
Published in Transactions on Machine Learning Research (03/2024)

PID Control-Based Self-Healing to Improve the Robustness
of Large Language Models

Zhuotong Chen ztchen@ucsb.edu
Department of Electrical and Computer Engineering, University of California, Santa Barbara

Zihu Wang zihu_wang@ucsb.edu
Department of Electrical and Computer Engineering, University of California, Santa Barbara

Yifan Yang yifanyang@ucsb.edu
Department of Computer Sciences, University of California, Santa Barbara

Qianxiao Li qianxiao@nus.edu.sg
Department of Mathematics, National University of Singapore, Singapore
Institute of High Performance Computing, A*STAR, Singapore

Zheng Zhang zhengzhang@ece.ucsb.edu
Department of Electrical and Computer Engineering, University of California, Santa Barbara

Reviewed on OpenReview: https: // openreview. net/ forum? id= Fu4mwB0XIU

Abstract

Despite the effectiveness of deep neural networks in numerous natural language processing
applications, recent findings have exposed the vulnerability of these language models
when minor perturbations are introduced. While appearing semantically indistinguishable
to humans, these perturbations can significantly reduce the performance of well-trained
language models, raising concerns about the reliability of deploying them in safe-critical
situations. In this work, we construct a computationally efficient self-healing process to
correct undesired model behavior during online inference when perturbations are applied
to input data. This is formulated as a trajectory optimization problem in which the
internal states of the neural network layers are automatically corrected using a PID
(Proportional-Integral-Derivative) control mechanism. The P controller targets immediate
state adjustments, while the I and D controllers consider past states and future dynamical
trends, respectively. We leverage the geometrical properties of the training data to design
effective linear PID controllers. This approach reduces the computational cost to that
of using just the P controller, instead of the full PID control. Further, we introduce an
analytical method for approximating the optimal control solutions, enhancing the real-time
inference capabilities of this controlled system. Moreover, we conduct a theoretical error
analysis of the analytic solution in a simplified setting. The proposed PID control-based
self-healing is a low-cost framework that improves the robustness of pre-trained large
language models, whether standard or robustly trained, against a wide range of perturba-
tions. A detailed implementation can be found in:https://github.com/zhuotongchen/
PID-Control-Based-Self-Healing-to-Improve-the-Robustness-of-Large-Language-Models.

1 Introduction

The growth of data and advancements in computing power have heralded a new era in the field of natural
language processing (NLP), significantly shaped by the advent of deep neural networks. One of the most
influential innovations in this domain is the transformer architecture (Vaswani et al., 2017), which is the

1

https://openreview.net/forum?id=Fu4mwB0XIU
https://github.com/zhuotongchen/PID-Control-Based-Self-Healing-to-Improve-the-Robustness-of-Large-Language-Models
https://github.com/zhuotongchen/PID-Control-Based-Self-Healing-to-Improve-the-Robustness-of-Large-Language-Models

Published in Transactions on Machine Learning Research (03/2024)

fundamental block of many successful large language models (LLMs) (Brown et al., 2020). This architecture
has become the state-of-the-art in various NLP tasks, including sentiment analysis (Vinodhini & Chan-
drasekaran, 2012), text summarization (Nenkova & McKeown, 2012), and speech recognition (Hannun et al.,
2014), among others.

However, many deep neural networks are vulnerable to malicious perturbations (Morris et al., 2020). While
appearing semantically indistinguishable to humans, these perturbations can significantly degrade the per-
formance of pre-trained LLMs. This vulnerability raises concerns about the reliability of deploying them in
safety-critical situations, such as in clinical decision support systems, where LLMs serve a critical role in
assisting healthcare professionals with patient care insights (Huang et al., 2019). In response to this chal-
lenge, there has been significant progress in developing algorithms to enhance model robustness against such
perturbations (Yoo & Qi, 2021; Zhu et al., 2019; Wicker et al., 2021). Predominantly, these methods are
rooted in the foundation of adversarial training (Madry et al., 2018), a method where pre-trained LLMs are
fine-tuned (or trained from random initialization) to overcome the effects of specific adversarial perturba-
tions. This is achieved by adjusting either the entire set of model parameters or a significant portion thereof
(Hu et al., 2021). Despite its effectiveness, this approach raises three critical concerns. Firstly, adjusting
model parameters using adversarial examples requires substantial computational resources (Zhang et al.,
2019). Due to the discrete input space of NLP tasks, searching for an adversarial example generally involves
solving a combinatorial optimization problem (Bernhard & Vygen, 2008), which suffers from an exponential
growth in the number of feasible solutions as the size of the problem increases. Secondly, there exists a po-
tential trade-off where improved adversarial robustness may lead to compromised performance on standard,
natural datasets (He et al., 2021). Thirdly, and more problematically, adversarial training is less effective
against unforeseen adversarial perturbations (Tramer & Boneh, 2019). This limitation becomes particularly
noticeable when deploying LLMs in practice, where anticipating the potential adversarial attacks in advance
is nearly impossible.

In this paper, we investigate the concept of a self-healing process as a cost-effective method to improve
the robustness of pre-trained LLMs against a range of perturbations. The most well-known self-healing
mechanism is probably the human immune system: B cells and T cells can work together to identify and kill
many external attackers (e.g., bacteria) to maintain the health of the human body (Rajapakse & Groudine,
2011). In the context of machine learning, self-healing refers to the ability of a model to automatically
identify and correct issues that may arise during its operation (Wang et al., 2021; Chen et al., 2022).
To achieve this, we consider a pre-trained LLM (typically a composition of transformation blocks) as a
discretization of the continuous dynamical system (E, 2017), this allows us to formulate the robustness issue
of LLMs as a trajectory optimization problem (Hehn & D’Andrea, 2015). Our approach involves designing
PID (Proportional-Integral-Derivative) controllers at hidden layers of a pre-trained LLM. A PID controller
continuously calculates an error value as the difference between a desired reference and a measured process
variable and applies a correction control signal based on proportional, integral, and derivative terms. More
specifically, let the error value be the difference between a desired reference and the current state. If the error
is large, the output of the P controller will be proportionately large, thereby making a significant adjustment
and helping the controller respond quickly to errors. The I controller determines the present control output
based on the integration of past errors, which ensures that even small errors are corrected over time. The
D controller generates control signals based on the derivative of the error dynamics. The combination of P,
I, and D controllers quantifies undesired model behavior from present errors, past accumulated errors, and
future error trends, and generates control signals to correct the errors. Figure 1 illustrates the proposed PID
control-based self-healing framework. Given a T -layer LLM, time-dependent PID controllers (represented as
Pt, It, and Dt) generate a feedback control based on the state xt (to simplify the demonstration, only xt is
considered as the input for both I and D controllers). These feedback controls aim to remove the undesirable
effects caused by input perturbations.

The methodology of constructing a self-healing process to improve the robustness of deep neural networks
was initially introduced in Chen et al. (2020) and its subsequent work Chen et al. (2022). It leveraged
a closed-loop control method to detect and correct potential errors applied to input data. This method
belongs to a special case of P control in the proposed PID control framework, in which only the errors
from the present states are corrected. However, the effectiveness of using only proportional controllers is

2

Published in Transactions on Machine Learning Research (03/2024)

Figure 1: The structures of feed-forward deep neural network (highlighted in blue) and the proposed PID
control method (highlighted in red).

limited, as it merely addresses the error at each time step, neglecting the overall error dynamics (we provide
numerical evidence to show this in Section 3.4). Additionally, a major limitation of the closed-loop control
method adapted in Chen et al. (2020; 2022) is its computational inefficiency. The optimal control solution
requires simulating the Hamiltonian dynamics over several iterations during online inference (Pontryagin,
1987), which involves both forward and backward propagation of a deep neural network (Chen et al., 2020)
(we discuss the details about simulating the Hamiltonian dynamics in Section 2.1). This inefficiency renders
the self-healing framework impractical for deployment in large-scale LLMs, which may contain millions or
even billions of parameters (Kenton & Toutanova, 2019; Liu et al., 2019; Brown et al., 2020). To address the
challenges associated with the previously mentioned adversarial training and existing closed-control method,
this study presents three contributions:

• We introduce a novel PID control framework to realize the self-healing capability to improve the
robustness of LLMs during online inference. The proposed framework generalizes the conventional
robustness improvement methods that predominantly focus on proportional errors. We demonstrate
that employing all P, I, and D controllers can be as computationally efficient as single control
schemes, achieved through special controller design.

• We approximate the layer-wise transformations in the pre-trained LLM as linear orthogonal trans-
formations and derive an analytical solution for generating PID control solutions. This analytical
method yields a closed-form expression for the optimal solution, enhancing the speed of online in-
ference. This acceleration is especially beneficial when integrating the self-healing framework into
LLMs. While these approximations might not align with practical scenarios, our method exhibits
superior robustness improvement in a variety of numerical experiments.

• We derive a comprehensive error analysis of the controlled system, highlighting the robustness im-
provement of LLMs through PID control solutions. This analysis provides insight into the effective-
ness of PID control in improving the robustness of LLMs in simplified settings, thereby contributing
to the understanding of controlled systems.

1.1 Background on PID Control

Here we provide background knowledge on PID control, which is an essential building block of our proposed
framework. A PID (Proportional, Integral, Derivative) controller is a feedback-based control system exten-
sively utilized in industrial settings and numerous other domains where continuous adjustment is essential.
Specifically, given a continuous dynamic system, typically described as an ordinary differential equation,

ẋt = Ψ(xt, ut), x0 ∈ Rd,

where ẋt represents the derivative with respect to time, while Ψ : Rd ×Rm → Rd defines a function or vector
field. The term x0 specifies the initial state. Moreover, ut ∈ Rm denotes the control input exerted on the
dynamic system (e.g. in this work, the control input is applied linearly to the state xt). The PID control

3

Published in Transactions on Machine Learning Research (03/2024)

continuously computes an error term, et, by calculating the difference between a target reference rt and the
actual state variable xt,

et = ∥rt − xt∥.

The construction for the target reference generally depends on the application. In this work, the target
reference is constructed by a sequence of embedding manifolds (see Section 2.1), and the process variable
represents the hidden state of a deep neural network during forward propagation.

Then, a PID controller applies a control ut based on proportional, integral, and derivative terms to correct
the measured error. In the continuous case,

ut = Kpet + Ki

∫ t

0
e(τ)dτ + Kd

det

dt
,

where Kp, Ki, and Kd, all non-negative, denote the coefficients for the proportional, integral, and derivative
terms respectively. In the PID control design,

• The output from proportional control directly correlates with the current value of the error, et.
Thus, a larger error will yield a proportionally larger control output, adjusted by the gain factor Kp.
However, employing only proportional control leads to a persistent difference between the desired
target and the actual process variable, since the generation of the proportional response necessitates
the presence of an error.

• The output from integral control considers the accumulation of past error values over time. This
means that when a residual error remains after proportional control is applied, the integral control
works to correct this residual error by leveraging the historical total error. This will result in the
proportional effect diminishing as the error decreases, but this is compensated for by the growing
integral effect.

• The output from derivative control provides an estimate of the trend of the error, using its current
rate of change as a basis. It effectively seeks to reduce the effect of the error by exerting a control
influence generated by the rate of error change. Hence, the more rapid the error’s progression, the
more intense the applied correction.

Although a PID controller has three control terms, some applications need only one or two terms to provide
appropriate control. This is achieved by setting the unused parameters to zero and is called a PI, PD, P,
or I controller in the absence of the other control actions. PD controllers are fairly common in applications
where integral action would be sensitive to measurement noise, but the derivative term is often needed for
the system to reach its target reference.

