
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOPGQ: POST-TRAINING QUANTIZATION FOR GNNS
VIA TOPOLOGY BASED NODE GROUPING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNN) suffer from huge computational and memory costs
in processing large graph data on resource-constrained devices. One effective
solution to reduce costs is neural network quantization, replacing complex high-bit
operations with efficient low-bit operations. However, to recover from the error
induced by lower precision, existing methods require extensive computational costs
for retraining, which are many times larger than conventional GNN training. In
this circumstance, we propose TopGQ, the first post-training quantization (PTQ)
framework for GNNs, enabling an order of magnitude faster quantization without
backpropagation. We analyze the feature magnitude of vertices and observe that
it is correlated to the topology regarding their neighboring vertices. From these
findings, TopGQ proposes to group vertices with similar topology information
of inward degree and localized Wiener index to share quantization parameters
within the group. Then, TopGQ absorbs the group-wise scale into the adjacency
matrix for efficient inference by enabling quantized matrix multiplication of node-
wise quantized features. The results show that TopGQ outperforms SOTA GNN
quantization methods in performance with a significantly faster quantization speed.

1 INTRODUCTION

Figure 1: Comparing duration of existing GNN
quantization methods against TopGQ.

Graph neural networks (GNNs) attract a great
amount of attention due to their ability to process
diverse unstructured data. They have achieved
success in many areas such as recommendation
systems (Pal et al., 2020; Fan et al., 2019; Zhang
et al., 2023), molecular interaction (Wale et al.,
2008; Borgwardt et al., 2005), transportation net-
works (Bai et al., 2020; Cao et al., 2020), and social
network analysis (Qiu et al., 2018; Arazzi et al.,
2023). However, GNNs often suffer from huge
computational and memory costs due to increasing
demands for processing large graphs, especially on resource-constrained devices.

One promising direction to circumvent this issue is neural network quantization (Choukroun et al.,
2019; Zhao et al., 2019; Choi et al., 2021), which efficiently reduces the computation and memory
requirements of GNN inference by utilizing reduced numerical precision for computations. However,
despite its advantages, applying quantization to GNNs is considered difficult due to the extremely
diverse vertex feature magnitudes. This is known to be caused by the necessary message-passing of
the GNN algorithm, which aggregates features from neighboring vertices. Since the quantization
process is known to be highly sensitive to the magnitude outliers (Wei et al., 2022), such diversity in
aggregated features in GNNs results in high quantization errors.

To handle the magnitude outlier problem, several methods (Tailor et al., 2020; Zhu et al., 2022)
have been proposed to adopt quantization-aware training (QAT). They reduce quantization error by
considering the degree information (Tailor et al., 2020) or applying mixed-precision strategy (Zhu
et al., 2022). However, QAT methods accompany huge computation and memory costs for the
quantization process, requiring excessive resources and time larger than full-precision pretraining
target GNN architecture. Figure 1 reports the time it takes to quantize common GNN architectures

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

using prior GNN quantization methods (Tailor et al., 2020; Zhu et al., 2022). Measured in wall-clock
time, the quantization time easily exceeds 100 minutes, and even up to 4.9 days (ogbn-products,
Degree-Quant) when the graph size increases.

To this end, we propose TopGQ, the first accurate post-training quantization (PTQ) framework for
GNNs addressing the aforementioned issues of existing GNN quantization methods. TopGQ does
not involve any form of gradient computation or parameter updates, which makes the proposed
method significantly faster compared to the baseline and requires low memory consumption. Instead,
TopGQ focuses on the local topological information of the graphs to determine accurate quantization
parameters. As a result, our method TopGQ shortens the quantization time by an order of magnitude,
making GNN quantizations much faster and more efficient.

The key to achieving high performance within such a short time (i.e., without gradient computation)
is to focus on the local topology of the graphs. We observe that the existing method relying on the
indegree of the vertices is insufficient to capture the diversity of the feature magnitudes. Instead, we
propose topology-based node grouping. Because the magnitude of a node feature is determined by
local neighbors, we arrange the vertices into several quantization groups that share similar indegree
and local Wiener index. To perform the grouping within a short time, we devise an efficient algorithm
for computing the local Wiener index. Lastly, to utilize the groups for a quantized inference kernel,
we additionally provide scale absorption method to enable efficient integer matrix multiplication of
node-wise quantized feature matrix. The extensive experimental results show that TopGQ outperforms
the existing SOTA method for GNN quantization with up to 358× speedups with better or comparable
accuracy, establishing a new standard of GNN quantization.

Our contributions can be summarized as follows:

• We show that the magnitudes of node features in GNN are correlated with local topological
information from degree centrality and Wiener index.

• We propose a topology-based node grouping, which groups vertices with similar topological
characteristics to reduce quantization error from high feature magnitude variance of GNN.

• We propose scale absorption to enable efficient integer arithmetic of node-wise quantized
GNN operation by absorbing node-wise scale into an adjacency matrix.

• We propose the first PTQ method for GNN, which outperforms the existing training-based
quantization method with meaningful margins while bringing up to 358× less quantization
time compared to the baselines.

2 PRELIMINARIES

2.1 GRAPH NEURAL NETWORKS

Let graph G = (V,E), where V is a set of vertices and E is a set of edges. Each vertex vi consists
of feature vector hi and adjacency matrix is A ∈ Rn×n for n vertices, where Ai,j = ei,j , if
ei,j ∈ E, else 0. To embed topological information in vertex feature, GNN gathers information
from neighboring vertices uj ∈ N (vi) to update hidden vertex feature hi of vi, which is called the
message-passing algorithm. The message-passing algorithm consists of two parts: combination and
aggregation. Firstly, hidden vertex feature h

(l)
i is multiplied with weight matrix W (l) of l-th GNN

layer (combination), then the hidden vertex feature h
(l)
i of vi is updated (aggregation) as following:

h
(l+1)
i = ϕ(Wh

(l)
i ,

⊕
j∈N (i)

ei,jWh
(l)
j), (1)

where ϕ feature update operator and
⊕

is a permutation-invariant aggregation, such as sum or mean.

