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Abstract

In federated learning (FL), weighted aggregation
of local models is conducted to generate a global
model, and the aggregation weights are normal-
ized (the sum of weights is 1) and proportional to
the local data sizes. In this paper, we revisit the
weighted aggregation process and gain new in-
sights into the training dynamics of FL. First, we
find that the sum of weights can be smaller than 1,
causing global weight shrinking effect (analogous
to weight decay) and improving generalization.
We explore how the optimal shrinking factor
is affected by clients’ data heterogeneity and
local epochs. Second, we dive into the relative
aggregation weights among clients to depict the
clients’ importance. We develop client coherence
to study the learning dynamics and find a critical
point that exists. Before entering the critical point,
more coherent clients play more essential roles
in generalization. Based on the above insights,
we propose an effective method for Federated
Learning with Learnable Aggregation Weights,
named as FEDLAW (€) source code). Extensive
experiments verify that our method can improve
the generalization of the global model by a large
margin on different datasets and models.

1. Introduction

Federated learning (FL) (McMahan et al., 2017; Li et al.,
2020a; Wang et al., 2021; Lin et al., 2020; Li et al., 2022c)
is a promising distributed optimization paradigm where
clients’ data are kept local, and a central server aggregates
clients’ local gradients for collaborative training. In FL,
weighted aggregation of local models is conducted to gener-
ate a global model. In FL, when aggregating local models,
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Figure 1. Test accuracy curves with different /1 norms of aggrega-
tion weights (7). CIFAR-10 with 20 clients, AlexNet.

it is a common practice that the aggregation weights should
be normalized (the sum of weights, i.e. the [; norm, notated
as -, is equal to 1) and proportional to the local data sizes.
However, due to the non-convexity (Allen-Zhu et al., 2019;
Li et al., 2018), over-parameterization (Allen-Zhu et al.,
2019; Zou & Gu, 2019), scale invariance (Li et al., 2018;
Dinh et al., 2017; Kwon et al., 2021), and other unique
properties of deep neural networks (DNNs), there is a gap
between theory and empirical practice when the models are
DNNs. An intuitive example is shown in Figure 1, we find
that smaller v may be beneficial to generalization, which
challenges the previous convention in theory that aggrega-
tion weights should be normalized as 1. But what is the
mechanism behind and what is the optimal + under different
FL environments? It requires further investigation.

Thus, in this paper, we revisit and rethink the weighted
aggregation process to understand the training dynamics of
FL and gain some intriguing insights.

How can the aggregation weights be assigned to generate a
global DNN model with better generalization?

Towards this question, we find two aspects that matter most:
(1) the /1 norm of aggregation weights (7);

(2) the relative weights within the sampled clients (\).
To gain insights, we leverage the advantage of the server
in FL that we learn the aggregation weights on a global-
objective-consistent proxy dataset by gradient descent. The
learned weights are the optimal weight candidates at each
round and can reflect the training dynamics.

For (1), we identify the global weight shrinking effect in FL
when + is smaller than 1, which is analogous to weight de-
cay regularization (Loshchilov & Hutter, 2018; Lewkowycz
& Gur-Ari, 2020; Xie et al., 2020) in centralized training.
However, a small value of v—as stated in Figure 1—will
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cause negative effects; therefore, there exists an optimal y
that balances the regularization and optimization. We fix A
and learn ~y (cf. section 4) on the proxy dataset to explore
how the optimal shrinking factor (i.e. the [; norm of ) is
affected by clients’ heterogeneity and local epochs.
For (2), we study how A\ should be assigned to the local
models to obtain a more generalized global model and how
A can reflect clients’ importance in training dynamics. We
fix v and learn A (cf. section 5) on the proxy dataset to study
client coherence that includes: (i) local gradient coherence,
the importance of clients in different learning periods; (ii)
heterogeneity coherence, the consistency between the sum
objective of sampled clients and the global objective.
Based on the insights, we propose an effective method for
Federated Learning with Learnable Aggregation Weights,
named as FEDLAW (cf. section 6). Extensive experiments
verify that our method can improve the generalization of
the global model by a large margin on different datasets
and models. Moreover, it is validated that FEDL AW is still
robust when the proxy dataset is small or shifted from the
global distribution and corrupted clients exist.

Specifically, our contributions are two-folded.

e As our main contribution, we revisit and rethink the
weighted aggregation in FL with DNNs and identify some
interesting findings (see below take-aways). Especially,
we find that smaller [; norms of aggregation weights
may be beneficial to generalization, which challenges
the previous normalized convention. This is also the first
paper that introduces global regularization in FL, and we
explore how to adaptively control such regularization.

* We showcase the applicability of these insights, and
devise a simple yet effective method FEDLAW, which
largely boosts the generalization of global models. The
effectiveness and robustness of FEDLAW are validated
by extensive experiments.

We summarize our key take-away messages of the un-

derstandings as follows.

* Global weight shrinking regularization effectively
improves the generalization performance.

— The magnitude of the global gradient (i.e. uniform
average of local updates) determines the optimal
weight shrinking factor. A larger norm of the global
gradient requires stronger regularization, in the cases
when (i) the number of local epochs is larger; (ii) the
clients’ data are more IID; (iii) during training before
the global model is near convergence.

— The effectiveness of global weight shrinking is
stemmed from flatter loss landscapes of the global
model as well as the improved local gradient coherence
after the critical point.'

IDifferent from the latter observations (w/o affecting the
training dynamics), applying global weight shrinking results in
a positive local gradient coherence after the critical point and the
learning can benefit from it.

* Our novel concept of client coherence depicts the training
dynamics of FL, from the aspects of local gradient
coherence and heterogeneity coherence.

— Local gradient coherence refers to the averaged cosine
similarities of clients’ local gradients. A critical point
(from positive to negative) exists in the curves of local
gradient coherence during the training. Generalization
can benefit when the local gradient coherence is
positive and more dominant.

— Heterogeneity coherence refers to the distribution
consistency between the global data and the sampled
one (i.e. data distribution of a cohort of sampled
clients) in each round. Increasing the heterogeneity
coherence by reweighting the sampled clients could
also improve the training performance.

2. Related Works

Model aggregation in FL. There are previous works that
try to learn the aggregation weights on given datasets by
gradient descent. AUTO-FEDAVG (Xia et al., 2021) learns
aggregation weights on different institutional medical data
to realize personalized medicine, while L2C matches simi-
lar peers in decentralized FL (Li et al., 2022a) by learning
aggregation weights on local datasets. These works all adopt
the normalized aggregation weights (y=1) without discov-
ering the global weight shrinking effect, and they focus
on personalization while we focus on generalization. Be-
sides, they fail to understand the FL’s dynamics from the
learned weights for further insights, e.g., identifying the
significance of client coherence. Ensemble distillation meth-
ods are used to improve the generalization of global models
after weighted aggregation. FEDDF (Lin et al., 2020) uses
the local models as teachers and finetune the global model
via ensemble distillation; while in FEDBE (Chen & Chao,
2021), Bayesian ensemble distillation is further introduced.
Since they also require a proxy dataset on the server, we will
compare them with our proposed FEDLAW in section 6.
Additionally, server-side stochastic weight averaging and
client-side sharpness-aware minimization are incorporated
to make the global model converge to a flatter minimum
(Caldarola et al., 2022); distributionally robust optimization
is also introduced to realize more robust federated averaging
(Deng et al., 2020; Wu et al., 2022); but these works are
orthogonal to our paper.