2 The PID Control-Based Self-Healing Framework for Large Language Models

In this work, we use the concept of "self-healing" to describe the capability of an LLM to automatically correct
errors that may arise. This idea has been studied in the domain of integrated circuits, primarily addressing
errors attributable to variations in nano-scale fabrication processes. More specifically, the internal dynamics
of an electronic circuit network can be understood through the lens of ordinary differential equations (Ho
et al., 1975). This approach conceptualizes the circuit network in terms of state variables that track nodal
voltages and branch currents as they change over time. Moreover, it’s possible to create a self-healing system
within the circuit network, enabling it to continuously monitor and optimize its performance throughout the
lifetime of operation (Tang et al., 2012; Lee et al., 2012). There is a growing body of research, including
works by (E, 2017; Haber & Ruthotto, 2017; Li et al., 2018b), and others, demonstrating the connection
between dynamical systems and deep neural networks. In our study, we interpret a pre-trained T -layer LLM
as a form of discrete dynamical system,

xt+1 = Ft(xt + πt(xt), θt), ∀t = 0, 1, ..., T − 1, (1)

4

Published in Transactions on Machine Learning Research (03/2024)

where Ft(·, θt) : Rd → Rd represents a transformer block parametrized by θt, πt : Rd → Rd is a feedback
controller that maps the current state xt to a control action. We aim to construct feedback controllers
π := {πt}T −1

t=0 to ensure that the controlled states (xt + πt(xt)) yield the desired output when perturbations
are applied to input data. This can be formulated as a trajectory optimization problem,

min
π

E(x0,y)∼D [J(x0, y, π)] := min
π

E(x0,y)∼D

[
Φ(xT , y) +

T −1∑
t=0

L({xs}t
s=0, πt, ft)

]
, s.t. equation 1 (2)

where initial states and labels (x0, y) are sampled from the underlying data distribution D. The terminal loss
Φ(xT , y) evaluates the discrepancy between the terminal state and a pre-defined destination set. In machine
learning applications, this measures the consistency between the terminal state xT (or its transformation)
with the true label (e.g., cross-entropy loss). However, this is not feasible in general machine learning ap-
plications as the true label y remains unknown during inference. More specifically, during online inference,
given an initial condition x0, its label y cannot be accessed to optimize the states since this quantity is
unknown. Consequently, the terminal loss is negated by setting it to zero. In these cases, the optimal con-
trollers {πt}T −1

t=0 minimize the cumulative running losses L({xs}t
s=0, πt, ft), which assess the state trajectory

and control using certain measurement function ft.

In Section 2.1, we construct the running loss, which forms a crucial part of the objective function defined in
equation 2. This objective function needs to solve a complex optimization problem for each initial state during
online inference, which presents a challenge to computational efficiency. To address this, the subsequent
Section 2.2 presents a more efficient algorithm for solving the objective function under specific assumptions.
Furthermore, Section 2.3 presents a comprehensive theoretical error analysis for the proposed algorithm.
Lastly, Section 2.4 provides additional details on the implementation of constructing PID controls.

2.1 PID Control Design via Embedding Manifolds

In analyzing an LLM through the lens of discrete dynamical systems, we observe that its state trajectory,
governed by the composition of transformations, forms a lower-dimensional structure embedded in the ambi-
ent state space, also known as the “manifold hypothesis" (Fefferman et al., 2016) (empirical evidence is shown
in Table 7). This can be conceptualized as a sequence of embedding manifolds. We consider a r-dimensional
smooth manifold embedded in Rd as {x : f(x) = 0}, where f : Rd → R(d−r) is a surjective mapping that can
be used to measure the distance between a state xt to the embedding manifold. For instance, ∥f(x)∥ = 0 if
x belongs to the embedding manifold, and ∥f(x)∥ > 0 if x is outside the embedding manifold.

At each time step t (e.g., the tth hidden states), we construct three embedding manifolds with three distinct
surjective functions fP

t : Rd → R(d−r), f I
t : Rd → R(d−r), and fD

t : Rd → R(d−r), that represent the
embedding manifolds of the state, the integration of past states, and the derivative of the state, respectively.
In a discrete setting, integration corresponds to the accumulation of past states, while the derivative is
approximated by the difference between two successive states. Under this setting, f I

t denotes the embedded
manifold of past states, and fD

t represents the embedded manifold derived from the difference between two
consecutive states. Given these embedding functions, we propose the following running loss to evaluate the
controlled state at time step t,

L({xs}t
s=0, πt, (fP

t , f I
t , fD

t)) := 1
2∥fP

t (xt + πt(xt))∥2
2+1

2∥f I
t (xt + πt(xt) +

t−1∑
s=0

xs)∥2
2

+ 1
2∥fD

t (xt + πt(xt) − xt−1)∥2
2 + ct

2 ∥πt(xt)∥2
2, (3)

where the layer-dependent regularization term ct prevents using large controls. The running loss consists
of three components, each assessing the error in the controlled state through distinct embedding functions:
proportional, integration, and derivative. In this construction of running loss, the optimal controller results
in a controlled state (xt + πt(xt)) which is expected to closely align with the state embedding manifold,
evaluated by fP

t . Additionally, the controller must ensure that past controlled states remain close to the
embedding manifold of integrated states, as evaluated by f I

t , and the state’s derivative should similarly align
closely with the manifold of the state’s derivative embedding, as quantified by fD

t .

5

Published in Transactions on Machine Learning Research (03/2024)

The objective function defined in equation 2 and the associated running loss detailed in equation 3 can be
solved via the dynamical programming principle (Bellman, 1952). However, this method faces exponential
complexity in terms of the dimension of the state. To overcome this “curse of dimensionality", we can
reinterpret the optimal control problem through Pontryagin’s Maximum Principle and approximate it using
the method of successive approximation (Chen et al., 2020). To begin with, we define the Hamiltonian
H(t, {xs}t

s=0, pt+1, θt, ut) as

H(t, {xs}t
s=0, pt+1, θt, ut) := pT

t+1 · Ft(xt + ut, θt) − L({xs}t
s=0, ut, (fP

t , f I
t , fD

t)),

where ut = πt(xt) is a control solution. Pontryagin’s maximum principle consists of a two-point boundary
value problem,

x∗
t+1 = ∇pH(t, {xs}t

s=0, pt+1, θt, ut), (x0, y) ∼ D, (4)
p∗

t = ∇xH(t, {xs}t
s=0, pt+1, θt, ut), pT = 0, (5)

plus a maximization condition of the Hamiltonian.

H(t, {xs}t
s=0, pt+1, θt, u∗

t) ≥ H(t, {xs}t
s=0, pt+1, θt, ut), ∀ ut and ∀t ∈ T . (6)

To obtain a numerical solution, one can consider iterating through the forward dynamic equation 4 to
obtain all states {xt}T −1

t=0 , the backward dynamic equation 5 to compute the adjoint states {pt}T −1
t=0 , and

maximizing the Hamiltonian defined in equation 6 with current states and adjoint states via gradient ascent.
This iterative process is continued until convergence. Given an initial condition x0, Pontryagin’s Maximum
Principle characterizes the optimal feedback control πt(xt) with an open-loop control ut, this open-loop
control necessitates both forward and backward propagation through a pre-trained deep neural network over
several iterations during online inference.

However, implementing the above Pontryagin’s Maximum Principle is generally infeasible for LLMs. In the
subsequent section, we construct an analytic solution with certain relaxation assumptions.

2.2 An Analytic Solution for Fast Inference

In this section, we develop an analytic solution for solving the objective function defined in equation 2, under
certain assumptions. These assumptions are summarized in the following,

• Assumption 1: Both embedding manifold and layer-wise transformation are simplified as linear
functions. In this case, the layer-wise transformation, denoted as Ft(·), is linearized through a matrix
θt ∈ Rd×d. A smooth embedding manifold is represented by a linear embedding subspace. This
linear embedding subspace is defined by a set of basis vectors, which are captured by the column
space of a matrix V ∈ Rd×r, corresponding to an r-dimensional embedding subspace.

• Assumption 2: Both embedding manifold and layer-wise transformation are orthogonal. In this
case, layer-wise transformations are represented by orthogonal matrices, satisfying θ⊤

t θt = θtθ
⊤
t = I.

Additionally, the basis vectors VP
t , VI

t , and VD
t are considered to be mutually orthogonal,

(VP
t)⊤VI

t = 0, (VP
t)⊤VD

t = 0, (VI
t)⊤VD

t = 0.

Based on these assumptions, the computational costs of the proposed control algorithm are similar to per-
forming forward propagation with the original model. This implies that the PID control approach introduces
negligible computational cost. The negative impact of these assumptions are discussed in Section 3.4.

An analytic solution under Assumption 1. In the special linear case, for the linear embedding sub-
spaces linked to the state, state integration, and state derivative, we define the basis as VP

t , VI
t , and VD

t ,
respectively. Consequently, the embedding manifolds, represented by the surjective functions fP

t , f I
t , and

fD
t , are orthogonal projections QP

t , QI
t , and QD

t , where

QP
t = I − VP

t (VP
t)⊤, QI

t = I − VI
t (VI

t)⊤, QD
t = I − VD

t (VD
t)⊤.

The following proposition solves the objective function defined in equation 2 under linearity assumptions.

6

Published in Transactions on Machine Learning Research (03/2024)

Proposition 1. Consider the following objective function,

min
π

E(x0,y)∼D [J(x0, y, π)] := min
π

E(x0,y)∼D

[
Φ(xT , y) +

T −1∑
t=0

L({xs}t
s=0, πt, (QP

t , QI
t , QD

t))
]

,

s.t. xt+1 = θt(xt + πt(xt)). (7)

the optimal value function, parametrized as V (xt) = x⊤
t Ptxt, satisfies the Riccati equation:

Pt = 1
2Qt + θ⊤

t Pt+1θt − 1
2(Qt + 2θ⊤

t Pt+1θt)⊤(Qt + 2θ⊤
t Pt+1θt + ctI)−1(Qt + 2θ⊤

t Pt+1θt). (8)

The optimal control solution is given by

πt(xt) = −(Qt + c · I + 2θ⊤
t Pt+1θt)−1(Qt + 2θ⊤

t Pt+1θt)xt, (9)

where Qt = QP
t + QI

t + QD
t .

We provide an outline of the proof, with a detailed derivation available in Appendix 8. The optimal value
function V (xt) of the optimal control problem defined in equation 7 satisfies the Bellman optimality equation,

V (xt) = L({xs}t
s=0, πt, (QP

t , QI
t , QD

t)) + V (xt+1), s.t. xt+1 = θt(xt + πt(xt)).

In the linear case, the optimal value function is parametrized by a quadratic function, expressed as V (xt) =
x⊤

t Ptxt. By setting the derivative dV (xt)
dπt(xt) to zero, we arrive at the optimal control solution, as detailed in

equation 9. Furthermore, the Riccati equation in equation 8 emerges from substituting this optimal control
solution into the Bellman optimality equation.
Remark 2. As derived in equation 9, using a combination of P, I, and D controllers incurs the same
computational cost as using a single type of control scheme. This is due to the linearity of the control
process, where the orthogonal projections onto the state embedding, state integration embedding, and state
derivative embeddings can be effectively merged. This results in a projection onto the intersecting subspace
of the three linear embedding subspaces.

Starting with a pre-trained LLM, the layer-wise transformations can be linearized to form a linear dynamical
system. From this, the parameters of the optimal value function Pt are computed using the discrete dynam-
ical system outlined in equation 8. Subsequently, the optimal feedback control solution πt(xt) is constructed
from equation 9. Although this method is feasible, the linearization of a series of transformer layers poses its
own set of complexities. Moving forward, we propose an analytic solution that does not rely on linearizing
the base model, under additional orthogonality assumptions.

An analytic solution under Assumption 2. We further consider the scenario where both embedding
manifold and layer-wise transformation are orthogonal. As a result, the linear combination of orthogonal
projections, represented as Qt = QP

t +QI
t +QD

t , forms an orthogonal projection itself. With these conditions
in place, we can then establish an analytic formulation for the optimal control solution, as detailed in the
following proposition.
Proposition 3. When the layer-wise transformations are represented as orthogonal matrices, and the basis
of state embedding, state integration embedding, and state derivative embeddings are mutually orthogonal,
the optimal feedback control, denoted as πt(xt), can be computed as follows:

πt(xt) = −Vt


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 − c
1+λt+1+c 0

0 0 · · · 0 1 − c
1+λt+1+c

 V⊤
t xt,

where the time-varying parameter λt is governed by a backward difference equation λt = c(1+λt+1)
1+λt+1+c , with the

terminal condition specified as λT = 0.

7

Published in Transactions on Machine Learning Research (03/2024)

A brief overview of the proof is presented here, while a more detailed derivation can be found in Appendix
8. The condition for the embedding subspaces to be orthogonal guarantees that the linear combination
represented by Qt = QP

t + QI
t + QD

t forms an orthogonal projection. Moreover, the orthogonality in layer-
wise transformations simplifies the Riccati equation. This simplification leads to a recursive approach to
formulating control regularization.

When c = 0, it holds that λt = 0 for every t, and the optimal feedback control corresponds to the orthogonal
projection onto the orthogonal complement of the linear subspace. On the other hand, for c > 0, the
approach yields a time-varying regularization in control across different layers. This analytical solution,
which assumes linear orthogonality, is independent of the underlying model. Therefore, the time-variant
control regularization ct can be pre-calculated prior to the inference process.

