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Abstract

Gloss-free sign language translation (SLT) aims to develop well-performing SLT
systems with no requirement for the costly gloss annotations, but currently still lags
behind gloss-based approaches significantly. In this paper, we identify a represen-
tation density problem that could be a bottleneck in restricting the performance
of gloss-free SLT. Specifically, the representation density problem describes that
the visual representations of semantically distinct sign gestures tend to be closely
packed together in feature space, which makes gloss-free methods struggle with
distinguishing different sign gestures and suffer from a sharp performance drop.
To address the representation density problem, we introduce a simple but effective
contrastive learning strategy, namely SignCL, which encourages gloss-free models
to learn more discriminative feature representation in a self-supervised manner.
Our experiments demonstrate that the proposed SignCL can significantly reduce
the representation density and improve performance across various translation
frameworks. Specifically, SignCL achieves a significant improvement in BLEU
score for the Sign Language Transformer and GFSLT-VLP on the CSL-Daily
dataset by 39% and 46%, respectively, without any increase of model param-
eters. Compared to Sign2GPT, a state-of-the-art method based on large-scale
pre-trained vision and language models, SignCL achieves better performance with
only 35% of its parameters. Implementation and Checkpoints are available at
https://github.com/JinhuiYE/SignCL.

1 Introduction

Sign languages are the primary form of communication for millions of deaf individuals. Sign language
translation (SLT) aims to convert sign language into fluent spoken language sentences, which is
a challenging task as it needs to extract information from continuous video and translate it into
discrete text tokens. Most prior studies promoted the SLT by utilizing intermediate representations,
namely gloss annotations, either directly or indirectly [3, 48, 53, 8, 49, 46, 41]. Gloss annotations
are beneficial as they provide a simplified representation and sequential ordering of each gesture
within continuous sign videos, which aids in representation learning for visual encoders. However,
the creation of sign language translation datasets with gloss annotations is both resource-intensive
and time-consuming.

Recently, there has been a shift towards gloss-free sign language translation methods, which do not
rely on gloss annotations to train SLT models. These methods usually rely on general datasets [47],
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RECIPROCATE REVENGE

Figure 1: An example of the representation density problem in sign language translation. The two
images show the sign gestures for “RECIPROCATE” (blue dot) and “REVENGE” (orange dot).
Although the two have opposite meanings, their visual representations are densely clustered together,
as shown in the t-SNE visualization. The various colors in the visualization indicate sign gestures
with different meanings.

general pretraning strategy [52], or general large-scale foundation models [42] to promote gloss-
free SLT. However, there is a substantial gap between the sign language domain and the general
domain [45, 24]. Models trained with general strategies or datasets often fail to capture the subtle
differences in semantically distinct gestures, which are crucial for accurately understanding a specific
sign language. Therefore, the performance of gloss-free methods still significantly lags behind that of
gloss-based approaches.

In this paper, we identify a representation density problem in sign language translation: the
visual representations of sign gestures with distinct semantics are likely to be close in representation
space. This problem is attributed to the nature of sign language, a form of visual language that
utilizes intricate hand gestures, facial expressions, and body movements to convey the signer‘s
message [35, 40, 17]. For example, in Figure 1, the signer performs sign gestures for opposite
meanings, “RECIPROCATE” and “REVENGE”, with similar visual information (i.e., only subtle
differences in facial movements). The visual encoder in SLT models will encode similar visual
information to visual representations in adjacent representation space, even though they have distinct
semantics. Without explicit gloss annotations, SLT models struggle to learn semantic boundaries in
continuous sign videos and capture distinguishing visual representations for different sign gestures.
As a result, the representation density problem poses a significant challenge for the SLT models in
distinguishing between various sign gestures, leading to sharp performance drops. (Section 3.2).

Further, we investigate various popular sign feature extraction methods, including gloss-based [3, 33]
and gloss-free [47, 52], to systematically study the representation density problem. As shown in
Figure 2, our investigation reveals that the representation density problem is prevalent across sign
feature extraction methods. Specifically, due to the lack of gloss annotations, the representation
density problem appears to be more serious in gloss-free methods. Then, we conduct extensive SLT
experiments and observe that SLT models using gloss-free sign features as input consistently suffer a
drop in performance in both sign language recognition and translation tasks compared to those using
gloss-based sign features (Section 3.3). Therefore, we demonstrate that the representation density
problem can be a bottleneck in restricting the improvement of gloss-free sign language translation.

More importantly, we propose a simple but effective contrastive learning strategy named SignCL to
address the representation density problem. Specifically, SignCL draws the visual representations of
sign gestures with identical semantics closer together and pushes those with different semantics farther
apart. Experimental results show that SignCL can learn more distinctive feature representations and
lead to significant improvements in terms of BLEU score on various well-known SLT frameworks
(Section 5). To summarize, the main contributions of this work are as follows:

• To the best of our knowledge, our work identifies the representation density problem in sign
language translation for the first time. This problem is consistent across various sign feature
extraction methods for SLT, including gloss-based and gloss-free methods.

• Experimental results empirically reveal that an increase in representation density leads to a
significant performance drop in the accuracy of sign language recognition and translation. We
find that the representation density problem poses a significant challenge for the gloss-free SLT.