Training dynamics of DNNs in centralized learning. Our
insights into global weight shrinking and client coherence in
FL are analogous to weight decay and gradient coherence in
centralized learning. Weight decay: The optimal weight de-
cay factor is approximately inverse to the number of epochs,
and the importance of applying weight decay diminishes
when the training epochs are relatively long (Loshchilov
& Hutter, 2018; Lewkowycz & Gur-Ari, 2020; Xie et al.,
2020). The effectiveness of weight decay may be explained
by the caused (i) larger effective learning rate (Zhang et al.,
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2018; Wan et al., 2021), and (ii) flatter loss landscape (Lyu
et al., 2022). Gradient coherence: Gradient coherence, or
sample coherence, is a crucial technique for understanding
the training dynamics of mini-batch SGD in centralized
learning (Chatterjee, 2019; Zielinski et al., 2020; Chatterjee
& Zielinski, 2020; Fort et al., 2019). The gradient coherence
measures the pair-wise gradient similarity among samples.
If they are highly similar, the overall gradient within a mini-
batch will be stronger in certain directions, resulting in a
dominantly faster loss reduction and better generalization
(Chatterjee, 2019; Zielinski et al., 2020; Chatterjee & Zielin-
ski, 2020). The critical period exists in mini-batch SGD,
captured by the gradient coherence: the low coherence in
the early training phase damages the final generalization
performance, no matter the value of coherence controlled
later (Chatterjee & Zielinski, 2020). In section 4 and sec-
tion 5, we will show similar findings can be drawn in FL’s
dynamics, and some new insights are discovered.

Due to space limits, the detailed discussions about related
works can be found in Appendix A.

3. Preliminary and Problem Setup

FL usually involves a server and n clients to jointly learn a
global model without data sharing, which is originally pro-
posed in (McMabhan et al., 2017). Denote the set of clients
by S, the local dataset of client i by D; = {(x}, yj)}jy:il,
the sum of clients’ data by D = |J;.s D;. The IID data
distributions of clients refer to each client’s distribution D;
is IID sampled from D. However, in practical FL scenarios,
heterogeneity exists among clients that their data are NonlID
with each other. In this paper, we use Dirichlet sampling,
which is widely used in FL literature (Lin et al., 2020; Li
et al., 2020b; Acar et al., 2020), to synthesize client het-
erogeneity (controlled by o, the smaller, the more NonlID).
During FL training, clients iteratively conduct local training
and communicate with the server for model updating. In the
local training, the number of local epochs is E; when E is
larger, the communication is more efficient but the updates
are more asynchronous. Since a and E are the key factors
affecting FL’s training, in this paper, we study how « and E/
affect the training dynamics of FL from the perspective of
weighted aggregation.

Denote the global model and the client ¢’s local model in
communication round ¢ by w, and w;. In each round,
clients’ local models are initialized as the global model that
w! wg, and clients conduct local training in parallel. In
each local training epoch, clients conduct SGD update with
a local learning rate 7;, and each SGD iteration shows as

wi— wi — VB, wh), fork=1,2,--- K, (1)

where /¢ is the loss function and By, is the mini-batch sam-
pled from D; at the k-th iteration. After the client local
updates, the server samples m clients for aggregation. The
client 7’s pseudo gradient of local updates is denoted as

g; = w,, — w;. Then, the server conducts weighted aggre-

gation to merge the local models (or the pseudo gradients)
into a new global model’.

wott = pawi = lulhwy —ng > pigh, stopi >0, ()
i=1 i=1

where p = [u1,...,um] is the aggregation weights,
ng = 1 1is the global learning rate. For vanilla FEDAVG,
it adopts a normalized weights proportional to the data sizes,
i = ||DDi‘|,D = U;es Di. In this paper, we assume the
aggregation weights are not normalized which means the [y
norm is not necessarily equal to 1. We study the effects of
the [y norm and relative weights independently by decouple
w into {v, A}, which satisfies v = |1, A = HﬁT Thus,
Equation 2 can be reformulated into

Wi =) " Awh sty > 00 >0, Al =1 3)
i=1

Vanilla FEDAVG is a special case where v = 1,\; =
21, Vi € [m]. When v < 1, it will cause weight shrink-
ing of the global model, so in this case, we also call y the
shrinking factor.

Clarification on the proxy dataset. We study global weight
shrinking® () in section 4 and client coherence () in sec-
tion 5 through respectively learning v and A while fixing
another on a server proxy dataset. The considered proxy
dataset has the same distribution as the global learning ob-
jective (i.e. a class-balanced case in this paper; e.g. 2000
balanced samples in CIFAR-10), thus the learned aggrega-
tion weights {~, A} can reflect the contributions of clients
and the optimal regularization factor towards this global ob-
jective. We note that this case of the proxy dataset is for un-
derstanding only, and we will validate the effectiveness and
robustness of our proposed FEDLAW on tiny (e.g. 100 sam-
ples in CIFAR-10) or biased (e.g. long-tailed) proxy datasets.
For concision, in section 4 and section 5, if not mentioned
otherwise, we all use CIFAR-10 as the dataset and Sim-
pleCNN as the model. Experiments on more datasets and
models are shown in section 6 and Appendix.

4. Global Weight Shrinking

4.1. Global Weight Shrinking and Its Impacts on
Optimization

Setting v < 1 results in the global weight shrinking regular-

ization. Table 1 and Figure I report the results on CIFAR-10

2As in Equation 2, FL’s aggregation can be formulated into
the aggregation of clients’ local models (left) or clients’ pseudo
gradients (right). The two kinds of the formulation are equal, while
we adopt the aggregation of models here for brevity.

3We use the word “shrink” instead of “decay” as it shrinks
the global model rather than decaying the model by subtracting
a decay term (used in traditional weight decay). Similar “shrink”
can be found in (Li et al., 2020c).
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Figure 2. Left: Test accuracy gains of adaptive GWS. Right: The
optimal -y and the norm of global gradient. o € {100, 1}.

Table 1. Impact of fixed v across different architectures in both

IID (o = 100) and NonlID (o« = 1) settings (E = 2).

‘ ¥ ‘ 1.0 099 097 095 093 0.9
SimpleCNN | 65.53 67.60 69.20 69.52 70.16 69.83
1ID AlexNet 7416 7480 75.54 7524 7525 75.03
ResNet8 7551 76.64 76.80 77.87 76.80 76.74
SimpleCNN | 65.58 67.04 68.36 68.66 69.28 68.93
NonlID AlexNet 73.56 73.83 7437 7445 7440 7424
ResNet8 75.02 76.06 7573 77.00 75.04 7531

with different v. It can be observed that the global weight
shrinking may improve generalization, depending on the
choice of 7. The smaller y, the stronger regularization ef-
fect. Given a setting, there exists an optimal y that balances
the regularization and optimization, and deviation from this
value, whether smaller or larger, may result in inferior per-
formance. More results about the fixed v can be found in
Table 9 in Appendix.

4.2. Adaptive Global Weight Shrinking and Training
Dynamics

We discover how to set an appropriate y to balance regu-

larization and optimization. We first expand the right of

Equation 2 as follows.

Wy L=mwy. @
We refer (1 — ’V)Wg as the pseudo gradient of global weight
shrinking (regularization term) and angtg is the global
averaged gradient (optimization term). We reckon that a
larger optimization term requires a larger regularization
term, which means the magnitude of the global pseudo gra-
dient gg determines the optimal shrinking factor v in the
way that larger gg, smaller v (stronger regularization).

To verify our hypothesis, we achieve adaptive global weight
shrinking (adaptive GWS) on the proxy dataset, which
learns an optimal . Adaptive GWS adopts the update in

Equation 3 and uses {y = v*, \; = ||Dl;||} where

= y(Wy — 1g8,) = Wy — Y18y —

. . — |D;
v = argmin Lprogy (7 - Z ||D||w§), st.y>0. (5
v i=1

Adaptive GWS largely improves the generalization. From
the left of Figure 2, adaptive GWS can improve the per-
formance of FEDAVG by a large margin in both IID and
NonlID settings. Furthermore, adaptive GWS is more bene-
ficial when the number of local epochs is small.

Norm of Global Grad -18 ud==—v
—— Norm of GWS Pseudo-grad

-10 -0.86
50 75 100 125 150 175 200 50 75 100 125 150 175 200
Communication Rounds Communication Rounds

Figure 3. Left: Norm of two gradients in adaptive GWS. Right:
The optimal v and 7 in adaptive GWS, where 7 is the ratio of the
global gradient and the regularization pseudo gradient.