GNN computation can be represented by multiplications of vertex feature matrix X ∈ Rn×din =
[h1, · · · , hn]

T , weight matrix W ∈ Rdin×dout , and adjacency matrix Ã ∈ Rn×n as follows:

X
(l)
comb = W ·X(l), (2)

X(l+1) = σ(Ã ·X(l)
comb), (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where σ is nonlinear operation, Ã may vary with GNN architecture, e.g., GCN (Kipf & Welling,
2016) utilizes normalized graph laplacian matrix Ã = D−1/2AD−1/2, while GIN (Xu et al., 2019)
uses binary adjacency matrix Ã = A. GraphSAGE (Hamilton et al., 2017) differs in the aggregation
phase by sampling a subset of neighboring vertices instead of considering all neighbors.

2.2 QUANTIZATION

Quantization replaces high-bit floating-point operations with low-bit integer operations. We use
simple yet effective uniform integer quantization as with scale (s) and zero-point (z) as follows:

xq = Q(x; s, z) = clamp(⌊s · x− z)⌉, qmax, qmin), (4)

s = (2k − 1)/(xmax − xmin), (5)

where k is quantization bit, qmax, qmin is maximum and minimum value of k-bit integer repre-
sentation, and ⌊·⌉ is rounding operator. For symmetric quantization, which has the symmetrical
representation range centered with zero, z = 0. For asymmetric quantization, on the other hand, z
is calculated as z = s · xmin + 2k−1. Also, each row or column may have different quantization
parameters (s, z), which are calculated independently according to quantization dimension, called
row-wise and column-wise quantization, respectively.

There are two mainstream types of quantization to alleviate the effects of quantization error: Post-
training quantization (PTQ) and quantization-aware training (QAT). On the one hand, PTQ methods
go through calibration, which denotes the process of adjusting the scale, zero-point, and rounding
directions of quantization using only a small set of data. Conversely, QAT methods directly apply
gradient-based training to explicitly reduce the quantized network’s target loss. The major discrepancy
between the two types of methods is that QAT generally incorporates updating weight parameters
and optionally some quantization parameters, while PTQ methods focus on quantization parameters
without weight updates and is much faster.

2.3 QUANTIZATION OF GRAPH NEURAL NETWORKS

To achieve efficient inference in terms of computational cost and memory requirements, we should
consider both the combination phase (Equation (2)) and the aggregation phase (Equation (3)):

X
(l)
comb = Q(W ; sW , zW) ·Q(X(l); sX(l) , zX(l)), (6)

X(l+1) = σ(Q(Ã; sÃ, zÃ) ·Q(X
(l)
comb; sX(l)

comb

, z
X

(l)
comb

)). (7)

As we can see in Equation (6) and Equation (7), we have to choose quantization policy for each W ,
X(l), X(l)

comb, and Ã. These design choices highly affect the final accuracy and inference efficiency
of a quantized network, and many baselines choose different policies.

Prior methods (Tailor et al., 2020; Zhu et al., 2022) each take on a different policy which balances
between better accuracy and efficiency. Degree-Quant (Tailor et al., 2020) applies per-tensor quanti-
zation for all matrices involved in both combination and aggregation. While this requires the smallest
amount of memory, it suffers from quantization outliers as a single high-magnitude channel or element
can affect the quantization scale. A2Q (Zhu et al., 2022) mitigates this issue by applying column-wise
quantization for W and Xcomb while row-wise (node-wise) quantization for X and Ã. As row- and
column-wise quantization can separate quantization parameters of each node- and feature-dimension,
respectively, it is more robust to outlier vertices/channels at the expense of increased cost.

3 RELATED WORK

GNN Quantization is a promising direction to efficiently reduce extensive computational costs and
memory requirements of graph neural networks Kipf & Welling (2016); Xu et al. (2019); Veličković
et al. (2018), as they suffer from large size of real-world graphs. Many pieces of research (Chen
et al., 2022; Phan et al., 2018; Ding et al., 2021; Zhu et al., 2022; Tailor et al., 2020; Feng et al.,
2020) aim to quantize GNNs, including weight parameters, node features, and adjacency matrix.
Degree-Quant (Tailor et al., 2020) is the first work to quantize GNN architectures, using quantization-
aware training (QAT) to allow high-degree vertices to retain full-precision features at training and be

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

quantized later for inference. SGQuant (Feng et al., 2020) and A2Q (Zhu et al., 2022) are also QAT
methods targeting GNN architectures, but they differ in that they allow mixed-precision to assign
higher bitwidth to high-magnitude vertices. Notably, existing GNN quantization methods adopt
QAT, i.e., incorporating gradient-based iterative weight updates, which require huge computational
overheads and memory requirements (Figure 1). On the other hand, TopGQ is free from such a
burden because it only needs to execute inference for a few batches for calibration.

Graph Topology in GNNs is often integrated during training to help the model effectively learn
the structural information (Ji, 2019; Zhang & Lu, 2020; Hu et al., 2022; Wu et al., 2018; You et al.,
2021; Brasoveanu et al., 2023). For example, Ji (2019) uses degree centrality to find highly central
vertices in their pooling layer as they are more important for effective representation learning. Also,
Zhang & Lu (2020) uses betweenness centrality to assign weights to each node during aggregation.
Wu et al. (2018); Brasoveanu et al. (2023) uses Wiener index from chemoinformatics as inputs of
GNNs to enhance its performance on general tasks. However, these methods do not relate topological
information with node feature magnitudes, especially for quantization.

4 MOTIVATIONAL STUDY

(a) GIN, Cora (b) GCN, PubMed

Figure 2: Comparing feature magnitude range of two grouping techniques: indegree (left) and TopGQ
(right). For both plots, x-axis denotes feature magnitude and y-axis denotes sorted group index.