2.3 Theoretical Error Analysis

Under both assumptions 1 and 2 defined in Section 2.2, the controlled dynamics, under some perturbations,
are formulated as follows:

xt+1 = θt(xt + πt(xt)), x0 = x0 + z,

where z represents an arbitrary perturbation decomposable into two mutually orthogonal components z =
z∥ ⊕ z⊥: z∥, aligning within the data embedding subspace, and z⊥, orthogonal to the data manifold. We
represent the state trajectory in the absence of input perturbation and without any applied control as
xt+1 = θt(xt), the following theorem quantifies the error as ∥xt − xt∥2

2, which evaluates the difference
between the perturbed state after control correction and the original state from unperturbed input data.
Theorem 4. For any time step t ≥ 1, assuming that each θt is an orthogonal matrix, we have the following
error computation:

∥xt − xt∥2
2 =

t−1∏
s=0

α2
s · ∥z⊥∥2

2 + ∥z∥∥2
2,

where αt is a time-varying parameter defined in relation to the control regularization c, and λt are auxiliary
variables, as follows:

αt = c

1 + λt+1 + c
, λT = 0, λT −1 = c

1 + c
, λt = c(1 + λt+1)

1 + c + λt+1
.

The detailed derivation is provided in Appendix 9. This computation rigorously demonstrates that pertur-
bations, specifically those spanning the orthogonal complement denoted by z⊥, exhibit a decay phenomenon
during the process of forward propagation. Furthermore, in scenarios where control parameters are subject
to regularization constraints, when c > 0, our analysis reveals nuanced insights. We establish that the opti-
mal control solution, which is derived by considering the intricate interplay among different transformation
layers, adheres to these constraints while optimizing performance, which captures the complex dynamics
between layers.

Theorem 4 outlines how errors in state computations at any given time step are influenced by input per-
turbations represented by z, despite these perturbations existing within the continuous domain of Rd, this
setting fits real-world adversarial attacks on LLMs, which involve modifying discrete elements, such as tokens
or characters, in the input text. The act of modifying a word or substring through an adversarial attack
leads to a discrepancy between the embedding sequences of the original and modified input tokens, manifest-
ing as the perturbation vector z within the input embedding space. Specifically, the embedding manifolds,
derived from unperturbed training data, capture the structure of this data in a lower-dimensional subspace.
Adversarial examples, meanwhile, are designed to be semantically similar to the original input yet induce a
marked divergence in the embedding space during the model’s forward propagation. Under these circum-
stances, the difference between the embedding sequences of the original input and the adversarial example
can be quantified and adjusted within the PID control framework. We provide empirical error computation
of Theorem 4 in Section 3.4.

8

Published in Transactions on Machine Learning Research (03/2024)

Algorithm 1 Tucker Decomposition.
Input: An I-way tensor X .
Output: Core tensor G, orthogonal basis V1, V2, · · · , VI .
for i = 1 to I do

Xi = Reshape (X , i), // Reshape the tensor along the ith mode.
Ui, Si, Vi = SVD (Xi), // Perform singular value decomposition on the reshaped tensor.
Save the singular vectors Vi as the orthogonal basis.

end for
G = X , // Initialize the tensor core with the I-way tensor X .
for i = 1 to I do

G = G ×i Vi, // Multiply the core tensor by the ith orthogonal basis.
end for

2.4 Additional Details for Constructing PID Control

Here, we provide details on implementing the proposed PID control method. We begin with constructing
the linear embedding basis VP

t , VI
t , and VD

t from training dataset. In NLP tasks, the hidden states are
generally represented as 2-dimensional matrix (sequence of embedding vectors), Xt ∈ Rl×d, where l denotes
the temporal length. Given N pieces of data sampled from the data distribution D (N training data),
we can concatenate the hidden states as a 3-way tensor Xt ∈ RN×l×d, and apply Tucker decomposition
(De Lathauwer et al., 2000b;a; Kolda & Bader, 2009) (known as high-order singular value decomposition) to
generate linear embedding basis along both temporal and state embedding dimensions.

Tucker Decomposition is an extension of the traditional singular value decomposition to higher-order tensors.
Mathematically, Tucker decomposition represents an I-way tensor as X ≈ G ×1 V(1) ×2 V(2) ×3 · · · ×I V(I),
where G is the core tensor, which governs the interaction between different modes, Vi are orthogonal bases
corresponding to the principal components in each tensor mode, ×n is the mode-n tensor product. The
mode-n product of a tensor A ∈ RI1×···×In×···×Id with a matrix U ∈ RJ×In is defined as

B = A ×n U ⇐⇒ bi1...in−1jin+1...id
=

In∑
in=1

ai1...in...id
· ujin

,

where the (i1, i2, · · · , id)-th elements of A and B are denoted as ai1i2···id
and bi1i2···id

, respectively.

An implementation of Tucker decomposition is detailed in Algorithm 1. Along each of the I modes, the
concatenated high-dimensional states X are reshaped along the ith dimension, which is used to compute
the orthogonal basis from singular value decomposition. The core tensor G is computed by multiplying the
states X with each of the I basis along each mode. The low-rank reconstruction of concatenated states X
can be obtained by G ×1 V1 ×2 V2 ×3 · · · ×I VI .

Given a pre-trained LLM (naively trained or robustly trained), we collect the concatenated states from
training data, which results in a set of 3-way tensors {Xt}T −1

t=0 . Then Tucker decomposition is applied at
every Xt (refer Algorithm 1). Extending this to integral and derivative controls is straightforward, as one
can substitute the concatenated states X by either the summation of past states X =

∑t
s=0 Xs or the

subtraction of two consequential states X = Xt −Xt−1. Using the linear embedding bases VP
t , VI

t , and VD
t

obtained from Tucker decomposition, the construction of the feedback controller is achieved by adhering to
the methodology outlined in Proposition 3.

3 Numerical Experiments

In this section, we first discuss experimental setup in Section 3.1. In Sections 3.2 and 3.3, we assess the
performance of the proposed PID control framework against various baseline methods across multiple NLP
tasks. Subsequently, in Section 3.4, an ablation study is conducted, providing exploratory justification for
the proposed approach.

9

Published in Transactions on Machine Learning Research (03/2024)

3.1 Experimental Setup

Evaluation methods: We consider both adversarial attack algorithms (e.g. A2T, PSO, TextBugger,
TextFooler), applied on the SNLI (Bowman et al., 2015), MNLI datasets (Williams et al., 2018) and adver-
sarial datasets (e.g. ANLI) to evaluate the robustness of the proposed PID control and baselines.

• A2T (Attacking to Training (Yoo & Qi, 2021)) utilizes a cost-effective gradient-based technique to
rank the significance of words. This approach encompasses the iterative replacement of each word
with synonyms sourced from counter-fitted word embeddings.

• PSO (Zang et al., 2020) exploits a population of interacting individuals to iteratively search for the
optimal solution in the specific space.

• TextBugger (Li et al., 2019) finds important words by computing the Jacobian matrix of the model
and then chooses an optimal perturbation from the generated perturbations.

• TextFooler (Jin et al., 2020) is the state-of-the-art word-level adversarial attack method to gener-
ate adversarial examples. This technique identifies the important words for the target model and
subsequently prioritizes their replacement with the most semantically similar and grammatically
correct words. This process continues until there is a discernible shift in the model’s prediction.

• Adversarial NLI (ANLI) (Nie et al., 2020) is a large-scale NLI benchmark, This dataset was curated
through an iterative process that incorporates both human and model inputs in an adversarial loop,
targeting specific models for attack. The ANLI dataset is particularly potent as an adversarial tool,
demonstrating a significant capability to diminish the accuracy of pre-trained models.

Baseline methods: This study examines two baseline methods focused on adversarial training. The Naive
adversarial training (AT), as proposed by Yoo & Qi (2021), employs the A2T attack for its adversarial
training process. FreeLB, introduced by Zhu et al. (2019), implements adversarial training in language
models during the fine-tuning stage, aiming to enhance both generalization and robustness. It is noteworthy
that the PID control method, in contrast to these adversarial training-based approaches, offers a distinct
perspective on enhancing model robustness without knowing the attack type in advance. It can be applied
to models that have undergone adversarial training to further improve their robustness.

We fine-tune four baseline models using LoRA (Hu et al., 2021), namely distilbert (Sanh et al., 2019),
BERT-large (Kenton & Toutanova, 2019), RoBERTaBase and RoBERTaLarge (Liu et al., 2019).

PID control implementation details: Using a pre-trained model (e.g., BERT), we select training data
that this model can accurately predict. Next, we simulate forward propagation using the pre-trained model on
this specific set of training data, which generates a collection of 3-dimensional tensors, denoted as {Xt}T −1

t=0 .
Following this, we employ Algorithm 1 on each tensor to determine the basis for a linear embedding subspace
(see Section 2.4). The dimension of this subspace is chosen based on the criterion that it must account for 99%
of the total variance observed (this is done by accumulating the singular values). Finally, the optimal solution
outlined in Proposition 3 is implemented to generate a time-dependent control regularization parameter.

Threat model: In this work, we consider word/token level adversarial attacks that manipulate discrete
tokens or characters in the input text. We verify this from both empirical and theoretical perspectives. In
the numerical experiments, we consider a range of adversarial attacks, including A2T, PSO, TextBugger,
and TextFooler. These adversarial attacks aim to cause misclassification by modifying the tokens of the
input string while maintaining the same semantic meaning.

3.2 Robustness Against Adversarial Examples

Here, we empirically validate the robustness improvement of employing the proposed PID control on pre-
trained LLMs. In Figure 2 (a), a radar plot is presented to illustrate the comparative performance between
the baseline and controlled models, utilizing the DistilBERT architecture and evaluated on the SNLI dataset.

10

Published in Transactions on Machine Learning Research (03/2024)

(a): Distilbert (SNLI) (b): RoBERTa (SNLI) (c): Distilbert (MNLI) (d): RoBERTa (MNLI)

Figure 2: (a) and (b) are radar plots that summarize Distilbert and RoBERTaLarge in Table 8 for SNLI
dataset, respectively. (c) and (d) are radar plots that summarize Distilbert and RoBERTaLarge in Table 9
for MNLI dataset, respectively.

This demonstrates that the employment of PID control significantly improves model robustness against all
four distinct types of perturbations, with a negligible impact on performance with unaltered data (denoted as
None). Shifting to a different model architecture, Figure 2 (b) reveals that applying the proposed PID control
approach to the RoBERTa model yields analogous enhancements in robustness. For more challenging scenar-
ios, Figures 2 (c) and (d) detail the performance of the MNLI dataset. In these plots, both the DistilBERT
and RoBERTa architectures are examined. These figures showcase that, despite the increased complexity of
the MNLI dataset, the PID control method consistently maintains robustness improvements. The increased
complexity of the MNLI dataset poses additional challenges in creating embedding subspaces, making it more
difficult to accurately represent state, state integration, and state derivatives with linear embeddings. The
plots distinctly highlight that the controlled models exhibit increased resistance to a broader spectrum of
linguistic perturbations and complexities, without significant trade-offs in overall accuracy. This underlines
the efficacy of PID control in enhancing model robustness across different architectures and datasets.

More detailed comparisons of performance between baseline and controlled models on the SNLI and MNLI
datasets are provided in Tables 8 and 9 in Appendix 10. When a method’s accuracy surpasses others by more
than 1%, it’s highlighted in red. It is evident that the proposed PID control method significantly enhances
the robustness of both standard and robustly trained LLMs. The enhancement is more pronounced in
standard trained models, which are generally more vulnerable to adversarial attacks. On average, the PID
control method yields an improvement of nearly 10% in standard models and about 5% in robustly trained
models, including both AT and FreeLB training.

In addition, we present the numerical results of OPT-1.3B. OPT-1.3B is a decoder-based large language
model that contains 1.3 billion model parameters. For the proposed PID control, we follow the same P-
D control implementation (proportional-derivative) as done in all numerical experiments from the paper.
Table 1 demonstrates that the controlled OPT-1.3B model consistently improves the robustness performance
against all four types of adversarial attacks. Specifically, on the SNLI dataset, the average improvement is
over 20% compared with the base model. On a more challenging MNLI dataset, with only a 2.5% accuracy
drop on the unperturbed testing dataset. The improvement reaches 21% against the TextBugger attack, and
11% on both A2T and PSO attacks.

Table 1: Measurement on SNLI dataset: baseline model / controlled model

SNLI Dataset
None A2T PSO TextBugger TextFooler

OPT 91.24 / 88.69 49.15 / 63.28 48.00 / 60.06 17.57 / 41.79 16.64 / 44.70
MNLI Dataset

None A2T PSO TextBugger TextFooler
OPT 86.89 / 84.27 54.47 / 65.87 45.14 / 59.08 24.12 / 45.97 21.68 / 49.13

11

Published in Transactions on Machine Learning Research (03/2024)

Table 2: Measurement on ANLI dataset: baseline model / controlled model

r1 r2 r3
RoBERTaLarge (Dev) 72.60 / 72.65 50.99 / 52.33 40.99 / 43.31
RoBERTaLarge (Test) 72.79 / 72.60 48.19 / 49.39 40.66 / 42.41

3.3 Robustness Against Adversarial Dataset

In this study, we assess the effectiveness of the PID control approach in an adversarial Natural Language
Inference (NLI) task. The ANLI dataset is created through an iterative process involving both humans and
models, aimed at improving natural language understanding. Initially, human annotators create examples
that challenge the current best-performing models. These difficult examples, intended to reveal more weak-
nesses, are then incorporated into the training set to enhance the models. This cycle of identifying and
addressing weaknesses is repeated across several rounds, each producing an increasingly complex adversarial
dataset (ANLI consists of three rounds of development and test datasets). Unlike the evaluation using ad-
versarial examples described in Section 3.2, the ANLI dataset is pre-constructed by human annotators. In
contrast, adversarial examples from Section 3.2 are created in relation to the specific characteristics of the
underlying classifier.