1) Understanding the balance between optimization and
regularization. Further, through the learned optimal -, we
verify the balance between optimization and regularization
from the right of Figure 2 and Figure 3. A larger norm of the
global gradient requires stronger regularization, in the cases
when (i) the number of local epochs is larger; (ii) the clients’
data are more IID; (iii) during training before the global
model is near convergence (on the contrary, when the model
is near convergence, smaller regularization is needed).

* As shown in the right blue Y-axis of right Figure 2, the
norm of global gradient ||yn,g! | increases when the
number of local epochs increases and data become IID.
As a result, the optimal value of v (shown in the left
green Y-axis) becomes smaller in order to produce a
larger weight shrinking pseudo gradient ||(1 — ~v)w! |
to regularize the optimization. More results regarding
how heterogeneity affects the optimal v can be found in
Figure 9 in Appendix.

e In Figure 1, GWS with smaller fixed  will cause
performance degradation in the late training. This is due
to the conflicts of decaying global pseudo gradient and
non-decaying regularization pseudo gradient. In Figure 3,
while the norm of the global gradient is decaying, adaptive
GWS learns a rising optimal v to keep the GWS pseudo
gradient decay proportionally. As a result, the ratio of two
gradient terms remains steady at around 19 to maintain
the balance between optimization and regularization.

2) The mechanisms behind adaptive GWS. We provide

an in-depth general understanding of how adaptive GWS

works and why it can improve generalization.

* General understanding.

— Scale invariance. Adaptive GWS learns a dynamic
shrinking factor ~ in each round to shrink the global
model’s parameter. The method is effective due to the
scale invariance property of DNNs (Li et al., 2018;
Dinh et al., 2017; Kwon et al., 2021), which states
that the function of a DNN remains similar or the
same even when a factor rescales the model weights
due to the non-linearity of activation functions or the
normalization layer in DNNs. We show an intuitive
understanding of scale invariance on the left figure of
Figure 4, where the final models are rescaled by -, and
the loss function of the adaptive GWS’s final model
remains similar while the FEDAVG’s final model even
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Figure 4. General understanding of adaptive GWS. Left: Scale invariance property of DNNs indicates that if the network is rescaled by
7, the function of the model remains similar. Middle: The histogram of final models’ parameters shows that adaptive GWS makes more
model parameters close to zero, nearly twice as many as FEDAVG. Right: The loss landscape is perturbed based on the Top-1 Hessian
eigenvector of the final models, which shows that the model with adaptive GWS has flatter curvature and smaller loss.

has a smaller loss when v < 1.

— Small model parameters. The shrinking effect in
each round can result in smaller model parameters of
final global models, which is similar to weight decay.
The parameter weight histogram is demonstrated in the
middle figure of Figure 4. The final model of adaptive
GWS has more model parameters close to zero, nearly
twice as many as FEDAVG.

* Why adaptive GWS can improve generalization.

— Flatter loss landscapes. One perspective of explain-
ing the generalization of DNNSs is through the flatness
of the loss landscape. Previous works have shown that
flatter curvature in loss landscape can indicate better
generalization (Fort & Jastrzebski, 2019; Foret et al.,
2020; Li et al., 2018). (Lyu et al., 2022) shows that
weight decay of mini-batch SGD can result in flatter
landscapes in DNNs with normalization layers. We
also observe the similar phenomenon that adaptive
GWS improves generalization by seeking flatter min-
ima in FL, as shown in the right figure of Figure 4.
Other metrics of flatness also demonstrate similar re-
sults (Figure 10 in Appendix).

3) The relation between adaptive GWS and local weight
decay. Our proposed adaptive GWS can provide weight reg-
ularization from the global perspective, which is analogous
to weight decay in mini-batch SGD. Importantly, GWS has
a unique sparse regularization frequency that only changes
the model weight in each round, resulting in stronger regu-
larization. In GWS, 1 — ~ is near 0.1, whereas the factor of
weight decay is often around 10~%. Notably, the two meth-
ods are not conflicted in FL, and we conduct experiments
on implementing weight decay in the local SGD solver and
global weight shrinking on the server simultaneously. As
shown in Table 2, adaptive GWS is compatible with local
weight decay and can further improve performance. Unlike
local weight decay, adaptive GWS is hyperparameter-free
and effective. It can adaptively set ¥ to maximize the benefit
of weight regularization. As the local weight decay becomes
stronger, the learned vy is larger, resulting in weaker GWS

Table 2. Adaptive GWS with different local weight decay factors
(E = 2). IID (a = 100), NonIID (o = 1).
| Local weight decay | 0 5e-5 le-4 Se-4 le-3

FEDAVG 66.43 6620 6645 6751 68.66
1D Adaptive GWS 7147 7136 7135 7144 7154
v of Adaptive GWS | 0.9472  0.9477 0.948 09493  0.953
FEDAVG 6535 65.19 6577 6637 67.4
NonlID Adaptive GWS 7031 6993 7044 7047  69.99
v of Adaptive GWS | 0.9492  0.9499 0.9505 0.9529 0.9561

regularization. More analysis about global weight shrinking
can be found in subsection B.1 in Appendix.

4) Insights from FL’s adaptive GWS to mini-batch SGD.
FL’s adaptive GWS leverages the advantage of the server
that learns an adaptive shrinking factor globally. It is promis-
ing that similar ideas can be adopted in mini-batch SGD by
learning the hyperparameter of weight decay on a small pro-
portion of training data. This may realize hyperparameter-
free optimization, and we leave it for future works.

5. Client coherence
5.1. Basic Concept and Formulation

Inspired by gradient coherence in mini-batch SGD (Chat-
terjee, 2019; Zielinski et al., 2020; Chatterjee & Zielinski,
2020), we study client coherence in FL through weighted ag-
gregation, which indicates how clients strengthen and com-
plement each other to achieve better generalization. There
are two aspects, the local gradient coherence of clients’
model updates and the heterogeneity coherence.

Local Gradient Coherence. The gradient coherence in
mini-batch SGD is at the data sample level. In FL, the con-
cept of gradient coherence is extended to the level of clients,
where we refer to it as "client coherence". Specifically, we
study the similarity of local gradients among clients, as it
has been shown that aggregating similar gradients leads to
stronger global gradients, thereby improving generalization.
We deduce the gradient coherence in mini-batch SGD and lo-
cal gradient coherence in FL under a unified equation below:
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Equation 6 is a Taylor expansion of the loss function within
one update. In mini-batch SGD, t is the iteration step, m
is the batch size, and g! is the gradient of a sample i at
iteration ¢. Typically, there is no weighted averaging in a
mini-batch, so Vi € [m], A; = 1. In FL, ¢ is the communi-
cation round, w! is the global model on the server at round
t, m is the cohort size, g§ denotes the local gradient of client
i atround ¢, and )\; is the aggregation weight of client i. The
term cos(g}, ") means the cosine similarity between the
gradients of clients ¢ and j, defined as (&i-25)/|g!||[lg}||. As-
suming all gradients have bounded norms that Vi, ||gt|| < e.
The cosine similarity among gradients indicates the coher-
ence: if the gradients have larger cosine similarity, it will
have larger descent in the loss and improve the global gen-
eralization®. In this paper, we focus on the local gradient
coherence among clients during FL training. We use the
cosine stiffness definition (Fort et al., 2019) to quantify the
local gradient coherence in FL.

Definition 5.1. The local gradient coherence of two clients
i and j at round ¢ is defined by the cosine similarity of their
local updates sent to the server, as wa') = cos(g}, g)-

The overall local gradient coherence of a cohort of clients
at round ¢ is defined by the weighted cosine similarity of

all clients’ local updates sent to the server, as cfzohort =

“The local gradient coherence is different from gradient di-
versity (Yin et al., 2018). A detailed discussion can be found in
subsection B.2 in Appendix

% Zm,i;&j Aidj cos(gﬁ, g;)

FL assumes multiple local epochs in each client, and clients
usually have heterogeneous data. In this case, the local
gradients of clients are usually almost orthogonal, which
means that they have low coherence. This phenomenon is
observed in (Charles et al., 2021), but it did not dig deeper
to examine the training dynamics of FL. In this paper, we
calculate the local gradient coherence in each round and find
a critical point exists in the process (Figure 5 and Figure 6).
Heterogeneity Coherence. Heterogeneity coherence refers
to the distribution consistency between the global data and
the sampled one (i.e. data distribution of a cohort of sampled
clients) in each round. The value of heterogeneity coherence
is positively correlated with the IID-ness of clients as well
as the client participation ratio; the higher, the better. We
define heterogeneity coherence as follows.

