VSD and HiFA both in high resolution
of 256 and low resolution of 64. We present some representative results without bias in Fig. 7 and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Qualitative comparison with high resolution of 256. L2-VSD can generate meticulously
detailed and realistic 3D assets from easy to very complex prompts and scenes. L2-VSD tends to
yield more complete structures than HiFA.

Figure 8: More Qualitative comparison with high resolution.
Fig. 15, and we refer readers to Appendix C for results of L-VSD and more cases, as L-VSD tends to
fail in generating complete objects. It’s noteworthy that we consider our method as a baseline similar
to SDS and VSD. ESD and HiFA are state-of-the-arts based on VSD, which try to improve certain
properties of generation quality by introducing novel techniques. We compare with them in order
to position our performance more rigorously. We demonstrate in Sec. 5.5 that our methods can be
seamlessly combined with other techniques like ESD and HiFA. Compared with VSD and its variant
ESD, our results have significantly more realistic appearances and reasonable geometry. Moreover,
our method has better convergence, which means our results are more robust to optimization and do

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

not suffer from generating floaters in space. It’s clearly shown that with our linearized lookahead
correction term, even only trained with low-resolution rendering settings, we can generate 3D scenes
with realistic and detailed appearances. In conclusion, our method surpasses the other baseline
methods significantly with linearized lookahead and achieves comparable results with state-of-the-art.

5.3 QUANTITATIVE COMPARISON

We follow previous work (Poole et al., 2022; Yu et al., 2023) to quantitatively evaluate the generation
quality using the angle of CLIP similarity (Hessel et al., 2021) and Frechet Inception Distance
(Heusel et al., 2017) and list the results in Table 1. Specifically, the CLIP similarity measures
the cosine similarity between the rendered image embeddings of the generated 3D object and the
text embeddings, and we calculate the angle. The FID measures the distance between the image
distribution by randomly rendering 3D representation and the text-conditioned image distribution
from the pretrained diffusion model. We use prompts from the gallery of DreamFusion to ensure no
man-made bias in evaluation. Please refer to Appendix B.1 for more metric computation details.

Table 1: Quantitative Comparison. (↓) means the lower the better. We measure the scenes across
20 prompts, which are randomly sampled from DreamFusion’s gallery and include scenes shown in
Fig. 7, Fig. 15 and Fig. 8. The quantitative results align with the qualitative results.

SDS ESD VSD L-VSD HiFA L2-VSD

Averaged CLIP sim (↓) 0.305 0.316 0.324 0.337 0.313 0.285
Averaged FID (↓) 372.35 315.15 301.54 496 292.88 284.06

5.4 ABLATION STUDY

5.4.1 ABLATION ON η

We conduct an ablation study on the choice of η, showing the results in Fig. 9a, where only η changes
while other parameters are unchanged. We still use the simple prompt “a delicious hamburger”. It’s
demonstrated that our method is robust to the scale of η. It’s worth noting that even if the norm of
first-order term ∆ϵfirst is only at the scale of 1e-2 when we set η to 1e-3, the results still improve
a lot. So, even a minor correction for each iteration can lead to incredible improvement in such a
long-term optimization. Ablation on high-order term correction can be found in Appendix C.1.

(a) Ablation on the η in ∆ϵfirst. From left to right,
the results correspond to setting η to 1e-3, 1e-2, 0.1,
and 1 respectively.

(b) Ablation on last-layer approximation. From left
to right, the results also correspond to those in (a), but
use a last-layer approximation for estimating ∆ϵfirst.

Figure 9: Qualitative results of ablation studies.

5.4.2 ABLATION ON LAST-LAYER APPROXIMATION

Table 2: Computation effi-
ciency. We present the time cost
in each iteration. We measure
the average time on the threestu-
dio framework.

Time cost (s/iteration)

VSD ∼ 0.7
L2-VSD ∼ 1.0

L2-VSD (last-layer) ∼ 0.8

As stated above, we can use only the entities associated with the
last layer of the LoRA model to further reduce additional time costs.
Admittedly, this approach may result in performance loss. As the cor-
rection term is calculated with the Jacobian matrixs of LoRA model,
if only use the last-layer gradients to approximate the correction, we
actually ignore the variable updates within other layers, thus losing
accuracy. We present the corresponding results in Fig. 9b. Although
the outcomes tend to generate floaters, the realism of results still gets
largely improved. Also, we believe the floaters can be eliminated in the following geometry refine-
ment stage. We compare the computation efficiency with the baseline VSD in Table 2. We can save
much computation time cost by only using this approximation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ESD 𝐿2-ESD ESD 𝐿2-ESD

Figure 10: Examples of combining ESD with L2-VSD. We can observe that in the case of “sunflower”, by
combining our method, we obtain a reasonable sunflower rather than a “sunball”. In the case of “bulldozer”,
with a linearized lookahead, ESD can generate additional elements like bricks.

Figure 11: Examples of combining HiFA with L2-VSD. The colors are more realistic and the appearance of
our method’s results aligns better with the prompts.

