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Abstract

We propose and study several server-extrapolation strategies for enhancing the
theoretical and empirical convergence properties of the popular federated learning
optimizer FedProx [Li et al., 2020]. While it has long been known that some form
of extrapolation can help in the practice of FL, only a handful of works provide any
theoretical guarantees. The phenomenon seems elusive, and our current theoretical
understanding remains severely incomplete. In our work, we focus on smooth
convex or strongly convex problems in the interpolation regime. In particular,
we propose Extrapolated FedProx (FedExProx), and study three extrapolation
strategies: a constant strategy (depending on various smoothness parameters and
the number of participating devices), and two smoothness-adaptive strategies;
one based on the notion of gradient diversity (FedExProx-GraDS), and the other
one based on the stochastic Polyak stepsize (FedExProx-StoPS). Our theory is
corroborated with carefully constructed numerical experiments.

1 Introduction

Federated learning (FL) is a distributed training approach for machine learning models, where multiple
clients collaborate under the guidance of a central server to optimize a loss function [Konečný et al.,
2016, McMahan et al., 2017]. This method allows clients to contribute to model training while
keeping their data private, as it avoids the need for direct data sharing. Often, federated optimization
is formulated as the minimization of a finite-sum objective function,

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where each fi : Rd 7→ R is the empirical risk of model x associated with the i-th client. The federated
averaging method (FedAvg) is among the most favored strategies for addressing federated learning
problems, as proposed by McMahan et al. [2017], Mangasarian and Solodov [1993]. In FedAvg, the
server initiates an iteration by selecting a subset of clients for participation in a given round. Each
chosen client then proceeds with local training, employing gradient-based techniques like gradient
descent (GD) or stochastic gradient descent (SGD) with random reshuffling, as discussed by Bubeck
et al. [2015], Gower et al. [2019], Moulines and Bach [2011], Sadiev et al. [2022].
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Li et al. [2020] proposed replacing the local training of each client via SGD in FedAvg with the
computation of a proximal term, resulting in the FedProx algorithm.

xk+1 =
1

n

n∑
i=1

proxγfi (xk) , (2)

where γ > 0 is the step size, and the proximal operator is defined as

proxγfi (x) := arg min
z∈Rd

{
fi (z) +

1

2γ
∥z − x∥2

}
.

Contrary to gradient-based methods like GD and SGD, algorithms based on proximal operation, such
as proximal point method (PPM) [Rockafellar, 1976, Parikh et al., 2014] and stochastic proximal
point methods (SPPM) [Asi and Duchi, 2019, Bertsekas, 2011, Khaled and Jin, 2022, Patrascu and
Necoara, 2018, Richtárik and Takác, 2020] benefit from stability against inaccuracies in learning rate
specification [Ryu and Boyd, 2014]. Indeed, for GD and SGD, a step size that is excessively large can
result in divergence of the algorithm, whereas a step size that is too small can significantly deteriorate
the convergence rate of the algorithm. PPM was formally introduced and popularized by the seminal
paper of Rockafellar [1976] to solve the variational inequality problems. In practice, the stochastic
variant SPPM is more frequently used.

It is known that the proximal operator applied to a proper, closed and convex function can be viewed
as the projection to some level set of the same function depending on the value of γ. In particular, if
we let each fi be the indicator function of a nonempty closed convex set Xi, then proxγfi (·) becomes
the projection ΠXi

(·) onto the set Xi. In this case, FedProx in (2) becomes the parallel projection
method for convex feasibility problem [Censor et al., 2001, 2012, Combettes, 1997a, Necoara et al.,
2019], if we additionally assume

X :=

n⋂
i=1

Xi ̸= ∅.

A well known fact about the parallel projection method is that its empirical efficiency can often be
improved by extrapolation [Combettes, 1997a, Necoara et al., 2019]. This involves moving further
along the line that connects the last iterate xk and the average projection point, resulting in the
iteration

xk+1 = xk + αk

(
1

n

n∑
i=1

ΠXi
(xk)− xk

)
, (3)

where αk ≥ 1 defines extrapolation level. Despite the various heuristic rules proposed over the
years for setting αk [Bauschke et al., 2006, Censor et al., 2001, Combettes, 1997b], which have
demonstrated satisfactory practical performance, it was only recently that the theoretical foundation
explaining the success of extrapolation techniques for solving convex feasibility problems was
unveiled by Necoara et al. [2019], where the authors considered randomized version of (3) named
Randomized Projection Method (RPM). The practical success of extrapolation has spurred numerous
extensions of existing algorithms. Notably, Jhunjhunwala et al. [2023] combined FedAvg with
extrapolation, resulting in FedExP, leveraging insights from an effective heuristic rule [Combettes,
1997b] for setting αk as follows:

αk =

∑n
i=1 ∥xk −ΠXi(xk)∥2

∥
∑n

i=1 (xk −ΠXi
(xk))∥

2 . (4)

However, the authors did not consider the case of a constant extrapolation parameter, nor did
they disclose the relationship between the extrapolation parameter and the stepsize of SGD. The
extrapolation parameter can be viewed as a server side stepsize in the context of federated learning,
its effectiveness was discussed by Malinovsky et al. [2023].

In the field of fixed point methods, extrapolation is also known as over-relaxation [Rechardson, 1911].
It is a technique used to effectively accelerate the convergence of fixed point methods, including
gradient algorithms and proximal splitting algorithms [Iutzeler and Hendrickx, 2019, Condat et al.,
2023].

2



1.1 Contributions

Our paper contributes in the following ways; for the notations used please refer to Appendix A.

• Based on the insights gained from the convex feasibility problem, we extend FedProx to
its extrapolated counterpart FedExProx for both convex and strongly1 convex interpolation
problems (See Table 1). By optimally setting the constant extrapolation parameter, we obtain
iteration complexity O

(
Lγ(1+γLmax)

ϵ

)
2 in the convex case and O

(
Lγ(1+γLmax)

µ log
(
1
ϵ

))
in the strongly convex case, when all the clients participate in the training (full participation).
We reveal the dependence of the optimal extrapolation parameter on smoothness, indicating
that simply averaging the iterates from local training on the server is suboptimal. Instead,
extrapolation should be applied to achieve faster convergence. Specifically, compared to
FedProx with the same step size γ, our method is always at least 2+ 1

γLmax
+ γLmax times

better in terms of iteration complexity, see Remark 5.

• Our method, FedExProx, improves upon the worst-case iteration complexity O
(
Lmax

ϵ

)
of

FedExP [Jhunjhunwala et al., 2023] to O
(

Lγ(1+γLmax)
ϵ

)
(See Table 2). The improvement

could lead to acceleration up to a factor of n, see Remark 6. Furthermore, we extend
FedExProx to client partial participation setting, showing the dependence of optimal extrap-
olation parameter on τ which is the number of clients participating in the training and the
benefits of a larger τ . In particular, we show that compared to the single client setting, with
complexity O

(
Lmax

ϵ

)
, the full participation version enjoys a speed-up up to a factor of n,

see Remark 7.

• Our theory uncovers the relationship between the extrapolation parameter and the step size
in typical gradient-type methods, leveraging the power of the Moreau envelope. We also
recover RPM of Necoara et al. [2019] as a special case in our analysis (see Remark 12),
and show that the heuristic outlined in (4), is in fact a step size based on gradient diversity
[Horváth et al., 2022, Yin et al., 2018] for the Moreau envelopes of client functions.

• Building on the insights from Horváth et al. [2022], we propose two adaptive rules for
determining the extrapolation parameter: based on gradient diversity (FedExProx-GraDS),
and the stochastic Polyak step size (FedExProx-StoPS) [Horváth et al., 2022, Loizou et al.,
2021]. The proposed methods eliminate reliance on the unknown smoothness constant and
exhibit “semi-adaptivity”, meaning the algorithm converges with any local step size γ and
by selecting a sufficiently large γ, we ensure that we lose at most a factor of 2 in iteration
complexity.