Definition 5.2. Assuming there are n clients and the co-
hort size is m. For a given cohort of clients, the hetero-
geneity coherence is Sim(Deoport, D), where Deoport =
Yieim AiDi, D = >°j—1 A;D; and “sim” is the similarity
of two data distributions.

5.2. Attentive Learnable Aggregation Weight and
Training Dynamics
Vanilla FEDAVG only considers data sizes as clients’ ag-
gregation weights A. However, clients with different het-
erogeneity degrees have different importance in client co-
herence, which can greatly affect the training dynamics. A
three-node toy example is shown in Figure 12 in Appendix.
The optimal A is off the data-sized when clients have the
same data size but different heterogeneity degrees. To study
client coherence further, we propose attentive learnable ag-
gregation weight (attentive LAW) to learn the optimal aggre-
gation weights (i.e. A) on a proxy dataset. By connecting
the optimal weights and the client coherence, we can know
the roles of different clients in different learning periods.
Attentive LAW conducts the model updates in Equation 3,
where {y = 1, = A*},

A = argmin Lproay (Y Aiw), st X >0, [ A1 =1. (7)
A

i=1
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1) Generalization will benefit from positive local gradient
coherence.

e Critical point exists in terms of local gradient
coherence. To study the role of client data heterogeneity
in local gradient coherence, we experiment on both
balanced and imbalanced clients, whose distributions
are shown in Figure 13 of Appendix. The results are
demonstrated in Figure 5, which illustrate that in the
first couple of rounds, the coherence is dominant and
positive, thus the test accuracy arises dramatically, and
most generalization gains happen in this period. The
critical point is the round that the coherence is near zero.
After the critical point, the test accuracy gain is marginal,
and the coherence is kept negative but close to zero.

Assigning larger weights to clients with larger coher-
ence before the critical point can improve overall per-
formance. From the left of Figure 5, it is clear that before
the critical point, the coherence among balanced clients is
much higher than that of imbalanced clients. This obser-
vation highlights the fact that clients with more balanced
data have more coherent gradients . To capitalize on this,
according to Equation 6, we can assign larger weights to
clients with more balanced data before the critical point to
boost generalization. From the right of Figure 5, attentive
LAW proves our hypothesis: it assigns larger weights to
balanced clients in the early rounds, particularly in the first
two rounds where it nearly assigns all weights to balanced
clients. This may suggest that the coherence of clients
only matters before the critical point where the overall co-
herence is positive. To verify this, we adopt early stopping
near the critical point when conducting attentive LAW and
use data-sized weights after the stopping round. Results
in the middle of Figure 5 show that the early-stopped
attentive LAW has comparable performance after the crit-
ical point. This insight can guide the design of effective
algorithms for learning critically in early training stages.
GWS improves local gradient coherence to positive
after the critical point. Interestingly, we observe that
if we adopt adaptive GWS, the local gradient coherence

>This also reveals why FL performs better in IID settings than
NonlID: the clients’ gradients in IID settings are more coherent,
but the ones in the NonlID usually diverge.

Round 41 Round 41 60

o
@
3
o
@
3

FedAvg Attentive

LAW

Proportion
°
I
B
Proportion
°
I
B

o
)
3

0.00
0123456789 0123456789
Class Class

Round 97 Round 97

o
@
3
o
@
3

Top-1 test accuracy (%)

20 / FedAvg
/ —— Attentive LAW with SWA
-+ Attentive LAW w/o SWA

Proportion
o
I
B
Proportion
o
I
B
&

e
=

00
0123456789 0 50 100 150 200
Communication Rounds

0
0123456789
Class Class

Figure 7. Left: Heterogeneity coherence of class distribution
within a cohort. Right: Test accuracy curves. £/ = 3.

remains positive after the critical point, allowing the
model to continue benefiting from the coherent gradients.
As shown in Figure 6, before the critical point, both
vanilla FEDAVG and adaptive GWS have high gradient co-
herence, resulting in similar increases in accuracy. After
the critical point, the coherence of FEDAVG goes down
below zero, resulting in marginal performance gains. In
contrast, adaptive GWS maintains coherence above zero,
allowing for further performance gains beyond FEDAVG.

2) Improving heterogeneity coherence within a cohort
can boost performance. In scenarios with partial client
participation in each round, the selected clients have an in-
consistent sum objective with the global objective, resulting
in low heterogeneity coherence (as defined in Definition
5.2). In theory, the expectation of the sum objective of the
sampled clients is consistent with the global objective if
the communication rounds (sampling times) are numerous.
However, in practical FL, the number of rounds is limited,
and from the perspective of learning dynamics, only the first
few rounds matter most. Thus, the heterogeneity coherence
problem brings a challenge, and sampling methods may not
always help, because the availability of clients cannot be
guaranteed and stragglers may exist (Li et al., 2020b).

To address the issue, reweighting the sampled clients in
aggregation is quite essential. We find attentive LAW im-
proves heterogeneity coherence by dynamically adjusting
the aggregation weights among clients. We visualize the
weighted class distributions within a cohort in Figure 7,
which shows that attentive LAW learns weights to make the
class distributions more balanced. The test accuracy curves
demonstrate a dominant performance gain compared to FE-
DAVG, which showcases the significance of heterogeneity
coherence. Additionally, we observe that attentive LAW
with SWA® performs better by seeking a more generalized
minimum in the aggregation weight hyperplane. More anal-
ysis about client coherence can be found in subsection B.2
of Appendix B.

%Stochastic Weight Averaging (SWA) (Izmailov et al., 2018) is
an effective technique to make simple averaging of multiple points
along the trajectory of optimization with a cyclical learning rate,
which leads to better generalization.
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Table 3. Top-1 test accuracy (%) achieved by comparing FL. methods and FedLAW on three datasets with different model
architectures (£ = 3). Blue/bold fonts highlight the best baseline/our approach.

Dataset | FashionMNIST CIFAR-10 CIFAR-100
NonlID («) ‘ 100 0.1 100 0.1 100 0.1
Model | MLP LeNet | MLP LeNet | CNN ResNet | CNN  ResNet | CNN  ResNet | CNN  ResNet
FEDAVG ‘ 89.29  90.54 ‘ 85.11 88.08 ‘ 65.78 74.57 ‘ 60.13 46.04 ‘ 25.74 27.49 ‘ 27.74 24.92
FEDPROX 87.68 89.77 | 84.33 87.01 | 67.66 68.51 60.48 48.84 9.49 27.15 12.52 23.73
FEDDYN 88.47 89.92 | 77.68 72.68 66.1 76.62 41.53 35.77 24.44 32.18 22.67 29.00
FEDDF 86.16 89.09 | 78.48 8590 | 69.60 77.36 57.38 54.09 28.52 27.42 24.52 23.10
FEDBE 86.22 89.14 | 79.12 85.96 | 69.88 77.94 59.84 52.86 28.38 27.73 25.41 23.74
SERVER-FT 89.09 90.56 | 85.71 88.10 | 66.83 74.73 60.43 47.59 25.37 26.14 24.33 23.03
FEDLAW 88.51 90.66 | 86.30 88.26 | 70.17 80.46 62.46 52.83 32.51 33.17 32.30 24.84
FEDLAW (SWA) | 88.27 90.51 | 86.89 88.18 69.9 79.55 62.12 57.08 32.39 33.17 32.27 25.31

Algorithm 1 FEDLAW: Federated Learning with Learnable
Aggregation Weights

Input: clients {1,...,n}, server-side proxy dataset, com-
munication round 7', local epoch E, server epoch Ej, initial
global model W}];

Qutput: final global model Wg;

1: foreachroundt =1,...,7 do
2 # Client updates
3:  foreachclient 4, i € [n] in parallel do
4 Set local model w! «+ wtg;
5 Compute E epochs of client local training by Equa-
tion 1:
Wi wl— VL, (wh);
end for
# Server updates
The server samples m clients and receive their mod-
els {wi}iLy;
10:  The server sets initial vy and Aas {y = 1, A\; = %};
11:  Compute E epochs of aggregation weight learning
on the proxy dataset by Equation 8:
12: {77 A} — {Py’ A} - nSV£PT093y ({ﬁ% A})’
13:  Obtain the optimal aggregation weights {y*, A*};
14:  Obtain the global model:
15 Whr ey (0 Arw;
16: end for
17: Obtain the final global model wg.