The evaluation with the ANLI dataset encompasses both baseline and controlled models, utilizing the de-
velopment and test datasets. The results obtained from the ANLI dataset are outlined in Table 2. ANLI
involves three progressively challenging rounds. The baseline model shows a decline in performance with
increasing difficulty from round 1 to round 3. Conversely, the PID control demonstrates a more pronounced
improvement in performance as the challenge increases. Specifically, the proposed control method leads to
1.0783% in the mean of performance improvement, and a 95% confidence interval of 0.0564% to 2.1004%.

3.4 Ablation Study

This section provides exploratory justifications for the proposed PID control framework.

Justification of the selection of a P-D control scheme. We begin with a comparative analysis of
various control schemes, emphasizing the benefits of implementing multiple controllers over the single use
of Proportional (P) control as previously explored in (Chen et al., 2020). Table 3 showcases a comparison
of the robustness performance across Proportional (P), Proportional-Integral (P-I), Proportional-Derivative
(P-D), and Proportional-Integral-Derivative (P-I-D) control schemes within different model architectures and
training methodologies. It is evident that the P-D control scheme significantly surpasses the others in most
scenarios, underscoring the efficacy of the proposed PID control framework, which expands upon the limited
capability of earlier P control (closed-loop control) methods. The mean of employing the Proportional-
Derivative (P-D) control over the Proportional (P) control is 2.35%, with a 95% confidence interval of
1.677% to 3.0121%. This validates the choice of P-D control.

The reason why P-D outperforms P-I-D is mainly due to noise sensitivity and hyperparameter tuning.

Noise sensitivity: The integral term has the potential to aggregate errors across multiple hidden layers,
incorporating noise inherent in the embedding manifolds, as well as the distributional shift between the
training and testing datasets. In scenarios where substantial noises are presented in each hidden layer,
the integral component, dependent on the embedding manifold of accumulated past states, may lead to
instability during model inference. Conversely, a Proportional-Derivative (PD) controller, lacking the integral
component, tends to exhibit improved performance under such noisy conditions by not accumulating this
noise.

Hyperparameter tuning: In the realm of traditional PID control design, selecting the appropriate control
gains, denoted as Kp, Ki, and Kd, for proportional, integral, and derivative controls respectively, presents
a notable challenge. These gains are crucial for achieving a balance among the different types of controls.
Typically, the calibration of these gains is empirically based, with the aim of optimizing the performance of

12

Published in Transactions on Machine Learning Research (03/2024)

Table 3: Measurement on SNLI dataset: P / P-I / P-D / P-I-D

Distilbert
Standard training Adversarial training FreeLB

A2T 60.11 / 58.24 / 62.31 / 61.30 72.09 / 71.12 / 71.81 / 71.97 59.63 / 57.90 / 62.95 / 61.88
PSO 53.39 / 52.67 / 54.96 / 53.96 55.80 / 54.72 / 57.87 / 56.35 54.40 / 53.91 / 56.86 / 55.89
TextBugger 37.15 / 37.15 / 40.26 / 39.54 38.91 / 38.98 / 41.64 / 40.98 32.79 / 32.24 / 37.80 / 36.21
TextFooler 36.81 / 34.84 / 41.73 / 38.98 40.15 / 38.21 / 43.81 / 41.12 32.49 / 31.22 / 39.64 / 37.39

RoBERTaBase
Standard training Adversarial training FreeLB

A2T 61.78 / 60.81 / 64.11 / 61.94 76.63 / 75.82 / 77.08 / 76.28 65.93 / 65.04 / 68.85 / 66.59
PSO 53.34 / 52.94 / 54.40 / 53.35 55.49 / 54.76 / 56.45 / 54.99 53.64 / 52.99 / 55.24 / 53.55
TextBugger 40.46 / 39.00 / 43.20 / 40.53 41.71 / 40.22 / 43.35 / 41.33 39.72 / 38.24 / 42.75 / 40.17
TextFooler 33.19 / 32.10 / 37.35 / 33.83 34.48 / 32.47 / 39.39 / 35.29 30.75 / 29.77 / 36.81 / 32.21

BERT-large
Standard training Adversarial training FreeLB

A2T 75.75 / 75.68 / 75.54 / 75.60 86.13 / 86.03 / 85.76 / 85.92 78.16 / 78.16 / 78.21 / 78.04
PSO 67.72 / 67.69 / 67.55 / 67.60 70.21 / 70.26 / 70.38 / 70.25 65.49 / 65.46 / 65.56 / 65.46
TextBugger 64.59 / 64.53 / 64.41 / 64.36 69.74 / 69.89 / 69.55 / 69.62 59.28 / 59.35 / 59.29 / 59.27
TextFooler 58.48 / 58.25 / 58.27 / 58.12 65.43 / 65.25 / 65.27 / 65.10 55.34 / 55.27 / 55.26 / 55.14

RoBERTaLarge
Standard training Adversarial training FreeLB

A2T 65.10 / 64.89 / 64.95 / 64.38 81.91 / 81.72 / 81.62 / 81.80 70.38 / 70.40 / 71.30 / 70.51
PSO 55.83 / 55.04 / 56.70 / 55.31 57.99 / 57.29 / 59.71 / 58.18 56.23 / 55.60 / 57.20 / 56.18
TextBugger 44.61 / 42.20 / 42.43 / 41.29 45.00 / 43.54 / 44.74 / 43.53 44.52 / 43.11 / 44.42 / 43.21
TextFooler 36.63 / 35.52 / 37.29 / 35.39 39.64 / 37.06 / 42.44 / 39.87 37.56 / 35.97 / 38.59 / 36.71

PID control. Our method follows a similar strategy, determining the gains through experimentation with
training data. Given that our hyperparameter searching space only contains 0 and 0.5 for each control gain,
this results in the values Kp = 0.5, Kd = 0.5, and KI = 0. A more principled method would entail adjusting
these hyper-parameters through numerical optimization, treating these control gains as adjustable variables.
The development of a more sophisticated strategy for fine-tuning the control gains will be studied for future
exploration.

Discussion on the linearity and orthogonality assumptions. Here we discuss the negative impact of
violating the assumptions made to derive the analytic solution. Through empirical evaluations, we highlight
how the main assumptions have increasingly adverse effects, especially when the embedding manifolds fail
to accurately capture the complex, high-dimensional states. More specifically, applying regularization on
control solutions can mitigate these inaccuracies. However, as the precision of the embedding manifolds
decreases, a greater degree of regularization is required, thereby complicating the optimal control problems.
The increased complexity in the optimal control problem makes the negative impact of violating the main
assumptions more significant.

Our validation approach involves a performance comparison between the proposed analytic solution and the
implementation of Pontryagin’s Maximum Principle, an iterative solver that operates without the need for
additional assumptions. Pontryagin’s Maximum Principle provides the necessary conditions for an optimal
control solution, typically offering a robust approximation of such solutions. We further elaborate this
comparison by creating linear embedding subspaces with varying thresholds for accumulated variances,
specifically aiming to capture 99%, 95%, 90%, and 85% of the variances in the underlying states. As
the variance threshold is lowered, the accuracy of these embedding subspaces decreases, thus posing greater
challenges in solving optimal control problems. The performance comparison, detailed in Table 4, includes
three LLMs across five evaluation tasks. These tasks include a standard scenario with no perturbation

13

Published in Transactions on Machine Learning Research (03/2024)

Table 4: Performance Comparison (Analytic Solution / PMP)

Distilbert
Base 0.99% 0.95% 0.9% 0.85%

None 87.23 85.88 / 86.52 68.92 / 80.21 34.24 / 54.06 34.28 / 46.75
A2T 53.89 61.75 / 60.87 57.93 / 62.88 34.10 / 44.17 34.28 / 42.01
PSO 49.84 54.33 / 52.80 56.21 / 58.22 34.13 / 46.27 34.28 / 42.55
TextBugger 24.73 40.35 / 36.69 43.89 / 42.50 36.24 / 39.02 34.28 / 42.20
TextFooler 24.69 40.28 / 36.13 49.05 / 46.69 34.37 / 39.56 34.28 / 40.80

RoBERTaBase
Base 0.99% 0.95% 0.9% 0.85%

None 90.87 90.10 / 90.59 85.09 / 89.63 64.60 / 85.82 40.02 / 76.71
A2T 58.36 63.82 / 62.19 65.12 / 66.44 51.19 / 66.86 37.56 / 60.41
PSO 51.44 54.36 / 52.98 59.97 / 56.75 52.55 / 59.18 37.91 / 59.07
TextBugger 35.90 43.03 / 40.53 46.74 / 46.41 38.72 / 47.36 34.84 / 42.43
TextFooler 27.03 37.18 / 33.47 47.16 / 42.79 41.40 / 46.60 35.76 / 45.49

RoBERTaLarge
Base 0.99% 0.95% 0.9% 0.85%

None 92.39 91.98 / 92.11 86.50 / 91.68 66.40 / 90.53 44.54 / 86.52
A2T 59.40 64.64 / 63.15 67.17 / 65.03 54.67 / 64.99 41.54 / 61.94
PSO 52.15 56.62 / 54.35 62.14 / 55.51 55.13 / 58.41 41.15 / 58.85
TextBugger 33.72 42.39 / 39.18 47.48 / 41.59 41.30 / 43.77 35.49 / 40.32
TextFooler 26.43 36.92 / 32.27 48.79 / 37.14 47.09 / 41.43 40.47 / 41.97

and four adversarial attacks: A2T, PSO, TextBugger, and TextFooler. The results reveal that while the
performance difference between the analytic solution and Pontryagin’s Maximum Principle is negligible
at higher accuracy levels (e.g., 99% variance), the scenario changes significantly at lower accuracies (e.g.,
90% and 85% variances). In these instances, employing Pontryagin’s Maximum Principle, which operates
independently of simplifying assumptions, yields noticeably better control solutions.

Computational wall time comparison. Here we present a detailed discussion of the computation over-
head of the proposed PID control method. Specifically, we compare the computational wall time between the
base model without any controls applied, the proposed analytic solution, and Pontryagin’s maximum princi-
ple employed in the previous closed-loop control approach. As shown in Table 5, across all four models, the
computational wall time between the base model and the proposed analytic solution is comparable, the ana-
lytic solution only adds a small amount wall time during inference. However, solving the PMP significantly
adds the computational wall time of the base model.

Table 5: Computational Wall Time
Wall Time (s) of 10, 000 Test Samples (averaged over 5 experiments)

Distilbert RoBERTaBase RoBERTaLarge OPT
Base model 6.3751 11.7756 36.0178 123.5379
Controlled model 6.4221 11.8620 36.5051 124.1090
PMP 62.2667 81.2795 263.7920 757.0649

Error computation of the main theorem. We provide the details of the error computation outlined in
Theorem 4. Our objective is to demonstrate that the accuracy of the error computation specified in Theorem
4 diminishes with the addition of more layers to the language model. This decrease in accuracy is due to the
assumptions of linearity and orthogonality. According to these assumptions, the transformations applied to
each layer of a language model merely rotate the hidden state without altering its magnitude. However, as

14

Published in Transactions on Machine Learning Research (03/2024)

the model incorporates more of these layer-wise transformations, the accuracy of these assumptions starts
to decrease.

Table 6 presents the calculation of the absolute difference between the actual error and the error estimate
as per Theorem 4. It is evident that with all types of adversarial perturbations (A2T, PSO, TextBugger,
and TextFooler), the increase in the number of layers within the language model (with 6 layers representing
Distilbert, 12 layers symbolizing RoBERTaBase, and 24 layers signifying RoBERTaLarge) leads to a rise in
the absolute error. This indicates a decline in the precision of the error estimation.

