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Abstract

In the Gricean tradition, pragmatic competence is part of the
general human capacity for social reasoning. Indeed, human
performance in reference games involving ad-hoc implicatures
sometimes aligns with idealized models of rational interac-
tion. But such experiments have also found that humans de-
rive far fewer implicatures than ideal models, subject to in-
dividual differences unrelated to social reasoning. In this
paper, we consider whether these patterns could arise from
the resource-rational deployment of a core social competence,
such that individuals choose from various strategies of inter-
pretation, given those strategies’ resource demands and suc-
cess rates, subject to individually-varying predispositions and
exploration tendencies. We construct a model of this resource-
rational performance in the cognitive architecture ACT-R—to
our knowledge the first mechanistic model of performance in
these tasks—and we examine its predictions for multi-trial ref-
erence games across two model experiments. The model re-
produces the key patterns in the human data, providing an ini-
tial proof of concept for the role of resource-rationality in these
tasks and opening a new avenue for understanding individual
differences in pragmatic reasoning.

Keywords: pragmatic reasoning; resource-rationality; ACT-R

Introduction

In many conversations, we readily interpret and act on utter-
ances which are literally under-informative. For instance, if a
busy baker has loaves of bread with rosemary, with olives and
walnuts, and with olives alone, they are likely to hand you the
latter if you ask for “bread with olives.” They would be mak-
ing a good guess to your intentions; intuitively, if you wanted
the option with walnuts too, you would have said something
else. Per Grice (1975), and much subsequent work, many in-
ferences can be thought of in this way, as part of a general ca-
pacity for social inference, considering the expected behavior
of cooperative, goal-oriented agents.

Recently, this approach has been evaluated by adopting
formalizations of social inference using the tools of game
theory and Bayesian reasoning (Degen, 2023; Franke, 2011;
Goodman & Frank, 2016; Jdger, 2010; Parikh, 1991; Van
Rooy, 2004) and considering how well such models predict
production and comprehension behavior in simple “reference
games” (Carstensen et al., 2014; Degen & Franke, 2012;
M. C. Frank & Goodman, 2012; M. C. Frank et al., 2016;
Qing & Franke, 2015; Rohde et al., 2012; Stiller et al., 2011,
2015). When the data match the predictions of these mod-
els, they seem to support the core Gricean hypothesis linking
communicative inference with general social reasoning.

But what should we conclude when an experiment reveals
behavior that these idealized accounts cannot explain? In fact,
participants in single-trial reference games systematically ne-
glect certain predicted inferences (Sikos et al., 2021), which
only seem to ever emerge as a factor of experience in multi-
trial games (Degen & Franke, 2012)—and which even then
are subject to substantial individual differences, including
variance linked to non-social problem-solving tasks (Mayn
& Demberg, 2023b). These patterns seem to be at odds with
the idea of a robust capacity for social reasoning.

In this paper, we emphasize that in order to compare ob-
served behavior to theories of capacity, we need also a non-
trivial theory of performance, the goals and limitations of the
agent who is exercising that capacity. In particular, we con-
sider the hypothesis that comprehenders in an actual interac-
tion engage in resource-rational adaptation (Hawkins et al.,
2021; Howes et al., 2009; Lieder & Griffiths, 2020): they
explore a space of possible interpretation procedures, driven
by efficiency. We present a model of this type of comprehen-
der in the ACT-R cognitive architecture (Anderson & Lebiere,
1998), and explore its behavior under a variety of parameter
settings, comparing against the patterns that we aim to ex-
plain from prior literature. In Experiment 1, we show that
the model correctly predicts that certain implicatures should
be initially unlikely, but increase over experience in the task.
Crucially, the model also can generate patterns of individual
differences which would correlate with problem-solving per-
formance, by varying parameters controlling the dynamics of
strategy exploration (Stocco et al., 2021). In Experiment 2,
we also vary agents’ predisposition towards pragmatic strate-
gies, as a proxy for variance in Theory of Mind, producing
not only an expected correlation, but also an interesting sub-
additive interaction with problem-solving. On the whole, we
see our results as a promising proof of concept for how perfor-
mance demands can explain the complexities of the behavior
we see in reference game studies.