2



• We propose a simple but effective contrastive learning strategy, namely SignCL, to address the
representation density problem. Our experiments demonstrate that SignCL can significantly
enhance various well-known SLT frameworks. Specifically, SignCL yields a 39% BLEU score
improvement for the Sign Language Transformer [4] and a 46% BLEU increase for GFSLT-
VLP [53] on the CSL-Daily dataset.

2 Related Works

2.1 Sign Language Translation
Sign Language Translation (SLT) methods can be broadly categorized into gloss-based and gloss-free
approaches. For gloss-based methods, an essential factor is to directly or indirectly employ sign gloss
annotations to improve sign video encoder performance [3, 48, 53, 8, 49, 6]. These methods often
employ Connectionist Temporal Classification [16] (CTC) loss to perform sign language recognition
[4]. Joint-SLT [4] firstly introduces a multitask encoder-decoder framework with a CTCloss to soft-
match sign representations and gloss sequences. STMC-T [54] introducing intra-cue and inter-cue
CTC loss to model multi-cue sequence information. Despite their effectiveness, creating SLT datasets
with gloss annotations is resource-intensive and time-consuming. Gloss-free methods have emerged
as a promising alternative, as they do not rely on gloss annotations during training, making them
more generalizable. And recently, a growing body of literature has promoted the gloss-free SLT,
such as GASLT [47] proposed local gloss attention to mimic gloss assistant, GFSLT [52] adapted
CLIP to do visual-language pretraining, and Sign2GPT [42] promoted performance by making use
of large-scale pre-trained vision and language models. Nonetheless, the performance of gloss-free
methods still significantly lags behind that of gloss-based approaches.

2.2 Contrastive Learning
Contrastive Learning [21, 55, 30], a popular unsupervised learning algorithm, aims to learn effective
representations by pulling positive pairs closer together and pushing negative pairs farther apart. This
approach has been widely utilized in both Natural Language Processing and Computer Vision [13].
In Sign Language Translation (SLT), Jin and Zhao [22] utilize Contrastive Learning to create a
Signer-Independent SLT model, using videos demonstrating signs from different signers as positive
samples. Additionally, Gan et al. [15] proposes a visual-level contrastive learning method with
various image augmentation strategies. ConSLT [14] do contrastive learning for effective token
representation learning in text decoder. Zhou et al. [52] and Cheng et al. [9] employ contrastive
learning techniques to align video and text representations in SLT. In this paper, we are the first one
to address the representation density problem, focusing particularly on visual gesture duration as a
central aspect.

2.3 Representation Density
Representation Density is often a focal point in classification tasks, also known as category den-
sity [1, 43, 37, 31, 32, 51, 29, 12]. This concept pertains to the compactness and clarity of feature
representations across different categories. In the context of sign language, various methods have
been developed to address the subtle nuances of sign actions. TSPNet [28] proposes a temporal
hierarchical attention network to learn segmented representations. HST-GNN [24] utilizes a hierarchi-
cal spatio-temporal graph neural network to learn graph representations from multiple perspectives.
GLE-Net [20] employs global contextual relationships and fine-grained cues to distinguish non-
manual-aware features in isolated Sign Language Recognition. These methods are beneficial for
addressing the subtleties of sign language movements. However, integrating them into existing
state-of-the-art frameworks presents significant challenges, often resulting in performance disparities
when compared to the SOTA. This paper is the first to propose the concept of representation density
within this field and introduces SignCL, which enhances the current mainstream transformer-based
frameworks.

3 Representation Density Problem

This section investigates and identifies the representation density problem within existing sign
feature extraction techniques, and examines whether representation density bottlenecks sign language
recognition and translation performance.
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3.1 Preliminaries

Existing Sign Feature Extraction Techniques Existing sign feature extraction methods can be
divided into two categories: 1) gloss-based (e.g., Sign Recognition Pretrained [3] and Self-Mutual
Knowledge Distillation [33]) and 2) gloss-free (e.g., I3D Pretraining [47] and Visual-Language
Pretraining [52]). These methods were chosen for their representativeness in SLT and their well-
documented open-source sign features.

• Sign Recognition Pretrained (SRP) [3]: This approach leverages the sign language recognition
datasets to train sign language recognition models and uses it as the feature extractor for the
SLT task. Notably, the features released by Camgoz et al. [3] have been widely adopted as input
features in a range of works [5, 53, 22, 44, 46, 7].

• Self-Mutual Knowledge Distillation (SMKD) [18]: This approach enhances SRP by enforcing
the visual and contextual modules to focus on short-term and long-term information [18].
SMKD feature extraction has been shown to substantially enhance SLT translation performance
compared to SRP [50, 46].

• I3D Pretraining (I3D) [47]: This method employs I3D models as the backbone to pre-train the
feature extractor, initially trained on the Kinetics dataset [25] and subsequently fine-tuned on
extensive web SLR datasets, such as WSLR [27].

• Visual-Language Pretraining (VLP) [52]: This method entirely forgoes gloss annotations and
leverages a general visual-language pretraining strategy to align sign video representation with
text. Embodied by GFSLT-VLP [52], this approach offers a more general solution that utilizes a
broader range of sign language resources without the constraints of gloss annotations.