Table 6: Error Comparison (difference between Theorem 4 and true error)

6 Layers 12 Layers 24 Layers
A2T 3.2189 4.3062 5.1566
PSO 1.9156 2.6087 3.3047
TextBugger 3.2189 4.3062 5.1566
TextFooler 3.1348 4.2894 5.2915

Justification on the effectiveness of the PID control framework. Here we provide evidence that the
PID control framework can improve model robustness against adversarial examples. As detailed in Theorem
4, the working principle of the PID control framework is based on the two facts:

• There exists an embedding structure in the state at every layer. Table 7 verifies the existence of lower-
dimensional embedding subspaces. With the OPT-1.3 B LLM (only the first 6 layers are shown),
the dimensions of proportional, integral, and derivative embedding subspaces are presented. As can
be seen, the dimension of proportional embedding is around 350 on average in a 2048 dimensional
space, integral and derivative embedding subspaces also show low dimensions compared with the
full space.

• The sequence of states from adversarially perturbed input deviates from the true embedding struc-
tures. Table 7 presents the error (measured in 2-norm) detected by the combination of P, I, and
D embedding subspaces. As can be seen, the perturbation aims to amplify the error as propagated
into deeper layers, and the embedding subspaces can effectively detect these errors at all layers.

Table 7: Ranks and Embedding Errors
Ranks: OPT-1.3B (first 6 layers)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Proportional 191 / 2048 148 / 2048 224 / 2048 337 / 2048 451 / 2048 549 / 2048
Integral 191 / 2048 181 / 2048 180 / 2048 212 / 2048 253 / 2048 298 / 2048
Derivative 191 / 2048 355 / 2048 1001 / 2048 1352 / 2048 1494 / 2048 1535 / 2048

Embedding error: OPT-1.3B (first 6 layers)
OPT 1.8237 9.5877 6.9810 6.3207 7.5278 16.6526

4 Related Works

We delve into the existing body of literature surrounding robustness issues in NLP tasks (Section 4.1).
Moreover, we explore the realm of machine learning from an optimal control perspective, emphasizing its
relevance and applicability to the task at hand (Section 4.2).

4.1 Robustness in NLP

In recent years, a variety of approaches have been developed for generating effective adversarial attacks in
the context of NLP. Traditionally, text attacks are produced through direct modifications to sentences at the

15

Published in Transactions on Machine Learning Research (03/2024)

character level, word level, sentence level, or a combination of these Ren et al. (2019); Li et al. (2018a); Xu
et al. (2021). Studies such as those by Liu et al. (2020b); Bělohlávek et al. (2018); Zhu et al. (2019) explore
methods for generating attacks within the text embedding space. An alternative approach by Wallace et al.
(2019) involves prepending the same tokens to all texts for attacks. Moving away from adding perturbations
to samples, La Malfa & Kwiatkowska (2022); Wang et al. (2020) integrate generative models for the creation
of attacks.

In response to adversarial attacks, most defense strategies primarily rely on the principles of adversarial
training Morris et al. (2020); Jiang et al. (2019); Wu et al. (2022). Given that adversarial training is inherently
resource-intensive, both in terms of computation and time, studies such as Zhu et al. (2019); Zhang et al.
(2019); Shafahi et al. (2019) have proposed methods to expedite the training process. However, despite the
efficacy of adversarial training, there’s evidence suggesting that fine-tuning model parameters can diminish
performance on clean data He et al. (2021). Additionally, it has been observed that adversarial training
often produces suboptimal results when faced with novel, unforeseen perturbations Tramer & Boneh (2019).
Adversarial training is analogous to open-loop control, as it leverages a set of fixed controls (e.g. model
parameters) for any new, unobserved data. In contrast, the proposed PID control approach dynamically
focuses on inputs using feedback controls.

4.2 Deep Learning with Optimal Control

Recent studies have increasingly focused on elucidating the intricate connections between dynamical systems
and deep learning, highlighting the fundamental interrelations that exist between them (E, 2017; Haber &
Ruthotto, 2017; Li et al., 2018b). These studies have established a robust theoretical framework, offering
a novel perspective to comprehend deep learning methodologies through the lens of optimal control theory
(Liu & Theodorou, 2019). The work of Li et al. (2018b) and Li & Hao (2018) have successfully bridged the
gap between the classical back-propagation algorithm and optimal control theory. This intersection notably
highlights how Pontryagin’s Maximum Principle (Kirk, 1970), a cornerstone of control theory, aligns closely
with gradient-based training methods in neural networks.

In advancing this line of inquiry, E et al. (2018) has developed the theoretical foundations for interpreting
deep learning within the optimal control framework. These insights have laid the groundwork for subsequent
research that applies optimal control principles to address key challenges in deep learning. A notable example
of this is the work by (Liu et al., 2020a), which introduced sophisticated high-order optimization strategies
rooted in differential dynamic programming. This methodology has been instrumental in enhancing the
training process’s convergence rates and stability. Moreover, the closed-loop control framework has been
proposed to improve the model’s robustness against adversarial attacks (Chen et al., 2020; 2022) and fairness
issues (Chen et al., 2023).

5 Discussion and Future Works

The wider perspective of the proposed method on the trustworthy ML: The presented PID
control approach generalizes previous closed-loop control approaches with additional integral and deriva-
tive controllers. This development leads to more flexible control schemes, derivative controllers are more
effective when the underlying states change rapidly, integral controllers play more significant roles when
lower-dimensional embedding structures can be constructed in accumulated states. Such flexibility in control
design broadens the applicability of the control framework across a variety of trustworthy ML applications.

This work paves the way for the development of robust large language models. Presently, many large lan-
guage models face challenges related to trustworthiness, including biases against minority groups in natural
language generation tasks. In principle, by constructing state embedding manifolds that capture desired
model behaviors, the PID control framework can be employed to adjust any unwanted behaviors in the
model. This idea is similar to prompt engineering techniques used to modify input strings for achieving
specific outcomes from models. These avenues will be explored further in future research.

16

Published in Transactions on Machine Learning Research (03/2024)

How this complements the research on adversarial attacks? The PID control framework leads to a
new method to generate adversarial attacks. In the current work, the aim is to improve model robustness by
minimizing the objective function defined in Equation 2. On the contrary, maximizing this loss w.r.t. some
input perturbation is equivalent to generating adversarial examples. This can be an optimal control-based
adversarial attack algorithm.

Can the same method be used for vision problems? This method is applicable to computer vision
problems. Typically, in deep convolutional neural networks, both the input and hidden states lie in extremely
high-dimensional spaces, where the embedding manifolds for these states tend to exist. This assumption
aligns with the "manifold hypothesis," which is based on the characteristics of real-world image data, and
is further supported by empirical evidence as demonstrated in the studies by Chen et al. (2020) and Chen
et al. (2022). Once the embedding manifolds for both input and hidden states are constructed, it becomes
possible to formulate the optimal control objective function as outlined in Equations 2 and 3. By aiming to
minimize this objective function, there is a potential to significantly improve the robustness of the model.

How does this complement the existing trustworthy ML literature? The current body of re-
search on trustworthy machine learning predominantly emphasizes adversarial training, which leads to two
significant challenges. Firstly, the process of modifying model parameters with adversarial examples de-
mands extensive computational resources. In the context of natural language processing tasks, identifying
an adversarial example typically entails solving a combinatorial optimization problem, which suffers from
an exponential growth in the number of feasible solutions as the size of the problem increases. Secondly,
adversarial training’s efficacy diminishes in the face of unexpected adversarial attacks. This shortcoming
is especially evident in the real-world application of large language models, where predicting potential ad-
versarial attacks beforehand is unfeasible. The suggested PID control framework is designed to overcome
these challenges by offering two key advantages: 1) It does not significantly increase the inference time when
compared to the base model, and 2) It leverages the embedding structure of unperturbed states, making it
robust against various unforeseen adversarial attacks.

Extension to other trustworthy issues. The proposed PID framework focuses on improving the ro-
bustness of pre-trained models through a set of linear embedding subspaces. These subspaces effectively
encapsulate the embedding structure of the underlying states. This framework may be broadened to tackle
various trustworthy concerns in machine learning, including issues related to fairness (Chen et al., 2023).
To achieve this, it is necessary to develop embedding subspaces that are capable of capturing embedding
structures that are invariant against demographic information. Our next objective is to demonstrate how
the PID control framework can be adapted to manage and resolve fairness-related challenges.

Analytic solution on the nonlinear dynamics. In our approach, we determine the optimal control
solution using an analytical method as outlined in Proposition 3. This analytical method is based on the
assumption that the layer transformation linearization in the pre-trained model is orthogonal. Consequently,
this leads to a time-varying control regularization across various layers, which is independent of the pre-
trained model. This method has yielded satisfactory empirical outcomes. Nonetheless, there is a need for a
more precise analytical solution that accounts for the intrinsic aspects of the underlying model. To achieve a
more refined analytical solution for the optimal control issue, our next step involves linearizing the non-linear
layer transformations in the pre-trained model and subsequently utilizing the Riccati equation to generate
the optimal control solution.

6 Conclusion

Our study has introduced a novel PID control framework to improve neural network robustness against
(unforeseen) input perturbations, outperforming traditional adversarial training methods. This approach
maintains computational efficiency, enhances robustness in large language models, and allows for rapid
online inference. Our comprehensive error analysis has confirmed the framework’s effectiveness in simulated
environments, contributing significantly to neural network security and robustness, and paving the way for
more reliable NLP models in critical applications.

17

Published in Transactions on Machine Learning Research (03/2024)

7 Acknowledgements

Z. Chen and Z. Zhang are supported by the NSF grant #2107321 under the CCF division. Q. Li is supported
by the National Research Foundation, Singapore, under the NRF fellowship (project No. NRF-NRFF13-
2021-0005).

References
Richard Bellman. On the theory of dynamic programming. Proceedings of the National Academy of Sciences

of the United States of America, 38(8):716, 1952.

Petr Bělohlávek, Ondřej Plátek, Zdeněk Žabokrtskỳ, and Milan Straka. Using adversarial examples in natural
language processing. In Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), 2018.

Korte Bernhard and Jens Vygen. Combinatorial optimization: Theory and algorithms. Springer, Third
Edition, 2005., 2008.

Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated corpus
for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 632–642, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Zhuotong Chen, Qianxiao Li, and Zheng Zhang. Towards robust neural networks via close-loop control. In
International Conference on Learning Representations, 2020.

Zhuotong Chen, Qianxiao Li, and Zheng Zhang. Self-healing robust neural networks via closed-loop control.
The Journal of Machine Learning Research, 23(1):14329–14382, 2022.

Zhuotong Chen, Qianxiao Li, and Zheng Zhang. Asymptotically fair participation in machine learning
models: an optimal control perspective. arXiv preprint arXiv:2311.10223, 2023.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-(r1, r2, · · · , rn)
approximation of higher-order tensors. SIAM journal on Matrix Analysis and Applications, 21(4):1324–
1342, 2000a.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decomposition.
SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000b.

Weinan E. A proposal on machine learning via dynamical systems. Communications in Mathematics and
Statistics, 5(1):1–11, 2017.

Weinan E, Jiequn Han, and Qianxiao Li. A mean-field optimal control formulation of deep learning. Research
in the Mathematical Sciences, 1(6):1–41, 2018.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. Journal of
the American Mathematical Society, 29(4):983–1049, 2016.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1):
014004, 2017.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev
Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up end-to-end speech recognition.
arXiv preprint arXiv:1412.5567, 2014.

18

Published in Transactions on Machine Learning Research (03/2024)

Tianxing He, Jun Liu, Kyunghyun Cho, Myle Ott, Bing Liu, James Glass, and Fuchun Peng. Analyzing
the forgetting problem in pretrain-finetuning of open-domain dialogue response models. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 1121–1133, 2021.

Markus Hehn and Raffaello D’Andrea. Real-time trajectory generation for quadrocopters. IEEE Transactions
on Robotics, 31(4):877–892, 2015.

Chung-Wen Ho, Albert Ruehli, and Pierce Brennan. The modified nodal approach to network analysis.
IEEE Transactions on circuits and systems, 22(6):504–509, 1975.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.
Lora: Low-rank adaptation of large language models. In International Conference on Learning Represen-
tations, 2021.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. Clinicalbert: Modeling clinical notes and predicting
hospital readmission. arXiv preprint arXiv:1904.05342, 2019.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart: Robust
and efficient fine-tuning for pre-trained natural language models through principled regularized optimiza-
tion. arXiv preprint arXiv:1911.03437, 2019.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really robust? a strong baseline for
natural language attack on text classification and entailment. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 8018–8025, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–4186, 2019.

Donald E Kirk. Optimal control theory: an introduction. Springer, 1970.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500,
2009.

Emanuele La Malfa and Marta Kwiatkowska. The king is naked: on the notion of robustness for natural
language processing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
11047–11057, 2022.

Jangjoon Lee, Srikar Bhagavatula, Swarup Bhunia, Kaushik Roy, and Byunghoo Jung. Self-healing design
in deep scaled cmos technologies. Journal of Circuits, Systems, and Computers, 21(06):1240011, 2012.