Background

Previous experiments using the reference game paradigm
have revealed four key generalizations that we consider cru-
cial for a successful model of behavior in these games: (a)
asymmetries of difficulty among trial types, (b) task adapta-
tion, (c) individual differences linked to Theory of Mind, and
(d) individual differences linked to problem-solving.
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Figure 1: Examples of Simple and Complex trials in this type
of reference game.

Task. The tasks we will discuss and model mainly involve
single-message iconic communication as in Figure 1, with
comprehenders asked to interpret a message sent by an (imag-
inary) interlocutor attempting to indicate one of three possi-
ble referents in the common ground (M. C. Frank & Good-
man, 2012). In critical trials, the literal value of the message
matches two referents, the rarget and competitor, but an in-
ference is available which could lead to a preference to select
the farget. In this particular version of the game, the message
comes from a constrained bank (also common ground); some
features cannot be communicated (here, ‘blue’ and ‘square’).

Degen and Franke (2012) introduce this version of the
game in order to compare performance across two types of
trials. In Simple trials, the message bank allows only one
matching message for the target (the observed message), but
two for the competitor. In this case, even reasoning about
the expected behavior of a purely literal speaker (‘first-order
pragmatic interpretation’) will reveal a difference in likeli-
hood in favor of the target—e.g. in Fig. 1, ‘red” messages will
be more likely from a speaker describing the red square (who
will always send this message) vs. one describing the red tri-
angle (who should only send ‘red’ half the time). In Complex
trials, the target and competitor both match two messages, but
an inference can still be drawn if one considers the expected
behavior of a cooperative speaker (‘second-order pragmatic
interpretation,’ the type of reasoning assumed in Grice, 1975
and M. C. Frank and Goodman, 2012)—in Fig. 1, because
the competitor has an alternative unambiguous message (‘tri-
angle’), ‘red” messages will be infrequent for that competitor
and relatively more likely for the target.

Asymmetries and Adaptation. Across many studies, Sim-
ple trials are seen to elicit many more implicatures than Com-
plex (Degen & Franke, 2012; M. C. Frank et al., 2016; Franke
& Degen, 2016; Stiller et al., 2011); Franke and Degen (2016)
report a drop from 77% target selections in Simple trials to

57% in Complex. They take this asymmetry as evidence that
second-order pragmatic interpretation is rarely applied.

In particular, evidence suggests that second-order prag-
matic interpretation is only ever applied when participants
can realize through repeated exposure that it is necessary. Tar-
get selection on Complex trials is even less frequent in single-
or few-trial experiments, where several studies have found
no evidence of second-order interpretation (M. C. Frank et
al., 2016; Sikos et al., 2021; Stiller et al., 2011, though cf.
partial evidence in Qing and Franke, 2015). Indeed, sev-
eral longer studies report evidence that performance increases
across both types of critical trial over time (Degen & Franke,
2012; Mayn & Demberg, 2023a, 2023b).

Individual Differences. Within these general trends, re-
search has also revealed that comprehenders are remarkably
diverse in their individual game performance. While Franke
and Degen (2016) observe that participants filling the role of
the speaker are well-categorized as following a single strat-
egy, participants playing as comprehenders varied widely,
with evidence for at least three classes corresponding to ex-
pected performance for first-order interpretation (succeeding
on Simple but at chance on Complex), second-order interpre-
tation (succeeding at both, somewhat rare), and even purely
literal interpretation (at chance on both, not uncommon). A
recent follow-up by Mayn and Demberg (2023b; see also ear-
lier results in Mayn and Demberg, 2022) explored potential
sources for this variation, subjecting participants to a battery
of several additional tasks intended to measure individual dif-
ferences in working memory, Theory of Mind, and non-social
problem-solving. Figure 2 illustrates the two patterns they
observe: (1) a main effect of Theory of Mind ability (ToM), as
measured by the Reading the Mind in the Eyes task (Baron-
Cohen et al., 2001) and the Short Story task (Dodell-Feder
et al., 2013), associated with higher rates of target selec-
tions across both conditions, and also (2) effects of problem-
solving ability, as measured by a sample of Raven’s Progres-
sive Matrices (Raven et al., 1998) and the Cognitive Reflec-
tion Test (Frederick, 2005), associated with higher rates of
target selections, most strongly in the Simple condition.