LR

6. FedLAW

6.1. Method

Based on the above understandings, we propose Federated
Learning with Learnable Aggregation Weights algorithm
(FEDLAW) which combines the adaptive GWS and atten-
tive LAW to optimize «y and A simultaneously, defined as

VA" = argmin Lyroryy - (D AW, (®)
A i=1
st.y>0,1 >0, ||>\||1 =1. ©)]

Table 4. Performance comparison under different numbers of
clients. CIFAR-10, ResNet20, &F = 3.

Setting ‘ IID (a« = 100) NonlID (v = 1)
Number of clientsn | 50 100 50 100
FEDAVG 68.04 6241 6687  64.13
FEDDF 4824 3866 3870 2251
SERVER-FT 67.77 6230 6673  64.63
FEDLAW | 78.88 74.09 7559 7134

Table 5. The performance of compared methods with different
model architectures (« = 1, £ = 1).

Model | FEDAVG FEDLAW FEDLAW (SWA)
ResNet20 74.11 78.72 78.64
ResNet56 74.22 78.93 79.08
ResNet110 74.50 78.11 79.19
WRNS6_4 | 78.67 79.61 80.70
DenseNet121 |  85.13 86.50 87.06

The pseudo-code of FEDLAW is shown in Algorithm 1.
With SWA (optional). We adopt an alternative two-stage
strategy for SWA variant (implementing it in a reversed
order also works), where we first fix A and optimize -, then
we use the learned v and fix it to optimize A with SWA.

In our experiments, we denote FEDLAW with or without
SWA as “FEDLAW (SWA)” or “FEDLAW”.

6.2. Experiments

Baselines and Settings. We conduct experiments to verify
the effectiveness of FEDLAW. We mainly compare FED-
LAW with other server-side methods, i.e. FEDDF (Lin et al.,
2020) and FEDBE (Chen & Chao, 2021), that also require a
proxy dataset for additional computation. These two meth-
ods conduct ensemble distillation on the proxy data to trans-
fer knowledge from clients’ models to the global model. We
add SERVER-FT as a baseline for simply finetuning global
models on the proxy dataset. Besides, we implement client-
side algorithms FEDPROX (Li et al., 2020b) and FEDDYN
(Acar et al., 2020) for comparison. If not mentioned oth-
erwise, the number of clients is 20. More implementation
details can be found in Appendix C and Appendix D.
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Experimental results. Different datasets: As in Table 3,
FEDLAW outperforms baselines on different datasets and
models in both IID and NonlID settings. Compared with
FEDDF, FEDBE and SERVER-FT, FEDLAW can better
utilize the proxy dataset. Different numbers of clients: We
implement experiments by scaling up the number of clients
in Table 4, and it is shown that FEDLAW also surpasses the
baselines by large margins. Different model architectures:
We test FEDL AW across wider and deeper ResNet and other
architecture, such as DenseNet (Huang et al., 2017), in the
Table 5. It shows that FEDLAW is effective across different
architectures, and it performs well even when the network
goes deeper or wider. Different participation ratios: From
the left of Figure 8, FEDLAW performs well under partial
participation. Different sizes and distributions of proxy
dataset: From the right of Figure 8, the server-side base-
lines are sensitive to the size of the proxy dataset that too
small or too large proxy set will cause overfitting. However,
FEDLAW is also effective under an extremely tiny proxy
set and benefits more from a larger proxy set due to accurate
aggregation weight optimization. We report the results of
different distributions of the proxy dataset in Table 6 and
Table 7, which show that FedLAW still works when there
exists a distribution shift between the proxy dataset and
the global data distribution of clients. Robustness against
corrupted clients: Another advantage of FEDLAW is that
it can filter out corrupted clients by assigning them lower
weights. We generate corrupted clients by swapping two
labels in their local training data. As in Table 8, FEDLAW
is robust against corrupted clients, and it is as robust as the
ensemble distillation methods, such as FEDDF, using the
same proxy dataset.

More results. We present more results in the appendix.
Specifically, the learning curves of test accuracy (Figures 15-
17) and the server training process of FEDLAW (Figure 14).

7. Conclusion

In this paper, we revisit and rethink the weighted aggrega-
tion in federated learning with neural networks and gain
new insights into the training dynamics. First, we break the
convention that the /; norm of aggregation weights should

Table 6. The performance on the distribution shift setting where
the clients’ data are overall balanced and the proxy data are long-

tailed (p = 10).

Setting \ TID (o = 100) NonIID (a = 1)
Type of proxy data | Balanced  Long-tailed  Balanced Long-tailed
Balanced Sampling - w/o \ - w/o w
FEDAVG 7524 7524 7524 7346 73.46 73.46
FEDDF 7620  74.04 7331 74.39 73.99 73.14
FEDLAW ‘ 7940 7714 7856 7670  76.78 70.42

Table 7. The performance on
the distribution shift setting
where the clients’ data are
long-tailed (p = 5) and the

Table 8. The performance on dif-
ferent percentages of corrupted
clients (IID, ¥ = 3).

Corrupt percent. ‘ 25%

50%  75%

proxy data are balanced. FEDAVG ‘ 63.40 61.14 5821
Method | TID (a = 100)  NonlID (a = 1) FEDDF 68.73  66.94 66.07
FEDAVG 6112 59.82 SERVER-FT 63.61 6124 5836
FEDDF 39.03 40.68 FEDLAW 67.87 66.67 6391
FEDLAW \ 67.61 66.48 FEDLAW(SWA) | 68.04 6695 65.51

be normalized as 1 and identify the global weight shrinking
phenomenon and its dynamics when the norm is smaller
than 1. Second, we discover two aspects of client coherence,
local gradient coherence and heterogeneity coherence, and
study the dynamics during training. Based on the findings,
we devise a simple but effective method FEDLAW. Exten-
sive experiments verify that our method can improve the
generalization of the global model by a large margin on
different datasets and models.
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Appendix

In this appendix, we provide details omitted in the main paper and more experimental results and analyses.
¢ Appendix A: more related works (cf. section 2 of the main paper).
* Appendix B: more experimental results and analyses (cf. section 4, section 5 and section 6 of the main paper).
* Appendix C: additional details of FEDLAW (cf. section 6 of the main paper).

* Appendix D: details of experimental setups (cf. section 4, section 5 and section 6 of the main paper).

A. More Related Works

A.1. Model Aggregation in Federated Learning

Model aggregation in federated learning. Model aggregation weights should be calibrated under asynchronous local
updates. FEDNOVA (Wang et al., 2020b) is proposed to tackle the objective inconsistency problem caused by asynchronous
updates; it theoretically shows that the convergence will be improved if the numbers of local iterations normalize the
aggregation weights. However, it does not take the heterogeneity degree of clients into account, which is also a key factor
that affects the generalization of the global model. In (Chen & Chao, 2021), the authors point out that due to heterogeneity,
the best-performing model will shift away from FEDAVG, but they do not give insights on how to adjust aggregation weight
to approximate the best model, they use Bayesian ensemble distillation method to prove the generalization of the global
model instead. To solve the misalignment of neurons in FL. with DNNs, FEDMA (Wang et al., 2020a) is proposed: FEDMA
constructs the shared global model layer-wise by matching and averaging hidden elements with similar features extraction
signatures. Besides, optimal transport (Kantorovich, 2006) can be adopted in layer-wise neuron alignment in the process of
model fusion (Singh & Jaggi, 2020). These previous works improve the global model performance by layer-wise alignment,
but they are complex and computation-expensive, and they can not be applied under the traditional weighted aggregation
scheme. In this paper, we only focus on the convex combination of clients’ local models by weighted aggregation, which is
the most common and general way of model aggregation.