Representation Density Metrics Drawing inspiration from Fisher’s Discriminant Ratio (FDR) [23,
19], a typical measure used to evaluate the discriminative power of features in the classification, we
combine the average Inter-Gloss Distance and Intra-Gloss Distance into Sign Density Ratio (SDR,
see Eqn. 1), which reflects the degree of representation density for each gloss Gi. This is given by
the formula:

SDR(Gi) =
Dintra

Gi

avg.Dinter
Gi

=
D(Gi)

Meanj ̸=i (D(Gi, Gj))
. (1)

Here, D(Gi, Gj) represents the Inter-Gloss Distance between two glosses Gi and Gj , and avg.
avg.Dinter

Gi
reflects the average distance of Gi to all other glosses. The Intra-Gloss Distance Dintra

Gi

evaluates the average distance within a single gloss Gi. These distances are given by the following
formulas:

D(Gi, Gj) =
1

|Gi||Gj |
∑

x∈Gi,y∈Gj

d(x, y); (2)

D(Gi) =
1

|Gi|(|Gi| − 1)

∑
x,y∈Gi,x ̸=y

d(x, y); (3)

Where, |Gi| and |Gj | denote the number of instances in glosses Gi and Gj respectively, and d(x, y)
represents the distance measure between the embeddings of instances x and y, i.e., euclidean distance.

The average Sign Density Ratio (SDR) of all glosses, denoted as SDR = Mean(SDR(Gi)), is
calculated to evaluate the overall representation density of the dataset comprehensively.

Sign-Gloss Alignment To calculate the Sign Density Ratio (SDR), we need to determine the
mapping relationship between input frames and gloss categories. Following previous works [26, 46],
we employ the CTC classifier as a sign-gloss forced aligner to establish the mapping between each
gloss and its corresponding sign frames. The aligner provides the start position lv and end position rv
within the video frame sequence for each corresponding gloss gv . To optimize alignment performance
on the test set, we merge the training and test datasets for comprehensive training and engage two
volunteers to select the best frame fv from the range [lv:rv] to align with each gloss gv. Extensive
details on the training procedure and the aligner’s performance metrics are documented in Appendix 9.
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3.2 Demonstrating Representation Density Problem

Experiment Setups We primarily use the PHOENIX-2014T benchmark [3] to investigate the
representation density problem in existing sign feature extraction techniques. This benchmark was
selected due to its rich collection of open-source sign features contributed by various research efforts.
We obtained the sign features by either downloading the officially released versions or reproducing
the feature extraction process. Then, we employed t-SNE [39] to visualize the feature distribution of
these semantically distinct sign gestures to investigate representation density.

(a,b,c) Gloss-free Feature Extraction (d,e) Gloss-based Feature Extraction
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(c) +SignCL(Ours)
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(d) SRP
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(e) SMKD

Figure 2: The t-SNE visualization of sign features across existing extraction techniques. SRP, SMKD,
and I3D are downloaded from their official websites, while VLP is reproduced with official code.
The addition of +SignCL denotes our proposed method that integrates a contrastive learning strategy
into the VLP method (see Section 4). Different colors represent sign gestures with distinct semantics.
Points in gray represent other sign categories not listed. Better viewed by zooming in.

Results and Findings Through empirical analysis of various visualized open-source sign features,
we have identified a widespread representation density problem across different sign feature extraction
methods. As depicted in Figure 2, all evaluated methods display a Sign Density Ratio exceeding 50%,
with inevitable overlap of feature representation. Notably, gloss-free methods that do not utilize gloss
annotations as additional supervision (e.g., I3D and VLP) exhibit even more severe representation
density compared to gloss-based methods. This is evident as sign gestures representing different
semantics, indicated by different colors, significantly overlap, resulting in translation ambiguity
during inference. Specifically, the Sign Density Ratio (SDR) of VLP is 92.59%, which is significantly
higher than the SDR of SMKD at 66.23%.

(a) Impact on SLR
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Figure 3: Comparative analysis of representation density and its impact on sign language recognition
(SLR) and translation (SLT). The left panel (a) shows the correlation between representation density
and SLR accuracy across different sign feature types and sign gesture groups. Binning in this
context is based on sorting by gloss density within a group, where higher bins indicate higher density.
The right panel (b) illustrates the performance drops in SLT caused by the representation density
problem. This figure assesses both the recognition and translation accuracies, reflecting how denser
representations impact these metrics.
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3.3 Demonstrating Performance Drop

This section investigates the impact of representation density on sign language recognition (SLR) and
translation (SLT) systems.

General Setups This part employs the widely utilized Sign Language Transformer [5] (NSLT)
as the foundational model for our evaluations. The choice is because its capability to perform both
SLT and SLR tasks, as well as take SLR and SLT at the same time (joint-SLT). Additionally, the
NSLT framework is well-established within sign language research and benefits from comprehensive
documentation and support in open-source sign feature sets and baseline results. The NSLT relies on
sign features derived using a pretrained sign feature extractor. This section studies all types of sign
features introduced in Section 3.2 to investigate the representation density problem. We use the Sign
Density Ratio (SDR, see Eqn. 1) to measure the representation density within each type of input
feature. We measure SLR and SLT performance by the recognition accuracy and the BLEU-4 [34]
score (B@4), respectively.

Task Setups We set up tasks to examine whether representation density bottlenecks sign language
recognition and translation performance.