The former effect is unsurprising, under a Gricean account
where these inferences are supported by reasoning about the
intentions of other agents, and also given previous findings of
relationships between ToM task performance and other prag-
matic tasks (Fairchild & Papafragou, 2021; Trott & Bergen,
2019). But the latter requires some explanation, as the kinds
of careful reasoning required by these problem-solving tasks
do not readily map onto any component of our theories for
pragmatic competence.

This connection can be better understood by examining
the literature in cognitive psychology on Raven’s Matrices,
which has identified general constructs that may underlie
variance in the task at a finer level than the notion of an ab-
stract problem-solving ability. One source of individual dif-
ferences in variation is the identification of a suitable strat-
egy for completing the task (Gonthier & Thomassin, 2015;
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Figure 2: Relationships in Mayn and Demberg (2023b) be-
tween target selection and PCA constructs for Theory of
Mind ability and problem-solving ability. In all figures, er-
ror bars indicate bootstrapped 95% Cls, and the dashed line
marks chance (guessing between target and competitor).

Gonthier et al., 2024; Hayes et al., 2011; Jarosz & Wiley,
2012; Vigneau et al., 2006). Gonthier et al. (2024) report that
in their sample, more than half of developmental improve-
ment in Raven’s Matrices performance with age can be ex-
plained by better strategy selection. Another source, high-
lighted in recent work by Stocco et al. (2021), is how partic-
ipants explore the space of possible solutions to each prob-
lem, both their persistence—how long they are willing to cy-
cle through possible hypotheses before giving up (see also
Cheyette and Piantadosi, 2024)—and how quickly they disen-
gage from failed hypotheses (cf. Storm et al., 2011). Stocco
et al. (2021) formalize the latter as the strength of negative
feedback (Fygg) self-applied within a reinforcement learning
system (M. J. Frank et al., 2004), which they implement in
ACT-R, and validate with a secondary task. We adopt the idea
here that much variation in complex problem-solving tasks is
determined by domain-general resources for exploration, and
in particular, persistence and Fygg.

Modeling in ACT-R

We propose that we can account for all four key patterns
(asymmetries of difficulty, task adaptation, and individual dif-
ferences linked to both Theory of Mind and general problem-
solving) as consequences of resource-rational adaptation dur-
ing performance of this task. In doing so, we follow a com-
mon modern position on the basic goal-oriented flexibility of
cognition (Howes et al., 2009; Lieder & Griffiths, 2020): that
individuals seek through task experience to maximize the ex-
pected utility of their strategy for the task, where a strategy’s
utility is crucially a function of both the likelihood of suc-
cess, and the resources and time required to carry out the
strategy. Hawkins et al. (2021) use resource-rationality to ex-
plain very similar patterns in a viewpoint asymmetry task,
where comprehenders initially neglect the speaker’s perspec-
tive, and subsequently adapt. Applying this story here, we
consider that comprehenders begin from a state of efficiency-
motivated pragmatic reluctance, but subsequently lower ex-
pectations about the utility of less pragmatic strategies, iden-

tify alternative strategies to try, and raise expectations about
the utility of those. This process should lead to changes in
behavior over time, with starting points dependent on initial
predispositions (which we take to be related to performance
on ToM tasks), and degrees of improvement dependent on
the dynamics of exploration behavior (which we take to be
related to performance in problem-solving tasks).