J Li, S Ji, T Du, B Li, and T Wang. Textbugger: Generating adversarial text against real-world applications.
In 26th Annual Network and Distributed System Security Symposium, 2019.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. Textbugger: Generating adversarial text against
real-world applications. arXiv preprint arXiv:1812.05271, 2018a.

Qianxiao Li and Shuji Hao. An optimal control approach to deep learning and applications to discrete-weight
neural networks. In International Conference on Machine Learning, pp. 2985–2994. PMLR, 2018.

Qianxiao Li, Long Chen, Cheng Tai, and Weinan E. Maximum principle based algorithms for deep learn-
ing. Journal of Machine Learning Research, 18(165):1–29, 2018b. URL http://jmlr.org/papers/v18/
17-653.html.

Guan-Horng Liu and Evangelos A Theodorou. Deep learning theory review: An optimal control and dy-
namical systems perspective. arXiv preprint arXiv:1908.10920, 2019.

Guan-Horng Liu, Tianrong Chen, and Evangelos A Theodorou. Differential dynamic programming neural
optimizer. arXiv preprint arXiv:2002.08809, 2020a.

19

http://jmlr.org/papers/v18/17-653.html
http://jmlr.org/papers/v18/17-653.html

Published in Transactions on Machine Learning Research (03/2024)

Hui Liu, Yongzheng Zhang, Yipeng Wang, Zheng Lin, and Yige Chen. Joint character-level word embedding
and adversarial stability training to defend adversarial text. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 8384–8391, 2020b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In International Conference on Learning Representations,
2018.

John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A framework for
adversarial attacks, data augmentation, and adversarial training in nlp. arXiv preprint arXiv:2005.05909,
2020.

Ani Nenkova and Kathleen McKeown. A survey of text summarization techniques. Mining text data, pp.
43–76, 2012.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adversarial nli:
A new benchmark for natural language understanding. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 4885–4901, 2020.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

Indika Rajapakse and Mark Groudine. On emerging nuclear order. Journal of Cell Biology, 192(5):711–721,
2011.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating natural language adversarial examples
through probability weighted word saliency. In Proceedings of the 57th annual meeting of the association
for computational linguistics, pp. 1085–1097, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances in Neural Information
Processing Systems, 32, 2019.

Adrian Tang, Frank Hsiao, David Murphy, I-Ning Ku, Jenny Liu, Sandeep D’Souza, Ning-Yi Wang, Hao Wu,
Yen-Hsiang Wang, Mandy Tang, et al. A low-overhead self-healing embedded system for ensuring high
yield and long-term sustainability of 60ghz 4gb/s radio-on-a-chip. In 2012 IEEE International Solid-State
Circuits Conference, pp. 316–318. IEEE, 2012.

Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations. Advances
in neural information processing systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

G Vinodhini and RM Chandrasekaran. Sentiment analysis and opinion mining: a survey. International
Journal, 2(6):282–292, 2012.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial triggers for
attacking and analyzing nlp. arXiv preprint arXiv:1908.07125, 2019.

Ren Wang, Tianqi Chen, Stephen Lindsly, Cooper Stansbury, Alnawaz Rehemtulla, Indika Rajapakse,
and Alfred Hero. RAILS: A robust adversarial immune-inspired learning system. arXiv preprint
arXiv:2107.02840, 2021.

20

Published in Transactions on Machine Learning Research (03/2024)

Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang Li, Jilin Chen, Alex Beutel, and Ed Chi. Cat-
gen: Improving robustness in nlp models via controlled adversarial text generation. arXiv preprint
arXiv:2010.02338, 2020.

Matthew Wicker, Luca Laurenti, Andrea Patane, Zhuotong Chen, Zheng Zhang, and Marta Kwiatkowska.
Bayesian inference with certifiable adversarial robustness. In International Conference on Artificial Intel-
ligence and Statistics, pp. 2431–2439. PMLR, 2021.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pp. 1112–1122, 2018.

Hongqiu Wu, Yongxiang Liu, Hanwen Shi, Min Zhang, et al. Toward adversarial training on contextualized
language representation. In The Eleventh International Conference on Learning Representations, 2022.

Ying Xu, Xu Zhong, Antonio Jimeno Yepes, and Jey Han Lau. Grey-box adversarial attack and defence for
sentiment classification. arXiv preprint arXiv:2103.11576, 2021.

Jin Yong Yoo and Yanjun Qi. Towards improving adversarial training of nlp models. In Findings of the
Association for Computational Linguistics: EMNLP 2021, pp. 945–956, 2021.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun. Word-level
textual adversarial attacking as combinatorial optimization. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 6066–6080, 2020.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate once: Ac-
celerating adversarial training via maximal principle. Advances in Neural Information Processing Systems,
32, 2019.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced adversarial
training for natural language understanding. In International Conference on Learning Representations,
2019.

21

Published in Transactions on Machine Learning Research (03/2024)

8 Appendix A

In this section, we elaborate on the derivation of the analytic solution as presented in Propositions 1 and 3.
Let θt represent the tth linear transformation, and πt : Rd → Rd denote the PID controller. The controlled
dynamical system can be expressed as:

xt+1 = θt(xt + πt(xt)),

where the control action is added to the current state. Recall the running loss defined in equation 3,

L({xs}t
s=0, πt, (fP

t , f I
t , fD

t))

:= 1
2∥fP

t (xt + πt(xt))∥2
2+1

2∥f I
t (xt + πt(xt) +

t−1∑
s=0

xs)∥2
2+1

2∥fD
t (xt + πt(xt) − xt−1)∥2

2 + ct

2 ∥πt(xt)∥2
2,

we consider the surjective mappings fP
t , f I

t , and fD
t as orthogonal projections. Let QP

t , QI
t , and QD

t be the
orthogonal projections associated with fP

t , f I
t , and fD

t , respectively, assuming a uniformly bounded state
space with maxx∈X ∥x∥2

2 ≤ B, the running loss can be bounded as follows,

L({xs}t
s=0, πt, (QP

t , QI
t , QD

t))

= 1
2∥QP

t (xt + πt(xt))∥2
2+1

2∥QI
t (xt + πt(xt) +

t−1∑
s=0

xs)∥2
2+1

2∥QD
t (xt + πt(xt) − xt−1)∥2

2 + ct

2 ∥πt(xt)∥2
2,

≤ 1
2∥QP

t (xt + πt(xt))∥2
2+1

2∥QI
t (xt + πt(xt))∥2

2+1
2∥QI

t (
t−1∑
s=0

xs)∥2
2+1

2∥QD
t (xt + πt(xt))∥2

2 + 1
2∥QD

t xt−1∥2
2

+ ct

2 ∥πt(xt)∥2
2,

≤ 1
2∥QP

t (xt + πt(xt))∥2
2+1

2∥QI
t (xt + πt(xt))∥2

2+1
2∥QD

t (xt + πt(xt))∥2
2 + 1

2∥
t−1∑
s=0

xs∥2
2+1

2∥xt−1∥2
2

+ ct

2 ∥πt(xt)∥2
2,

≤ 1
2∥QP

t (xt + πt(xt))∥2
2+1

2∥QI
t (xt + πt(xt))∥2

2+1
2∥QD

t (xt + πt(xt))∥2
2 + ct

2 ∥πt(xt)∥2
2 + TB

2 , (10)

where T represents the maximum number of layers of the neural network, and B is the uniform upper bound
for the state space.

Let Qt = QP
t + QI

t + QD
t , the following Lemma derives the analytic solution for the PID control πt(xt).

Proposition 5. Consider the following objective function,

min
π

E(x0,y)∼D [J(x0, y, π)] := min
π

E(x0,y)∼D

[
Φ(xT , y) +

T −1∑
t=0

L({xs}t
s=0, πt, (QP

t , QI
t , QD

t))
]

,

s.t. xt+1 = θt(xt + πt(xt)). (7)

the optimal value function, parametrized as V (xt) = x⊤
t Ptxt, satisfies the Riccati equation:

Pt = 1
2Qt + θ⊤

t Pt+1θt − 1
2(Qt + 2θ⊤

t Pt+1θt)⊤(Qt + 2θ⊤
t Pt+1θt + ctI)−1(Qt + 2θ⊤

t Pt+1θt). (8)

The optimal control solution is given by

πt(xt) = −(Qt + c · I + 2θ⊤
t Pt+1θt)−1(Qt + 2θ⊤

t Pt+1θt)xt, (9)

where Qt = QP
t + QI

t + QD
t .

22

Published in Transactions on Machine Learning Research (03/2024)

Proof. In the objective function defined in equation 7, the terminal loss Φ(xT , y) quantifies the discrepancy
between the terminal state xT and the true label y. However, in general machine learning applications, the
true label y remains unknown during online inference, leading to the terminal loss being set to zero. Recall
equation 10, the running loss is defined as

L({xs}t
s=0, πt, (QP

t , QI
t , QD

t))

:= 1
2∥QP

t (xt + πt(xt))∥2
2+1

2∥QI
t (xt + πt(xt) +

t−1∑
s=0

xs)∥2
2+1

2∥QD
t (xt + πt(xt) − xt−1)∥2

2 + ct

2 ∥πt(xt)∥2
2.

Consequently, the optimal value function V (xt) satisfies

V (xt) = min
πt

1
2(QP

t xt + QP
t πt(xt))⊤(QP

t xt + QP
t πt(xt)) + 1

2(QI
t xt + QI

t πt(xt))⊤(QI
t xt + QI

t πt(xt))

+1
2(QD

t xt + QD
t πt(xt))⊤(QD

t xt + QD
t πt(xt)) + c

2 · πt(xt)⊤πt(xt) + V (xt+1),

s.t. xt+1 = θt(xt + πt(xt)).

Taking the derivative of the right-hand side with respect to πt(xt) yields

dV (xt)
dπt(xt)

= QP
t xt + QP

t πt(xt) + QI
t xt + QI

t πt(xt) + QD
t xt + QD

t πt(xt) + cπt(xt) +
(

dxt+1

dπt(xt)

)⊤
dV (xt+1)

dxt+1
,

= QP
t xt + QP

t πt(xt) + QI
t xt + QI

t πt(xt) + QD
t xt + QD

t πt(xt) + cπt(xt) + 2θ⊤
t Pt+1xt+1,

= (QP
t + QI

t + QD
t)xt + (QP

t + QI
t + QD

t)πt(xt) + cπt(xt) + 2θ⊤
t Pt+1θtxt + 2θ⊤

t Pt+1θtπt(xt),
= Qtxt + Qtπt(xt) + cπt(xt) + 2θ⊤

t Pt+1θtxt + 2θ⊤
t Pt+1θtπt(xt),

where Qt = QP
t + QI

t + QD
t .

Setting the derivative dV (xt)
dπt(xt) to 0 results in the optimal control π∗

t (xt) (as shown in equation 9)

π∗
t (xt) = −(Qt + c · I + 2θ⊤

t Pt+1θt)−1(Qt + 2θ⊤
t Pt+1θt)xt.

Parametrizing the value function V (xt) as x⊤
t Ptxt and considering the optimal control solution equation 9,

we can convert the expression of the value function as follows,

x⊤
t Ptxt

= min
πt

1
2(QP

t xt + QP
t πt(xt))⊤(QP

t xt + QP
t πt(xt)) + 1

2(QI
t xt + QI

t πt(xt))⊤(QI
t xt + QI

t πt(xt))

+ 1
2(QD

t xt + QD
t πt(xt))⊤(QD

t xt + QD
t πt(xt)) + c

2 · πt(xt)⊤πt(xt) + x⊤
t+1Pt+1xt+1,

= 1
2x⊤

t (QP
t + QI

t + QD
t + 2θ⊤

t Pt+1θt)xt + 1
2(π∗

t (xt))⊤(QP
t + QI

t + QD
t + cI + 2θ⊤

t Pt+1θt)π∗
t (xt)

+ x⊤
t (QP

t + QI
t + QD

t + 2θ⊤
t Pt+1θt)π∗

t (xt),

= 1
2x⊤

t (Qt + 2θ⊤
t Pt+1θt)xt + 1

2(π∗
t (xt))⊤(Qt + cI + 2θ⊤

t Pt+1θt)π∗
t (xt) + x⊤

t (Qt + 2θ⊤
t Pt+1θt)π∗

t (xt),

where π∗
t (xt) is the optimal control solution leading to the minimum, Qt = QP

t + QI
t + QD

t . For the second
term in the above, recall the optimal control solution π∗

t (xt) from equation 9,

1
2(π∗

t (xt))⊤(Qt + c · I + 2θ⊤
t Pt+1θt)π∗

t (xt),

= −1
2

(
(Qt + c · I + 2θ⊤

t Pt+1θt)−1(Qt + 2θ⊤
t Pt+1θt)xt

)⊤
(Qt + c + 2θ⊤

t Pt+1θt)π∗
t (xt),

= −1
2x⊤

t (Qt + 2θ⊤
t Pt+1θt)π∗

t (xt),

23

Published in Transactions on Machine Learning Research (03/2024)

the above uses the fact that (Qt + c · I + 2θ⊤
t Pt+1θt)−1 is symmetric. Therefore,

x⊤
t Ptxt

= 1
2x⊤

t (Qt + 2θ⊤
t Pt+1θt)xt − 1

2x⊤
t (Qt + 2θ⊤

t Pt+1θt)π∗
t (xt) + x⊤

t (Qt + 2θ⊤
t Pt+1θt)π∗

t (xt),

= 1
2x⊤

t (Qt + 2θ⊤
t Pt+1θt)xt + 1

2x⊤
t (Q⊤

t Qt + 2θ⊤
t Pt+1θt)π∗

t (xt),

which results in the algebraic Riccati equation

Pt = 1
2Qt + θ⊤

t Pt+1θt − 1
2(Qt + 2θ⊤

t Pt+1θt)⊤(Qt + 2θ⊤
t Pt+1θt + cI)−1(Qt + 2θ⊤

t Pt+1θt).