• Sign Language Recognition: To evaluate the ability of the extracted sign features to distinguish
between different semantic gestures, we use the NSLT [4] to perform sign language recognition
(SLR) tasks with various types of sign features [3] as model input. Due to the limited number
of samples for each gesture in the dev set, we rank the sign glosses based on their density
using SDR(Gi) under SMKD features (see Eqn. 1). These glosses are then divided into nine
groups (bins), each containing approximately 60 glosses. The average SDR(Gi) and recognition
accuracy for each bin represents the overall density and mean accuracy of the glosses within
that bin, respectively.

• Sign Language Translation: This evaluation aims to demonstrate the impact of representation
density on translation tasks. We evaluate various sign features as inputs to the Sign Language
Transformer, including SRP, SMKD, I3D, VLP, and VLP+SignCL. These inputs are tested
across different translation frameworks, such as NSLT [3], Joint-SLT [4], and NSLT+SignCL.
NSLT means use NSLT to perform SLT without CTC loss (gloss-free) and the NSLT+SignCL
configuration integrates the proposed contrastive learning strategy into the encoder of NSLT [3]
models, as detailed in Section 4.

Results and Findings As depicted in Figure 3, the following observations were made regarding the
impact of representation density on both recognition (SLR) and translation (SLT):

• Performance suffers from representation density. We consistently observed a negative
relationship between representation density and performance across all feature types and tasks.
Higher representation density leads to worse accuracy in SLR and lower BLEU scores in
SLT. Specifically, an increase in the representation density ratio by 26% can result in a 39%
performance drop in NSLT.

• Gloss-free methods suffer from worse representation density. Gloss-free based feature
extractions, which do not use any gloss annotations for assistance (e.g., VLP), typically exhibit
higher representation density scores than gloss-based approach (e.g., SDR(VLP)=92.59% >
SDR(SMKD)=66.23%). Using gloss-free features results in worse recognition and translation
performance compared to gloss-based feature extractions (e.g., VLP vs. SMKD).

• Contrastive learning boosts performance by reducing representation density. When con-
trastive learning is applied to augment gloss-free based feature representation learning, i.e.,
VLP+SignCL for feature extraction or NSLT+SignCL for downstream finetuning, there is a
consistent reduction in feature representation density accompanied by a significant improvement
in both of the SLR accuracy and the SLT performance (see detail can be found in Section 4).

4 Contrastive Learning for Gloss-free Sign Langauge Translation
Contrastive Learning [21], a popular self-supervised learning algorithm, aims to learn effective
representations by pulling positive pairs closer together and pushing negative pairs farther apart. In
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this section, we introduce a simple but efficient sign contrastive learning strategy, namelySignCL,
which addresses the challenge of the representation density problem in gloss-free sign language
translation.

4.1 Sign Contrastive Learning
The key factor in contrastive learning is how to sample positive and negative training pairs. As
illustrated in the framework shown in Figure 4a, the sampling strategy of SignCL is as follows: if
two frames are close enough (e.g., adjacent), they are considered to belong to the same sign gesture
and are treated as positive samples. Conversely, if two frames are far apart by double the margin
(e.g., |fed − fst| > 20 frames), they are considered to be associated with different semantics and
are treated as negative samples. Statistically, the average duration of each gesture in sign video is
nine frames [3, 53], and according to the speech-to-gesture Zipf’s Law [2], each gloss represents
approximately 2.3 spoken words. Therefore, we set the margin as max(10, len(frames)

len(text) × 2.3).

{
positive pair (fst, f+

ed): |f+
ed − fst| ≤ 1

negative pair (fst, f−
ed): |f−

ed − fst| > 2 ∗margin
; (4)

LSignCL =
1

N

N∑
st=1

[
d(fst, f+

ed) + max(0,m− d(fst, f−
ed))

]
; (5)

Where d is the distance function, i.e., Euclidean distance for frame features (fst, fed), and N is the
total number of frames in one sign video, N = len(frames). The margin parameter m is used to
prevent the features of the negative pair from being too far away. We empirically set m = 64 based
on the average Inter-Gloss Distance (see Eqn. 2) of gloss-based sign features (e.g., SMKD[18]).

“Sign	Language” “He”									“Know”

Negative LossPositive Loss

(a) Sign Contrastive Learning

Visual
Encoder

Sig𝑛	𝑉𝑖𝑑𝑒𝑜

⋯

Text
Encoder

Sig𝑛	𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

⋯

𝑉𝐿𝑃	𝐿𝑜𝑠𝑠Contrast	𝐿𝑜𝑠𝑠

(b) SignCL in Pretraining
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Visual
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Sig𝑛	𝑉𝑖𝑑𝑒𝑜

⋯ 𝑆𝐿𝑇	𝐿𝑜𝑠𝑠

Contrast	𝐿𝑜𝑠𝑠 Sig𝑛	𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒

(c) SignCL in Finetuning

Figure 4: Overview of the SignCL in gloss-free sign language translation: (a) Sign contrastive
learning sampling strategy, (b) Showcases the integration of SignCL in the pretraining stage, and (c) )
Displays the application of SignCL during the finetuning stage.

4.2 Integrating Contrastive Learning into Sign Language Translation Tranining

As illustrated in Figures 4b and 4c, SignCL can be integrated into both the sign feature extraction
pretraining stage (e.g., Visual-Language Pretraining [52]) and the downstream task finetuning stage
(e.g., GFSLT-VLP [52]). The optimization objective for these approaches is the weighted sum of
LSignCL and the original objective loss (e.g., VLP Loss for pretraining and SLT loss for finetuning [3,
52]), defined as:

L = λ ∗ LSignCL + LMLE ; (6)

Where LMLE is the original objective loss in the pertaining or finetuning.