We examine the quantitative predictions of this account
by creating a model of a resource-rational comprehender in
a multi-trial reference game task. To test the account as
stated above, this model has two necessary components: (1)
it should implement several strategies for the task realisti-
cally given the constraints of real-time human cognition, so
that they can be meaningfully compared in terms of their
realistic execution time, and (2) it should implement some
individually-parameterized mechanism for exploring those
strategies over task performance and updating expected util-
ity accordingly. We choose to specify our model in ACT-R
(Anderson & Lebiere, 1998) because it is well-suited to these
goals: it is designed to account for not only the outcome
but also the plausible timecourse of various processes, and
it implements a parameterizable mechanism for utility learn-
ing and exploration.! The goal of efficiency is built into the
latter by the use of temporal difference learning (Fu & Ander-
son, 2006), penalizing strategies which only lead to success
at a long delay. The model itself was implemented in Python
using the pyactr library (Brasoveanu & Dotlagil, 2020).2

Design. ACT-R models treat cognitive processes like
problem-solving as the firing of sequences of conditioned
rules, which direct sensory, memory, and motor operations,
shifting information between modules of the architecture in
steps that consume various amounts of time. We equip the
basic model with rules that produce three such sequences
corresponding to the mechanical implementation of literal,
first-order, and second-order interpretation in this task. The
sequence corresponding to literal interpretation merely com-
pares an observed message with each possible referent, taking
about 1s to successfully interpret an unambiguous message.
The first-order sequence also compares matching referents by
the number of alternative messages available in the message
bank, taking about 3.5s in a Simple trial. Finally, the second-
order sequence further compares those alternative messages
by the number of other referents they could match, taking
about 4.0s in a Complex trial.

As schematized in Figure 3, the agent decides between
these strategies by virtue of their utility, updated whenever
they are attempted within a cycle of multiple attempts per
trial. Each trial begins with an attempt at implementing the
literal interpretation strategy. The agent, like humans in the

By comparison, a non-mechanistic approach as in Hawkins et
al. (2021) cannot compare resource demands in terms of execution
time. Otherwise, individual differences in the task adaptation mech-
anism should be in principle possible in Bayesian-update models
like Brochhagen (2021) or Hawkins et al. (2022), but we find it eas-
ier to explore these differences in the reinforcement learning idiom.

2See Duff et al. (2025) for our model code and simulation results.



experiments above, receives no signal of correct interpreta-
tion, but considers a strategy successful if it can identify a
single preferred referent for the observed message, in which
case it executes motor commands to select it as a response,
and positive feedback triggers an update to that strategy’s util-
ity.> When strategies do not identify a preferred referent (e.g.
when they cannot break a tie, as in the literal strategy as ap-
plied to the examples in Figure 1), utility is updated using
negative feedback (Fyzg)*, and strategy selection repeats by
selecting the current highest-utility strategy, subject to some
noise.> If no successful strategy is found before the model’s
internal clock (Taatgen et al., 2007) exceeds its persistence
parameter T, this loop is interrupted by a forced guess.

Evaluation. We will evaluate this model here on simulated
multi-trial experiments of the design introduced in Franke and
Degen (2016), featuring 12 Simple and 12 Complex trials,
plus 9 completely Ambiguous, and 33 completely Unambigu-
ous fillers, randomly shuffled and with referents randomly
ordered. Because the human data has only tracked final re-
sponses, our evaluation will focus on the model’s response
distributions. Nevertheless, we note that the model also gen-
erates predictions about gaze distribution and response times,
which should be investigated in future work.

We report meaningful generalizations over the results by
fitting Bayesian logistic regressions over target selection in
critical trials using the R package brms (Biirkner, 2017), fol-
lowing the analysis used in Mayn and Demberg (2023b). Re-
gressions included effects of condition (sum-coded, complex
= +1.0), trial number (centered), scaled and centered individ-
ual difference parameters, and all of their two-way interac-
tions. We take as notable any parameters whose 95% highest
density posterior intervals exclude 0.