• We validate our theory with numerical experiments. Numerical evidence suggests that
FedExProx achieves a 2× or higher speed-up in terms of iteration complexity compared to
FedProx and improved performance compared to FedExP. The framework and the plots
are included in the Appendix.

1.2 Related work

Stochastic gradient descent. SGD [Robbins and Monro, 1951, Ghadimi and Lan, 2013, Gower
et al., 2019, Gorbunov et al., 2020] stands as a cornerstone algorithm utilized across the fields of
machine learning. In its simplest form, the algorithm is written as xk+1 = xk−η ·g(xk), where η > 0
is a scalar step size, g(xk) represents a stochastic estimator of the true gradient ∇f(xk). We recover
GD when g(xk) = ∇f(xk). The evolution of SGD has been marked by significant advancements
since its introduction by Robbins and Monro [1951], leading to various adaptations like stochastic
batch gradient descent [Nemirovski et al., 2009] and compressed gradient descent [Alistarh et al.,
2017, Khirirat et al., 2018]. Gower et al. [2019] presented a framework for analyzing SGD with
arbitrary sampling strategies in the convex setting based on expected smoothness, which was later
extended by Gorbunov et al. [2020] to the case of local SGD. While many methods have been crafted
to leverage the stochastic nature of g(xk), substantial research efforts are also dedicated to finding a

1Strongly convex: f is µ-strongly convex.
2As we later see in Theorem 1, here Lmax = maxi∈[n] Li, where each Li is the smoothness of fi, Lγ is the

smoothness constant of Mγ = 1
n

∑n
i=1 M

γ
fi

.
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Table 1: General comparison of FedExP, RPM and FedExProx in terms of conditions and convergence.
Each entry indicates whether the method has the corresponding feature (✓) or not (✗). We use the
sign “—” where a feature is not applicable to the corresponding method.

Features FedExP RPMa FedExProx

Does not require interpolation regime ✓ ✗ ✗

Does not require convexityb ✓ ✗ ✗
Acceleration in the strongly convex settingc ✗ ✓ ✓

Does not require smoothnessd ✗ ✓ ✓
Allows for partial participation of clientse ✗ ✓ ✓
Works with constant extrapolation parameter ✗ ✓ ✓
Smoothness and partial participation influence extrapolation ✗ ✓ ✓

Semi-adaptivityf ✗ — ✓

a RPM refers to the randomized projection method of Necoara et al. [2019]. Our method includes it as a
special case, see Remark 12

b Convexity: local objective fi is convex, which is the indicator function of the convex set Xi in RPM.
c The strong convexity pertains to f , and for RPM, it indicates that the linear regularity condition is satisfied.
d Smoothness: fi is Li-smooth. Our algorithm also applies in the non-smooth case; see Appendix F.2.
e Jhunjhunwala et al. [2023] provides no convergence guarantee for client partial participation setting.
f The concept of “semi-adaptivity” is explained in Remark 9.

Table 2: Comparison of convergence of FedExP, FedProx, FedExProx, FedExProx-GraDS and
FedExProx-StoPS. The local step size of FedExP is set to be the largest possible value 1/6tL in the
full batch case, where t is the number of local iterations of GD performed. We assume the assumptions
of Theorem 1 also hold here. The notations are introduced in Theorem 1 and Theorem 2. The
convergence for our methods are described for arbitrary γ > 0. We use K to denote the total number
of iterations. For FedExProx, optimal constant extrapolation is used. The O (·) notation is hidden
for all complexities in this table.

Full Participation

Method General Case Best Case Worst Case

FedExP 6Lmax/∑K−1
k=0

αk,P
a 6Lmax/∑K−1

k=0
αk,P

6Lmax/K

FedProx (1+γLmax)/γ(2−γLγ)K
b Lmax/nγLγ(2−γLγ)K Lmax/γLγ(2−γLγ)K

FedExProx (New) Lγ(1+γLmax)/K c Lmax/nK Lmax/K

FedExProx-GraDS (New) (1+γLmax)/γ·∑K−1
k=0

αk,G
d (1+γLmax)/γ·∑K−1

k=0
αk,G

(1+γLmax)/γK

FedExProx-StoPS (New) (1+γLmax)/γ·∑K−1
k=0

αk,S
e (1+γLmax)/γ·∑K−1

k=0
αk,S

(1+γLmax)/γK

a The αk,P here is determined according to the theory of Jhunjhunwala et al. [2023].
b Notice that we always have γLγ < 1, so the complexity of FedProx is strictly worse than FedExProx.
c We have Lγ (1 + γLmax) ≤ Lmax, see Remark 6.
d We leave out a factor of (1+γLmax)/(2+γLmax) which is a constant between ( 1

2
, 1).

e See Remark 11 for a lower bound of αk,S , using which we can rewrite the rate as Lγ(1+γLmax)

K
.

better stepsize. An illustration of this is the coordinate-wise adaptive step size Adagrad [Duchi et al.,
2011]. Another approach involves employing matrix step size, as demonstrated by Safaryan et al.
[2021], Li et al. [2023, 2024]. Our analysis builds on the theory of SGD mainly adapted from Gower
et al. [2019] with additional consideration on the upper bound of the step size.

Stochastic proximal point method. PPM was first introduced by Rockafellar [1976] to address the
problems of variational inequalities at its inception. Its transition to stochastic case, motivated by the
need to efficiently solve large scale optimization problems, results in SPPM. It is often assumed that
the proximity operator can be computed efficiently for the algorithm to be practical. Over the years,
SPPM has been the subject of extensive research, as documented by Bertsekas [2011], Bianchi [2016],
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Patrascu and Necoara [2018]. Unlike traditional gradient-based methods, SPPM is more robust to
inaccuracies in learning rate specifications, as demonstrated by Ryu and Boyd [2014]. Asi and Duchi
[2019] studied APROX, which includes SPPM as the special case using the full proximal model; APROX
was later extended into minibatch case by Asi et al. [2020]. However, this extension was based on
model averaging rather than iterate averaging. The convergence rate of SPPM has been analyzed in
various contexts by Khaled and Jin [2022], Ryu and Boyd [2014], Yuan and Li [2022], revealing that
its performance does not surpass that of SGD in non-convex regimes.

Projection onto convex sets. The projection method originated from efforts to solve systems
of linear equations or linear inequalities [Kaczmarz, 1937, Von Neumann, 1949, Motzkin and
Schoenberg, 1954]. Subsequently, it was generalized to address the convex feasibility problem
[Combettes, 1997b]. Typically, the method involves projecting onto a set Xi, where i is determined
through sampling or other strategies. A particularly relevant method to our paper is the parallel
projection method, in which individual projections onto the sets are performed in parallel, and their
results are averaged in order to produce the next iterate. It is well-established experimentally that
the parallel projection method can be accelerated through extrapolation, with numerous successful
heuristics having been proposed to adaptively set the extrapolation parameter [Bauschke et al., 2006,
Pierra, 1984]. However, only recently a theory was proposed by Necoara et al. [2019] to explain this
phenomenon. Necoara et al. [2019] introduced stochastic reformulations of the convex feasibility
problem and revealed how the optimal extrapolation parameter depends on the smoothness of the
setting and the size of the minibatch. A better result under a linear regularity condition, which is
connected to strong convexity, was also obtained. However, the explanation provided by Necoara
et al. [2019] was not satisfactory, as it failed to clarify why adaptive rules based on gradient diversity
are effective.