5 Experiments
In this Section, we conduct experiments to demonstrate the efficiency of proposed SignCL in reducing
representation density and boosting gloss-free sign language translation performance. Specifically,
we apply SignCL to the Sign Language Transformer [4] to facilitate a direct comparison with prior
empirical analyses of the representation density problem in Section 3.3. Additionally, we integrate
SignCL into the GFSLT-VLP [52] framework, a robust new gloss-free baseline that improves SLT
through pretraining and finetuning.
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5.1 Experiments on Sign Language Transformer

In Section 3, we investigate the representation density problem using the Sign Language Transformer
(SLT) [4] and the PHOENIX-2014T [3] and CSL-Daliy [53] Dataset. These benchmarks are chosen
for their established relevance in sign language translation research, including gloss-based and gloss-
free based. Here, we first conduct experiments on the same framework and dataset to facilitate direct
comparison with the prior empirical analyses.

Experiment Settings: In this experiment, we introduce SignCL as additional supervision information
in the encoder of SLT under gloss-free settings. This enhanced model is referred to as +SignCL.

Results and Findings: The integration of SignCL into the SLT has significantly improved translation
performance across all test conditions by reducing the representation density, as shown in Table 1.
Notably, SignCL encourages SLT to learn a more distinct feature distribution, reducing the Sign
Density Ratio (SDR) significantly, e.g., 66.23 to 62.18 and 92.59 to 81.30.

Figures 3a and 3b show experiments on SLR and SLT tasks using features with varying SDRs
as inputs to SLT. The representation density reduction leads to observable improvements in both
recognition accuracy (red line vs. purple line in Figure 3a) and translation BLEU score (purple point
vs. red point in Figure 3b). Further details and additional experiment results on the CSL-Daily dataset
are provided in Appendix A.4.3.

Table 1 presents a comparative analysis of representation density and performance on the PHOENIX-
2014T dataset. The inclusion of SignCL during VLP feature extraction or SLT training processes
significantly enhances performance metrics. WERs (Word Error Rates) in the gloss-free set, derived
from an independent SLR task, are specifically used to probe the quality of sign features and do
not participate in the SLT training process. This analysis underscores the significant enhancements
brought by SignCL in terms of both efficiency and effectiveness in SLT frameworks.

Feature Type PHOENIX-2014T CSL-Daily
SDR ↓ WER↓ B@4↑ SDR ↓ WER↓ B@4↑

Gloss-based
Joint-SLT [5] / Self-Mutual KD [33] 66.23 25.38 22.79 48.34 29.52 11.61

+ SignCL into Feature Extraction 62.18 24.76 23.23 - - -
+ SignCL into Finetuning 66.23 25.12 22.92 - - -
+ SignCL into both 62.18 24.58 23.46 - - -

Gloss-free
SLT [3] / VLP Pretrained [52] 92.59 69.72 10.73 76.55 85.78 1.82

+ SignCL into Feature Extraction 81.30 63.33 12.04 68.39 80.71 2.15
+ SignCL into Finetuning 92.59 - 12.14 76.55 - 2.19
+ SignCL into both 81.30 - 13.51 68.39 - 2.53

Table 1: Comparative analysis of representation density and performance on the PHOENIX-2014T
dataset. "+SignCL" indicates the inclusion of the proposed contrastive learning strategy during
VLP (Video Language Processing) feature extraction or SLT (Sign Language Translation) training
processes. WERs (Word Error Rates) in the gloss-free set are derived from an independent SLR (Sign
Language Recognition) task, used specifically for probing the quality of sign features. These WERs
do not participate in the SLT training process.

5.2 Experiments on Gloss-free Sign Language Translation

Gloss-free sign language translation, which does not rely on gloss annotations, has become a trend
as it makes the approach more generalizable. In the realm of gloss-free sign language translation,
GFSLT-VLP [52] stands out as a strong new baseline. It incorporates CLIP [36] and MBART [10]
for model pretraining and finetuning. In this set of experiments, we use GFSLT-VLP as the baseline
model and integrate the proposed SignCL into the framework to demonstrate the effectiveness of our
method in both pretraining and finetuning settings.

Experiment Settings: This set of experiments is conducted using the PHOENIX-2014T [3] and
CSL-Daily [53] datasets. We reproduce GFSLT-VLP using the official code and integrate SignCL
into both the pretraining and finetuning stages. All models and training details are consistent with
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Model Density Performance
SDR ↓ R@L↑ B@1 ↑ B@2 ↑ B@3 ↑ B@4 ↑

NSLT [3, 4] - 30.07 29.86 17.52 11.96 9.00
GASLT [47] - 39.86 39.07 26.74 21.86 15.74
GFSLT [52] - 40.93 41.39 31.00 24.20 19.66
GFSLT-VLP [52] - 42.49 43.71 33.18 26.11 21.44
Sign2GPT(w/PGP) [42] - 48.90 49.54 35.96 28.83 22.52

GFSLT-VLP [52] 68.53 42.97 42.13 32.04 25.62 21.25
+ SignCL into Pretraining 62.68 49.25 49.99 36.73 29.76 22.69
+ SignCL into Finetuning 62.73 48.17 48.56 35.04 27.73 22.16
+ SignCL into Two State 62.32 49.04 49.76 36.85 29.97 22.74

Improvement -6.21 +6.07 +7.63 +4.81 +4.35 +1.49

Table 2: Improvement in the GFSLT-VLP framework by reducing representation density on
PHOENIX-2014T test set. "+SignCL into Pretraining" indicates applying the proposed contrastive
learning strategy during the pretraining stage, while "+SignCL into Finetuning" indicates the inclu-
sion of the SignCL during the finetuning stage. "+SignCL into Two State" means plus SignCL both
in pertaining and finetuning states.

