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Abstract

Adaptive experiments have been gaining traction in a variety of domains, which
stimulates a growing literature focusing on post-experimental statistical inference
on data collected from such designs. Prior work constructs confidence intervals
mainly based on two types of methods: (i) martingale concentration inequalities and
(ii) asymptotic approximation to distribution of test statistics; this work contributes
to the second kind. The current asymptotic approximation methods however mostly
rely on first-order limit theorems, which can have a slow convergence in a data-poor
regime. Besides, established results often rely on conditions that noises behave
well, which can be problematic when the real-world instances are heavy-tailed
or asymmetric. In this paper, we propose a higher-order asymptotic expansion
formula for inference on adaptively collected data, which generalizes normal
approximation to the distribution of standard test statistics. Our theorem relaxes
assumptions on the noise distribution and benefits a higher-order approximation in
the distributional distance to accommodate small sample sizes. We complement
our results by promising empirical performances in simulations.

1 Introduction

Adaptive experimental designs such as bandit algorithms have received increasing popularity in many
applications [13, 1, 7]. Instead of fixing a randomization rule, the experimenter progressively updates
the data collection mechanism in response to past observations, so as to reduce experimental costs or
optimize sample efficiency to test hypotheses. With the increasing availability of data collected from
such designs, we would like to understand the best practice to conduct post-experimental statistical
inference. Specifically, we seek to evaluate alternative treatment assignment policies using data
collected from batched multi-armed bandit algorithms and construct confidence intervals around the
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Figure 1: The Monte Carlo distribution of the test statistic based on OLS is far from being normal
due to the asymmetric and heavy-tailed noise.

estimations. We would like to do so in a data-efficient and robust way and accommondate regimes
where the sample size may be small, and the noise may be heavy-tailed or asymmetric.

There are two types of approaches of inference on adaptive data in the current literature. The first
kind is based on martingale concentration inequalities that result in valid confidence intervals for
arbitrary stopping times, but such methods are often overly conservative and lose statistical power
especially when sample size is small. [11, 12, 6, 14]. Alternatively, asymptotic approximation-based
methods construct estimators that have desirable limiting distributions, which are then translated
to asymptotically valid confidence intervals [5, 16, 8, 17]. We view our work as complimentary to
this line of research. Closest to our setting of batched multi-armed bandits, [16] first construct a
studentized statistic per batch and then aggregate them to obtain an estimator with asymptotically
normal guarantees, which retains even with nonstationarity.

Despite the growing research efforts, the current asymptotic approximation-based methods for
post-experimental inference lack two things:

1. Robustness to distributional assumptions. Prior work has mainly relied on assumptions on
sub-gaussian or symmetric noises, which is however problematic since such desirable properties
may not be realized in many real-world applications. For example, treatment effect heterogeneity or
truncation induces asymmetry in the noises. Thus methods predicated upon such assumptions might
not yield correct statistical properties in cases of heavy-tailed or asymmetric noises.

2. Sample size considerations. The current asymptotic approximation methods for adaptive inference
all rely on first-order limit theorems, a.k.a. central limit theorem. This convergence is slow in a
data-poor regime, which is typical if we want to evaluate sub-optimal arms using bandit data. Bandit
algorithms are often geared towards minimizing cumulative regret, which leads to meager data
collection for arms that do not perform well during the first part of the experiment. This issue
exacerbates as the number of arms increases.

To provide intuition, Example 1 shows that batched OLS [16] generates a test statistic that is far from
being normal with limited sample size and asymmetric noise.
Example 1. Consider a two-batch multi-armed bandit experiment run under an ϵ-greedy algorithm,
where the noise is distributed as standardized Γ(2, 1) with mean 0 and variance 1. Figure 1 presents
the Monte Carlo distribution of the test statistic based on batched OLS [16], which is shown to be far
from being normal due to the asymmetric and heavy-tailed noise.

How should we tackle these problems? The confidence sequence approach has an appeal of time-
uniform valid inference, but past simulation studies suggest that they may be conservative with small
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sample size [16, 5]. This paper provides an alternative method: if the first-order approximation is
insufficient, why not resort to higher-orders? With given sample size, our method aims to capture
higher-order departure of the test statistic from being normally distributed and translate it into a form
of an asymptotic expansion density. This asymptotic expansion formula formally guarantees an error
bound of o(n−(p−2)/2), where p is a user-specified integer. This asymptotic expansion is used to
provide higher-order adjusted z-scores for test statistics, which should be instance-dependent with
respect to parameters of the experiment such as sample size. This paper provides the first attempt on
higher-order approximation in the context of adaptive experiments.

As we will see, the framework of [15] that was used for a very different purpose (Jump-diffusion
process in random environment ) can be applied batchwise to the context of batch-wise adaptive
data collection, justified by the back propogation formula that provides precise estimate of the
approximation error.