A.2. Generalization and Training Dynamics of Neural Networks

Loss landscape of neural networks and generalization. Deep neural networks (DNNs) are highly non-convex and
over-parameterized, and visualizing the loss landscape of DNNs (Li et al., 2018; Vlaar & Frankle, 2021) helps understand
the training process and the properties of minima. There are mainly two lines of works about the loss landscape of DNNss.
The first one is the linear interpolation of neural network loss landscape (Vlaar & Frankle, 2021; Garipov et al., 2018;
Draxler et al., 2018), it plots linear slices of the landscape between two networks. In linear interpolation loss landscape,
mode connectivity (Draxler et al., 2018; Vlaar & Frankle, 2021; Entezari et al., 2022) is referred to as the phenomenon
that there might be increasing loss on the linear path between two minima found by SGD, and the loss increase on the
path between two minima is referred to as (energy) barrier. It is also found that there may exist barriers between the initial
model and the trained model (Vlaar & Frankle, 2021). The second line concerns the loss landscape around a trained model’s
parameters (Li et al., 2018). It is shown that the flatness of loss landscape curvature can reflect the generalization (Foret
et al., 2020; Izmailov et al., 2018) and top hessian eigenvalues can present flatness (Yao et al., 2020; Jastrzebski et al., 2018).
Networks with small top hessian eigenvalues have flat curvature and generalize well. Previous works seek flatter minima for
improving generalization by implicitly regularizing the hessian (Foret et al., 2020; Kwon et al., 2021; Du et al., 2021).
Critical learning period in training neural networks. (Jastrzebski et al., 2019) found that the early phase of training
of deep neural networks is critical for their final performance. They show that a break-even point exists on the learning
trajectory, beyond which SGD implicitly regularizes the curvature of the loss surface and noise in the gradient. They also
found that using a large learning rate in the initial phase of training reduces the variance of the gradient and improves
generalization. In FL, (Yan et al., 2021) discovers the early training period is also critical to federated learning. They reduce
the quantity of training data in the first couple of rounds and then recover the training data, and it is found that no matter
how much data are added in the late period, the models still cannot reach a better accuracy. However, it did not further study
the role of client heterogeneity in the critical learning period while we examine it by local gradient coherence.

A.3. Federated Hyperparameter Optimization

Current federated learning methods struggle in cases with heterogeneous client-side data distributions which can quickly
lead to divergent local models and a collapse in performance. Careful hyperparameter tuning is particularly important in
these cases. Hyperparameters can be optimized using gradient descent to minimize the final validation loss (Maclaurin et al.,
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Table 9. More results about fixed y across different architectures in various NonlID settings.
y | 1.0 0.99 0.97 0.95 0.93 0.9
Model | a=10

SimpleCNN | 6596 67.19 69.41 69.81 69.69 69.59
AlexNet 739 7443 7496 7512 7533 74.06
ResNet8 7626 75.63 7692 7723 769 76.61

Model | a=05

SimpleCNN | 65.78 66.59 6793 68.85 68.75 68.25
AlexNet 73.72  73.06 73.89 7398 73.6 73.33
ResNet8 734 7393 7539 7412 73.66 73.46

Model | a=0.2

SimpleCNN | 63.52 64.68 63.72 65.82 654 64.97
AlexNet 68.41 7046 7087 70.74 70.58 69.42
ResNet8 71.85 7096 72.76 72.04 7125 6232

Model | a=0.1

SimpleCNN | 60.57 61.22 61.83 62.05 62.05 60.85
AlexNet 66.18 6525 6474 6423 064.16 61.24
ResNet8 63.89 6055 6138 5923 5876 39.85

Table 10. The performance of adaptive GWS under different global learning rates.

IID (o = 100) NonlID (o = 1)
Global learning rate | 0.5 1 1.5 0.5 1 1.5
FedAvg 69.15 68.18 64.35 | 68.71 67.09 64.00

Adaptive GWS 7145 7198 71.13 | 69.65 71.02 71.04
v of Adaptive GWS | 0.986 0.974 0.963 | 0.991 0.979 0.967

2015; Franceschi et al., 2017). Moreover, hyperparameters can be optimized based on reinforcement learning methods (Guo
et al., 2022; Jomaa et al., 2019; Mostafa, 2019). However, in this paper, optimizing aggregation weights is not our main
novelty. Instead, we focus on leveraging this toolbox to examine the crucial training dynamics in FL in a principled way.

B. More Results and Analyses

B.1. Global Weight Shrinking

Fixed . We add more results about global weight shrinking experiments with fixed v as in Table 9. It is found that when
data are more NonlID, fixed v will cause negative effects; this is more dominant when o = 0.1 and the models are AlexNet
or ResNet8.

Adaptive GWS with global learning rate. We conduct experiments with the adaptive GWS under different global learning
rates for both IID and NonlID settings. We train SimpleCNN on CIFAR10 with 1 local epoch, and the results are reported in
Table 10. It can be observed that in both IID and NonlIID settings, a small global server learning rate can improve FEDAVG’s
performance. In contrast, the larger the global learning rate, the smaller the learned y (stronger regularization). It is aligned
with our insights in the main paper that larger pseudo gradients require stronger regularization. Moreover, adaptive GWS is
robust to the choice of the global server learning rate, especially in the IID setting.

Adaptive GWS under various heterogeneity. We show adaptive GWS works under various heterogeneity and visualize
~ and the norm of the global gradient in each setting, as in Figure 9. It demonstrates that adaptive GWS can boost
performance under different NonIID settings, but it has a smaller benefit when the system is extremely NonlID (i.e.,
a = 0.1). Additionally, according to the right figure of Figure 9, except for the outlier v when @ = 10, the learned ~y
decreases when data become more IID, causing stronger weight shrinking effect. We think this is a result of a balance
between optimization and regularization. The volumes of global gradients change when the heterogeneity changes. The
norm of global gradient increases when data become more IID, and it requires smaller - to cause stronger regularization.
More results of general understanding of adaptive GWS. First, we first visualize the norm of model parameter weight
during training as in the left figure of Figure 10. Adaptive GWS results in a smaller model parameter during training. Second,
we use two common metrics to measure the flatness of loss landscape during training as in the middle and right figures of
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Figure 9. Adaptive GWS under various heterogeneity. Left: Test accuracy gains with adaptive GWS. In all settings, adaptive GWS can
bring performance gains. Right: Learned  of adaptive GWS in different settings. v decreases when data become more IID, causing the
stronger weight shrinking effect. This is due to the changes in the volumes of global gradients. The norm of global gradient increases
when data become more IID, and it requires smaller «y to cause stronger regularization.

Figure 10, and they are the hessian eigenvalue-based metrics. The dominant hessian eigenvalue evaluates the worst-case
loss landscape, which means the larger top 1 eigenvalue indicates the greater change in the loss along this direction and the
sharper the minima (Keskar et al., 2017). We adopt the top 1 hessian eigenvalue and the ratio of top 1 and top 5, which are
commonly used as a proxy for flatness (Jastrzebski et al., 2020; Fort & Jastrzebski, 2019). Usually, a smaller top 1 hessian
eigenvalue and a smaller ratio of top 1 hessian eigenvalue and top 5 indicates flatter curvature of DNN. As in the figures,
during the training, FEDAVG generates global models with sharp landscapes whereas adaptive GWS tends to generate more
generalized models with flatter curvatures.
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Figure 10. More results of general understanding of adaptive GWS. Left: Adaptive GWS results in a smaller model parameter during
training. Middle: Smaller top 1 hessian eigenvalue indicates flatter curvature of DNNs. The result shows FEDAVG tends to generate
sharper global models during training while adaptive GWS seeks flatter networks. Right: The ratio of the top 1 hessian eigenvalue and
top 5 is another indicator; a smaller value means flatter minima.