Model Density Performance
SDR ↓ R@L↑ B@1 ↑ B@2 ↑ B@3 ↑ B@4 ↑

GASLT [47] - 20.35 19.90 9.94 5.98 4.07
NSLT [3, 4] - 34.54 34.16 19.57 7.56 7.56
GFSLT [52] - 35.16 37.69 23.28 14.93 9.88
GFSLT-VLP [52] - 36.44 39.37 24.93 16.26 11.00
Sign2GPT(w/PGP) [42] - 42.36 41.75 28.73 20.60 15.40

GFSLT-VLP [52] 58.20 39.08 36.37 23.32 15.45 11.10
+ SignCL into Pretraining 55.24 47.38 46.20 32.33 22.35 15.85
+ SignCL into Finetuning 55.03 48.26 46.53 32.41 22.42 15.98
+ SignCL into Two States 54.61 48.92 47.47 32.53 22.62 16.16

Improvement -3.59 +9.84 +11.10 +9.21 +7.17 +5.06

Table 3: Enhancing GFSLT-VLP by reducing representation density on CSL-Daily test set.

those used in GFSLT-VLP [52], with the sole exception being the incorporation of SignCL, weighted
by λ = 0.01, as illustrated in Figure 2 and Equation 6. Further details are provided in Appendix A.1.

Results and Findings: Tables 2 and 3 compare our proposed methods with existing gloss-free
sign language translation approaches. The results demonstrate that integrating the proposed SignCL
strategy into the GFSLT-VLP framework consistently reduces representation density and significantly
boosts translation performance, whether SignCL is applied during pretraining, finetuning, or both
stages. Specifically, compared to the baseline model GFSLT-VLP [52], our approach achieves a
substantial improvement of 45.58% (+5.06) in the BLEU-4 score on the CSL-Daily dataset, without
any increase in the number of parameters. Additionally, despite having significantly fewer parameters
(∼600M vs. ∼1.7B), our approach achieves better performance than Sign2GPT [42], which leverages
large-scale pretrained vision and language models for sign language translation.

5.3 Qualitative Analysis

To understand our SignCL approach in scenarios of addressing representation density, we present a
case from the CSL-Daily dataset in Figure 5. As shown, the way to display sign gestures for “电脑”
(laptop) and “钢琴” (piano) differ subtly. As indicated by the t-SNE results, the representations of
these two semantically different gestures are closely packed together in the feature space, causing the
baseline GFSLT-VLP model to incorrectly translate “钢琴” (piano) as “电脑” (laptop). In contrast,
our proposed SignCL effectively separates the representations of “电脑” (laptop) and “钢琴” (piano)
in the feature space, enabling the accurate translation of “钢琴” (piano).
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LAPTOP PIANO
GFSLT-VLP +SignCL

PIANO LAPTOP

Reference 妈妈给我买 钢琴 。 (Mom bought me a piano .)

GFSLT-VLP 妈妈给我买 笔记本电脑 。(Mom bought me a laptop .)

GFSLT-VLP + SignCL 妈妈给我买 钢琴 。 (Mom bought me a piano .)

Figure 5: Qualitative comparison of translation results on CSL-Daily test set. The red background
denotes model misinterpretations about the sign gestures, while green one means accurate recognition.
Content in ( ... ) is English translation for non-Chinese readers.

6 Conclusion

In this work, we identify a crucial representation density problem in gloss-free sign language trans-
lation. Our systematic investigation reveals that this problem persists across various existing sign
feature extraction methods and causes sharp performance drops in both sign language recognition
and translation, particularly in gloss-free methods. To address this problem, we propose a simple but
effective contrastive learning strategy, termed SignCL. Our experiments demonstrate that SignCL
encourages gloss-free models to learn more discriminative features and significantly reduces repre-
sentation density. Furthermore, our experiments show that SignCL improves translation performance
across various frameworks and datasets by a significant margin, achieving a new state-of-the-art in
gloss-free sign language translation. We illustrate the effectiveness of SignCL through detailed exam-
ples in our qualitative analysis. Finally, we provide several ablation studies for a better understanding
of SignCL and discuss the limitations and potential societal impacts of this work in the Appendix A.

7 Limitations

Our work, while promising, has several limitations that should be considered:

Boundary Cases: We assume that adjacent frames output the same sign gestures, while distant
frames belong to different sign gestures. This assumption might not hold in special sign language
videos with extensive repetitive gestures. In extreme cases, SignCL might affect feature convergence.

Semantic Similarity: SignCL does not account for the semantic similarity between sign gestures,
which can result in increased feature distances between semantically similar gestures. This could
potentially affect the learning of linguistic features.