5.5 CONNECTION WITH OTHER DIFFUSION DISTILLATION METHODS

ESD (Wang et al., 2024a) is dedicated to solving the Janus problem based on VSD. It maximizes the
entropy of different views of the generated results, encouraging diversity across views. The gradient
of ESD is theoretically equivalent to adopting CFG (Ho & Salimans, 2022) trick upon VSD, i.e.

∇θiLESD(θi) = Et,ϵ,c

[
w(t)(ϵpretrain(xt, t, y)− λϵϕi(xt, t, ∅, y)− (1− λ)ϵϕi(xt, t, c, y))

∂g(θ, c)

∂θ

∣∣∣
θ=θi

]
,

(12)
where λ is a scaling factor. Our method can also be incorporated into ESD. We name this as L2-ESD.

We present the corresponding results in Fig. 10. The prompts we use are “a sunflower on a flowerpot”
and “a bulldozer made out of toy bricks” respectively. To avoid unnecessary trials, we simply set λ to
0.5, which is recommended in ESD. As we can observe, compared with ESD, the 3D results are more
photo-realistic with distinct shapes.
HiFA (Zhu et al., 2023) is a state-of-the-art approach for high-quality 3D generation in a single-stage
training based on basic methods. It distills denoising scores from pretrained models in both the
image and latent spaces and proposes several techniques to improve NeRF generation, which are
orthogonal to our method. We demonstrate our method’s compatibility by combining with HiFA,
naming as L2-HiFA. We present the results in Fig. 11. The prompts we use are “an elephant skull”
and “Pumpkin head zombie, skinny, highly detailed, photorealistic” respectively.

In conclusion, it’s believed that L2-VSD can be combined with other parallel techniques in the future.

6 DISCUSSION, CONCLUSION AND LIMITATION

In this paper, we dive deep into the theory of VSD, having a comprehensive understanding of inner
process and identify two potential directions for improvement. In terms of the algorithm formulation,
we propose Linearized Lookahead Variational Score Distillation(L2-VSD), a novel framework based
on VSD that achieves state-of-the-art results on text-to-3D generation. The linearized lookahead term
enables us to benefit from both better convergence and lookahead for next iteration. More importantly,
our method can be incorporated into any VSD-based framework in the future.

Limitations and broader impact. Firstly, although L2-VSD achieves remarkable improvement on
text-to-3D results, the generation process still takes hours of time, which is a common issue for score
distillation based methods. We believe orthogonal improvements on distillation accelerating (Zhou
et al., 2023) can mitigate this problem. Secondly, while we find the first-order term shows regular
pattern and some similarity may exist between our method and SiD (Zhou et al., 2024), which is
briefly discussed in Appendix E, we have not yet been able to formulate a distribution-based objective
that guides this optimization. Investigating the underlying reasons is of significant interest in the
future. Lastly, as for broader impact, like other generative models, our method may be utilized to
generate fake and malicious contents, which needs more attention and caution.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bechtle,
Feryal Behbahani, Stephanie Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sherjil Ozair,
Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas, Satinder Singh, and Tim
Rocktäschel. Genie: Generative interactive environments, 2024.

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and
appearance for high-quality text-to-3d content creation, 2023.

Matthew Conlen, Jeffrey Heer, Hillary Mushkin, and Scott Davidoff. Cinematic techniques in
narrative visualization, 2023.

Chris Creed, Maadh Al-Kalbani, Arthur Theil, Sayan Sarcar, and Ian Williams. Inclusive ar/vr:
accessibility barriers for immersive technologies. Universal Access in the Information Society, 23
(1):59–73, February 2023. ISSN 1615-5297. doi: 10.1007/s10209-023-00969-0. URL http:
//dx.doi.org/10.1007/s10209-023-00969-0.

Yuan-Chen Guo, Ying-Tian Liu, Ruizhi Shao, Christian Laforte, Vikram Voleti, Guan Luo, Chia-
Hao Chen, Zi-Xin Zou, Chen Wang, Yan-Pei Cao, and Song-Hai Zhang. threestudio: A unified
framework for 3d content generation. https://github.com/threestudio-project/
threestudio, 2023.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: a
reference-free evaluation metric for image captioning. In EMNLP, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Susung Hong, Donghoon Ahn, and Seungryong Kim. Debiasing scores and prompts of 2d diffusion
for robust text-to-3d generation. arXiv preprint arXiv:2303.15413, 2023.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi, Zheng-Jun Zha, and Lei Zhang. Dreamtime: An
improved optimization strategy for text-to-3d content creation. arXiv preprint arXiv:2306.12422,
2023.

Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-to-svg by abstracting pixel-based
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1911–1920, June 2023.

Chenhan Jiang. A survey on text-to-3d contents generation in the wild, 2024.

Oren Katzir, Or Patashnik, Daniel Cohen-Or, and Dani Lischinski. Noise-free score distillation, 2023.

Nikhil Ketkar, Jojo Moolayil, Nikhil Ketkar, and Jojo Moolayil. Automatic differentiation in deep
learning. Deep Learning with Python: Learn Best Practices of Deep Learning Models with
PyTorch, pp. 133–145, 2021.

11

http://dx.doi.org/10.1007/s10209-023-00969-0
http://dx.doi.org/10.1007/s10209-023-00969-0
https://github.com/threestudio-project/threestudio
https://github.com/threestudio-project/threestudio
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15954–15964, 2023.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models, 2023.