The distribution of r. We visualize r (the ratio of the global gradient and the regularization pseudo gradient) values of
all experiments in Figure 2 and Figure 9 as in Figure 11. It is found that the distribution of  can be approximated into a
Gaussian distribution with its mean around 20.5.

B.2. Client Coherence

The relationship with gradient diversity. The conclusion of gradient diversity (Yin et al., 2018) is opposite to the one of
gradient coherence. Gradient diversity argues that higher similarities between workers’ gradients will degrade performance
in distributed mini-batch SGD, while gradient coherence claims that higher similarities between the gradients of samples
will boost generalization (Yin et al., 2018; Chatterjee, 2019). Moreover, gradient diversity is somewhat controversial. As
argued in the line of works about gradient coherence (Chatterjee & Zielinski, 2020; Chatterjee, 2019), the manuscript of
gradient diversity did not explicitly measure the gradient diversity in the experiments (or further study its properties): only
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Figure 11. Distribution of r. We visualize r values of all experiments in Figure 2 and Figure 9 and find that the distribution of r can be
approximated into a Gaussian distribution with its mean around 20.5.

experiments on CIFAR-10 can be found where they replicate 1/r of the dataset r times and show that greater the value
of r less the effectiveness of mini-batching to speed up. Apart from this controversy, the strongly-convex assumption in
the theorem of gradient diversity (Yin et al., 2018) may make it weaker to generalize its conclusions in neural networks
while we are studying the empirical properties in FL with neural networks. Taking the above statements into consideration,
gradient diversity may be infeasible in our settings.

The relationship with client similarity works in FL. There are some works (Karimireddy et al., 2020; Li et al., 2020b)
taking the bounded gradient dissimilarity assumption to deduce theorems. In their assumptions, they bound the gradient
sum or gradient norm, but we use the cosine similarity to study how the clients interplay with each other and contribute to
the global. So the perspectives are quite different. Additionally, there are previous works in FL that use cosine similarity
of clients’ gradients to improve personalization (Huang et al., 2021; Li et al., 2022b); however, we focus on the training
dynamics in generalization, and one of our novel findings is we discover a critical point exists and the periods that before or
after this point play different roles in the global generalization.

Visualization of how heterogeneity affects the optimal aggregation weight. We set up a three-node toy example on
CIFAR-10 by hybrid Dirichlet sampling as shown in Figure 12. We first sample client 0’s data distribution by Dirichlet
sampling according to «1; then we sample data distributions for clients 1 and 2 on the remaining data with as. We set up
three settings with different o1, s and illustrate the data distributions on the Left column in Figure 12. In the example, the
aggregation weights (AWSs) are [\g, A1, A2], we regularize the weights as A\g + A; + A2 = 1 which is a plane that can be
visualized in 2-D. We uniformly sample points on the plane to obtain global models with different AW and compute the test
loss, and then the loss landscapes on the plane can be visualized. We implement FEDAVG for 100 rounds and record the loss
landscape and the optimal weight on the loss landscape in each round; then we illustrate the loss landscape of round 10 on
the Middle column and the optimal weight trajectory on the Right column of Figure 12.

In these settings, clients have different heterogeneity degrees: in the first setting, client O has a balanced dataset while the
data of clients 1 and 2 are complementary; in the second and third settings, clients 1 and 2 have the same data distribution,
which differs from the client 0’s. From Figure 12, it is evident that the weight of FEDAVG is biased from optimal weights
when heterogeneity degrees vary in clients, we can draw the following conclusions: (1) optimal weight can be viewed
as a Gaussian distribution in the aggregation weight hyperplane; (2) the mean of the Gaussian will drift towards to the
directions where data are more inter-heterogeneous (for instance, in the third setting, client 0’s major classes are 2, 3 and 8
while client 1 and 2 have rare data on these classes, so client 0’s contribution is more dominant); (3) the variance of the
Gaussian is larger in inter-homogeneous direction and is smaller in inter-heterogeneous direction (the variance along the
client 1-client 2 direction is large in the second and third settings, because the two clients have inter-homogeneous data;
opposite phenomenon is shown in the first setting, where client 1 and 2 have inter-heterogeneous data); (4) the flatness of loss
landscape on aggregation weight hyperplane is consistent with the variance of the Gaussian, which means the directions with
more significant variance will have flatter curvature in the landscape. From our analysis, it is clear that clients’ contributions
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to the global model should not be solely measured by dataset size, and the heterogeneity degree should also be taken into
account. And we observe that in a more heterogeneous environment, the loss landscape is sharper, which means the bias
from optimal weight will cause more generalization drop. In other words, in a heterogeneous environment, appropriate
aggregation weight matters more.

Loss landscape of epoch 10 Optimal weight trajectory

10 alphal = 100.0, alpha2 = 0.1 7 os . S s —
=% % Optimal Weight g o FedAvg
9 1 3 A Client0
9.6 <« Client1
o 8 . . 10 v Client2
N ® -
2 08
> 6 . 7.2
:s @ .
a
g 60 06
i+ @ ‘
“
1)
. 3 . 4.8 0.4
]
£ 2 . 36
Z 1 o 02
24
° @
0.0
-1 12
05 0.0 1.0 2.0 25 -06 04 -02 00 02 04 06
Client idx
Ioh Ioh Optimal weight trajectory
10 alphal = 1.0, alpha2 = 100.0 . * Optimal Weight
340 12 I e FedAvg
A Cliento
9 . . 315 <« Client1
a8 Py 1.0 v Client2
© 2.90
o7 ®
038
g 6 | 2.65
3
i, @ ® o
£
& 4 L . 215
w“
©
. 3 () o oo 04
Qo
2 ® <
§ 165 02
21 ® 4
0 . 140
®
-1 115
05 0.0 1.0 2.0 25 -06 04 -02 00 02 04 06
Client idx

Optimal weight trajectory

alphal = 0.1, alpha2 = 100.0

*  Optimal Weight

9.4
10 12 ® FedAvg
9 A Client0
8.4 <4 Client 1
o 8 10 v Client2
©
S 5 7.4
@ 08
2 6 . 6.4
@
s 5
[=%
£ 5.4 06
5 4 &
-
° 3 () [ ] a4 04
8
2 2 . . 14
El
El 5 02
0 24
0.0
- 14
205 0.0 10 20 25 06 04 -02 00 02 04 06

Client idx

Figure 12. Heterogeneity also affects the optimal aggregation weight. A three-node toy example on CIFAR-10 is shown. Left: Data
distribution of each client, note that each client has the same dataset size. Middle: Loss landscape on the plane of aggregation weight, it is
noticed that FEDAVG is off the optimal and the landscape has various flatness in different directions. Right: optimal weight trajectory
during training. We plot the optimal weights in each round (green dots) and find that the optimal weights are biased from FEDAVG.

Visualization of the hybrid NonIID setting of Figure 5. We visualize the hybrid NonlID setting of Figure 5 in Figure 13.
We take oy = 10 and ap = 0.1, so the first 10 clients (indexed 0-9) have class-balanced data while the last 10 clients
(indexed 10-19) have class-imbalanced data.

Data size or heterogeneity? A correlation analysis. Data size and heterogeneity all affect clients’ contributions to the
global model, but which affects it most? As in previous literature, the importance is depicted by the dataset size that clients
with more data will be assigned larger weights. According to the analysis in Figure 12, the importance of weight may be

17



Revisiting Weighted Aggregation in Federated Learning with Neural Networks

alphal = 10.0, alpha2 = 0.1

I EEEERE EEEX .-
8 @0 00 e 00000 . Il
1%
27 e @ o @ 0@ 0 0 0 o ° O
¢ oo 00000000 - . o
%]
25 ®@ 0o o o @ 0 0 0 0 o .. o . @
£
84 oooooooooo.. . .
G
;3 eeceeoece-o00f-
Q
§2 ooooooooooo. . )
1 ©® o © e © ® ©¢ 0 o ° . [
o eceoeeoeoeoecoece @
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Client idx

Figure 13. Data distribution of Figure 5

Table 11. Pearson correlation coefficient analysis of AW. Heterogeneity degree is calculated as the reciprocal of the variance of class
distribution for each client. We take the accumulated weights during the training as clients’ AW.