Despite acknowledging these limitations, our experiments demonstrate that our approach works
effectively in most cases. We will address these issues in future work to further enhance the
robustness and applicability of our method.
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A Appendix

A.1 Hyper-parameters of Baselines

Sign Language Transformers Baseline: Table 4 presents the hyper-parameters of Sign Language
Transformers used in this work.

Parameter PHOENIX-2014T CSL-Daily

encoder-layers 3 1
decoder-layers 3 1
attention heads 8 8
ctc-layers 1 1
hidden size 512 512
activation function gelu gelu
learning rate 1 · 10−3 1 · 10−3

Adam β (0.9, 0.98) (0.9, 0.98)
label-smoothing 0.1 0.1
max output length 30 50
dropout 0.3 0.3
batch-size 128 128

Table 4: Hyperparameters of Sign Language Transformer models.

Gloss-Free Sign Language Translation Baseline: The Gloss-Free Sign Language Translation
(GFSLT) model incorporates various modules designed for processing sign language input without
the use of glosses. Below is the detailed architecture used in this work:

Module Stride Kernel Output Size
Sign Input - - B × T × 224× 224× 3
Resnet w/o fc - - B × T × 512
Conv1D-BN1D-RELU 1 5 B × T × 1024
MaxPooling1D 2 2 B × T

2 × 1024
Conv1D-BN1D-RELU 1 5 B × T

2 × 1024
MaxPooling1D 2 2 B × T

4 × 1024
Linear-BN1D-RELU - - B × T

4 × 1024
Transformer Encoder - - B × T

4 × U

Text Input - - B × U
Word Embedding - - B × U × 1024
Transformer Decoder - - B × U × 1024
FC - - B × U × C

Table 5: Detailed Gloss-Free SLT (GFSLT) Framework. B represents batch size, T denotes the
length of the longest input sign video in the batch, and U is the length of the longest input text in the
batch. It is copied from GFSLT-VLP [52].

A.2 Parameter Sensitivity Analysis of the SignCL

A.2.1 Sensitivity Analysis on Dynamically Estimated Margin

The margin for negative sampling dynamically depends on the estimated average margin of each gloss,
calculated as len(frames)/len(text) × speech-to-gesture Zipf’s factor, with a minimum threshold set
at 10. The Zipf’s factor, set at 2.3, refers to the speech-to-gesture application of Zipf’s Law.

We calculated the distribution of the dynamically estimated margin, with the results displayed in the
table below. A more detailed distribution can be seen in Figure 6.
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Figure 6: The distribution of the estimated margin during training on the PHOENIX-2014T dataset.
The green distribution represents our current paper’s method (factor = 2.3), while the orange distribu-
tion shows the ground truth calculated based on gloss annotations.

Experiment Setup: To conduct a principled analysis, we evaluated the threshold values at
[0, 10, 20, 30, 40, 50]. Here, a threshold of 0 indicates that the margin is dominated by the dynamically
estimated margin, while a threshold of 50 suggests dominance by the fixed threshold.

Experiment Results: We uniformly trained for 80 epochs on the PHOENIX-2014T dataset due to
resource limitations. The results, as shown in the table below, indicate that SignCL is not sensitive to
the threshold parameter, with a variance of 0.062.

Threshold 0 10 20 30 40 50
B@4 17.24 17.63 17.55 17.63 17.13 17.11

Table 6: Threshold sensitivity analysis results.

Zipf’s factor 1 GT 2.3 3 4
B@4 17.45 17.89 17.63 17.29 16.26

Table 7: Sensitivity to Zipf’s factor.

A.2.2 Sensitivity Analysis on integrating SignCL into the SLT framework.

As shown in Eqn. 6, we vary the hyperparameter λ over the range [10−3, 10−2, 10−1, 100, 101] and
conduct repeated experiments on the PHOENIX-2014T dataset with GFSLT-VLP.

As shown in Figure 7, excessively incorporating SignCL into the model can negatively impact the
SLT task. Empirically, we find that λ = 10−2 achieves a balance between reducing representation
density and improving translation performance.

A.3 Ablation Studies

We conduct ablation studies to investigate the impact of different loss components in the +SignCL
approach during both the pretraining and fine-tuning stages. It is copied from Tabel 2 , but with an
ablation perspective.

A.4 Correlation between Representation Density and Recognition Performance

A.4.1 The efficiency of sign-gloss mapping building up

To calculate SDR, we need to establish the mapping relationship between input frames and gloss
categories. This section presents the performance of our trained gloss-sign aligner. The experimental
methodology follows the approach outlined in XmDA [46].
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Figure 7: The effect of the hyperparameter λ on BLEU scores. the grey dashed line indicates the
baseline performance of GFSLT-VLP, while the red solid line represents the performance with SignCL
integrated.

Pretraining Stage Finetuning Stage Density Performance
VLP Loss SignCL Loss SLT Loss SignCL Loss SDR ↓ R@L↑ B@4↑

✗ ✗ ✓ ✗ 72.83 38.67 18.53
✗ ✓ ✓ ✗ 63.23 39.12 18.71
✓ ✗ ✓ ✗ 68.53 42.97 21.25
✓ ✓ ✓ ✗ 62.68 49.25 22.69

✗ ✗ ✓ ✓ 69.54 41.78 19.81
✗ ✓ ✓ ✓ 63.67 44.52 20.03
✓ ✗ ✓ ✓ 62.73 48.17 22.16
✓ ✓ ✓ ✓ 62.32 49.23 22.74

Table 8: Ablation study on the impact of different loss components in the +SignCL approach.