In our analysis, we focus on a specific scenario where each linear transformation θt is both orthogonal and
full-rank. This implies that the linear transformations satisfy the condition θ⊤

t θt = θtθ
⊤
t = I for all t in the

considered range.

Recall that Qt = QP
t + QI

t + QD
t , where

QP
t = I − VP

t (VP
t)⊤, QI

t = I − VI
t (VI

t)⊤, QD
t = I − VD

t (VD
t)⊤,

are orthogonal projections corresponding to linear embedding subspaces of state, state integration, and state
derivative. For simplicity, we assume that the basis VP

t , VI
t , and VD

t are mutually orthogonal to each other,
meaning that

(VP
t)⊤VI

t = 0, (VP
t)⊤VD

t = 0, (VI
t)⊤VD

t = 0.

Based on this assumption, the combination of three orthogonal projections Qt is an orthogonal projection,

Qt = VP
t


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
0 0 · · · 0 1

 (VP
t)⊤ + VI

t


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
0 0 · · · 0 1

 (VI
t)⊤ + VD

t


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
0 0 · · · 0 1

 (VD
t)⊤,

= Vt


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
0 0 · · · 0 1

 V⊤
t ,

where Vt represents the basis for the intersection of VP
t , VI

t , and VD
t .

Lemma 6. Consider a T -layer neural network characterized by orthogonal linear transformations. The
solution to the algebraic Riccati equation, as delineated in equation 8, is given by

Pt = 1
2Vt


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · λt 0
0 0 · · · 0 λt

 V⊤
t , (11)

where the parameter λt is governed by a backward difference equation λt = c(1+λt+1)
1+λt+1+c , with the initial condition

specified as λT = 0.

24

Published in Transactions on Machine Learning Research (03/2024)

Proof. The proof proceeds by induction on t. Recall the algebraic Riccati equation 8. Given the terminal
condition PT = 0, the equation for t = T − 1 is

PT −1 = 1
2QT −1 − 1

2Q⊤
T −1(QT −1 + cI)−1QT −1,

= 1
2VT −1


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · c
1+c 0

0 0 · · · 0 c
1+c

 V⊤
T −1,

Suppose it is true for t + 1, such that,

Pt+1 = 1
2Vt+1


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · λt+1 0
0 0 · · · 0 λt+1

 V⊤
t+1.

Given that θ⊤
t θt = θtθ

⊤
t = I, θ⊤

t Vt+1 = Vt, in which case, Qt and θ⊤
t Pt+1θt contain the same basis Vt.

Recall the algebraic Riccati equation 8,

Pt = 1
2Qt + θ⊤

t Pt+1θt − 1
2(Qt + 2θ⊤

t Pt+1θt)⊤(Qt + 2θ⊤
t Pt+1θt + cI)−1(Qt + 2θ⊤

t Pt+1θt),

= 1
2Vt


0 · · · 0
0 · · · 0
...

. . . 0
0 · · · 1 + λt+1

 V⊤
t − 1

2Vt


0 · · · 0
0 · · · 0
...

. . . 0
0 · · · (1 + λt+1)2(1 + λt+1 + c)−1

 V⊤
t ,

= 1
2Vt


0 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · λt = c(1+λt+1)
1+λt+1+c

 V⊤
t .

Recall the optimal control solution in equation 9 and Lemma 6, we reach the following analytic formulation.
Proposition 7. When the layer-wise transformations are represented as orthogonal matrices, and the basis
of state embedding, state integration embedding, and state derivative embeddings are mutually orthogonal,
the optimal feedback control, denoted as πt(xt), can be computed as follows:

πt(xt) = −Vt


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 − c
1+λt+1+c 0

0 0 · · · 0 1 − c
1+λt+1+c

 V⊤
t xt,

where the time-varying parameter λt is governed by a backward difference equation λt = c(1+λt+1)
1+λt+1+c , with the

terminal condition specified as λT = 0.

25

Published in Transactions on Machine Learning Research (03/2024)

9 Appendix B

Recall the optimal control formulation in Proposition 3, we define a control gain matrix Kt

Kt = −Vt


0 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · 1 − c
1+λt+1+c

 V⊤
t .

Let θt represent the tth linear transformation, and π : Rd → Rd be the closed-loop controller. We denote
the unperturbed state at time t as xt, and the controlled state with perturbation z applied at the initial
condition as xt,

xt+1 = θt(xt + πt(xt)), x0 = xt + z.

The difference between the controlled system applied with perturbation at the initial condition and the
uncontrolled system without perturbation is shown

xt+1 − xt+1 = θt(xt + πt(xt) − xt),
= θt(xϵ,t − Ktxϵ,t − xt),
= θt(I − Kt)xt − θtxt + θtKtxt,

= θt(I − Kt)(xt − xt), (12)

where θtKtxt = 0 since xt is in the null space of the control gain matrix Kt.
Lemma 8. For t ≥ 0, we have

I − Kt = αt · I + (1 − αt) · Pt,

where Pt := Vt(Vt)⊤, αt = c
1+λt+1+c .

Proof. Recall equation 12, (I − Kt) can be expressed as

I − Kt = Vt


1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · c
1+λt+1+c

 V⊤
t ,

where the first r diagonal elements are 1, and the last (d − r) diagonal elements are c
1+λt+1+c . By denoting

the projection of first r columns as Vr
t and last (d − r) columns as V̂r

t , it can be further shown

I − Kt = Vr
t (Vr

t)⊤ + c

1 + λt+1 + c

(
V̂r

t (V̂r
t)⊤)

,

= Pt + αt

(
I − Pt

)
,

= αt · I + (1 − αt) · Pt,

where αt = c
1+λt+1+c .

In the presented formulation, the input state space, denoted as Z, is partitioned into a direct sum comprising
two orthogonal subspaces. This decomposition is expressed as Z = Z∥ ⊕ Z⊥, where Z∥ represents the linear
embedding subspace, encapsulating the input data. This is characterized by the condition x0 ∈ Z for all
pairs (x, y) sampled from the distribution D. Concurrently, Z⊥ defines the orthogonal complement of Z∥.
Extending this notion, the time-dependent state space at any given timestep t is represented as Zt = Z

∥
t ⊕Z⊥

t .

26

Published in Transactions on Machine Learning Research (03/2024)

Lemma 9. For t ≥ 0, let Ps
t be defined as follows,{

P0
t := Pt,

P(s+1)
t := θ−1

t−s−1Ps
t θt−s−1, s = 0, 1, . . . , t − 1.

Then

1. Ps
t is a projection.

2. Ps
t is a projection onto Z

∥
t−s, i.e. range(Ps

t) = Z
∥
t−s.

3. If all θt are orthogonal, then Pt
t = P0, ∀t, where P0 is the orthogonal projection onto Z

∥
0 .

Proof. 1. We prove it by induction on s for each t. For s = 0, P0
t = Pt, which is a projection by its

definition. Suppose it is true for s such that Ps
t = Ps

t Ps
t (P is a projection if P = P2), then for

(s + 1),

(Ps+1
t)2 =

(
θ−1

t−s−1Ps
t θt−s−1

)2
,

= θ−1
t−s−1

(
Ps

t

)2
θt−s−1,

= θ−1
t−s−1Ps

t θt−s−1,

= Ps+1
t .

2. We prove it by induction on s for each t. For s = 0, P0
t = Pt, which is the orthogonal projection

onto Z
∥
t . Suppose that it is true for s such that Ps

t is a projection onto Z
∥
t−s, then for (s + 1),

Ps+1
t = θ−1

t−s−1Ps
t θt−s−1, which implies

range(Ps+1
t) = range(θ−1

t−s−1Ps
t),

= {θ−1
t−s−1x : x ∈ Z

∥
t−s},

= Z
∥
t−s−1.

3. If θt is orthogonal,

Ps+1
t = θ−1

t−s−1Ps
t θt−s−1,

= θT
t−s−1Ps

t θt−s−1,

= (Ps+1
t)⊤.

Ps+1
t is a orthogonal projection onto range Z

∥
t−s−1. Therefore, PT

t is a orthogonal projection onto
Z

∥
0 , orthogonal projection onto the same range is unique, PT

t = P0, ∀t.

The following Lemma uses the concept of oblique projection to show a recursive relationship to project any
tth state space of Eq. (12) back to the input data space.
Lemma 10. Define for 0 ≤ s ≤ t,

Gs
t := αt · I + (1 − αt)Ps

t .

Then, Eq. (12) can be written as

xt − xt = (θt−1θt−2 · · · θ0)(Gt−1
t−1Gt−2

t−2 · · · G0
0)(x0 − x0), t ≥ 1.

27

Published in Transactions on Machine Learning Research (03/2024)

Proof. We prove it by induction on t. For t = 1, by the definition of Gs
t and transformation from Lemma 8,

x1 − x1 = θ0(I − K0)(x0 − x0), Eq. (12),
= θ0(α0 · I + (1 − α0) · P0)(x0 − x0),
= θ0G0

0(x0 − x0).

Suppose that it is true for (xt − xt), by Lemma 8, we have

xt+1 − xt+1 = θt(I − Kt)(xt − xt),
= θt(αt · I − (1 − αt) · Pt)(xt − xt), Lemma 8,

= θtG0
t (θt−1θt−2 · · · θ0)(Gt−1

t−1Gt−2
t−2 · · · G0

0)(x0 − x0). (13)

Recall the definitions of P(s+1)
t := θ−1

t−s−1Ps
t θt−s−1, and Gs

t := αt · I + (1 − αt)Ps
t ,

Gs+1
t = αt · I + (1 − αt) · P(s+1)

t ,

= αt · I + (1 − αt) · θ−1
t−s−1Ps

t θt−s−1,

= θ−1
t−s−1

(
αt · I + (1 − αt) · Ps

t

)
θt−s−1,

= θ−1
t−s−1Gs

t θt−s−1,

which results in the equality for the oblique projections. Furthermore,

θt−s−1G(s+1)
t = Gs

t θt−s−1.

Applying the above to Eq. (13) results in

xt+1 − xt+1 = θtG0
t (θt−1θt−2 · · · θ0)(Gt−1

t−1Gt−2
t−2 · · · G0

0)(x0 − x0),
= (θtθt−1)G1

t (θt−2θt−3 · · · θ0)(Gt−1
t−1Gt−2

t−2 · · · G0
0)(x0 − x0),

= (θtθt−1θt−2)G2
t (θt−3θt−4 · · · θ0)(Gt−1

t−1Gt−2
t−2 · · · G0

0)(x0 − x0),
= (θtθt−1 · · · θ0)(Gt

tGt−1
t−1 · · · G0

0)(x0 − x0).

Lemma 11. Let
Ft := G(t−1)

t−1 G(t−2)
t−2 · · · G0

0, t ≥ 1.

Then,

Ft =
t−1∏
s=0

αs · I + (1 −
t−1∏
s=0

αs) · P0.

Proof. We prove it by induction on t. Recall the definition of Gs
t := αt · I + (1 − αt) · Ps

t . When t = 1,

F1 = G0
0 = α0 · I + (1 − α0) · P0.

Suppose that it is true for t such that

Ft =
t−1∏
s=0

αs · I + (1 −
t−1∏
s=0

αs) · P0,

28

Published in Transactions on Machine Learning Research (03/2024)

for (t + 1),

Ft+1 = Gt
tFt,

= (αt · I + (1 − αt) · Pt
t)Ft,

= (αt · I + (1 − αt) · Pt
t)(

t−1∏
s=0

αs · I + (1 −
t−1∏
s=0

αs) · P0),

=
t∏

s=0
αs · I + αt(1 −

t−1∏
s=0

αs) · P0 + (1 − αt)
t−1∏
s=0

αs · Pt
t + (1 − αt)(1 −

t−1∏
s=1

αs) · Pt
tP0.