Moreau envelope. The concept of the Moreau envelope, also known as Moreau-Yosida regulariza-
tion, was first introduced by Moreau [1965] as a mathematical tool for handling non-smooth functions.
A particularly relevant property of the Moreau envelope is that executing proximal minimization
algorithms on the original objective is equivalent to applying gradient methods to its Moreau envelope
[Ryu and Boyd, 2014]. Based on this observation, Davis and Drusvyatskiy [2019] conducted an anal-
ysis of several methods, including SPPM for weakly convex and Lipschitz functions. The properties of
the Moreau envelope and its applications have been thoroughly investigated in many works including
Jourani et al. [2014], Planiden and Wang [2016, 2019]. Beyond its role in proximal minimization
algorithms, the Moreau envelope has been utilized in the contexts of personalized federated learning
[T Dinh et al., 2020] and meta-learning [Mishchenko et al., 2023].

Adaptive step size. One of the most crucial hyperparameters in training machine learning models
with gradient-based methods is the step size. For GD and SGD, determining the step size often depends
on the smoothness parameter, which is typically unknown, posing challenges in practical step size
selection. There has been a growing interest in adaptive step sizes, leading to the development of
numerous adaptive methods that enable real-time computation of the step size. Examples include
Adagrad [Duchi et al., 2011], RMSProp [Hinton et al.], and ADAM [Kingma and Ba, 2015]. Recently,
several studies have attempted to extend the Polyak step size beyond deterministic settings, leading to
the development of the stochastic Polyak step size [Richtárik and Takác, 2020, Horváth et al., 2022,
Loizou et al., 2021, Orvieto et al., 2022]. Gradient diversity, first introduced by Yin et al. [2018], was
subsequently analyzed theoretically by Horváth et al. [2022].

2 Preliminaries

We now introduce the several definitions and assumptions that are used throughout the paper.
Definition 1 (Proximity operator). The proximity operator of an extended-real-valued function
ϕ : Rd 7→ R ∪ {+∞} with step size γ > 0 is defined as

proxγϕ (x) := arg min
z∈Rd

{
ϕ(z) +

1

2γ
∥z − x∥2

}
.

It is known that for a proper, closed and convex function ϕ, the minimizer of ϕ(z) + 1
2γ ∥z − x∥2

exists and is unique. Throughout this paper, we assume that the proximal operators are evaluated
exactly, with no approximation or inexactness.
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Algorithm 1 Extrapolated SPPM (FedExProx) with partial client participation
1: Parameters: extrapolation parameter αk > 0, step size for the proximity operator γ > 0, starting

point x0 ∈ Rd, number of clients n, total number of iterations K, number of clients participate
in the training τ , for simplicity, we use τ -nice sampling as an example

2: for k = 0, 1, 2 . . .K − 1 do
3: The server samples Sk ⊆ {1, 2, . . . , n} uniformly from all subsets of cardinality τ
4: The server computes

xk+1 = xk + αk

(
1

τ

∑
i∈Sk

proxγfi (xk)− xk

)
. (7)

5: end for

Definition 2 (Moreau envelope). The Moreau envelope of an extended-real-valued function ϕ : Rd 7→
R ∪ {+∞} with step size γ > 0 is defined as

Mγ
ϕ (x) := min

z∈Rd

{
ϕ(z) +

1

2γ
∥z − x∥2

}
.

The following assumptions are used in our analysis. We use the notation [n] for the set {1, . . . , n}.

Assumption 1 (Differentiability). The function fi in (1) is differentiable for all i ∈ [n].

Assumption 2 (Interpolation regime). There exists x⋆ ∈ Rd such that ∇fi(x⋆) = 0 for all i ∈ [n].

Note that Assumption 2 indicates that each fi and f are lower bounded. In this paper, we focus on
cases where the interpolation regime holds. This assumption often holds in modern deep learning
which are overparameterized where the number of parameters greatly exceeds the number of data
points, as justified by Arora et al. [2019], Montanari and Zhong [2022]. Our motivation for this
assumption partly arises from the convex feasibility problem [Combettes, 1997a, Necoara et al.,
2019], wherein the intersection X is presumed nonempty. This is equivalent to assuming that the
interpolation regime holds when fi is the indicator function of the nonempty closed convex set Xi.
Further motivations derived from the proof for this assumption will be discussed later.

Assumption 3 (Convexity). The function fi : Rd 7→ R is convex for all i ∈ [n]. This means that for
each fi,

0 ≤ fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ , ∀x, y ∈ Rd. (5)

Assumption 4 (Smoothness). Function fi : Rd 7→ R is Li-smooth, Li > 0 for all i ∈ [n]. This
means that for each fi,

fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ ≤ Li

2
∥x− y∥2 , ∀x, y ∈ Rd. (6)

We will use Lmax to denote maxi∈[n] Li.

It is important to note that the smoothness assumption here is not necessary to obtain a convergence
result, see Appendix F.2 for the detail. We introduce this assumption to highlight how the optimal
extrapolation parameter depends on smoothness if it is present. The following strong convexity
assumption is introduced that, if adopted, enables us to achieve better results.

Assumption 5 (Strong convexity). The function f is µ-strongly convex, µ > 0. That is

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ µ

2
∥x− y∥2 , ∀x, y ∈ Rd.

We first present our algorithm FedExProx as Algorithm 1. In the subsequent sections, we first present
the theory in the stochastic setting for FedExProx with a fixed extrapolation parameter in Section 3.
Then we proceed to adaptive versions of our algorithm which eliminates the dependence on the
unknown smoothness constant in Section 4.
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3 Constant extrapolation

In order to demonstrate the convergence result of our algorithm in the stochastic setting, we use
τ -nice sampling as the way of selecting clients for partial participation. This refers to that in each
iteration, the server samples a set Sk ⊆ {1, 2, . . . , n} uniformly at random from all subsets of size τ .
We want to emphasize that the sampling strategy here is merely an example, it is possible to use other
client sampling strategies.
Theorem 1. Suppose Assumption 1 (Differentiability), Assumption 2 (Interpolation regime), Assump-
tion 3 (Convexity) and Assumption 4 (Smoothness) hold. If we use a fixed extrapolation parameter
αk = α ∈

(
0, 2

γLγ,τ

)
and any step size 0 < γ < +∞, then the average iterate of Algorithm 1

satisfies

E [f(x̄K)]− inf f ≤ C (γ, τ, α) · ∥x0 − x⋆∥2

K
,

where K is the number of iteration, x̄K is sampled uniformly at random from the first K iterates
{x0, x1, . . . , xK−1}, C (γ, τ, α) is defined as

C (γ, τ, α) :=
1 + γLmax

αγ (2− αγLγ,τ )
and Lγ,τ :=

n− τ

τ(n− 1)

Lmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
Lγ ,

where Lmax = maxi Li, Lγ is the smoothness constant of Mγ (x) := 1
n

∑n
i=1 M

γ
fi
(x). If we fix γ

and τ the optimal constant extrapolation parameter is given by αγ,τ := 1
γLγ,τ

> 1, which results in
the following convergence guarantee:

E [f(x̄K)]− inf f ≤ C(γ, τ, αγ,τ ) ·
∥x0 − x⋆∥2

K
= Lγ,τ (1 + γLmax) ·

∥x0 − x⋆∥2

K
.