A.4.2 Correlation Coefficient

We analyze the relationship between the representation density of individual glosses and their recog-
nition accuracy using the Sign Language Transformer on the PHOENIX-2014T dataset, leveraging
the Self-Mutual Knowledge Distillation (SMKD) method for feature extraction. We compute the
following correlation coefficients:

Pearson Correlation Coefficient [11]: This measures the linear relationship between recognition
accuracy Acc(Gi) for gloss Gi and the density metric SDR(Gi), calculated as:

r =

∑
(Acc(Gi)− Ācc)(SDR(Gi)− ¯SDR)√∑

(Acc(Gi)− Ācc)2
∑

(SDR(Gi)− ¯SDR)2
(7)

Spearman’s Rank Correlation Coefficient [38]: This assesses the monotonic relationship between
two datasets by considering the rank order of values.

Dataset WER↓
Train Test Dev

PHOENIX-2014T 8.68 8.03 25.28
CSL-Daily 9.23 8.39 29.32

Table 9: Evaluation of the gloss-sign aligner effectiveness and generalizability with WER (%) (the
lower the better).
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As shown in Table 10, both correlation coefficients indicate a medium negative correlation between
the Sign Density Ratio (SDR) and sign recognition performance (Acc). This suggests that higher
representation density correlates with poorer recognition performance. Specifically, Inter-Gloss
Distance (Dinter

Gi
) shows a strong positive correlation, meaning that greater distances between

different glosses correlate with better recognition performance. All Spearman P-values are lower than
0.01, confirming the high confidence in the non-randomness of these correlations.

Correlation / Acc PHOENIX-2014T CSL-Daily
Dinter

Gi
↑ Dintra

Gi
↓ SDR ↓ Dinter

Gi
↑ Dintra

Gi
↓ SDR ↓

Pearson r 0.36 -0.22 -0.35 0.30 -0.14 -0.20
Spearman ρ 0.43 -0.24 -0.34 0.45 -0.16 -0.22
P-value 2.6E-17 5.5E-6 4.7E-11 6.6E-19 3.0E-3 -2.7E-5

Table 10: Correlation analysis between sign recognition performance and density metrics.

A.4.3 More Experiment Results on Sign Language Transformer

In this section, we present additional experimental results using the Sign Language Transformer
(NSLT) on the CSL-Daily dataset to further validate the effectiveness of the proposed SignCL strategy.
We compare various feature extraction methods to assess their representation density and translation
performance.

Feature Type Density Performance
SDR ↓ SLR(WER ↓) Joint-SLT NSLT +SignCL(ours)

Gloss-based Feature Extraction
Sign Recognition [5] 74.07 29.59 21.32 17.68 19.02
Self-Mutual KD [33] 66.23 25.38 22.79 19.35 20.23

Gloss-free Feature Extraction
I3D Pretrained [47] 83.33 61.74 14.17 11.70 12.81
VLP Pretrained [52] 92.59 69.72 12.73 10.73 12.14
+ SignCL (ours) 81.30 63.33 14.76 12.04 13.51

Table 11: Comparative analysis of representation density and performance on the PHOENIX-2014T
dataset. "+SignCL (ours)" indicates the inclusion of the proposed contrastive learning strategy during
VLP feature extraction or NSLT training processing.

Feature Type Density Performance
SDR ↓ SLR(WER ↓) Joint-SLT NSLT +SignCL(ours)

Gloss-based Feature Extraction
Self-Mutual KD [33] 48.34 29.52 11.61 8.97 10.35

Gloss-free Feature Extraction
VLP Pretrained [52] 76.55 85.78 2.93 1.82 2.19
+ SignCL (ours) 68.39 80.71 3.18 2.29 2.53

Table 12: Comparative analysis of representation density and performance on the CSL-Daily dataset.
The Self-Mutual KD features are provided by XmDA [46] and the VLP feature is reproduced with
official code. Due to the incomplete open source of the CSL-Daily dataset, we were unable to obtain
features for Sign Recognition and I3D Pretraining.

A.5 Broader Impacts

This paper focuses on research in sign language translation, which has the potential to significantly
benefit individuals who are deaf or hard of hearing. By improving the accuracy and efficiency of
sign language translation, our work can facilitate better communication between individuals with
hearing impairments and the broader community. This can help break down communication barriers,
promoting inclusivity and equal opportunities in various social, educational, and professional settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the main contributions and
scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Appendix, we discuss the limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the information needed to reproduce the main experimental
results in the Methodology, Experiment, and Appendix sections. We will release the code
upon acceptance of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We commit to releasing the code and models upon acceptance of the paper.
All the data and baselines are based on open-source benchmarks.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the training and test details necessary to understand the results
in the Methodology, Experiment, and Appendix sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because performing multiple runs for each experi-
ment would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments are conducted using PyTorch on 8*NVIDIA A800 GPUs for
about 12 hours.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[Yes]
Justification: We adhere to the NeurIPS Code of Ethics, since the paper does not include
any content or practices that violate ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impacts of the paper in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators or original owners of all used assets,
and properly respects the license and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects,
thus there are no study participants, no risks to disclose to subjects, and no need for
Institutional Review Board (IRB) approvals.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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