Model Experiment 1

We first investigate the predictions of the model while inde-
pendently varying persistence and the strength of negative
feedback (Fyeg), to examine whether factors that are hy-
pothesized to control variance in problem-solving tasks like
Raven’s Matrices would also control variance in this task,
given our model.

Method. Based on pilot simulations, we chose to examine
performance with one of twenty Fygg values between —0.05
and —10.00, and one of ten persistence values between 24 and
33, running 25 simulations for each combination of values for
a total of 5000 simulations. Utility learning used the default

3We used a fixed Fpog of 5.0.

4The particular utility-learning algorithm as implemented in
ACT-R leads to more extreme negative shifts for strategies which
take longer to execute: Uy ; = Uy, ;1 + 0L<(F -9)— U,,,t_l), where
Uy, is the utility of rule n at time ¢, o is the learning rate, F is the
feedback received, and & is the time elapsed since rule n last fired.

SWhen a failed strategy still has the highest utility after negative
feedback has been applied, it will be resampled. We follow Stocco et
al. (2021) in adding another loop of negative feedback in case of re-
sampling, to simulate more effortful disengagement from strategies
with this kind of persistent advantage.

learning rate of 0.2, and noise with the scale parameter 0.6.
Initial utilities for literal, first-order, and second-order inter-
pretation were 5.0, 2.5, and —-5.0, respectively. For refer-
ence, in our model, with average Fygg, a strategy with 100%
success rate and no delay would approach a utility of 5.0,
while strategies with 100% success rate and a 10s delay or
a 50% success rate and a 5s delay would approach a utility
of -5.0. Other free parameters influencing processing speed
were set by common defaults and best practices for ACT-R
modeling (ACT-R Research Group, 2022).

Results. The model reproduces the attested main effect of
condition, with lowAer target selection rates in Complex trials
than Simple trials, B = -1.00 [-1.03, -0.98].

As seen in Figure 4, the model also produces reliable posi-
tive relationships between target selection and both individual
parameters for exploration: Fygg, [AS =0.76 [0.74, 0.78],6 and
persistence, [3 =0.95[0.92, 0.97]. Condition modulates both
effects: comparable increases in Fygg delivgred smaller in-
creases in target selection iAn Complex trials,  =-0.14 [-0.16,
-0.13], as for persistence, § = -0.56 [-0.58, -0.541.7

Both conditions improve over task exposure, 6 = 0.03
[0.03, 0.03], equivalent to an increase of 2 logits over the
course of the experiment, or an increase from 72% to 95%
accuracy in critical trials. Additional inEeractions with Fygg,
B =0.01[0.01, 0.01], and persistence, 3 = 0.01 [0.01, 0.01],
show that this adaptation effect was larger with parameters
that allowed for faster adaptation (Figure 5).

Discussion. Our ACT-R model of resource-rational compre-
hension in a reference game is able to successfully reproduce
conditional asymmetries and gradual improvements in target
selection over multiple trials. In addition, by linking rates of
adaptation to domain-general resources for rapid exploration
of a search space, the model predicts a positive association
between target selection in this task and accurate problem-
solving in any other task which should require this type of
exploration, as Stocco et al. (2021) argue for Raven’s Ma-
trices. This would seem to account for the association with
problem-solving observed in Mayn and Demberg (2023b)—
including the interaction with condition. The generality of the
predicted association, and its dependence on these particular
parameters, should be tested in future work.

A further prediction, rates of adaptation varying depend-
ing on exploration parameters, did not emerge as a signifi-
cant interaction in Mayn and Demberg (2023b), although we
note that an interaction as small as the one we observe here
is likely difficult to detect under realistic conditions. More
critically, we note that expected adaptation effects, and over-
all rates of target selection, are somewhat higher than those
reported by Mayn and Demberg. This is likely due to an
over-representation of highly-effective exploration strategies
in our simulations here. We consider that actual participants

%Here, higher values of Fygg mean stronger negative feedback.
"The two parameters also show an unsurprising super-additive
interaction: increases of Fygg are increasingly effective at higher

values of persistence, G =0.26 [0.24, 0.28].
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Figure 4: ACT-R model predictions for the relationship be-
tween target selection and individual differences of explo-
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age), across critical conditions.
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Figure 5: ACT-R model predictions for the relationship be-
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the simulated experiment), mediated by persistence.

may not be uniformly distributed across the Fygg and persis-
tence values we considered here, but instead concentrated in
the lower half or third of those ranges; we hope that future
work can infer more about that distribution.