Besides, we also modify his framework to incorporate random measurable functions, possibly
discontinuous, which corresponds to the assignment policy in the context of adaptive experiments.

The rest of the paper is organized as follows. Section 2 formulates the problem and provides
preliminaries. The main results are provided in Section 3, where we estimate an arm value based
on an asymptotic expansion density that generalizes the commonly-made normal approximation.
Section 4 offers preliminary numerical experiments. Finally, Section 5 concludes.

2 Setup

2.1 Batched Bandit Framework

Suppose the agent interacts with n individuals at batch s, and the experiment has S = {1, ..., S}
batches in total. At batch s, the i-th individual is identified with an element j = (s, is). We write
Jn = {(s, is; is ∈ Ins , s ∈ S}, where Ins = {1, ..., ns}. Let s(j) = s for each individual j ∈ Jns . The
batch size n is the parameter that drives the asymptotic theory we will develop.

Given a probability space (Ω,F , P ), for the individual j ∈ Jns the agent selects an action/treatment
according to an arm assignment policy (to be shortly introduced), which is expressed by a ks-
dimensional vector Aj = (Aj,ks)ks∈Ks , where Ks is the action space of size ks in batch s. Each
entry Aj,ks takes values in {1, 0} and

∑
ks∈Ks

Aj,ks = 1.

The agent then observes a reward Rj from the action Aj , which is written as follows,

Rj = A⋆
jβs(j) + ϵ̇j (j ∈ Jns ) (1)

where βs ∈ Rks represents the underlying effect of the actions, ϵ̇j is an exogenous mean-zero noise
that is sampled i.i.d. each time, and the star ⋆ denotes the matrix transpose1.

For batch s, let An
s = (Aj ; j ∈ Jns ) represent the action set and ϵns = (ϵj ; j ∈ Jns ), where ϵj is an

rs-dimensional random vector, e.g., ϵj = (ϵ̇j , ϵ̇
2
j − σ2)⋆. For j ∈ Jns , let Wn

j be a ds × rs random
matrix measurable with respect to σ[An

s(j)] Write Wn
s = (Wn

j )j∈Jns . Consider a weighted sum

Zn
s =

∑
j∈Jns

Wn
j ϵj . (2)

This Zn
s captures the most statistical quantities of interest in estimating the value of a single arm or

arm difference for batch s. For example, using data collected only from batch s, the scaled error of
the OLS estimator has the following form:

Zn
s =

∑
j∈Jns

Wn
j ϵj = diag((Nn

s,1)
−1/2

∑
j∈Jns

Aj,1ϵj , ..., (N
n
s,ks

)−1/2
∑
j∈Jns

Aj,ks
ϵj),

where Nn
s,k denotes the number of action k being selected in batch s.

1Extensions for considering different sets of actions and different distributions of ϵj for different batchs, or
even incorporating contexts is straightforward though we adopted the present setting for notational simplicity.
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We next model the bandit algorithm that determines the policy for each batch. Let Ls be a measurable
space for s ∈ S. We consider a σ[An

s ]-measurable random map Ln
s : Ω → Ls for every (n, s) ∈ N×S.

The variables Ln
s−1 will be used for making a criterion for selection of an action in batch s. We write

Ln
s = (Ln

1 , ..., L
n
s ) for (Ls)s∈S

2. In the batched bandits, how the agent updates the data collection
policy cs (the distribution of An

s ) from a measurable set Cs is determined by the average effects of
actions at batch s − 1. We choose the policy cs by the distribution q

(
(Ln

s−1,Z
n
s−1), dcs

)
over the

action space.

Example 2 (ϵ-Greedy algorithm). The ϵ-Greedy algorithm having C2 = {c(1)2 , c
(2)
2 } with

q
(
(l1, z1), dc2

)
= 1{h1(l1,z1)≥0}δc(1)2

(dc2) + 1{h1(l1,z1)<0}δc(2)2
(dc2) (3)

for some function h1.

Example 3 (Thomspon sampling). A Thompson sampling algorithm is realized as

q
(
(l1, z1), dc2

)
= 1{h1(l1,z1)≤a1}δc(1)2

(dc2) + 1{h1(l1,z1)>a2}δc(2)2
(dc2)

+1{a1<h1(l1,z1)≤a2}δC2(l1,z1)(dc2) (4)

with some constants a1, a2 expressing the clipping constraint commonly assumed in batched
bandits[16] and some C2-valued function C2 of (l1, z1).