Sixu Li, Chaojian Li, Wenbo Zhu, Boyang, Yu, Yang, Zhao, Cheng Wan, Haoran You, Huihong Shi,
Yingyan, and Lin. Instant-3d: Instant neural radiance field training towards on-device ar/vr 3d
reconstruction, 2024.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content
creation, 2023.

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel cnn for efficient 3d deep learning.
Advances in neural information processing systems, 32, 2019.

Zhiyuan Ma, Yuxiang Wei, Yabin Zhang, Xiangyu Zhu, Zhen Lei, and Lei Zhang. Scaledreamer:
Scalable text-to-3d synthesis with asynchronous score distillation. In European Conference on
Computer Vision, pp. 1–19. Springer, 2025.

Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
inverse problems with diffusion models. arXiv preprint arXiv:2305.04391, 2023.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4460–4470, 2019.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):
1–15, 2022.

Tuomas Oikarinen, Wang Zhang, Alexandre Megretski, Luca Daniel, and Tsui-Wei Weng. Robust
deep reinforcement learning through adversarial loss. Advances in Neural Information Processing
Systems, 34:26156–26167, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. In The Eleventh International Conference on Learning Representations, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 8821–8831. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/ramesh21a.html.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

12

https://proceedings.mlr.press/v139/ramesh21a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junyoung Seo, Wooseok Jang, Min-Seop Kwak, Hyeonsu Kim, Jaehoon Ko, Junho Kim, Jin-Hwa
Kim, Jiyoung Lee, and Seungryong Kim. Let 2d diffusion model know 3d-consistency for robust
text-to-3d generation. arXiv preprint arXiv:2303.07937, 2023.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
a hybrid representation for high-resolution 3d shape synthesis. Advances in Neural Information
Processing Systems, 34:6087–6101, 2021.

Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li, and Xiao Yang. Mvdream: Multi-view
diffusion for 3d generation. arXiv:2308.16512, 2023.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
data. arXiv preprint arXiv:2209.14792, 2022.

Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual, Iurii Makarov, Filippos Kokkinos, Naman
Goyal, Andrea Vedaldi, Devi Parikh, Justin Johnson, et al. Text-to-4d dynamic scene generation.
arXiv preprint arXiv:2301.11280, 2023.

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael
Zollhofer. Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2446, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2020.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5459–5469, 2022.

Li Sun, Junxiang Chen, Yanwu Xu, Mingming Gong, Ke Yu, and Kayhan Batmanghelich. Hierarchical
amortized training for memory-efficient high resolution 3d gan. arXiv preprint arXiv:2008.01910,
2020.

Boshi Tang, Jianan Wang, Zhiyong Wu, and Lei Zhang. Stable score distillation for high-quality 3d
generation, 2024.

SIMA Team, Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian
Bolton, Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, Stephanie C. Y. Chan,
Jeff Clune, Adrian Collister, Vikki Copeman, Alex Cullum, Ishita Dasgupta, Dario de Cesare,
Julia Di Trapani, Yani Donchev, Emma Dunleavy, Martin Engelcke, Ryan Faulkner, Frankie
Garcia, Charles Gbadamosi, Zhitao Gong, Lucy Gonzales, Kshitij Gupta, Karol Gregor, Arne Olav
Hallingstad, Tim Harley, Sam Haves, Felix Hill, Ed Hirst, Drew A. Hudson, Jony Hudson, Steph
Hughes-Fitt, Danilo J. Rezende, Mimi Jasarevic, Laura Kampis, Rosemary Ke, Thomas Keck,
Junkyung Kim, Oscar Knagg, Kavya Kopparapu, Andrew Lampinen, Shane Legg, Alexander
Lerchner, Marjorie Limont, Yulan Liu, Maria Loks-Thompson, Joseph Marino, Kathryn Martin
Cussons, Loic Matthey, Siobhan Mcloughlin, Piermaria Mendolicchio, Hamza Merzic, Anna
Mitenkova, Alexandre Moufarek, Valeria Oliveira, Yanko Oliveira, Hannah Openshaw, Renke Pan,
Aneesh Pappu, Alex Platonov, Ollie Purkiss, David Reichert, John Reid, Pierre Harvey Richemond,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tyson Roberts, Giles Ruscoe, Jaume Sanchez Elias, Tasha Sandars, Daniel P. Sawyer, Tim Scholtes,
Guy Simmons, Daniel Slater, Hubert Soyer, Heiko Strathmann, Peter Stys, Allison C. Tam, Denis
Teplyashin, Tayfun Terzi, Davide Vercelli, Bojan Vujatovic, Marcus Wainwright, Jane X. Wang,
Zhengdong Wang, Daan Wierstra, Duncan Williams, Nathaniel Wong, Sarah York, and Nick
Young. Scaling instructable agents across many simulated worlds, 2024.

Christina Tsalicoglou, Fabian Manhardt, Alessio Tonioni, Michael Niemeyer, and Federico Tombari.
Textmesh: Generation of realistic 3d meshes from text prompts. arXiv preprint arXiv:2304.12439,
2023.