The proof of this theorem relies on the reformulation of the update rule in (7), using the identity
∇Mγ

fi
(x) = 1

γ

(
x− proxγfi (x)

)
given in Lemma 2, which holds for any x ∈ Rd, into the following

form:
xk+1 = xk − αk · γ · 1

τ

∑
i∈Sk

∇Mγ
fi
(xk) . (8)

We can then apply our modified theory for SGD given in Theorem 3, which is adapted from Gower et al.
[2019], to obtain function value suboptimality in terms of Mγ (x). The results are then translated
back to function value suboptimality in terms of f . Note that (8) unveils the connection between the
step size of gradient type methods and extrapolation parameter in our case.
Remark 1. Theorem 1 provides convergence guarantee for Algorithm 1 in the convex case. If in
addition, we assume Assumption 5 (Strong convexity) holds, the rate can be improved and we obtain
linear convergence. See Corollary 1 for the details.
Remark 2. Theorem 1 indicates convergence for any 0 < γ < +∞. Indeed, as it is proved by
Lemma 7, we have C (γ, τ, αγ,τ ) = Lγ,τ (1 + γLmax) ≤ Lmax holds for any 0 < γ < +∞. In
cases where there exists at least one Li < Lmax, we have C (γ, τ, αγ,τ ) < Lmax.
Remark 3. One may question the necessity of the interpolation regime assumption. This assumption
is crucial to our analysis. Besides allowing us to revisit the convex feasibility problem setting, it also
guarantees that Mγ (x) has the same set of minimizers as f(x) as illustrated by Lemma 8. It also
allows us to improve the upper bound on the step size by a factor of 2 in the SGD theory, which is
demonstrated in Theorem 3 in the Appendix.
Remark 4. From the reformulation presented in (8), we see the best extrapolation parameter is
obtained when αkγ is the best step size for SGD running on global objective Mγ (x). Since the best
step size is affected by the smoothness and the minibatch size, so is the best extrapolation parameter.

We can also compare our algorithm with FedProx in the convex overparameterized regime.
Remark 5. Our algorithm includes FedProx as a special case when α = 1. To recover its result,
we simply plug in α = 1, the resulting condition number is C(γ, τ, 1) = 1+γLmax

γ(2−γLγ,τ )
. Compared to

FedProx, Algorithm 1 with the same γ > 0 demonstrates superior performance, with the acceleration
factor being quantified by

C(γ, τ, 1)

C (γ, τ, αγ,τ )
≥ 2 +

1

γLmax
+ γLmax ≥ 4.
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See Lemma 14 for the proof. This suggests that the approach of the server averaging all iterates
following local computation is suboptimal.

In the following paragraphs, we study some special cases,

Full participation case For the full participation case (τ = n), using definition from Theorem 1

αγ,n =
1

γLγ
> 1, Lγ,n = Lγ , C (γ, n, αγ,n) = Lγ (1 + γLmax) ≤ Lmax. (9)

In this case, we can compare our method with FedExP in the convex overparameterized setting.
Remark 6. Assume the conditions in Theorem 1 hold, the worst case iteration complexity of
FedExP is given by O

(
Lmax

ϵ

)
, while for Algorithm 1, it is O

(
C(γ,n,αγ,n)

ϵ

)
. As suggested by

Lemma 7, Algorithm 1 has a better iteration complexity (C (γ, n, αγ,n) < Lmax) whenever there
exists Li ̸= Lmax for some i ∈ [n], and the acceleration could reach up to a factor of n as suggested
by Example 1. In general, the speed-up in the worst case is quantified by

Lmax

1 + γLmax
·

(
1

n

n∑
i=1

Li

1 + γLi

)−1

≤ Lmax

C (γ, n, αγ,n)
≤ n · Lmax

1 + γLmax
·

(
1

n

n∑
i=1

Li

1 + γLi

)−1

.

Single client case For the single client case (τ = 1), using definition from Theorem 1

αγ,1 = 1 +
1

γLmax
> 1, Lγ,1 =

Lmax

1 + γLmax
, C (γ, 1, αγ,1) = Lmax.

Remark 7. Compared with full and partial client participation, the following relations hold for any
τ ∈ [n],

C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) and αγ,1 ≤ αγ,τ ≤ αγ,n, ∀τ ∈ [n].

Since the iteration complexity of FedExProx is given by O
(

C(γ,τ,αγ,τ )
ϵ

)
, the above inequalities tell

us a larger client minibatch size τ leads to a larger extrapolation and a better iteration complexity.
Specifically, Lemma 7 suggests the improvement over the single client case could be as much as a
factor of n (C (γ, n, αγ,n) =

1
nC (γ, 1, αγ,1)) as suggested by Example 1.

4 Adaptive extrapolation

Observe that in Theorem 1, in order to determine the optimal extrapolation, we require the knowledge
of Lγ,τ , which is typically unknown. Although theoretically it suggests that simply averaging
the iterates may result in suboptimal performance, in practice, this implication is less significant.
To address this issue, we introduced two variants of FedExProx, based on gradient diversity and
stochastic Polyak step size, given their relation to the extrapolation parameter in our cases.
Theorem 2. Suppose Assumption 1 (Differentiability), Assumption 2 (Interpolation regime), Assump-
tion 3 (Convexity) and Assumption 4 (Smoothness) hold.

(i) (FedExProx-GraDS): If we are using αk = αk,G, where

αk,G :=
1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 ≥ 1, (10)

then the iterates of Algorithm 1 with τ = n satisfy

E [f(x̄K)]− inf f ≤ 1 + γLmax

2 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

,

where x̄K is chosen randomly from the first K iterates {x0, x1, ..., xK−1} with probabilities
pk = αk,G/

∑K−1
k=0 αk,G.
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(ii) (FedExProx-StoPS): If we are using αk = αk,S , where,

αk,S :=

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 ≥ 1

2γLγ
, (11)

then the iterates of Algorithm 1 with τ = n satisfy

E [f(x̄K)]− inf f ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,S

, (12)

where x̄K is chosen randomly from the first K iterates {x0, x1, ..., xK−1} with probabilities
pk = αk,S/

∑K−1
k=0 αk,S .

Theorem 2 describes the convergence in the full participation setting. However, we can also extend it
to the stochastic setting by implementing a stochastic version of these adaptive step size rules for
gradient-based methods [Horváth et al., 2022, Loizou et al., 2021]. See Theorem 5 in the Appendix
for the details.

Remark 8. In fact, the adaptive rule based on gradient diversity can be improved by using Lmax

1+γLmax

instead of 1
γ as the maximum of local smoothness constant of Moreau envelops, resulting in the

extrapolation,

αk = α′
k,G :=

1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 . (13)

One can obtain a slightly better convergence guarantee than the FedExProx-GraDS case in Theo-
rem 2, see Corollary 2 in the Appendix. However, the requires the knowledge of Lmax in order to
compute 1+γLmax

γLmax
.

Remark 9. Note that, compared to classical gradient-based methods, FedExProx-GraDS benefits
from “semi-adaptivity”. This refers to the fact that the algorithm converges for any choice of γ > 0.
Although a smaller γ hinders convergence, setting it to at least 1

Lmax
limits the worsening of the

convergence to a factor of 2.

Remark 10. Compared to FedExProx with the optimal constant extrapolation parameter, we gain
“semi-adaptivity” here by using the gradient diversity based extrapolation. However, this results in
losing the favorable dependence of convergence on Lγ and instead establishes a dependence on
Lmax.

Remark 11. For FedExProx-StoPS, as it is suggested by Lemma 20, the convergence depends on
the favorable smoothness constant Lγ , rather than on Lmax. However, this comes at the price of
having to know the minimum of each individual Moreau envelope.

For a detailed discussion of the adaptive variants of FedExProx, we refer the readers to Appendix F.5.
Since one of our starting points is the RPM by Necoara et al. [2019] to solve the convex feasibility
problem with non-smooth local objectives, we have also adapted our method to non-smooth cases,
as detailed in Theorem 4 in the Appendix. We also provided a discussion of our method in the
non-interpolated setting and in the non-convex setting in Appendix F.