Recall Lemma 9, if all θt is orthogonal, then Pt
t = P0, and Pt

tP0 = P0. Hence,

Ft+1 =
t∏

s=0
αs · I + αt(1 −

t−1∏
s=0

αs) · P0 + (1 − αt)
t−1∏
s=0

αs · P0 + (1 − αt)(1 −
t−1∏
s=1

αs) · P0,

=
t∏

s=0
αs · I +

(
αt −

t∏
s=0

αs +
t−1∏
s=0

αs −
t∏

s=0
αs + 1 − αt −

t−1∏
s=0

αs +
t∏

s=0
αs

)
· P0,

=
t∏

s=0
αs · I +

(
1 −

t∏
s=0

αs

)
· P0.

Theorem 4. For any time step t ≥ 1, assuming that each θt is an orthogonal matrix, we have the following
error computation:

∥xt − xt∥2
2 =

t−1∏
s=0

α2
s · ∥z⊥∥2

2 + ∥z∥∥2
2,

where αt is a time-varying parameter defined in relation to the control regularization c, and λt are auxiliary
variables, as follows:

αt = c

1 + λt+1 + c
, λT = 0, λT −1 = c

1 + c
, λt = c(1 + λt+1)

1 + c + λt+1
.

Proof. The input perturbation z = x0 − x0 can be decomposed as z = z∥ + z⊥, where z∥ ∈ Z
∥
0 and z⊥ ∈ Z⊥

0 ,
and z∥ and z⊥ are vectors such that

• z∥ · z⊥ = 0 almost surely.

• z∥, z⊥ have uncorrelated components.

• z∥ ∈ Z∥, and z⊥ ∈ Z⊥.

Since the layer transformations θt are orthogonal matrices for all t, recall the dynamical system Eq. (12)
and Lemma 10,

∥xt − xt∥2
2 = ∥θt(I − Kt)θt−1(I − Kt−1) · · · θ0(I − K0)z∥2

2,

= ∥(θt−1θt−2 · · · θ0)(Gt−1
t−1 · · · G0

0)z∥2
2,

= ∥(Gt−1
t−1 · · · G0

0)z∥2
2, (14)

29

Published in Transactions on Machine Learning Research (03/2024)

For the term ∥(Gt−1
t−1 · · · G0

0)z∥2
2, recall Lemma 11,

∥(Gt−1
t−1 · · · G0

0)z∥2
2

= ∥
(t−1∏

s=0
αs · I + (1 −

t−1∏
s=0

αs)P0

)
z∥2

2,

= ∥
t−1∏
s=0

αs · z + (1 −
t−1∏
s=0

αs) · z∥∥2
2,

= (
t−1∏
s=0

αs)2 · ∥z∥2
2 + (1 −

t−1∏
s=0

αs)2 · ∥z∥∥2
2 + 2(

t−1∏
s=0

αs)(1 −
t−1∏
s=0

αs)(z)⊤z∥,

= (
t−1∏
s=0

αs)2 · (∥z∥∥2
2 + ∥z⊥∥2

2) + (1 −
t−1∏
s=0

α0)2 · ∥z∥∥2
2 + 2(

t−1∏
s=0

αs)(1 −
t−1∏
s=0

αs)(z∥ + z⊥)⊤z∥

=
t−1∏
s=0

α2
s · ∥z⊥∥2

2 +
(t−1∏

s=0
α2

s + (1 −
t−1∏
s=0

αs)2 + 2(
t−1∏
s=0

αs)(1 −
t−1∏
s=0

αs)
)

· ∥z∥∥2
2,

=
t−1∏
s=0

α2
s · ∥z⊥∥2

2 + ∥z∥∥2
2.

Recall the error computation in Eq. (14),

∥xϵ,t − xt∥2
2 =

t−1∏
s=0

α2
s · ∥z⊥∥2

2 + ∥z∥∥2
2.

10 Appendix C

The tables referenced as 8 and 9 provide comprehensive numerical data for the SNLI and MNLI datasets,
respectively. The results in Table 8 reveal that the PD control mechanism significantly improves the ro-
bustness of both the standard and robustly trained baseline models against every type of adversarial attack.
Specifically, the application of PD control to the standardly trained Distilbert model boosts its accuracy by
15% and 16% in facing TextBugger and TextFoller attacks, respectively, while incurring a minimal 1% ac-
curacy reduction on the original, unaltered dataset. Moreover, the robustly trained Distilbert model, which
includes adversarial training (AT), benefits from the addition of PD control by showing a 12% accuracy in-
crease when confronted with both TextBugger and TextFoller attacks. The comparative analysis of baseline
models and the proposed control framework for the MNLI dataset, as detailed in Table 9, demonstrates that
implementing the PD controller enhances the standard trained Distilbert’s resistance to perturbations by an
average of nearly 10%. However, this improvement is somewhat diminished in models trained for robustness,
with an average enhancement of 5% against all types of perturbations.

11 Appendix D

A optimal control framework for robust deep neural networks. We start with a description of the
dynamical system approach to machine learning. In the dynamical system framework, we consider the input
x0 ∈ X as the initial condition of a system of difference equations,

xt+1 = Ft(xt + πt(xt), θt),

where Ft represents a time-varying difference equation, θt are model parameters of Ft, πt : Rd → Rd is a
feedback controller that maps the current state xt to a control action. The goal of optimal control is to

30

Published in Transactions on Machine Learning Research (03/2024)

Table 8: Measurement on SNLI dataset: baseline model / controlled model

Standard models
None A2T PSO TextBugger TextFooler

Distilbert 87.24 / 86.05 53.89 / 62.31 49.84 / 54.96 24.73 / 40.26 24.69 / 41.73
RoBERTaBase 90.87 / 90.64 58.36 / 64.11 51.44 / 54.40 35.90 / 43.20 27.03 / 37.35
BERT-large 90.36 / 89.75 74.18 / 75.54 66.84 / 67.55 64.13 / 64.41 56.37 / 58.27
RoBERTaLarge 92.39 / 92.05 59.40 / 64.95 52.15 / 56.70 33.72 / 42.43 26.43 / 37.29

Robust models (trained with AT)
None A2T PSO TextBugger TextFooler

Distilbert 86.74 / 85.81 71.78 / 71.81 52.85 / 57.87 29.63 / 41.64 31.59 / 43.81
RoBERTaBase 90.65 / 89.87 76.28 / 77.08 53.85 / 56.45 35.43 / 43.35 29.64 / 39.39
BERT-large 90.29 / 90.33 86.02 / 85.76 69.23 / 70.38 69.17 / 69.55 63.78 / 65.27
RoBERTaLarge 92.10 / 91.62 81.11 / 81.62 55.28 / 59.71 34.15 / 44.74 28.74 / 42.44

Robust models (trained with FreeLB)
None A2T PSO TextBugger TextFooler

Distilbert 85.68 / 84.50 57.75 / 62.95 52.53 / 56.86 26.68 / 37.80 25.47 / 39.64
RoBERTaBase 91.31 / 90.67 64.23 / 68.85 52.22 / 55.24 34.08 / 42.75 24.80 / 36.81
BERT-large 90.81 / 90.72 77.64 / 78.21 64.72 / 65.56 58.21 / 59.29 53.31 / 56.26
RoBERTaLarge 92.37 / 92.26 67.53 / 71.30 53.37 / 57.20 34.64 / 44.42 27.55 / 38.59

Table 9: Measurement on MNLI dataset: baseline model / controlled model

Standard models
None A2T PSO TextBugger TextFooler

Distilbert 79.39 / 76.98 59.43 / 64.61 51.81 / 59.49 36.02 / 47.34 38.78 / 50.62
RoBERTaBase 86.66 / 85.84 59.60 / 63.39 49.77 / 53.05 34.76 / 40.68 31.43 / 40.22
BERT-large 84.92 / 84.79 77.38 / 77.96 69.71 / 70.41 65.11 / 65.54 64.80 / 65.91
RoBERTaLarge 89.71 / 89.40 62.85 / 67.93 51.19 / 56.77 37.18 / 45.11 32.81 / 43.27

Robust models (trained with AT)
None A2T PSO TextBugger TextFooler

Distilbert 79.70 / 76.50 66.52 / 67.71 57.34 / 62.90 40.22 / 50.00 45.62 / 54.93
RoBERTaBase 86.55 / 85.54 64.52 / 66.70 53.41 / 56.78 35.61 / 40.88 34.27 / 43.41
BERT-large 84.90 / 85.02 81.37 / 81.69 73.05 / 74.05 68.27 / 68.91 71.69 / 72.80
RoBERTaLarge 90.10 / 89.51 76.94 / 78.36 59.34 / 64.44 41.21 / 48.34 40.69 / 49.33

Robust models (trained with FreeLB)
None A2T PSO TextBugger TextFooler

Distilbert 78.76 / 75.33 64.10 / 66.25 58.03 / 62.94 38.87 / 49.50 43.58 / 52.88
RoBERTaBase 86.10 / 85.59 61.60 / 65.31 51.69 / 54.93 36.06 / 42.42 33.27 / 42.21
BERT-large 85.32 / 85.62 79.34 / 79.64 72.25 / 72.68 65.90 / 66.58 67.44 / 68.49
RoBERTaLarge 90.18 / 89.81 67.28 / 71.61 53.27 / 58.04 36.40 / 44.91 32.83 / 43.84

design these feedback controllers {πt}T −1
t=0 such that some objectives are satisfied. This can be represented

as the following objective function,

min
π

E(x0,y)∼D [J(x0, y, π)] := min
π

E(x0,y)∼D

[
Φ(xT , y) +

T −1∑
t=0

L({xs}t
s=0, πt, ft)

]
,

s.t. xt+1 = Ft(xt + πt(xt), θt),

31

Published in Transactions on Machine Learning Research (03/2024)

where Φ(·) and L(·) represent terminal and running losses, respectively. In general, objectives in the real
world can be structured as terminal and running loss functions. Therefore, optimizing such an objective
function aligns with achieving a real-world goal. Take the development of autonomous vehicles as an example.
This involves guiding the vehicle to a destination along a specific route. This challenge can be approached
as an optimal control problem, where reaching the destination is expressed as a terminal loss function, and
the deviation from the planned route is captured through a running loss function.

The essential task of supervised learning is to approximate some function

F : X → Y, where F = FT −1 ◦ FT −2 ◦ · · · ◦ F1 ◦ F0,

which maps inputs in X ∈ Rd (e.g. images, natural language sequences) to labels in Y (categories, numerical
predictions). The objective of developing robust deep neural networks can be formulated within an optimal
control framework. Here, the aim is to minimize the discrepancy between the model’s predictions and the
actual labels through a terminal loss function, Φ(xT , y), by implementing feedback controllers. However, this
ideal scenario is challenged by the practical limitation that true labels are unavailable during the model’s
inference phase. As a consequence, our focus shifts towards developing robust model predictions through
the development of running loss functions. In this work, we introduce a running loss function that assesses
the state of control at each timestep t,

L({xs}t
s=0, πt, (fP

t , f I
t , fD

t)) := 1
2∥fP

t (xt + πt(xt))∥2
2+1

2∥f I
t (xt + πt(xt) +

t−1∑
s=0

xs)∥2
2

+ 1
2∥fD

t (xt + πt(xt) − xt−1)∥2
2 + ct

2 ∥πt(xt)∥2
2,

This running loss function calculates a loss by measuring the difference between the controlled state and
certain embedding manifolds. These manifolds capture the structural, integrative, and derivative aspects of
state embeddings. Ideally, the states from unperturbed input samples should align with these embedding
manifolds. Thus, when perturbations are introduced to the input, this running loss function assesses the
quality of the state. Minimizing this running loss helps in adjusting the states to correct the effects of such
perturbations. By defining both terminal and running loss functions, solving this optimal control problem is
equivalent to generating feedback controllers {πt}T −1

t=0 , such that the controlled state trajectory of perturbed
input performs similarly to the unperturbed counterpart.

32

	Introduction
	Background on PID Control

	The PID Control-Based Self-Healing Framework for Large Language Models
	PID Control Design via Embedding Manifolds
	An Analytic Solution for Fast Inference
	Theoretical Error Analysis
	Additional Details for Constructing PID Control

	Numerical Experiments
	Experimental Setup
	Robustness Against Adversarial Examples
	Robustness Against Adversarial Dataset
	Ablation Study

	Related Works
	Robustness in NLP
	Deep Learning with Optimal Control

	Discussion and Future Works
	Conclusion
	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	Appendix D