Maria Vakalopoulou, Guillaume Chassagnon, Norbert Bus, Rafael Marini, Evangelia I Zacharaki,
M-P Revel, and Nikos Paragios. Atlasnet: Multi-atlas non-linear deep networks for medical image
segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018:
21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part IV 11,
pp. 658–666. Springer, 2018.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Peihao Wang, Dejia Xu, Zhiwen Fan, Dilin Wang, Sreyas Mohan, Forrest Iandola, Rakesh Ranjan,
Yilei Li, Qiang Liu, Zhangyang Wang, and Vikas Chandra. Taming mode collapse in score
distillation for text-to-3d generation, 2024a.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation,
2023.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36, 2024b.

Min Wei, Jingkai Zhou, Junyao Sun, and Xuesong Zhang. Adversarial score distillation: When score
distillation meets gan, 2023.

Min Wei, Jingkai Zhou, Junyao Sun, and Xuesong Zhang. Adversarial score distillation: When
score distillation meets gan. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8131–8141, 2024.

Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, and Shenlong Wang. Video2game: Real-time, interactive,
realistic and browser-compatible environment from a single video, 2024.

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Yi Wang, and Zhangyang Wang. Neurallift-360:
Lifting an in-the-wild 2d photo to a 3d object with 360deg views. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4479–4489, June 2023a.

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Yi Wang, and Zhangyang Wang. Neurallift-360:
Lifting an in-the-wild 2d photo to a 3d object with 360deg views. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4479–4489, 2023b.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4541–4550, 2019.

Xiaofeng Yang, Yiwen Chen, Cheng Chen, Chi Zhang, Yi Xu, Xulei Yang, Fayao Liu, and Guosheng
Lin. Learn to optimize denoising scores for 3d generation: A unified and improved diffusion prior
on nerf and 3d gaussian splatting, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp. 5708–5717. PMLR, 2018.

Xin Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Song-Hai Zhang, and Xiaojuan Qi. Text-to-3d
with classifier score distillation, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Minda Zhao, Chaoyi Zhao, Xinyue Liang, Lincheng Li, Zeng Zhao, Zhipeng Hu, Changjie Fan, and
Xin Yu. Efficientdreamer: High-fidelity and robust 3d creation via orthogonal-view diffusion prior.
arXiv preprint arXiv:2308.13223, 2023.

Linqi Zhou, Andy Shih, Chenlin Meng, and Stefano Ermon. Dreampropeller: Supercharge text-to-3d
generation with parallel sampling. arXiv preprint arXiv:2311.17082, 2023.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
arXiv preprint arXiv:2404.04057, 2024.

Junzhe Zhu, Peiye Zhuang, and Sanmi Koyejo. Hifa: High-fidelity text-to-3d generation with
advanced diffusion guidance. arXiv preprint arXiv:2305.18766, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ILLUSTRATIVE OVERVIEW

𝜃0 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5

𝜙0 𝜙1 𝜙2 𝜙3 𝜙4 𝜙5

(a) Update pipeline of VSD

𝜃0 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5

𝜙0 𝜙1 𝜙2 𝜙3 𝜙4 𝜙5

(b) Update pipeline of L-VSD

𝜃0 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5

𝜙0 𝜙1 𝜙2 𝜙3 𝜙4 𝜙5

(c) Update pipeline of L2-VSD

Figure 12: Overview of VSD, L-VSD and L2-VSD training.

We present an illustrative overview about the updating pipeline of VSD, L-VSD and L2-VSD
respectively. As stated in Sec 2.2, we use θi and ϕi to represent the 3D and the LoRA models at ith
iteration respectively. We use arrows with different colors to represent state transition dependency.
We argue that red dashed arrow pointing from ϕi to θi is important for better results’ quality.

More illustrative 2D gaussian examples. To gain a more complete view about the convergence
of VSD, we conduct two additional gaussian experiments as shown in Fig. 13 and Fig. 14. In the
example of Sec. 3.2, we only sample one point to keep as the same in ProlificDreamer, in which only
one view of 3D object is rendered. In Fig. 13, we increase the number to 4, finding that the error
introduced by optimization order could be mitigated to some extent. This evidence enlightens us that
VSD with multi-view estimation may perform better, part of which has been proved in MVDream
(Shi et al., 2023). Besides, we also show the bad convergence if we overfit LoRA model on current
sampled views in Fig. 14. It’s worth noting that the distribution tends to lie between the intersection
of two gaussian modals, making the views more saturated, which is coherent to the finding in Sec. 3.3.
We provide the reproducible example code in Appendix. F.

B EXPERIMENT IMPLEMENTATION

B.1 MAIN EXPERIMENTS DETAILS

Qualitative Results. In this section, we provide more details on the implementation of L2-VSD
and the compared baseline methods. All of them are implemented under the threestudio framework
directly in the first stage coarse generation, without geometry refinement and texture refinement,
following (Wang et al., 2024b). For the coarse generation stage, we adopt foreground-background
disentangled hash-encoded NeRF (Müller et al., 2022) as the underlying 3D representation. All
scenes are trained for 15k steps for the coarse stage, in case of geometry or texture collapse. At each
interation, we randomly render one view. Different from classic settings, we adjust the rendering
resolution directly as 64 × 64 in the low resolution experiments. And increase to 256 × 256
resolution in the high resolution experiments. All of our experiments are conducted on a single
NVIDIA GeForce RTX 3090.