For GNNs, the range of the feature values largely depends on each node’s structural properties
because of their unique message-passing framework. However, there has been a limited effort in
leveraging structural properties in GNN quantization, and existing works Feng et al. (2020); Tailor
et al. (2020) only utilize node indegree which only takes into account 1-hop neighbors. We find that
indegree is a suboptimal measure when it comes to determining the quantization group. In Figure 2,
we plot the feature magnitude of each quantization group using indegree as the sole metric, and we
compare it against the groups used in our method TopGQ. Using only indegree to group the node
features, each group tends to have a large range of values with uneven distribution of nodes among
the groups. The extreme spread of values within each group would lead to poor representation of
the dense region, leading to large quantization errors. Instead, TopGQ proposes to use a topological
feature that can better capture such information. Figure 2 shows that each quantization group of
TopGQ has a smaller range with a more even distribution across the groups.

5 METHODOLOGY

Quantization of GNN architectures has been studied to some depth (Tailor et al., 2020; Feng et al.,
2020; Zhu et al., 2022), but not under the light of PTQ. The goal of TopGQ is to rapidly perform
quantization with PTQ, while retaining QAT-like performance on GNNs. For this, we propose
topology-based node grouping and scale absorption, which captures the local topology information
into GNN quantization.

5.1 QUANTIZATION WITH TOPOLOGY-BASED NODE GROUPING

Figure 3a shows the group generation strategy of TopGQ. Due to the nature of the aggregation phase
(Equation (3)), it is evident that the feature magnitudes of a vertex depend greatly on how many and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ccc
cc

k-hop subgraphNode vi ∈ V

i = 1... |V |

I(vi), Wk(vi)

2

3

3

3

2

2

2

2

2 IG1, WG1

…

IG2, WG2
IG3, WG3

3

IG4, WG4

Feature
Magnitude

Compute

I(v1), Wk(v1)
I(v2), Wk(v2)
I(v3), Wk(v3)
I(v4), Wk(v4)

…
I(v|V|), Wk(v|V|)

Unique (I,W)

(c) Inference

Unseen Data

(a) Group Generation

I(v), Wk(v)

Query
Nearest

GNN

…GNN
Layer

GNN
Layer

IG1, WG1

…

IG2, WG2
IG3, WG3
IG4, WG4

SG1, ZG1
SG2, ZG2

SG4, ZG4

SG3, ZG3Compute S, Z

(b) Calibration

0

0

maxmin

127−128
INT8

FP32

Calibration Set

Figure 3: The process of topology-based node grouping. (a) shows group generation using topological
characteristics: indegree and Wiener Index. Each color is used to denote each group. (b) shows the
calibration process to achieve a set of quantization parameters for each group. (c) demonstrates how
inference is done on unseen data by using the quantization parameters of the nearest group.

which vertices the features are being aggregated from. As discussed in Section 4, node indegree is
a suboptimal measure because it only accounts for a limited amount of information. Instead, we
propose to examine the topology of the local subgraph surrounding each vertex, and group the vertices
with the same or similar local topology. Within the same group, we can expect that the vertices
aggregate similar values and thus sharing a quantization scale leads to minimal quantized errors.

While there exist several different measures to interpret the topology of a graph, we propose to use
Wiener index Graovac & Pisanski (1991) in conjunction with the indegree to better quantify the local
structure around each node. Let graph G = (V,E), where V is a set of vertices and E is a set of
edges. Wiener index is defined as the sum of shortest lengths between all pairs of vertices:

W (G) = Σu,v∈V dis(u, v), (8)

where dis(u, v) denotes the shortest path distance between vertices u and v. Because Wiener index is
originally a graph-level representation, we make an adaptation to use it as a node-level representation.
For each vertex, we extract a k-hop subgraph around each vertex and compute the Wiener index of
the subgraph. Formally put, we define the localized Wiener index Wk(u) of vertex u as:

Wk(u) = Σv,w∈Nk(u)dis(v, w), Nk(u) = {v ∈ V |dis(u, v) ≤ k}, (9)

where k is the predefined hop count and Nk is the set of reachable neighbor vertices within k hops.

Once the localized Wiener index values are obtained for the vertices, we consider indegree I(u)
together, and vertices with equal (I(u),Wk(u)) are assigned to the same quantization group. For
example, in Figure 3a, all purple-colored vertices belong to a single group.

After the groups have been generated, the calibration (Figure 3b) takes place. For each group,
group-wise quantization parameters (SG, ZG) are obtained according to Section 2.2 by measuring
min, max values per group. At inference time (Figure 3c), the test set vertices are assigned to the
groups according to their (I,W) pair values. When unseen values are found at inference time, they
are assigned to the most similar quantization group by first comparing the I and then the W values.

5.2 ACCELERATED COMPUTATION OF LOCALIZED WIENER INDEX

Because the localized Wiener index in Equation (9) requires all-pair shortest paths within the
subgraphs, its computation can add a considerable overhead. Although several algorithms are known
for all-pair shorted paths (Dijkstra, 1959; Floyd, 1962; Warshall, 1962; Bellman, 1958; Ford Jr, 1956),
they often require huge computational and space complexity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Accelerated Wiener Index Computation

1: Input: Local k-hop subgraph Gsub = (Vsub, Esub)
2: Output: Wiener index Wk(u) ∈ N
3:
4: function addNeighbors(node u, set H , depth m)
5: for v ∈ u.nbr() do
6: hm ← hm ∪ (u, v)
7: if m > 0 do
8: addNeighbors(v, H , m− 1)
9: end if

10: end for
11: end function
12:
13: W ← k|Vsub|2
14: H ← {hl = ∅ | l = 0, ..., k}
15: hk ← Vsub

16: parallel for node u ∈ Vsub

17: addNeighbors(u, H , k − 1)
18: end for
19: W ←W −

∑k
l=0 |

⋃k
i=l hi|

For this, we propose a new algorithm to com-
pute the localized Wiener index, shown in
Algorithm 1. The key idea is that because
we sampled k-hop neighbors of a single ver-
tex to extract a subgraph, its diameter (i.e.,
the maximum distance between two arbitrary
nodes) is capped at 2k. This can be used
to efficiently calculate the localized Wiener
indices. For instance, W2(u) is calculated as

W2(u) = |Esub|+ 2|d2|+ 3|d3|+ 4|d4|,
(10)

where dn is a set of distance-n node pairs in
a local k-hop subgraph Gsub = (Vsub, Esub)
of node u. In practice, obtaining the sets di
can be time-consuming because this requires
costly all-pair shortest paths. Instead, Equa-
tion (10) can be restructured in a subtractive
manner, using k-hop reachable set Ni(u) that
can be easily obtained by simple traversal:

W2(u) = 4 · Σv∈Vsub
|N4(v)| − (Σ3

i=0Σv∈Vsub
|Ni(v)|), (11)

From the maximum-value case where all vertices are connected in 4 hops, we subtract the number of
occurrences in each of i-hop reachable set from the vertices. Additionally, we can substitute some
terms trivially obtainable from graph formats such as CSR. The Σv∈Vsub

|N4(v)| is simply |Vsub|2,
Σv∈Vsub

|N1(v)| is the number of edges |Esub| and Σv∈Vsub
|N0(v)| the number of vertices |Vsub|:

W2(u) = 4|Vsub|2 − (Σv∈Vsub
|N3(v)|+Σv∈Vsub

|N2(v)|+ |Esub|+ |Vsub|), (12)

The overall process is shown in Algorithm 1. First, we define a function addNeighbors (lines 4-11),
which recursively adds l-hop reachable node pairs into the set hl. Then, we initialize Wiener index
W with k|Vsub|2 (line 13), and hl with ∅. As the computation of addNeighbors on node n in Gsub is
independent of each other, we parallelized the computation (line 16). After the computation, the hl

stores a non-overlapping set of l-hop reachable node pairs. By using hl, we calculate Σv∈Vsub
|Nl(v)|

by |
⋃k

i=l hi| and obtain the Wiener index result (line 19). Please refer to Table 6 for the experiments
on acceleration, compared to Bellman-Ford, Floyd-Warshall, and Dijkstra’s algorithm.

5.3 INFERENCE FLOW WITH SCALE ABSORPTION

≈

Scale
Absorption

Ã

N

N

sX′

ÃX′

WXN
F

F′

×

X′

F′

NÃ

N

N ⋅

ÃX′

S[|V|×1]
ÃX′

S[1×N]
X′

⋅ ×

row-wise
quantization

fp

row-wise

X′ Q

F′

N

ÃX′

ÃQ
X′

row-wise
quantization

Ã

N

Nfp

intintfp

…

S[|V|×1]
ÃX′

Figure 4: Inference with scale absorption.

TopGQ maintains the same quantization method for
the vertex feature matrix X for the combination and
aggregation phases. The preservation of the direction
in quantization leads to the preservation of its vertex
precision. Assuming symmetric quantization for sim-
plicity, it can be represented as X ≈ SX ·XQ, where
XQ is the quantized features and SX is a diagonal
matrix of the scales of each node group.

In the combination phase, the weight parameters are
regarded as a single group. Therefore, the quantized
form of the combination becomes:

X ·W ≈ SX ·XQ ·WQ · sW (13)

= (sW ⊗ SX) · (XQ ·WQ), (14)

where the typical trick of separate scale calculation (Dai et al., 2021; Zhu et al., 2022) can be applied.

For aggregation, using the same quantization method is infeasible, because with quantized Ã and X ,

Ã ·X ≈ SA · ÃQ · SX ·XQ, (15)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance on node classification task using large graph datasets.

Dataset Bit Method Type GCN GraphSAGE

Acc. Q. Time Acc. Q. Time

Reddit

FP32 - - 90.60 - 94.64 -

INT4

Degree-Quant QAT 49.25 (31.18h) 89.86 (42.23h)
SGQuant QAT 88.74 (9.19h) 63.73 (15.75h)
A2Q QAT 58.31 (4.92h) 52.65 (5.78h)

TopGQ (Ours) PTQ 83.95 (0.02h) 93.93 (0.02h)

INT8

Degree-Quant QAT 90.91 (30.39h) 90.35 (42.49h)
SGQuant QAT 88.67 (9.46h) 69.12 (15.48h)
A2Q QAT 61.15 (4.91h) 76.26 (5.70h)

TopGQ (Ours) PTQ 91.13 (0.02h) 94.60 (0.02h)

ogbn-
proteins

FP32 - - 56.94 - 73.33 -

INT4

Degree-Quant QAT 57.37 (7.68h) 50.02 (8.84h)
SGQuant QAT 52.97 (3.46h) 57.77 (4.64h)
A2Q QAT 44.95 (2.35h) 71.98 (2.49h)

TopGQ (Ours) PTQ 60.08 (0.01h) 68.93 (0.01h)

INT8

Degree-Quant QAT 59.32 (7.49h) 73.81 (8.38h)
SGQuant QAT 52.77 (3.32h) 69.30 (4.58h)
A2Q QAT 44.41 (2.35h) 69.38 (2.51h)

TopGQ (Ours) PTQ 58.05 (0.01h) 73.34 (0.01h)

ogbn-
products

FP32 - - 78.41 - 71.65 -

INT4

Degree-Quant QAT 70.58 (98.38h) 65.05 (121.78h)
SGQuant QAT 26.90 (20.03h) 27.38 (37.17h)
A2Q QAT 23.62 (13.16h) 22.21 (14.69h)

TopGQ (Ours) PTQ 57.55 (0.34h) 71.02 (0.34h)

INT8

Degree-Quant QAT 75.26 (95.95h) 69.18 (118.96h)
SGQuant QAT 65.71 (20.18h) 41.71 (31.25h)
A2Q QAT 47.91 (12.57h) 58.26 (14.66h)

TopGQ (Ours) PTQ 76.94 (0.34h) 73.67 (0.34h)

which contains the SX matrix inside the multiplication. Instead, we take advantage of the fact that Ã
is a static topology. After calculating the scale diagonal matrix SX ,

Ã ·X ≈ Ã · SX ·XQ = ÃX ·XQ ≈ SAX
· ÃQ

X ·XQ. (16)

In the above, the scale diagonal matrix SX is absorbed into the adjacency matrix Ã to form ÃX ,
which is then row-wisely quantized with the new scale as SAX

· ÃQ
X . At inference time, this can be

pre-calculated as both Ã and SX only depend on the topology of the input graph.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