Finally, we denote Gn
s = σ

[
Ln
s′ ,Zn

s′ ; s
′ ≤ s

]
, and let L = Πs∈SLs and d =

∑
s∈S ds. We assume

the following condition holds unless stated otherwise:

ϵns ⨿
(
Gn
s−1 ∨ σ[An

s ]
)

(s ∈ S). (5)

For notational simplicity, we denote the conditional expectation E[ · |Gn
s−1] as Es−1[ · ] and the

conditional expectation E
[
· |Gn

s−1 ∨ σ[An
s ]
]

as Es−1,An
s
[ · ]. For wn

s = (wn
j )j∈Jns ∈ Rdsrsns ,

Pn
s (w

n
s , dzs) = P

∑
j∈Jns

wn
j ϵj (dzs) represents the distribution of

∑
j∈Jns

wn
j ϵj

3 We assume a repre-
sentation of a regular conditional distribution of (Ln

s ,W
n
s ) given Gn

s−1 as

P (Ln
s ,W

n
s )(dls, dw

n
s |Gn

s−1) =

∫
Cs

q
(
(Ln

s−1,Z
n
s−1), dcs)ν

n
cs(dls, dw

n
s ) (6)

for a probability distribution νncs = η
(Ln

s ,W
n
s )

cs of (Ln
s ,W

n
s ) given cs.

2.2 Off-policy Evaluation with Backwards Induction

When the experiment finishes, we want to conduct hypothesis testing like the value of the arm βs(j)

for scientific discovery. We can generically define hypothesis testing problems mathematically as
follows. Given a measurable function f : L × Rm → R, where m =

∑
s∈S ms, our estimand is

the value of the expectation En = E
[
f
(
Ln
S ,Y

n
S

)]
, where Yn

s = Y n
s (Ln

s ,Zn
s ) is an ms-dimensional

random variable. For standard hypotheses and confidence intervals, f is usually an indicator function
for whether the test statistic is smaller than some particular threshold.

If we know the true underlying density Pn
s (w

n
s , dzs) , we can iteratively calculate the desired

expectation from a simple exercise analogous to dynamic programming, with a slight modification
with a truncation 1{Ln

s ∈An
s }, where An

s is a measurable set of Ls. If the clipping constraint holds, En

almost equals to En := E

[
f
(
Ln
S ,Y

n
S

)∏S
s=1 1{Ln

s ∈An
s }

]
4. Theorem1 formally proves this with the

aid of the following lemma.

Lemma 1. For s ∈ S,

2This operation by the underline · s will apply to other vectors
3In other words, Pn

s (Wn
s , dzs) is a regular conditional probability of Zn

s
4The choice of An

s is important so that it will determine the accuracy of approximation En to En, but the
clipping condition that is placed suffices for this condition. Intuitively, when there is too little sample size, there
is no possibility of asymptotics.
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Es−1

[
fn
s

(
Ln
s , Z

n
s

) s∏
s′=1

1{Ln
s′∈An

s′}

]
= fn

s−1(L
n
s−1, Z

n
s−1)

s−1∏
s′=1

1{Ln
s′∈An

s′}
a.s. (7)

Here the product
∏0

s′=1 reads 1.

Theorem 1. Suppose that f
(
Ln
S ,Z

n
S

)
is integrable. Then

(a) En = fn
0 , where fn

0 :=
∫
fn
1

(
l1, z1

)
Pn
1 (w

n
1 , dz1)1{l1∈An

1 }ν
n
c1(dl1, dw

n
1 ) ,

fn
S (lS , zS) = f

(
lS , (Y

n
s (ls, zs))s≤S

)
,

fn
s−1(ls−1, zs−1)

=
∫
Cs

∫
Ls×Rds

fn
s

(
ls−1, lt, zs−1, zs

)
Pn
s (w

n
s , dzs)1{ls∈An

s }ν
n
cs(dls, dw

n
s )

× q
(
(ls−1, zs−1), dcs

)
for s ∈ S, s ≥ 2.

(b) En = E
[
f
(
Ln
S ,Y

n
S

)]
= En + ρn with |ρn| ≤ E

[∣∣f(Ln
S ,Z

n
S

)∣∣∑
s∈S 1{Ln

s ̸∈An
s }

]
.

Theorem 1 on its own does not have much practical relevance, since the true distribution Pn
s (w

n
s , dzs)

is unknown. Therefore past research on off policy evaluation have aimed to approximate it by
some random signed measure Ψn

s,p,wn
s

on Rddepending on wn
s . All past attempts on asymptotic

approximation claimed that the gaussian density was sufficient. We claimed that can be problematic
especially when the sample size is small and the noise does not behave well.

3 Main Result: Asymptotic Expansion for Batched Bandits

To assess the accuracy of the approximation, we need to estimate the difference between fn
0 and

f̂n
0 , where f̂n

0 is the approximation to the fn
0 by replacing Pn

s (w
n
s , dzs) with Ψn

s,p,wn
s

for each batch.