Finally, we support our findings with experiments, see Figure 1 for a simple experiment confirming
that FedExProx indeed has a better iteration complexity than FedProx. For more details on the
experiments, we refer the readers to Appendix I in the Appendix. Notice that in practice, each local
proximity operator can be solved using different oracles. Clients may use GD or SGD to solve the local
problem to a certain accuracy. The complexity of this subroutine depends on the local stepsize. If γ
is large, the local problem becomes harder to solve because we aim to minimize the local objective
itself. Conversely, if it is small, the problem is easier since we do not stray far from the current iterate.
As the choice of subroutine affects local computation complexity, comparing it directly with FedExP
becomes complicated. Therefore, we compare the iteration complexity (number of communication
rounds) of the two algorithms, assuming efficient local computations are carried out by the clients.
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Figure 1: Comparison of FedExProx and FedProx in terms of iteration complexity in the full
participation setting. The notation γ here denotes the local step size of the proximity operator and
αγ,n is the corresponding optimal extrapolation parameter computed in (9) in the full participation
case. In all cases, our proposed algorithm outperforms FedProx, suggesting that the practice of
simply averaging the iterates is suboptimal.

5 Conclusion

5.1 Limitations

Our analysis of FedExProx serves as an initial step in adding extrapolation to FedProx, which
currently relies on the suboptimal practice of the server merely averaging the iterates. While we
discuss the behavior of our algorithm in non-interpolated and non-convex scenarios, our analysis only
validates the effectiveness of extrapolation under the interpolation regime assumption.

5.2 Future Work

As we have just mentioned, extending our method and analysis beyond interpolation and convex
regime is intriguing. In this case, new techniques may be needed for variance reduction. It is
also interesting to investigate whether extrapolation can be applied together with client-specific
personalization.
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A Notations

Throughout the paper, we use the notation ∥·∥ to denote the standard Euclidean norm defined
on Rd and ⟨·, ·⟩ to denote the standard Euclidean inner product. Given a differentiable function
f : Rd 7→ R, its gradient is denoted as ∇f(x). For a convex function f : Rd 7→ R, we use ∂f(x)
to denote its subdifferential at x. We use the notation Df (x, y) to denote the Bregman divergence
associated with a function f : Rd 7→ R between x and y. The notation inf f is used to denote the
minimum of a function f : Rd 7→ R. We use proxγf (x) to denote the proximity operator of function
f : Rd 7→ R with γ > 0 at x ∈ Rd, and Mγ

f (x) to denote the corresponding Moreau Envelope. The
notation □ is used for the infimal convolution of two proper functions. We denote the average of the
Moreau envelope of each local objective fi by the notation Mγ : Rd 7→ R. Specifically, we define
Mγ (x) = 1

n

∑n
i=1 M

γ
f (x). Note that Mγ (x) has an implicit dependence on γ, its smoothness

constant is denoted by Lγ . We say an extended real-valued function f : Rd 7→ R ∪ {+∞} is
proper if there exists x ∈ Rd such that f(x) < +∞. We say an extended real-valued function
f : Rd 7→ R ∪ {+∞} is closed if its epigraph is a closed set. The following Table 3 summarizes the
commonly used notations and quantities appeared in this paper.

B Basic Facts

Fact 1 (First prox theorem). [Beck, 2017, Theorem 6.3] Let f : Rd 7→ R be a proper, closed and
convex function. Then proxf (x) is a singleton for any x ∈ Rd.

Fact 2 (Second prox theorem). [Beck, 2017, Theorem 6.39] Let f : Rd 7→ R ∪ {+∞} be a proper,
closed and convex function. Then for any x, u ∈ Rd, the following three claims are equivalent:

(i) u = proxf (x).

(ii) x− u ∈ ∂f(u).

(iii) ⟨x− u, y − u⟩ ≤ f(y)− f(u) for any y ∈ Rd.

Fact 3 (Bregman divergence). The Bregman divergence associated with a function f between
x, y ∈ Rd is defined as,

Df (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩ . (14)

If f is convex, then for any x, y ∈ Rd

Df (x, y) ≥ 0. (15)
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Table 3: Summary of frequently used notations and quantities in this paper.

Notations Explanation

n The total number of clients.
d The dimension of the model.
x The model which belongs to Rd.
K The total number of iterations.
xk The model at k-th iteration.
αk The extrapolation parameter at iteration k.
fi(x) Each local objective function.
γ The step size in the proximity operator.
f(x) The global objective f .
proxγfi

(x) The proximity operator associated with fi and γ > 0 at point x ∈ Rd.
Mγ

fi
(x) The Moreau envelope associated with fi and γ > 0 at point x ∈ Rd.

Mγ (x) The average of Mγ
fi
(x).

Li The smoothness constant of fi.
L The smoothness constant of f .
µ The strong convexity constant of f .
Li/(1+γLi) The smoothness constant of Mγ

fi
Lmax The maximum of all Li, for i ∈ [n].
Lmax/(1+γLmax) The maximum of the smoothness constant of each Mγ

fi
for i ∈ [n].

Lγ The smoothness constant of Mγ .
Lγ,τ The interpolation between the Lγ and Lmax/(1+γLmax) induced by τ -nice sampling.
αγ,τ The optimal extrapolation parameter of FedExProx under τ -nice sampling.
C (γ, τ, α) The convergence rate of FedExProx with τ -nice sampling in the convex case.
αk,G The gradient diversity extrapolation in the k-th iteration defined in Theorem 2.
αk,S The stochastic Polyak extrapolation in the k-th iteration defined in Theorem 2.
α′
k,G The improved gradient diversity based extrapolation used in Corollary 2.

Df (x, y) The Bregman divergence associated with f between two points x, y ∈ Rd.
Sk The set of indices server sampled in the k-th iteration.
ατ,k,G The gradient diversity based extrapolation in the k-th iteration for FedExProx-GraDS-PP.
ατ,k,S The stochastic Polyak based extrapolation in the k-th iteration for FedExProx-StoPS-PP.

If f is convex, L-smooth and differentiable, the following inequalities hold for any x, y ∈ Rd,

1

L
∥∇f(x)−∇f(y)∥2 ≤ Df (x, y) +Df (y, x) ≤ L ∥x− y∥2 ,

1

L
∥∇f(x)−∇f(y)∥2 ≤ 2Df (x, y) ≤ L ∥x− y∥2 . (16)

Fact 4 (Increasing function). Let f(x) = x
1+γx , where γ > 0. Then f(x) is monotone increasing

when x > 0.

C Properties of Moreau envelope

In this section, we explore the properties of the Moreau envelope of individual functions fi, and the
global objective Mγ = 1

n

∑n
i=1 M

γ
fi

. Before that, we present the definition of infimal convolution

Definition 3 (Infimal convolution). The infimal convolution of two proper functions f, g : Rd 7→
R ∪ {+∞} is defined via the following formula

(f□g) (x) = min
z∈Rd

{f(z) + g(x− z)} .

One key observation is that Mγ
f can be viewed as the infimal convolution of the proper, closed and

convex function f and the real-valued convex function 1
2γ ∥·∥2. This observation enables us to infer

the convexity and smoothness of the Moreau envelope from the properties of the original function.

First, we present two lemmas about basic properties of Moreau envelope.
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Lemma 1 (Real-valuedness). Let f : Rd 7→ R ∪ {+∞} be a proper, closed and convex function.
Then its Moreau envelope Mγ

f for any γ > 0 is a real-valued function. In particular, the following
identity holds for x ∈ Rd according to the definition of Moreau envelope,

Mγ
f (x) = f

(
proxγf (x)

)
+

1

2γ

∥∥x− proxγf (x)
∥∥2 .

Lemma 2 (Differentiability of Moreau envelope). [Beck, 2017, Theorem 6.60] Let f : Rd 7→
R ∪ {+∞} be a proper, closed and convex function. Then its Moreau envelope Mγ

f for any γ > 0 is
1
γ -smooth, and for any x ∈ Rd, we have

∇Mγ
f (x) =

1

γ

(
x− proxγf (x)

)
.