Quantitative Results. To compute FID (Heusel et al., 2017), we sample N images using pretrained
latent diffusion model given text prompts as the ground truth image dataset, and render N views
uniformly distributed over a unit sphere from the optimized 3D scene as the generated image dataset.
Then standard FID is computed between these two sets of images. To compute CLIP similarity, we

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

GT Dist. p(x)
Init Dist. qinit(x)
LoRA Init Dist. rinit(x)
Fitted Dist. q(x)
LoRA Dist. r(x)
Optimized Sample
Trajetory of Optimization

GT Dist. p(x)
Init Dist. qinit(x)
LoRA Init Dist. rinit(x)
Fitted Dist. q(x)
LoRA Dist. r(x)
Optimized Sample
Trajetory of Optimization

Figure 13: Comparison of VSD and L-VSD with more render samples. In this example, we sample 4 points
in each iteration.

,

GT Dist. p(x)
Init Dist. qinit(x)
LoRA Init Dist. rinit(x)
Fitted Dist. q(x)
LoRA Dist. r(x)
Optimized Sample
Trajetory of Optimization

GT Dist. p(x)
Init Dist. qinit(x)
LoRA Init Dist. rinit(x)
Fitted Dist. q(x)
LoRA Dist. r(x)
Optimized Sample
Trajetory of Optimization

Figure 14: Exploring the impact of r(x) overfitting on rendered samples. In this example, r(x) is delta
distribution as we overfit it on x in each iteration.
render 120 views from the generated 3D representations, and for each view, we obtain an embedding
vector and text embedding vector through the image and text encoder of a CLIP model. We use the
CLIP ViT-B/16 model (Radford et al., 2021).

B.2 HIGH ORDER ∆ϵhighOMPUTATION DETAILS

As mentioned above in Sec.4.1, we can comppute ∆ϵhigh as ϵϕi+1
(xt, t, c, y) − ϵϕi

(xt, t, c, y) −
∆ϵfirst. In practice, we implement this computation during the training process of L-VSD. We copy
an additional LoRA model to restore the LoRA parameters before being updated. Then in each
optimization iteration for θi, the LoRA model performs forward passes for three times to calculate
the ϵϕi , ϵϕi+1 and ∆ϵfirst respectively.

C MORE EXPERIMENT RESULTS

C.1 FAILURE CASES PRODUCED BY L-VSD

We show an example of failure case produced by L-VSD in Fig. 16. We can observe that the upper
one becomes over-saturated faster than the below one. Though the below one collapses much slower,
it can’t converge to a realistic case. Also, we provide all the L-VSD results in Fig. 17, which reflects
the unstable generation quality by naive L-VSD.

C.2 GENERALIZATION ON OTHER REPRESENTATIONS

We provide the results generated in the second "geometry refinement" and third "texture refinement"
stage in Fig. 18 and Fig. 19. In Fig. 18, the 3D objects are initialized with the results in the first stage.
While in Fig. 19, we control the geometry initialization to be the same for our method and VSD,
thus directly comparing the texture generation quality. In Fig. 19, VSD generates destroyed car with
random red color, connecting destroyed car with a fire but our method generates more purely. And

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 15: Qualitative comparison with low resolution of 64. L2-VSD can generate highly detailed
3D assets even with low resolution, while the other baselines (except for HiFA), suffering from
geometry-texture co-training, tend to be blurry and have floaters.

Figure 16: Visualization of Failure Process. The upper row result is generated with original learning rate while
the lower one is generated with scaling the learning rate by 0.1. Each row corresponds to a continue optimization
process. Our prompt is "an astronaut riding a horse".

the texture of hand and the bowl in the bottom is also more realistic. As these two stages represent in
mesh, we believe this comparison reflects the generalization of our method on other representations.

C.3 LOSS CURVE COMPARISON AT INITIAL STAGES

As requested by Reviewer YuaJ, we show the loss curve in Fig. 20a. As shown by the curve, the loss
is in similar level at the start of distillation, which is probably because the objects don’t form into
clear shape yet. So the predicted noises are all likely to be gaussian.

Also, as suggested by Review LcCM, we test on multiple samples and measure the average LoRA
loss to provide more convincing results, which is shown in Fig. 20b. The conclusion holds as the
same as in the section. 3.1. Also, we provide one sample "crown" other than "hamburger" to augment
the proof.

C.4 ABLATION OF GENERATION WITH HIGH-ORDER TERM

We provide the results of one important ablation experiment in Fig. 22. We compare the results
produced by VSD, L2-VSD and HL-VSD(high-order lookahead VSD). In HL-VSD, we use the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 17: Results of L-VSD. These results are generated with the same prompts in Fig. 7 and Fig. 15. As
we can observe, naive L-VSD usually fails in generating realistic objects, which is supported by our Gaussian
example in Sec. 3.2.

Figure 18: Comparison at second and third stages. We initial the objects with first-stage’s results
and compare the geometry and texture refinement. As shown in the figure, the geometry generated by
our method is more complete and texture generated by our method is much more realistic.

high-order term instead of the linear term to correct the score. As shown in the figure, the results
all collapse and become irrecognizable, which proves the effectiveness and necessity of linearied
lookahead.