Model Experiment 2

We next investigate the predictions of the model while vary-
ing the initial expected utility of first- and second-order in-
terpretation strategies, to determine whether this model can
also capture hypothetical differences in predisposition to-
wards pragmatic reasoning.

Method. Holding the starting utility of literal interpretation
constant at 5.0, we vary the possible values for first- and
second-order strategies (U; and U,) within the plausible range
of [0.0, -2.5, -5.0, -7.5, —10.0].8 As we assume participants
should always initially prefer first-order to second-order rea-
soning, we investigate only the ten combinations of values in
that range where U; > U,. We manipulated these utility set-
tings in addition to the parameters above, with 5 simulations
per unique combination, for a total of 10000 simulations.
Results. Regressions yielded similar relationships for all ef-
fects and interactions discussed for Experiment 1. In addi-
tion, we pbserve positive effects of Uy, ﬁ =0.16 [0.15, 0.18],
and U, B = 0.36 [0.34, 0.38]. Unsurprisingly, U, is particu-
larly important for Simple trials, where it instantiates a min-
imal threshold for learning an effective strategy, p = -0.20
[-0.21, -0.18], and likewise for U, in Complex trials, § = 0.05
[0.03, 0.06]. It’s hard to say exactly how one should map
these separate utilities back to the global construct of ToM
ability, where they are presumably closely correlated. We
note that the marginal effect of U; on simple accuracy, 6 =
0.37, is roughly equal to the marginal effect of U, on com-
plex accuracy, 5=0.41.

Moreover, these effects of initial estimated utility interact
variously with the other two parameters. Figure 6 shows in-
teractions between Fygg with Uy, B =-0.09 [-0.10, -0.08],
and with Uy, B = 0.15 [0.13, 0.16]. These are largely driven
by boundary effects: notice that in the first panel, as U; in-
creases, Simple accuracy quickly approaches a ceiling, re-
ducing the effectiveness of Fygg, while in the second panel,
as U, increases, Complex accuracy moves away from a floor
where Fygg hardly mattered towards cases where learning
can be much more effective.’

Discussion. Our model is able to jointly capture individual
differences of exploration abilities, in parameters governing
the dynamics of adaptation, with differences in predisposi-
tions to social reasoning, modeled here as differences in ini-
tial expected utilities for pragmatic interpretation. Beyond
that basic proof of concept, we also see that the model ex-
pects a certain dependency between these factors: if partici-
pants have an extreme predisposition towards or away from

8To compare to the explanations of values above: a utility of 0.0
is equivalent to the belief that a strategy is e.g. 80% successful and
takes 3s, while a utility of -10.0 maps to e.g. 50% success in 10s.

9Note that the regressions we fit cannot fully capture these non-
monotonic interactions, although the patterns are clear.
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pragmatic reasoning, the efficiency of their exploration has
relatively little effect on their behavior. As a result, we would
expect that the relationship between performance on this task
and performance on general problem-solving tasks should be
somewhat disrupted for individuals with especially low or
high performance in ToM tasks. To examine whether this
may be true, we perform a reanalysis of the Mayn and Dem-
berg (2023b) data including the potential for such an inter-
action. We observe a small trend towards sub-additivity, [ =
—0.06 [-0.24, 0.11], such that a robust main effect of problem-
solving, B =0.34[0.13, 0.36], is no longer credible for partic-
ipants with ToM performance two standard deviations above
the sample mean, [ = 0.22 [-0.14, 0.58]. This is somewhat
apparent in Figure 2, where slopes associated with problem-
solving ability are less pronounced in the darker lines cor-
responding to the highest ToM ability, a pattern visible more
clearly in our model’s output (Figure 6). The Mayn and Dem-
berg data thus do not rule out such an interaction, nor do they
represent strong evidence in favor of one. We think that in the
end, proper interpretation of these patterns requires a clearer
vision for how these utility values should be related to global
ToM performance. Nevertheless, we are interested to note
that the model was able to generate a novel prediction for a
complex dependency that may be empirically plausible.