We then focus on the relation between individual fi and Mγ
fi

. The following lemma suggests that the
convexity of individual fi guarantees the convexity of Mγ

fi
.

Lemma 3 (Convexity of Moreau envelope). [Beck, 2017, Theorem 6.55] Let f : Rd 7→ R ∪ {+∞}
be a proper and convex function. Then Mγ

f is a convex function.

It is also true that the smoothness of individual fi indicates the smoothness of Mγ
fi

.

Lemma 4 (Smoothness of Moreau envelope). Let f : Rd 7→ R be a convex and L-smooth function.
Then Mγ

f is L
1+γL -smooth.

One notable fact is that fi and Mγ
fi

have the same set of minimizers.

Lemma 5 (Minimizer equivalence). Let f : Rd 7→ R ∪ {+∞} be a proper, closed and convex
function. Then for any γ > 0, f and Mγ

f has the same set of minimizers.

In addition, Mγ
f is a global lower bound of f .

Lemma 6 (Individual lower bound). Let f : Rd 7→ R ∪ {+∞} be a proper, closed and convex
function. Then the Moreau envelope Mγ

f satisfies Mγ
f (x) ≤ f(x) for all x ∈ Rd.

Next, we focus on the global objective Mγ (x). The following lemma bounds its smoothness constant
from both above and below.
Lemma 7 (Global convexity and smoothness). Let each fi be proper, closed convex and Li-smooth.
Then M is convex and Lγ-smooth with

1

n2

n∑
i=1

Li

1 + γLi
≤ Lγ ≤ 1

n

n∑
i=1

Li

1 + γLi
.

As a result of the above inequalities, we have the following inequality on the condition number defined
in Theorem 1 which holds for any τ ∈ [n],

Lγ (1 + γLmax) = C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) = Lmax.

When there exists at least one Li < Lmax, we have C (γ, n, αγ,n) < C (γ, τ, αγ,τ ) < Lmax =
C (γ, 1, αγ,1). Even Li = Lmax holds for all i ∈ [n], there are cases (See Example 1 in the proof.)
that C (γ, n, αγ,n) =

1
nC (γ, 1, αγ,1) =

1
nLmax.

A key observation in this case is the generalization of Lemma 5 into the finite-sum setting under the
interpolation regime.
Lemma 8 (Minimizer equivalence). If we let every fi : Rd 7→ R ∪ {+∞} be proper, closed and
convex, then f(x) = 1

n

∑n
i=1 fi(x) has the same set of minimizers and minimum as

Mγ (x) =
1

n

n∑
i=1

Mγ
fi
(x) ,

if we are in the interpolation regime and 0 < γ < ∞.
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The following lemma generalizes Lemma 6 into the finite-sum setting.
Lemma 9 (Global lower bound). Let each fi : Rd 7→ R∪{+∞} be proper, closed and convex. Then
the following inequality holds for any x ∈ Rd and γ > 0,

Mγ (x) ≤ Mγ
f (x) ≤ f(x).

In addition, if we assume we are in the interpolation regime, then Mγ , Mγ
f and f have the same set

of minimizers, for any x⋆ in this set of minimizers, the following identity holds,

Mγ (x⋆) = Mγ
f (x⋆) = f(x⋆).

Besides the global lower bound provided above, there is also a relation between the function value
suboptimality of Mγ and f .
Lemma 10 (Suboptimality bound). Suppose Assumption 1 (Differentiability), 2 (Interpolation
Regime), 3 (Convexity) and 4 (Smoothness) hold, for any minimizer x⋆ of Mγ (x), all x ∈ Rd, the
following inequality holds for each client objective,

Mγ
fi
(x)−Mγ

fi
(x⋆) ≥

1

1 + γLi
(fi(x)− fi(x⋆)) . (17)

Furthermore, this suggests

Mγ (x)−Mγ (x⋆) ≥
1

1 + γLmax
(fi(x)− fi(x⋆)) . (18)

A direct consequence of the above function suboptimality bound is the star strong convexity of Mγ

from the strong convexity of f .
Lemma 11. (Star strong convexity) Assume Assumption 1 (Differentiability), Assumption 2 (Interpo-
lation Regime), Assumption 3 (Convexity), Assumption 4 (Smoothness) and Assumption 5 (Strong
convexity) hold, then the convex function Mγ (x) satisfies the following inequality,

Mγ (x)−Mγ (x⋆) ≥
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 ,

for any x ∈ Rd and a minimizer x⋆ of Mγ (x).

The star strong convexity property of Mγ allows us to improve the sublinear convergence in the
convex regime into linear convergence.

D Technical lemmas

Lemma 12. Let f : Rd 7→ R be a proper, closed and convex function. Then x is a minimizer of f if
and only if x = proxγf (x).

Lemma 13. Assume we are working with the finite-sum problem f = 1
n

∑n
i=1 fi, where each fi is

convex and Li-smooth, f is convex and L-smooth. Then the smoothness of L satisfies

1

n2

n∑
i=1

Li ≤ L ≤ 1

n

n∑
i=1

Li,

where both bounds are attainable.
Lemma 14. Assume that all the conditions mentioned in Theorem 1 hold, then the condition number
C(γ, τ, 1) of FedProx and the condition number C (γ, τ, αγ,τ ) of the optimal constant extrapolation
parameter α⋆ = 1

γLγ,τ
satisfy the following inequality,

C(γ, τ, 1)

C (γ, τ, αγ,τ )
≥ 2 +

1

γLmax
+ γLmax ≥ 4 ∀τ ∈ [n].

Lemma 15. Assume that all the conditions mentioned in Theorem 1 hold, then the following
inequalities hold,

C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) , ∀τ ∈ [n],

and
αγ,1 ≥ αγ,τ ≥ αγ,n, ∀τ ∈ [n].
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E Theory of SGD

In order to prove our main theorem, we partly rely on the theory of SGD. The following theorem on
the convergence of SGD with τ -nice sampling is adapted from Gower et al. [2019]. We introduce
modifications to the proof technique and tailor the theorem specifically to the interpolation regime. In
this context, the upper bound on the step size is increased by a factor of 2. We first formulate the
algorithm as follows for completeness.

Algorithm 2 SGD with τ -nice sampling
1: Parameters: learning rate η > 0, starting point x0 ∈ Rd, minibatch size τ ∈ {1, 2, . . . , n}
2: for k = 0, 1, 2, . . . do
3: The server samples Sk ⊆ {1, 2, . . . , n} uniformly from all subsets of cardinality τ
4: The server performs one gradient step

xk+1 = xk − η · 1
τ

∑
ξi∈Sk

∇fξi(xk).

5: end for

Theorem 3. Assume Assumption 1 (Differentiability), 2 (Interpolation regime), 3 (Convexity), 4
(Smoothness) hold. Additionally, assume f is L-smooth where L ≤ 1

n

∑n
i=1 Li.3 If we are running

SGD with τ -nice sampling using step size η that satisfies 0 < η < 2
Aτ

, where

Aτ :=
n− τ

τ(n− 1)
Lmax +

n(τ − 1)

τ(n− 1)
L, and Lmax := max

i
Li,

then the iterates of Algorithm 2 satisfy

E [f(x̄K)]− inf f ≤ 1

η(2− ηAτ )
· ∥x0 − x⋆∥2

K
,

where K is the total number of iterations, x̄K is chosen uniformly at random from the first K iterates
{x0, x1, . . . , xK−1}. If, additionally, we assume the following property (which we will refer to as

“star strong convexity”) holds, then the iterates of Algorithm 2 satisfy

E
[
∥xK − x⋆∥2

]
≤
(
1− η(2− ηAτ ) ·

µ

2

)K
∥x0 − x⋆∥2 .

F Additional analysis on FedExProx

In this section, we provide some additional details on the analysis of FedExProx and its adaptive
variants.