D OTHER RELATED WORKS

D.1 TEXT-TO-IMAGE DIFFUSION MODELS

Text-to-image diffusion models (Ramesh et al., 2021; 2022) are essential for text-to-3D generation.
These models incorporate text embeddings during the iterative denoising process. Leveraging large-
scale image-text paired datasets, they address text-to-image generation tasks. Latent diffusion models
(Rombach et al., 2022), which diffuse in low-resolution latent spaces, have gained popularity due to
reduced computation costs. Additionally, text-to-image diffusion models find applications in various
computer vision tasks, including text-to-3D (Ramesh et al., 2022; Singer et al., 2023), image-to-3D
(Xu et al., 2023a), text-to-svg (Jain et al., 2023), and text-to-video (Khachatryan et al., 2023; Singer
et al., 2022).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 19: Comparison on texture representation. We use VSD and our method to generate texture
conditioned on the same geometry initialization. Prompts: (Upper)"a completely destroyed car"
;(Bottom)"a zoomed out DSLR photo of a pair of floating chopsticks picking up noodles out of a
bowl of ramen".

0 2 4 6 8 10 12 14 16
Optimization Iterations of theta

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
RA

 L
os

s

= 1
= 2
= 5
=10

(a) VSD multi-LoRA initial loss: At the start of dis-
tillation, the loss with different LoRA steps is in the
similar level.

0 1000 2000 3000 4000
Optimization Iterations of theta

0.0

0.2

0.4

0.6

0.8

1.0

Lo
RA

 L
os

s

= 1
= 2
= 5
=10

1000 1002 1004 1006 1008 1010
0.0

0.1

0.2

0.3

(b) Multi samples averaged loss curve. We average
the LoRA loss on 3 samples, finding the general pattern
of loss variation.

Figure 20: More Loss Curve.
,

Figure 21: VSD LoRA Comparison.

D.2 TEXT-TO-3D GENERATION WITHOUT 2D-SUPERVISION

Text-to-3D generation techniques have evolved beyond relying solely on 2D supervision. Researchers
explore diverse approaches to directly create 3D shapes from textual descriptions. Volumetric
representations, such as 3D-GAN (Sun et al., 2020) and Occupancy Networks (Mescheder et al.,
2019), use voxel grids (Sun et al., 2022; Liu et al., 2019). Point cloud generation methods, like
PointFlow (Yang et al., 2019) and AtlasNet (Vakalopoulou et al., 2018), work with sets of 3D
points. Implicit surface representations, exemplified by DeepVoxels (Sitzmann et al., 2019) and
SIREN (Sitzmann et al., 2020), learn implicit functions for shape surfaces. Additionally, graph-based

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 22: Results comparison with using high-order term. Prompts: (upper)"A rotary telephone
carved out of wood" ;(Bottom)"a DSLR photo of an exercise bike in a well lit room"

approaches (GraphVAE (Simonovsky & Komodakis, 2018), GraphRNN (You et al., 2018)) capture
relationships between parts using graph neural networks.

D.3 ADVANCEMENTS IN 3D SCORE DISTILLATION TECHNIQUES

Various techniques enhance score distillation effectiveness. Magic3D (Lin et al., 2023) and Fantasia3D
(Chen et al., 2023) disentangle geometry and texture optimization using mesh and DMTet (Shen et al.,
2021). TextMesh (Tsalicoglou et al., 2023) and 3DFuse (Seo et al., 2023) employ depth-conditioned
text-to-image diffusion priors for geometry-aware texturing. Score debiasing (Hong et al., 2023)
and Perp-Neg (Zhao et al., 2023) refine text prompts for better 3D generation. Researchers also
explore timestep scheduling (DreamTime (Huang et al., 2023), RED-Diff (Mardani et al., 2023)) and
auxiliary losses (CLIP loss (Xu et al., 2023b), adversarial loss (Oikarinen et al., 2021)) to improve
score distillation.

E DISCUSSION

Score Identity Distillation (SiD) (Zhou et al., 2024) Apart from direct comparison with the text-
to-3D score distillation method, our method can draw some similarities with some 2D diffusion
distillation methods. SiD reformulates forward diffusion as semi-implicit distributions and leverages
three score-related identities to create an innovative loss mechanism. The weighted loss is expressed
as:

L̃SiD(θi) = −α
w(t)

σ4
t

||ϵpretrain(xt, t)− ϵϕ(xt, t)||22

+
w(t)

σ4
t

(ϵpretrain(xt, t)− ϵϕ(xt, t))
T (ϵϕ(xt, t)− ϵ)

(13)

where xt = g(θi).Compared with the original VSD loss, the additional term in SiD has an important
factor (ϵϕ − ϵ), which corrects the original loss in a projected direction. This factor also exists in our
term, so we assume that our first-order term shares some similarity with this correction term.