Factors | E=1 E=5 E=1&E=5
Dataset size (DS) -0.098 0.21 0.035
Heterogeneity degree (HD) 0.41 0.024 0.35
DSxHD 0.26 0.17 0.31

associated with the heterogeneity degrees of clients. To explore which factor is more dominant in the AW optimized by
attentive LAW, we have made a Pearson correlation coefficient analysis in Table 11. Results show that dataset size is more
dominant when the local epoch is large; otherwise, the heterogeneity degree. This phenomenon is intuitive: when the local
epoch increases, clients with a larger dataset will have more local iterations than others (Wang et al., 2020b), so their updates
are more dominant. In the cases where the local epoch is small, clients’ updates are of similar volumes; here the updates’
directions are much more important since balanced clients are prone to have stronger coherence, and their AWs are larger in
model aggregation. We combine two factors by multiplication, and the result shows that the combined indicator is more
dominant when the two cases are mixed.

B.3. Learning curves of FedLAW and baselines

We add the test accuracy curves to show the learning processes of the algorithms and visualize them in Figure 15
(FasionMNIST), Figure 16 (CIFAR-10), and Figure 17 (CIFAR-100). The curves are according to the results in Table 3. It
shows that FEDL AW surpasses the baseline algorithms in most cases. Besides, FEDLAW is steady in the learning curves
and it avoids over-fitting in the late training.

We also visualize the server training process of FedLAW in Figure 14. It is found that  converges faster than A. For 7, it
converges to the optimal value in about 30 server epochs, while for A, it needs 80 epochs to fully converge.

C. Additional Details of Fed LAW

In FEDLAW, we optimize AW on the server as Equation 8, and there are constraints that A; > 0, ||A||; = 1. To realize these
constraints, we adopt base functions in A, and there are two alternatives, the quadratic function and the exponential function.

x? . e
W, EXpOnentlal: )\i = W
3 i J
x is the variable that determines the value of A. We compute the gradients of @ to update A. By using the base functions, A
can meet the constraints of non-negativity and /; = 1. The exponential function is the same as the Softmax function and we
find these two functions have similar performances overall, so we only adopt the exponential function in the experiments.

Quadratic: \; = (10)
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Figure 14. Server training visualization of FEDLAW. CIFAR10, n = 20, £ = 3, NonlID « = 1.0, ResNet20.

D. Implementation Details
D.1. Environment.
We conduct experiments under Python 3.8.5 and Pytorch 1.12.0. We use 4 Quadro RTX 8000 GPUs for computation.

D.2. Data

Data partition. To generate NonlID data partition amongst clients, we use Dirichlet distribution sampling in the trainset of
each dataset. In our implementation, apart from clients having different class distributions, clients also have different dataset
sizes; we think this partition is more realistic in practical scenarios. For the data partition in Figure 5 and Figure 12, we
use a hybrid Dirichlet sampling to generate an FL system with both class-balanced clients and class-imbalanced clients.
Specifically, we first generate all-client distribution with «1, and we only keep half of these clients. Then we use the
remaining data to generate the distribution of remaining clients with as. For the data in Figure 5, we first generate a 20-client
distribution with a; = 10 and keep the first 10 clients as the balanced clients; then we use the remaining data to generate
distributions of the last 10 imbalanced clients with ap = 0.1. The distribution is shown in Figure 13.

Data augmentation. We adopt no data augmentation in the experiments.

Proxy dataset. We use a small and class-balanced proxy dataset on the server. In Table 3, we use proxy datasets with 10
samples per class, which means, for FashionMNIST and CIFAR-10, there are 100 samples in the proxy datasets, and for
CIFAR-100, there are 1000 samples in the proxy datasets. The proxy datasets are randomly selected from the testset of each
dataset. Then we use the remaining data in the testset to test the global models’ performance for all compared methods. For
Table 8 and the right of Figure 8, we use CIFAR-10 and a 100-sample proxy dataset, while in Table 5, we use CIFAR-10 and
a 1000-sample proxy dataset.

D.3. Model

SimpleCNN and MLP. The SimpleCNN for CIFAR-10 and CIFAR-100 is a convolution neural network model with ReLU
activations which consists of 3 convolutional layers followed by 2 fully connected layers. The first convolutional layer is of
size (3, 32, 3) followed by a max pooling layer of size (2, 2). The second and third convolutional layers are of sizes (32, 64,
3) and (64, 64, 3), respectively. The last two connected layers are of sizes (64*4*4, 64) and (64, num_classes, respectively.
The MLP model for FasionMNIST is a three-layer MLP model with ReLU activations. The first layer is of size (28*28,
200), the second is of size (200, 200), and the last is (200, 10).

ResNet and DenseNet. We followed the model architectures used in (Li et al., 2018). The numbers of the model names
mean the number of layers of the models. Naturally, the larger number indicates a deeper network. For WRNS56_4 in Table 5,
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Figure 15. Test accuracy curves of algorithms under FashionMNIST. According to the results in Table 3.
it is an abbreviation of Wide-ResNet56-4, where "4" refers to four times as many filters per layer.

D.4. Randomness

Randomness is important for fair comparisons. In all experiments, we implement the experiments three times with different
random seeds and report the averaged results. We use random seeds 8, 9, and 10 in all experiments. Given a random seed,
we set torch, numpy, and random functions as the same random seed to make the data partitions and other settings identical.
To make sure all algorithms have the same initial model, we save an initial model for each architecture and load the saved
initial model at the beginning of one experiment. Also, for the experiments with partial participation, the participating
clients in each round are vital in determining the model performance, and to guarantee fairness, we save the sequences of
participating clients in each round and load the sequences in all experiments. This will make sure that, given a random seed
and participation ratio, every algorithm will have the same sampled clients in each round.

D.5. Evaluation

We evaluate the global model performance on the testset of each dataset. The testset is mostly class-balanced and can reflect
the global learning objective of an FL system. Therefore, we reckon the performance of the model on the testset can indicate
the generalization performance of global models. In all experiments, we run 200 rounds and take the average test accuracy
of the last 10 rounds as the final test accuracy for each experiment. For the indicators during training in section 4, like v, r,
the norm of global gradient, and the norm of GWS pseudo gradient, we take the averaged values in the middle stage of
training, that is the average of 90-110 rounds.
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Figure 16. Test accuracy curves of algorithms under CIFAR-10. According to the results in Table 3.
D.6. Hyperparameter

Learning rate and the scheduler. We set the initial learning rates (LR) as 0.08 in CIFAR-10 and FashionMNIST and
set LR as 0.01 in CIFAR-100. We set a decaying LR scheduler in all experiments; that is, in each round, the local LR is
0.99*(LR of the last round).

Local weight decay. We adopt local weight decay in all experiments. For CIFAR-10 and FashionMNIST, we set the weight
decay factor as Se-4, and for CIFAR-100, we set it as Se-5.

Optimizer. We set SGD optimizer as the clients’ local solver and set momentum as 0.9. For the server-side optimizer
(FEDDF, FEDBE, SERVER-FT, and FEDLAW), we use Adam optimizer and betas=(0.5, 0.999).

Hyperparameter for FL algorithms. For FEDDF, FEDBE and FEDLAW, we set the server epoch as 100. We observe for
SERVER-FT, this epoch is too large that it will cause negative effects, so we set the epoch as 2 for SERVER-FT. We set
HFedProz = 0.001 in FEDPROX and atpeqpyn = 0.01 in FEDDYN as suggested in their official implementations or papers.
For FEDBE, we use the Gaussian mode in SWAG server. We did not use temperature smoothing in the ensemble distillation
methods FEDDF and FEDBE.
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Figure 17. Test accuracy curves of algorithms under CIFAR-100. According to the results in Table 3.
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