We report evaluation results on two representative graph processing tasks: Node-level classifica-
tion, graph-level classification. For node-level classification, we compare validation accuracy of
Reddit, ogbn-proteins, and ogbn-products, Cora, CiteSeer, and PubMed datasets. For graph-level
classification, we evaluate TopGQ on PROTEINS and NCI1 datasets and compare the validation
accuracy. We compare TopGQ with three graph quantization baselines using QAT approaches:
Degree-Quant (Tailor et al., 2020), SGQuant (Feng et al., 2020), and A2Q (Zhu et al., 2022). To
ensure a fair comparison, we use fixed-precision quantization for both SGQuant and A2Q when
attaining experiment results. We report quantized accuracy of GCN (Kipf & Welling, 2016), GIN (Xu
et al., 2019), and GraphSAGE (Hamilton et al., 2017) architectures with 4-bit and 8-bit integer
quantization. For a fair comparison, we apply the same bitwidth for all layers, including aggregation
and combination. We use k = 3 for ogbn-products, PROTEINS, and NCI1 and k = 2 for other
datasets. For more details on the experimental setting, please refer to the Appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance on node classification task using smaller graph datasets.

Dataset Bit Method Type GCN GIN GraphSAGE

Acc. Q. Time Acc. Q. Time Acc. Q. Time

Cora

FP32 - - 82.08 - 78.54 - 79.58 -

INT4

Degree-Quant QAT 79.00 (9.64s) 71.90 (31.47s) 73.50 (15.54s)
SGQuant QAT 79.00 (3.20s) 70.20 (4.22s) 75.30 (8.62s)
A2Q QAT 52.70 (2.09s) 64.60 (1.72s) 74.20 (2.53s)

TopGQ (Ours) PTQ 81.50 (1.40s) 78.58 (0.99s) 79.64 (0.87s)

INT8

Degree-Quant QAT 81.80 (9.82s) 74.60 (31.45s) 77.50 (15.52s)
SGQuant QAT 80.50 (3.60s) 73.30 (4.53s) 75.30 (8.38s)
A2Q QAT 80.00 (1.60s) 78.70 (1.95s) 76.10 (2.48s)

TopGQ (Ours) PTQ 82.08 (1.12s) 78.42 (1.18s) 80.30 (0.87s)

Citeseer

FP32 - - 72.34 - 70.24 - 71.96 -

INT4

Degree-Quant QAT 22.30 (21.72s) 47.90 (90.57s) 17.10 (40.67s)
SGQuant QAT 68.10 (5.57s) 46.70 (8.23s) 48.30 (17.91s)
A2Q QAT 54.00 (2.08s) 46.00 (2.67s) 66.20 (3.18s)

TopGQ (Ours) PTQ 71.90 (1.17s) 70.14 (1.14s) 71.76 (1.05s)

INT8

Degree-Quant QAT 69.70 (22.03s) 58.30 (92.75s) 69.10 (40.63s)
SGQuant QAT 68.30 (5.85s) 51.30 (8.56s) 54.10 (18.47s)
A2Q QAT 70.50 (1.77s) 67.30 (2.36s) 66.00 (3.15s)

TopGQ (Ours) PTQ 72.28 (1.11s) 70.26 (1.16s) 71.96 (1.05s)

Pubmed

FP32 - - 80.32 - 78.82 - 78.84 -

INT4

Degree-Quant QAT 78.60 (21.33s) 76.60 (108.07s) 78.20 (34.38s)
SGQuant QAT 76.10 (5.41s) 65.30 (8.24s) 71.10 (15.86s)
A2Q QAT 69.70 (2.17s) 51.90 (2.60s) 73.90 (3.31s)

TopGQ (Ours) PTQ 79.58 (1.21s) 77.70 (1.18s) 79.00 (1.12s)

INT8

Degree-Quant QAT 79.20 (21.56s) 79.70 (109.59s) 78.40 (34.07s)
SGQuant QAT 78.10 (5.31s) 75.20 (8.91s) 73.40 (15.66s)
A2Q QAT 76.40 (1.70s) 76.40 (2.15s) 75.40 (3.24s)

TopGQ (Ours) PTQ 80.30 (1.08s) 78.62 (1.16s) 78.94 (1.22s)

6.2 NODE CLASSIFICATION RESULTS

The experimental results of quantization accuracy comparison of node classification task are shown
in two settings: larger graphs (Table 1) and more conventional sized graphs (Table 2). The results
show that TopGQ performs comparable or significantly better in accuracies, and achieves an order
of magnitude faster quantization time. Taking Reddit with 4-bit GraphSAGE as an example, the
best-performing baseline is Degree-Quant, with 89.86% accuracy. However, it suffers from almost
90 hours of quantization time. SGQuant and A2Q are faster on quantization, but suffer from severe
accuracy drops. On the other hand, TopGQ achieves a significantly higher accuracy of 93.93%, with
only 0.02 hours of quantization time. This is more than 1000× faster than Degree-Quant, and more
than 100× faster than the low-performing baselines (SGQuant and A2Q).

Table 2 shows results on the smaller graphs that are more commonly used in existing GNN quanti-
zation literature. The results show a similar trend overall. TopGQ shows comparable performance
compared to the existing baselines with significantly low overhead for GNN quantization. The
quantization times are relatively short for all methods, which comes from small number vertices and
edges for the datasets. Nonetheless, TopGQ is the fastest in quantization time in all cases.

6.3 GRAPH CLASSIFICATION RESULTS

Our experimental results on graph-level classification are depicted in Table 3. The proposed method,
TopGQ, demonstrates significant improvements in quantization speed while maintaining compet-
itive classification performance. For instance, Degree-Quant takes almost an hour to quantize the
GraphSAGE model on NCI1, with a significant drop in accuracy of 9.0%p.

In contrast, TopGQ achieves remarkable speed improvements with post-training quantization (PTQ),
requiring only about a minute for quantization across all datasets and models. This efficiency
highlights the superiority of TopGQ, as it achieves a balance between accuracy and quantization
speed, making it a practical choice for large-scale graph-level classification tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance on graph classification task.