F GAUSSIAN EXAMPLE CODE

1 import os
2 import math
3 import random
4 import numpy as np

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

5 from tqdm import tqdm, trange
6 import matplotlib.pyplot as plt
7

8 import torch
9 import torch.nn as nn

10 import torch.nn.functional as F
11 from torch.optim.lr_scheduler import LambdaLR
12

13 def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps,
num_training_steps, min_lr=0., num_cycles: float = 0.5):

14

15 def lr_lambda(current_step):
16 if current_step < num_warmup_steps:
17 return float(current_step) / float(max(1, num_warmup_steps))
18 progress = float(current_step - num_warmup_steps) / float(max(1,

num_training_steps - num_warmup_steps))
19 return max(min_lr, 0.5 * (1.0 + math.cos(math.pi *

float(num_cycles) * 2.0 * progress)))
20

21 return LambdaLR(optimizer, lr_lambda, -1)
22

23 def seed_everything(seed):
24 random.seed(seed)
25 os.environ[’PYTHONHASHSEED’] = str(seed)
26 np.random.seed(seed)
27 torch.manual_seed(seed)
28 torch.cuda.manual_seed(seed)
29

30 def sample_gassian(mu, sigma, N_samples=None, seed=None):
31 assert N_samples is not None or seed is not None
32 if seed is None:
33 seed = torch.randn((N_samples, d), device=mu.device)
34 samples = mu + torch.matmul(seed, sigma.t())
35 return samples
36

37 # Core function: compute score function of perturbed Gaussian
distribution

38 # \nabla \log p_t(x_t) = -(Simga^{-1} + sigma_t^2 I) (x_t - \alpha_t *
\mu)

39 def calc_perturbed_gaussian_score(x, mu, sigma, alpha_noise,
sigma_noise):

40 if mu.ndim == 1:
41 mu = mu[None, ...] # [d] -> [1, d]
42 if sigma.ndim == 2:
43 sigma = sigma[None, ...] # [d, d] -> [1, d, d]
44

45 mu = mu * alpha_noise[..., None] # [B, d]
46 sigma = torch.matmul(sigma, sigma.permute(0, 2, 1)) # [1, d, d]
47 sigma = (alpha_noise**2)[..., None, None] * sigma # [B, d, d]
48 sigma = sigma + (sigma_noise**2)[..., None, None] *

torch.eye(sigma.shape[1], device=sigma.device)[None, ...] # [B,
d, d]

49 inv_sigma = torch.inverse(sigma) # [B, d, d]
50 return torch.matmul(inv_sigma, (mu - x)[..., None]).squeeze(-1) # [B,

d, d] @ [B, d, 1] -> [B, d, 1] -> [B, d]
51

52 # data dimension
53 N = 256
54 d = 2
55 ndim = d
56 lora_steps = 10
57 # set the hyperparameters
58 seed = 0
59 dist_0 = 10
60 lr = 1e-2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

61 min_lr = 0
62 weight_decay = 0
63 warmup_steps = 100
64 total_steps = 2000
65 scheduler_type = ’cosine’
66 lambda_coeff = 1.0
67 method = ’l-vsd’ # or ’real-vsd’, ’vsd’
68 output_dir = ’’
69 logging_steps = 10
70

71 device = torch.device(’cuda:0’)
72 seed_everything(seed)
73

74 # groundtruth distribution
75 p_mu = torch.rand(d, device=device) # uniform random in [0, 1] x [0, 1]
76 p_sigma = torch.rand((d, d), device=device) + torch.eye(d,

device=device) # positive semi-definite
77

78 # diffusion coefficients
79 beta_start = 0.0001
80 beta_end = 0.02
81

82 # parametric distribution to optimize
83 q_mu = nn.Parameter(torch.rand(d, device=device) * dist_0 + p_mu)
84 q_sigma = nn.Parameter(torch.rand(d, d, device=device))
85

86 r_mu = nn.Parameter(torch.zeros(d, device=device)).to(device)
87 r_sigma = nn.Parameter(torch.zeros(d, d, device=device)).to(device)
88

89 optimizer = torch.optim.AdamW([q_mu, q_sigma], lr=lr,
weight_decay=weight_decay)

90 scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps,
int(total_steps*1.5), min_lr) if scheduler_type == ’cosine’ else None

91

92 # set the optimizer and scheduler of LoRA model
93 r_optimizer = torch.optim.AdamW([r_mu, r_sigma], lr=5*lr,

weight_decay=weight_decay)
94

95 # saving checkpoints
96 state_dict = []
97 N_render = 4
98 # store per-step samples. fixed seed for visualization
99 vis_seed = torch.randn((1, N, d), device=device)

100 vis_seed_true = torch.randn((1, N, d), device=device)
101 vis_seed2 = torch.randn((1, N, d), device=device)
102 vis_samples = [] # [steps, p+q, N_samples, N_dim]
103 # x_previous = 0
104

105 for i in trange(total_steps + 1):
106 optimizer.zero_grad()
107

108 # sample time steps and compute noise coefficients
109 betas_noise = torch.rand(N_render, device=device) * (beta_end -

beta_start) + beta_start
110 alphas_noise = torch.cumprod(1.0 - betas_noise, dim=0)
111 sigmas_noise = ((1 - alphas_noise) / alphas_noise) ** 0.5
112