General Discussion

We have constructed a mechanistic model of comprehen-
sion in a multi-trial reference game—to our knowledge, the
first for any similar task'®—allowing us to incorporate a the-
ory of ideal Gricean competence within an explicit model
of resource-rational adaptation. The results of our model-
ing experiments provide a proof of concept that the four pat-
terns we have highlighted—attested in the recent literature
on these games, and mostly unexplained by Gricean compe-
tence alone—are natural results of this theory of performance.
Because such comprehenders would tend to prefer efficient
strategies of interpretation, they would be expected to show
higher performance in Simple vs. Complex trials. Because

10 Although there is a longer tradition of algorithmic modeling for
referential production, e.g. Dale and Reiter (1995).

they would revise estimated utilities downward for simpler
strategies when they have been ineffective, they would be ex-
pected to increase in pragmatic responses over experience in
the task. Because they could initially begin with different ex-
pectations about the value of social reasoning, their rates of
target selection would be expected to vary in association with
other tasks that require social reasoning (e.g. the ToM tasks
of Mayn and Demberg, 2023b). And crucially, because they
would vary in the dynamics of their on-task exploration, their
rates of target selection would also be expected to vary in
association with any other tasks that require that exploration
(e.g. the problem-solving tasks of Mayn and Demberg).

This explanation requires no major changes to the core
Gricean hypothesis—i.e. we need not conclude from low per-
formance in Complex trials that comprehenders are incapable
of reasoning about the intentions of their interlocutor. Nor do
we need to claim that comprehenders are unlikely to perform
such reasoning in everyday interactions. Instead, we can see
low and variable rates of implicatures in these tasks as the re-
sult of a guess that social reasoning may not be worthwhile in
this case, plus low likelihood of investing the time necessary
to revise that guess. And indeed, if a resource-rational com-
prehender new to this task would realize the worth of prag-
matic reasoning within just 24 trials where it is necessary, it
is certain that they will have already realized the worth of this
reasoning in more common communication scenarios.

We think resource-rational exploration may be relevant
in other ways during more naturalistic pragmatic interpreta-
tion. It seems to us that interpreting any utterance which is
anomalous for typical modes of comprehension, like many
utterances which trigger implicatures, likely requires explo-
ration similar to what we model here. Kravtchenko and Dem-
berg (2022) demonstrate one such case, an ‘atypicality in-
ference,” where, when speakers explicitly mention an event
which should be predictable, comprehenders interpret that
the event must have been in fact unexpected. If these cases
require identifying that particular inference from a pool of
many other hypotheses, it could help explain why Ryzhova
et al. (2023) observe an association between rates of atyp-
icality inference and general problem-solving performance,
much like we have discussed for the reference game. We plan
to extend our model to such cases in future work.

As for reference games, it is clear that more fine-grained
data will be needed to validate the approach we take here.
We have already begun assembling that data: in Duff et al.
(in prep.), we follow up on Mayn and Demberg (2023b), col-
lecting measures of Fygg and persistence in particular, and
show that these constructs do in fact control the covariance
between the reference game and other problem-solving tasks.
We also show that response times follow patterns across con-
ditions and responses which align nicely with ACT-R predic-
tions. We expect that further evaluation of the timecourse
predictions of our model will be useful as we continue on the
path from theories predicting the likelihood of pragmatic be-
havior to theories which explain its derivation in real time.
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