Dataset Bit Method Type GCN GIN GraphSAGE

Acc. Q. Time Acc. Q. Time Acc. Q. Time

PROTEINS

FP32 - - 76.19 - 74.79 - 72.87 -

INT4

Degree-Quant QAT 75.21 (2158.47s) 70.44 (1407.09s) 63.72 (1371.54s)
SGQuant QAT 59.84 (203.70s) 59.48 (190.28s) 59.66 (249.86s)
A2Q QAT 71.16 (128.52s) 65.59 (116.96s) 73.59 (209.23s)

TopGQ (Ours) PTQ 70.15 (4.20s) 70.61 (3.94s) 69.67 (4.21s)

INT8

Degree-Quant QAT 74.93 (2140.48s) 69.72 (1368.98s) 63.61 (1358.99s)
SGQuant QAT 72.40 (203.61s) 69.73 (190.71s) 61.99 (261.81s)
A2Q QAT 73.05 (136.03s) 66.85 (129.83s) 70.62 (194.75s)

TopGQ (Ours) PTQ 75.94 (4.11s) 74.86 (3.86s) 74.00 (4.17s)

NCI1

FP32 - - 80.41 - 81.46 - 78.46 -

INT4

Degree-Quant QAT 73.55 (4588.48s) 76.42 (3110.10s) 69.46 (3585.30s)
SGQuant QAT 63.92 (530.27s) 53.09 (571.44s) 66.13 (778.96s)
A2Q QAT 68.81 (668.52s) 79.08 (648.44s) 72.38 (656.70s)

TopGQ (Ours) PTQ 65.09 (9.36s) 78.49 (8.98s) 76.43 (9.18s)

INT8

Degree-Quant QAT 75.47 (4493.82s) 77.59 (3025.24s) 69.12 (3449.79s)
SGQuant QAT 68.47 (527.19s) 74.36 (572.13s) 67.59 (799.31s)
A2Q QAT 75.64 (648.18s) 79.17 (635.09s) 76.86 (645.50s)

TopGQ (Ours) PTQ 80.91 (9.35s) 81.88 (8.97s) 79.16 (9.22s)

Table 4: Ablation study of TopGQ.

Bit Node
Grouping

Scale
Absorption

PROTEINS NCI1

GCN GIN Graph
SAGE GCN GIN Graph

SAGE

INT4

✗ ✗ 57.32 45.51 44.05 53.35 60.66 73.80
Indegree ✗ 56.15 45.04 50.65 60.54 69.71 75.46

L.Wiener Idx ✗ 61.28 47.12 62.76 60.93 72.76 75.63

L.Wiener Idx ✓ 69.94 70.92 68.93 65.88 75.37 75.98

INT8

✗ ✗ 56.14 55.91 61.25 79.63 81.29 78.30
Indegree ✗ 72.57 71.86 70.48 78.91 81.28 78.32

L.Wiener Idx ✗ 75.64 73.94 73.69 80.89 81.90 79.18

L.Wiener Idx ✓ 75.65 74.34 72.20 79.72 81.36 78.43

6.4 ABLATION STUDY

We conducted an ablation study to show the effect of the proposed quantization groups, which
are the influence group and the topological group. The results are shown in Table 4. When a
naive version of PTQ is performed without any of the proposed schemes, it suffers from accuracy
degradation due to high-variance node-wise magnitude. This phenomenon is especially worse in
GIN architecture, as the node features of GIN architecture are larger due to the unnormalized sum
aggregation operation (Tailor et al., 2020). Applying the proposed topology grouping with localized
Wiener index further boosts the PTQ performance, as it effectively divides quantization groups in a
node-wise manner, with the nodes in the group sharing similar magnitudes for the quantization.

6.5 COST ANALYSIS

Table 5: Inference time comparison using GCN.

Bit Method Dataset Reddit ogbn-products

FP32 - - 4015.7s 15697.3s

INT8

Degree-Quant QAT 3167.4s 13795.6s
A2Q QAT 3204.5s 16370.9s

SGQuant QAT 3170.3s 13933.4s

TopGQ PTQ 3173.0s 13951.7s

Table 5 compares the inference time of the base-
lines against TopGQ. The inference time is mea-
sured on RTX 4090 GPUs with customized ker-
nels. While the forward times are mostly similar
due to the same amount of multiplications, the
difference in inference time comes from the un-
seen vertices. While Degree-Quant does not
handle unseen nodes any differently, A2Q has
to perform costly nearest neighbor search on the
input features. Although TopGQ performs a group search for unseen nodes, this only involves simple
I,W comparison before inference.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Comparison of node-wise Wiener index computation time.

Algorithm Cora CiteSeer Pubmed PROTEINS NCI1 Reddit ogbn- ogbn-
proteins products

Bellman-Ford 0.35s 0.46s 19.87s 40.07s 512.13s 4.21h 2.84h 305.50h
Floyd-Warshall 0.15s 0.21s 4.68s 8.50s 11.27s 0.57h 0.41h 35.44h
Dijkstra 0.19s 0.29s 2.70s 12.75s 12.49s 0.16h 0.11h 8.52h

Ours (§5.2) 0.02s 0.01s 0.06s 4.84s 1.78s 0.0004h 0.0002h 0.2855h
Speed Up 9.77× 31.65× 43.50× 1.76× 6.32× 412.23× 602.30× 29.83×

On the quantization time, TopGQ is orders of magnitude faster as discussed in Section 6.2. A large
portion of this is due to the proposed computing method for the localized Wiener index across multiple
datasets, as shown in Table 6. We compare the time to compute the Wiener index of k-hop subgraph,
using the same k settings that are used in the main experiments. For the baseline methods, we used
implementations from the SciPy library. The results show that our method demonstrates significant
improvements in computational efficiency compared to traditional algorithms such as Bellman-Ford,
Floyd-Warshall, and Dijkstra. Specifically, our approach reduces the Wiener index computation time
by up to 4.57× on large-scale datasets like ogbn-proteins, achieving a time reduction from 2.84
hours to 0.02 hours. This trend is consistent across datasets, with speedups ranging from 1.22× on
Cora to 4.46× on Reddit. Our method scales significantly better with larger graphs by reducing the
computational cost of the Wiener index, achieving superior quantization speed.