F.1 FedExProx in the strongly convex case

The following corollary summarizes the convergence guarantee in the strongly convex case.
Corollary 1. Suppose the assumptions in Theorem 1 hold, and assume in addition that Assumption 5
(Strong Convexity) holds, then we achieve linear convergence for the final iterate of Algorithm 1,
which satisfies

E
[
∥xK − x⋆∥2

]
≤
(
1− αγ(2− αγLγ,τ ) ·

µ

2 (1 + γLmax)

)K

∥x0 − x⋆∥2 ,

where the definition of Lγ,τ is given in Theorem 1. Fixing the choice of γ and τ , the optimal
extrapolation parameter that minimizes the convergence rate is given by αγ,τ = 1

γLγ,τ
> 1, which

results in the following convergence in the strongly convex case:

E
[
∥xK − x⋆∥2

]
≤
(
1− µ

2Lγ,τ (1 + γLmax)

)K

∥x0 − x⋆∥2 .
3This is justified by Lemma 13.
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As one can observe, by additionally assuming µ strong convexity of the original function f , we
improve the sublinear convergence in the convex case into linear convergence.

F.2 FedExProx in the non-smooth case

Our analysis also adapts to the non-smooth cases. This is based on the observation that even if we only
assume Assumption 1 (differentiability), Assumption 2 (Interpolation Regime) and Assumption 3
(Convexity) hold and do not have additional assumptions on smoothness, still each Mγ

fi
is 1

γ -smooth
because of Lemma 2. Thus, the theory of SGD in the convex smooth case still applies. However, there
are some differences from the smooth case. For the sake of simplicity, we will mainly focus on the
convex non-smooth case with a constant extrapolation parameter, the results in the strongly convex
regime and with adaptive extrapolation can be obtained similarly as in the proof of Theorem 1 and
Theorem 2.
Theorem 4. Assume Assumption 1 (Differentiability), 2 (Interpolation Regime) and 3 (Convexity)
hold. If we choose a constant extrapolation parameter αk = α satisfying

0 < α <
2

γLγ,τ
,

where Lγ is the smoothness constant of Mγ (x) = 1
n

∑n
i=1 M

γ
fi
(x), Lγ,τ is given by

Lγ,τ =
n− τ

τ(n− 1)
· 1
γ
+

n(τ − 1)

τ(n− 1)
· Lγ .

Then the iterates of Algorithm 1 satisfy

γMγ (x̄K)− inf γMγ ≤ 1

α (2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
,

where x̄K is chosen uniformly from the first K iterates {x0, x1, . . . , xK−1}. It is easy to see that the
best α is given by

α⋆ =
1

γLγ,τ
≥ 1,

where the corresponding convergence is given by

γMγ (x̄K)− inf γMγ ≤
(

n− τ

τ(n− 1)
+

n(τ − 1)

τ(n− 1)
γLγ

)
· ∥x0 − x⋆∥2

K
.

Remark 12. Notice that in this case we recover the convergence result of RPM presented in Necoara
et al. [2019] in the convex case. Indeed, if each fi(x) = IXi

(x), then we have

proxγfi (x) = ΠXi
(x) ,∀x ∈ Rd,

and

γMγ
fi
(x) =

1

2
∥x−ΠXi

(x)∥2 , and γMγ (x) =
1

2
· 1
n

n∑
i=1

∥x−ΠXi
(x)∥2 .

Since we are in the interpolation regime, inf γMγ = 0, and the convergence result becomes

1

2
· 1
n

n∑
i=1

∥xK −ΠXi (xK)∥2 ≤
(

n− τ

τ(n− 1)
+

n(τ − 1)

τ(n− 1)
γLγ

)
· ∥x0 − x⋆∥2

K
.

Notice that here γLγ ≤ 1 is the smoothness constant associated with each distance function
1
2 ∥x−ΠXi

(x)∥2. The difference in the coefficients on the left-hand side from the original results
presented in Necoara et al. [2019] results from different sampling strategies employed.

A key difference in the non-smooth setting is that extrapolation in some cases may not be beneficiary,
as illustrated by the following remark.
Remark 13. In the non-smooth case, it is possible that γLγ = 1, where the optimal α⋆ = 1, in
this case, extrapolation will not generate any benefits. However, as it is mentioned by Necoara et al.
[2019], there are many examples where γLγ < 1 and extrapolation indeed accelerates the algorithm.
This is different from the smooth case, where extrapolation always helps.
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Remark 14. Since we do not assume smoothness, Lemma 10 no longer applies. Therefore, the
convergence result is stated in terms of the function value suboptimality of Moreau envelope instead
of the original objective f which is used in the smooth case.

Using a similar approach, it is also possible to obtain a convergence guarantee for FedExProx in the
strongly convex non-smooth regime, assuming in addition that Mγ (x) is µγ-strongly convex, where
we recover the convergence result of RPM in Necoara et al. [2019] in cases where the smooth and
linear regularity conditions are both satisfied. The following Table 4 confirms that our analysis of
FedExProx recovers the theory of RPM as a special case.

Table 4: Comparison of iteration complexity of RPM from Necoara et al. [2019] obtained using our
theory and the original theory. In both cases, the optimal extrapolation parameter is used. The
notation O(·) is hidden. ε is the error level reached by function value suboptimality for convex case,
squared distance to the solution for strongly convex case.

Setting Original Theory Our Theory

Convex + smooth case(1) γLγ,τ · ∥x0−x⋆∥2
ε

γLγ,τ · ∥x0−x⋆∥2
ε

Strongly convex + smooth case(2) Lγ,τ

µγ
· log

(
∥x0−x⋆∥2

ε

)
Lγ,τ

µγ
· log

(
∥x0−x⋆∥2

ε

)
(1) The smoothness here does not refer to each fi being Li-smooth, but γMγ being γLγ -smooth. This

corresponds to the smooth regularity condition presented in Necoara et al. [2019].
(2) Here the strongly convex setting meaning that the linear regularity condition in Necoara et al.

[2019] is satisfied. In our theory, it refers to Mγ (x) being µγ-strongly convex with µγ < Lγ .

F.3 Discussion on the non-interpolation case

For the non-interpolation regime cases, we assume that Assumption 1 (Differentiability), Assump-
tion 3 (Convexity) and Assumption 4 (Smoothness) hold. The differences are listed as follows

(i) Although fi and Mγ
fi

have the same set of minimizers, f and Mγ does not necessarily
have the same set of minimizers. This will lead to the convergence of FedExProx to the
minimizer x′

⋆,γ of Mγ (x) instead of x⋆ of f . As a result, we will only converge to a
neighborhood of the x⋆ depending on the specific setting.

(ii) Since we are not in the interpolation regime, the upper bound on the step size of SGD with
sampling is reduced by a factor of 2. Thus, the optimal extrapolation parameter α′

⋆ in the
non-interpolated cases is also halved, α′

⋆ = 1
2α⋆. As a result, it is possible that α′

⋆ ≤ 1. The
same phenomenon is also observed in FedExP of Jhunjhunwala et al. [2023], where their
heuristic in determining the extrapolation parameter adaptively is also reduced by a factor of
2 in non overparameterized cases.

Observe that all of the above results in both smooth/non-smooth, interpolated/non-interpolated cases
suggests that the practice of server simply averaging the iterates it obtained from local training is
suboptimal.

F.4 Discussion on the non-convex case

In the non-convex case, we assume Assumption 1 (Differentiability) holds, and we need the following
additional assumptions on f : Rd 7→ R and fi : Rd 7→ R:
Assumption 6 (Lower boundedness). Function fi is lower bounded by inf fi.
Assumption 7 (Weak convexity). Function fi is ρ > 0 weakly convex, this means that fi + ρ

2 ∥·∥
2 is

convex.