More precisely, we define f̂n
s (ls, zs) by f̂n

S = fn
S and

f̂n
s−1(ls−1, zs−1) =

∫
Cs

∫
Ls×Rds

f̂n
s

(
ls−1, lt, zs−1, zs

)
Ψn

s,p,wn
s
(dzs)1{ls∈An

s }ν
n
cs(dls, dw

n
s )

×q
(
(ls−1, zs−1), dcs

)
(8)

for s ∈ S, if the integral (8) exists.

We shall only present the results with assumptions stated verbally due to the page limit and we refer
the interested reader to [10] for directions for the full version. The conditions we assume include
(i) conditional i.i.d. noise ϵ that hold in most sequential experiments, (ii) regularity conditions such
as measurability or existence of moments, and (iii) clipping conditions that are usually implicitly
or explicitly assumed in the past literature [15]. The only condition that uniquely arises in the
higher-order case is the well-known Cramér condition as follows, for any batch s ∈ S, there exists a
constant B0 such that

sup
u∈Rds :|u|≥B0

|ECs [exp(iu · ϵ(s,1))]| < 1, Cs = G∞
s−1 ∨ σ[A∞

s ],

which places regularity on the characteristic function of the noise distribution and validates the
Fourier inversion to get the asymptotic expansion density. This condition generally holds except for
lattice distributions that we leave for future work.

Theorem 2 (Informal). Suppose the conditions stated above hold. There exists a constant M∗ such
that En = fn

0 admits the following estimates:

|fn
0 − f̂n

0 | ≤ M∗
(
n−(p−2+δ1)/2

∑
s∈S

s∏
i=2

Un
i

)
, (9)
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for all f ∈ D̂(M, γ), a class of measurable functions with at most polynomial growth, where

Un
s+1 =

∫
(1 + |zs|γ)|Ψn

s,p,wn
s
|(dzs)1{ls∈An

s }ν
n
cs(dls, dw

n
s )q

(
(ls−1, zs−1), dcs

)
(10)

for s = 1, ..., S − 1.

Remark 1. Theorem 2 suggests using f̂n
0 to approximate En. Usually Un

s+1 is uniformly bounded in
n or grows as slowly as to be controlled by the factor n−δ1/2 in the error bound of (9).

We also present an explicit form of the asymptotic expansion density that can be used to calculate
the higher-order corrected Z-score for BOLS estimator [16] up to order p (which is a user-specified
integer) when the variance is known. We present the case when variance is estimated in [10].
Proposition 1. The function dΨns,p,Cs/dz(z) (z = (z1, ..., zks

)) is∏
k∈Ks

ϕ(zk;λns,2,Cs,k)×
∏
k∈Ks

{
1 +

1

6
n−1/2
s λns,3,Cs,kh3(zk;λns,2,Cs,k)

+n−1
s

(
1

24
λn,k,4h4(zk;λn,k,2) +

1

72
λ2
ns,k,3h6(zk;λns,k,2)

)
+ · · ·

}
, (11)

with the summation taken up to order n
−(p−2)/2
s , where λns,r,Cs,k = n

(r−2)/2
s ·

(Nn
s,k/ns)

−(r−2)/2 κr,Cs(ϵ(s,1)) with the r-th order Csconditional cumulant κr,Cs(ϵ(s,1)) of ϵ(s,1),
and hr(z; Σ) = (−1)rϕ(z; 0,Σ)−1∂r

zϕ(z; 0,Σ) is the r-th order Hermite polynomial.
Remark 2. Note that all elements of this density are known and calculable for batched bandits.
Even if we do not know the distribution and hence the moments of ϵ(s,1), we derived an asymptotic
expansion that is valid up to the first order, by plugging certain estimators in the moments.

4 Simulations

Due to space restrictions, we only provide the numerical results for the setting described in Example 1.
As Figure 2 shows, asymptotic expansion has clear gains over the normal distribution in approximating
the true underlying density. While the second order asymptotic expansion seems to have better
approximation in most regions of the support, the difference may not be that large. When increasing
the sample size for each batch from 30 to 50 as in Figure 3, second order expansion seems to perform
better. While a more extensive numerical experiments is necessary to fully assess the marginal
benefit, asymptotic expansion methods seems to be better in general than normal approximation
based methods.

5 Discussions

In this paper, we have introduced, developed, and justified the first theory for higher-order statistical
inference specialized for data collected by batched bandit algorithms. Interesting future work includes

Figure 2: Higher-order asymptotic expansion provides better finite-sample approximation of the test
statistics as compared to normal distribution.
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Figure 3: Same setting as Figure 2 but increasing the sample size for each batch from 30 to 50.
Higher-order asymptotic expansion provides good performance even for relatively large sample size.

extending our higher-order theory to non-batched case and doing power analysis based on higher-
order theory. Having better type-I error control and powered experiments thanks to higher-order
inference has a potential to extend the limits on the experimental design, enabling more aggressive
algorithms or reducing the sample sizes necessary.
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