6.6 ANALYSIS ON SCALE ABSORPTION

Node Index Feature Index Node Index Feature Index

Figure 5: Comparing Xcomb before (left) and after
(right) scale absorption (GCN, PROTEINS).

(a) GIN, Cora (b) GCN, Citeseer

Figure 6: Xcomb magnitude visualization.

In this section, we compare the activations Xcomb before and after applying scale absorption to
visualize its effect. In Figure 5, the lefthand side denotes activation before scale absorption, where
visible outliers can be seen across the channel dimensions. Such distribution makes it difficult for the
quantizer to effectively allocate the quantization bins, where a large portion of its representation power
would be wasted on the outliers. This is further supported by Figure 6, where the spiky distribution
with large outliers is also found in other models and datasets. On the other hand, applying scale
absorption leads to an even distribution across the mapped range (-128, 127). Such evenly spread out
distribution is much more favorable for quantization, because the values can be mapped evenly across
the bins, well utilizing the quantization levels and thus leading to minimized quantization error.

7 CONCLUSION

In this paper, we propose TopGQ, the first post-training quantization method for graph neural network
quantization. TopGQ proposes to group vertices that share similar topological structure, which is
measured using an adaptation of Wiener index to capture the local topology around each node. Then,
TopGQ proposes the scale absorption method, which merges the scale parameters of quantization
groups into a single scale, and the magnitude information is merged into an adjacency matrix for
efficient computation. The extensive experimental results show that TopGQ shows better performance
while having orders of magnitude faster compared to the baselines.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marco Arazzi, Marco Cotogni, Antonino Nocera, and Luca Virgili. Predicting tweet engagement with
graph neural networks. In Proceedings of the 2023 ACM International Conference on Multimedia
Retrieval, pp. 172–180, 2023.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. Advances in neural information processing systems, 33:17804–
17815, 2020.

Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Andrei Dragos Brasoveanu, Fabian Jogl, Pascal Welke, and Maximilian Thiessen. Extending graph
neural networks with global features. In The Second Learning on Graphs Conference, 2023.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-series
forecasting. Advances in neural information processing systems, 33:17766–17778, 2020.

Zhixian Chen, Tengfei Ma, Zhihua Jin, Yangqiu Song, and Yang Wang. Bigcn: A bi-directional
low-pass filtering graph neural network. Analysis and Applications, 20(06):1193–1214, 2022.

Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok Kim, and Jinho Lee. Qimera: Data-free
quantization with synthetic boundary supporting samples. In Advances in Neural Information
Processing Systems, 2021.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural networks
for efficient inference. In IEEE/CVF International Conference on Computer Vision Workshop,
2019.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany.
Vs-quant: Per-vector scaled quantization for accurate low-precision neural network inference.
Proceedings of Machine Learning and Systems, 3:873–884, 2021.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1
(1):269–271, 1959.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom
Goldstein. Vq-gnn: A universal framework to scale up graph neural networks using vector
quantization. Advances in Neural Information Processing Systems, 34:6733–6746, 2021.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding. Sgquant: Squeezing the
last bit on graph neural networks with specialized quantization. In 2020 IEEE 32nd international
conference on tools with artificial intelligence (ICTAI), pp. 1044–1052. IEEE, 2020.

Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345–345, 1962.

Lester R. Ford Jr. Network Flow Theory. 1956. Technical report, RAND Corporation.

Ante Graovac and Tomaž Pisanski. On the wiener index of a graph. Journal of mathematical
chemistry, 8(1):53–62, 1991.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 2017.

Man Hu, Dezhi Sun, Fucheng You, and Han Xiao. Hybrid structure encoding graph neural networks
with attention mechanism for link prediction. In 2022 IEEE 34th International Conference on
Tools with Artificial Intelligence (ICTAI), pp. 417–424. IEEE, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

H GaoandS Ji. Graph u-nets. In Proceedings of the 36th International Conference on Machine
Learning, in Proceedings of Machine Learning Research, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and Jure Leskovec.
Pinnersage: Multi-modal user embedding framework for recommendations at pinterest. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2311–2320, 2020.

Anh Viet Phan, Minh Le Nguyen, Yen Lam Hoang Nguyen, and Lam Thu Bui. Dgcnn: A convolu-
tional neural network over large-scale labeled graphs. Neural Networks, 108:533–543, 2018.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2110–2119, 2018.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In International Conference on Learning
Representations, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

Stephen Warshall. A theorem on boolean matrices. Journal of the ACM (JACM), 9(1):11–12, 1962.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=ryGs6iA5Km.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
10737–10745, 2021.

Li Zhang and Haiping Lu. A feature-importance-aware and robust aggregator for gcn. In Proceedings
of the 29th ACM International Conference on Information & Knowledge Management, pp. 1813–
1822, 2020.

Yiming Zhang, Lingfei Wu, Qi Shen, Yitong Pang, Zhihua Wei, Fangli Xu, Ethan Chang, and Bo Long.
Graph learning augmented heterogeneous graph neural network for social recommendation. ACM
Transactions on Recommender Systems, 1(4):1–22, 2023.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In International Conference on
Machine Learning, 2019.

Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian Cheng.
A2q: Aggregation-aware quantization for graph neural networks. In The Eleventh International
Conference on Learning Representations, 2022.

12

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 7: Sensitivity study of TopGQ

Bit Datasets PROTEINS NCI1

Hop size k GCN GIN GraphSAGE GCN GIN GraphSAGE

INT4
k = 1 73.34 72.88 73.03 80.81 81.60 78.88
k = 2 76.05 74.61 74.22 80.86 81.84 79.10
k = 3 75.94 74.86 74.00 80.91 81.88 79.16

INT8
k = 1 60.86 51.04 65.77 62.68 70.91 75.90
k = 2 66.06 63.96 67.01 66.14 77.33 76.50
k = 3 70.15 70.61 69.67 65.09 78.49 76.43

A CODE

The code, which includes our implementation of this work, is included in a zip archive of the
supplementary material. The code is under Nvidia Source Code License-NC and GNU General
Public License v3.0.