113 # sample from g(x) = q_mu + q_sigma @ c, c ~ N(0, I)
114 x = sample_gassian(q_mu, q_sigma, N_samples=N_render)
115 # sample gaussian noise
116 eps = torch.randn((N_render, d), device=device)
117 # diffuse and perturb samples
118 x_t = x * alphas_noise[..., None] + eps * sigmas_noise[..., None]
119

120 # w(t) coefficients

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

121 w = ((1 - alphas_noise) * sigmas_noise)[..., None]
122

123 # compute score distillation update
124 if method == ’l-vsd’:
125 xp = x.detach()
126 for j in range(lora_steps):
127 r_optimizer.zero_grad()
128 q_muo = q_mu.detach()
129 q_sigmao = q_sigma.detach()
130 loss_r = F.mse_loss(q_muo, r_mu, reduction="sum") +

F.mse_loss(q_sigmao, r_sigma, reduction="sum")
131

132 loss_r.backward()
133 r_optimizer.step()
134

135 with torch.no_grad():
136 # \nabla \log p_t(x_t)
137 score_p = calc_perturbed_gaussian_score(x_t, p_mu, p_sigma,

alphas_noise, sigmas_noise)
138

139 if method == ’sds’:
140 # -[\nabla \log p_t(x_t) - eps]
141 grad = -w * (score_p - eps)
142 elif method == ’vsd’:
143 # \nabla \log q_t(x_t | c) - centering trick
144 cond_mu = x.detach()
145 cond_sigma = torch.zeros_like(q_sigma)
146 score_q = calc_perturbed_gaussian_score(x_t, cond_mu,

cond_sigma, alphas_noise, sigmas_noise)
147

148 # -[\nabla \log p_t(x_t) - \nabla \log q_t(x_t | c)]
149 grad = -w * (score_p - score_q)
150 elif method == ’real-vsd’ or method == ’l-vsd’:
151 cond_mu = r_mu.detach()
152 cond_sigma = r_sigma.detach()
153 score_q_appx = calc_perturbed_gaussian_score(x_t, cond_mu,

cond_sigma, alphas_noise, sigmas_noise)
154

155 grad = -w * (score_p - score_q_appx)
156

157 # reparameterization trick for backpropagation
158 # d(loss)/d(latents) = latents - target = latents - (latents - grad)

= grad
159 grad = torch.nan_to_num(grad)
160 target = (x_t - grad).detach()
161 loss = 0.5 * F.mse_loss(x_t, target, reduction="sum") / N_render
162

163 loss.backward()
164 optimizer.step()
165 if scheduler is not None:
166 scheduler.step()
167

168

169 if method == ’real-vsd’:
170 r_mu_previous = r_mu.detach()
171 r_sigma_previous = r_sigma.detach()
172 xp = x.detach()
173 for j in range(lora_steps):
174 r_optimizer.zero_grad()
175 q_muo = q_mu.detach()
176 q_sigmao = q_sigma.detach()
177 loss_r = F.mse_loss(q_muo, r_mu, reduction="sum") +

F.mse_loss(q_sigmao, r_sigma, reduction="sum")
178

179 loss_r.backward()

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

180 r_optimizer.step()
181

182 # logging
183 if i % logging_steps == 0:
184 state_dict.append({
185 ’step’: i,
186 ’q_mu’: q_mu.detach().cpu().numpy(),
187 ’q_sigma’: q_sigma.detach().cpu().numpy(),
188 })
189

190 # save sample positions
191 with torch.no_grad():
192 p_samples = sample_gassian(p_mu, p_sigma, seed=vis_seed_true[0])
193 p_samples = p_samples.detach().cpu().numpy()
194

195 q_samples = sample_gassian(q_mu, q_sigma, seed=vis_seed[0])
196 q_samples = q_samples.detach().cpu().numpy()
197

198 if method == ’real-vsd’:
199 r_samples = sample_gassian(r_mu_previous, r_sigma_previous,

seed=vis_seed2[0])
200 r_samples = r_samples.detach().cpu().numpy()
201 else:
202 r_samples = sample_gassian(r_mu, r_sigma, seed=vis_seed2[0])
203 r_samples = r_samples.detach().cpu().numpy()
204

205 vis_samples.append(np.stack([p_samples, q_samples, r_samples],
0))

25

	Introduction
	Background
	Diffusion Models
	Text-to-3D Generation with Score Distillation

	Diagnose the Issues of VSD
	Make the LoRA Model Better Converged? Maybe No.
	Make the LoRA Model Lookahead? Maybe Yes!
	Lookahead Convergence? Definitely No.

	Methodology
	Compare VSD with L-VSD
	Linearized Lookahead VSD

	Experiments
	Settings
	Qualitative Comparison
	Quantitative Comparison
	Ablation Study
	Ablation on
	Ablation on Last-layer Approximation

	Connection with Other Diffusion Distillation Methods

	Discussion, Conclusion and Limitation
	Illustrative Overview
	Experiment Implementation
	Main Experiments Details
	High Order Computation Details

	More Experiment Results
	Failure Cases Produced by L-VSD
	Generalization on other representations
	Loss curve comparison at initial stages
	Ablation of Generation with high-order term

	Other Related works
	Text-to-Image Diffusion Models
	Text-to-3D Generation without 2D-Supervision
	Advancements in 3D Score Distillation Techniques

	Discussion
	Gaussian Example Code