B ADDITIONAL EXPERIMENTAL SETTINGS

We report evaluation results on two representative graph processing tasks: Node-level classification,
graph-level classification. For node-level classification, we compare the validation accuracy of Reddit,
ogbn-proteins, and ogbn-products datasets in a transductive setting. Please note that we first conduct
GNN quantization experiments on the dataset with this level of scale, thus further enlarging the field of
GNN quantization. By following the experimental settings of baselines, we also conduct experiments
using Cora, CiteSeer, and PubMed datasets in a transductive setting, which is the common setting for
GNN quantization. Lastly, we further conduct a comparison of large-graph processing on Reddit,
ogbn-proteins, and ogbn-products datasets. For graph-level classification, we choose PROTEINS and
NCI1 datasets to evaluate the inductive inference performance of quantized GNNs.

We compare TopGQ with three graph quantization baselines using QAT approaches: Degree-
Quant (Tailor et al., 2020), SGQuant (Feng et al., 2020), and A2Q (Zhu et al., 2022). To ensure a fair
comparison, we use fixed-precision quantization for both SGQuant and A2Q when attaining experi-
ment results. We report quantized accuracy of GCN (Kipf & Welling, 2016), GIN (Xu et al., 2019),
and GraphSAGE (Hamilton et al., 2017) architectures with 4-bit and 8-bit integer quantization. For a
fair comparison, we apply the same bitwidth for all layers, including aggregation and combination.

All experiments are conducted on a server with a single A6000 GPU, RTX 4090 GPU, and Intel(R)
Xeon(R) Gold 6442Y CPU. We implement our algorithm on PyG library v2.6.0 with PyTorch v2.2.1.
In the Wiener index computation time comparison, we use the SciPy library to measure the time of
the baseline algorithm to compute the all-pair shortest-path metric.

For the ablation study, we present in Table 4, we first build baseline PTQ method, which applies a
min-max quantization strategy to quantize graph neural networks without node grouping and scale
absorption. For the case of using Indegree for the node grouping metric, we apply the same strategy
with our method that uses the Wiener index by grouping the nodes having the same indegree value
and quantizing them to share the same quantization parameters.

C FURTHER COMPARISON ON k-HOP WIENER INDEX

Here, we present further analysis of the Wiener index, including a sensitivity study regarding the
hyperparameter k, which determines the diameter of the local subgraph.

Table 7 shows the sensitivity study on quantization accuracy regarding the hop size k. We compare
the hop size k = 1, k = 2, and k = 3, where the k = 1 setting corresponds to the baseline, which is
identical to the “indegree” setting in Table 4. For the PROTEINS dataset, increasing the hop size
from k = 1 to k = 2 led to noticeable improvements across all models.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 8: Comparison of node-wise Wiener index computation time

k Algorithm Cora CiteSeer Pubmed PROTEINS NCI1 Reddit ogbn- ogbn-
proteins products

2

Bellman-Ford 0.35s 0.46s 19.87s 13.02s 33.01s 4.21h 2.84h 34.64h
Floyd-Warshall 0.15s 0.21s 4.68s 7.91s 2.97s 0.57h 0.41h 4.51h
Dijkstra 0.19s 0.29s 2.70s 8.78s 2.56s 0.16h 0.11h 1.55h

Ours 0.02s 0.01s 0.06s 0.29s 0.10s 0.0004h 0.0002h 0.0048h
Speed Up 9.77× 31.65× 43.50× 27.12× 25.17× 412.23× 602.30× 322.37×

3

Bellman-Ford 3.63s 2.43s 216.76s 40.07s 512.13s 46.63h 30.09h 305.50h
Floyd-Warshall 0.77s 0.31s 34.62s 8.50s 11.27s 5.75h 3.78h 35.44h
Dijkstra 0.61s 0.39s 14.71s 12.75s 12.49s 1.02h 0.61h 8.52h

Ours 0.52s 0.08s 1.82s 4.84s 1.78s 0.0155h 0.0065h 0.2855h
Speed Up 1.18× 3.76× 8.10× 1.76× 6.32× 65.89× 93.39× 29.83×

Across both precision levels and datasets, a clear trend emerged where increasing the hop size from
k = 1 to k = 2 generally improved performance for all architectures. This effect was particularly
noticeable in the PROTEINS dataset under INT4 precision, where all architectures showed consistent
gains. In the INT8 configuration, the same trend held, though the magnitude of improvements was
more pronounced in some cases. Notably, GIN and GCN showed substantial increases in performance
as the hop size increased from k = 1 to k = 3 for the PROTEINS dataset, while the NCI1 dataset
saw more moderate gains. However, increasing the hop size further to k = 3 did not always lead to
continued improvements.

We also conducted further sensitivity study regarding Wiener index computation time by varying the
value of k, as increasing k results in more computational costs due to the larger diameters of each
subgraph. Table 8 shows the comparison results of computation time.

For k = 2, our method shows remarkable speedups, often outperforming the other algorithms by
significant margins, especially for larger graphs where it achieves up to several hundred times faster
performance. At k = 3, while all methods take longer due to the increased complexity, our method
continues to lead in performance, though the speedup is generally lower than for k = 2. Nonetheless,
it maintains a strong advantage, especially in large-scale cases where traditional methods struggle
with execution times. Overall, the trends show that our method provides consistent and substantial
speed improvements.

From the experiments, we observe that k = 2 often provides the best balances of quantization
accuracy and computation time. In addition, for better quantization accuracy, using k = 3 is also an
option to choose.

14

	Introduction
	Preliminaries
	Graph Neural Networks
	Quantization
	Quantization of Graph Neural Networks

	Related Work
	Motivational Study
	Methodology
	Quantization with Topology-based Node Grouping
	Accelerated Computation of Localized Wiener Index
	Inference Flow with Scale Absorption

	Experiments
	Experimental Settings
	Node Classification Results
	Graph Classification Results
	Ablation Study
	Cost Analysis
	Analysis on Scale Absorption

	Conclusion
	Code
	Additional Experimental Settings
	Further comparison on k-hop Wiener index