We have the following lemma under the above assumptions:
Lemma 16. [Böhm and Wright, 2021, Lemma 3.1] Let f be a proper, closed, ρ-weakly convex
function and let γ < 1

ρ . Then the Moreau envelope Mγ
f is continuously differentiable on Rd with

∇Mγ
f (x) =

1

γ

(
x− proxγf (x)

)
.
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In addition, the Moreau envelope is max
{

1
γ ,

ρ
1−γρ

}
-smooth. We will thereby denote the smoothness

constant as Lγ,ρ.

Indeed, if the stepsize γ in this case is chosen properly such that 1
γ > ρ, then it is straight forward to

see the function within the proximity operator proxγfi given by fi +
1
2 · 1

γ ∥·∥2 is strongly convex.
Thus the proximity operator still results in a singleton. Lemma 16 allows us to again reformulate
the original algorithm using the gradient of Moreau envelope. The only difference from the convex
regime is that the Moreau envelope Mγ

fi
is not necessarily convex. The following lemmas illustrate

the connection between Mγ
fi

and fi:

Lemma 17. [Yu et al., 2015, Proposition 7] Let γ > 0, f be a closed, proper function that
is lower bounded. Then Mγ

f ≤ f , infMγ
f = inf f , argminx M

γ
f (x) = argminx f(x) ⊆{

x : x ∈ proxγf (x)
}

.

Lemma 18. Let f : Rd 7→ R be ρ-weakly convex with ρ > 0 and differentiable. If we take 0 < γ < 1
ρ ,

then Mγ
fi

has the same set of stationary points as fi.

For the sake of simplicity, we will consider only the full participation case with a constant extrapola-
tion parameter αk = α. The following lemma describes the convergence of GD in the non-convex
case, which is adapted from the theory of Khaled and Richtárik [2023].

Lemma 19. Assume function f is L-smooth and lower bounded. If we are running GD with a constant
stepsize η satisfying 0 < η < 1

L . Then for any K ≥ 1, the iterates xk of GD satisfy

min
0≤k≤K−1

E
[
∥∇f(xk)∥2

]
≤ 2 (f(x0)− inf f)

ηK
.

Now we directly apply Lemma 19 in our case,

1. Since each Mγ
fi

is Lγ,ρ-smooth, Mγ is Lγ-smooth with Lγ ≤ Lγ,ρ, which result in the
following bound on the extrapolation parameter

0 < α <
1

γLγ
.

Notice that in this case we have the following estimation of γLγ ,

1

γLγ
≥ 1

γLγ,ρ
= min

{
1,

1− γρ

γρ

}
.

This suggests that extrapolation may not be much beneficiary in the non-convex case.

2. The following convergence guarantee can be obtained.

min
0≤k≤K−1

E
[
∥∇Mγ(xk)∥2

]
≤ 2 (Mγ (x0)− infMγ)

αγK
.

Notice that by Lemma 17, we know that Mγ
fi
(x0) ≤ fi (x0). We also have infMγ ≥

1
n

∑n
i=1 infM

γ
fi

= 1
n

∑n
i=1 inf fi since infMγ

fi
= inf fi is true for each client by

Lemma 17. Thus, we have

Mγ (x0)− infMγ ≤ f(x0)− inf f + inf f − 1

n

n∑
i=1

inf fi.

We can relax the above convergence guarantee and obtain

min
0≤k≤K−1

E
[
∥∇Mγ(xk)∥2

]
≤ 2 (f(x0)− inf f)

αγK
+

2
(
inf f − 1

n

∑n
i=1 inf fi

)
αγK

.

The above convergence guarantee indicates that the algorithm converges to some stationary
points of Mγ (x) in the non-convex case.
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3. In the non-convex case, we did not assume anything similar to the interpolation regime in the
convex case. As a result, we did not know the relation between the set of stationary points
of Mγ (x) and f(x), denoted as Y ′ and Y , respectively. However, if we assume, in addition,
that each stationary point y′ ∈ Y ′ of Mγ is also a stationary point of each Mγ

fi
, then y′ is also

a stationary point of fi according to Lemma 18. Thus, ∇f (y′) = 1
n

∑n
i=1 ∇fi (y

′) = 0,
which indicates y′ ∈ Y . As a result, we have Y ′ ⊆ Y . This means that under this additional
assumption, the algorithm converges to a stationary point of f .

F.5 Additional notes on adaptive variants

Notes on gradient diversity variant. In general, the gradient diversity step size ηk used in SGD to
solve the finite sum minimization problem

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
,

can be written as

ηk :=
1

Lmax
·

1
n

∑n
i=1 ∥∇fi(xk)∥2∥∥ 1

n

∑n
i=1 ∇fi(xk)

∥∥2 ,
where Lmax is the maximum of local smoothness constants. In our case, since each local Moreau
envelope is Li

1+γLi
-smooth and 1

γ -smooth4, we can use both Lmax

1+γLmax
(here in Corollary 2, if we know

Lmax) and 1
γ (in original Theorem 2, if we do not know Lmax) as the maximum of local smoothness.

We present the convergence result of Algorithm 1 with the following rule given in (13),

α′
k,G =

1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 .
Corollary 2. Suppose all the assumptions mentioned in Theorem 2 hold, if we are using (13) to
determine α′

k,G in each iteration for Algorithm 1 with τ = n, then the iterates satisfy

E [f(x̄K)]− f inf ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 α′
k,G

.

where x̄K is chosen randomly from the first K iterates {x0, x1, ..., xK−1} with probabilities pk =
α′

k,G/
∑K−1

k=0 α′
k,G.

Notice that compared to the case of FedExProx-GraDS in Theorem 2, the convergence rate given in
Corollary 2 is indeed better. This can be seen by comparing them directly, for FedExProx-GraDS,
we have

E [f(x̄K)]− inf f ≤ 1 + γLmax

2 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

,

and for Algorithm 1 with α′
k,G given in (13), we have

E [f(x̄K)]− f inf ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 α′
k,G

=
γLmax

1 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

.

Since
γLmax

1 + γLmax
≤ 1 + γLmax

2 + γLmax
, ∀γ > 0,

the convergence of Algorithm 1 in the full participation case with (13) given in Corollary 2 is indeed
better than FedExProx-GraDS. However, this adaptive rule is only practical when we have the
knowledge of local smoothness.

4Note that Li
1+γLi

< 1
γ

for any γ > 0.
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Notes on stochastic Polyak variant. In this paragraph, we further elaborate on the convergence of
FedExProx-StoPS. We start by providing a lower bound on the adaptive extrapolation parameter.

Lemma 20. Suppose that all assumptions mentioned in Theorem 2 hold, then the following inequali-
ties hold for any x ∈ Rd and x⋆ that is a minimizer of f ,

1
n

∑n
i=1

(
Mγ

fi
(x)−Mγ

fi
(x⋆)

)
γ ·
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(x)
∥∥∥2 ≥ 1

2γLγ
.

Using the above lower bound, we can further write the convergence of FedExProx-StoPS as

E
[
f(x̄K)

]
− inf f ≤ 2Lγ (1 + 2γLmax) ·

∥x0 − x⋆∥2

K
.

Observe that we recover the favorable dependence of convergence on the smoothness of Mγ . However,
this comes at the price of having to know each Mγ

fi
(x⋆) or, equivalently in the interpolation regime,

knowing Mγ (x⋆).

F.6 Extension of adaptive variants into client partial participation (PP) setting

In this subsection, we extend the adaptive variants of FedExProx into the stochastic setting. We
will refer to them as FedExProx-GraDS-PP and, FedExProx-StoPS-PP respectively. Specifically,
we consider that the server chooses the client using the τ -nice sampling strategy we have intro-
duced before in Algorithm 1. The following theorem summarizes the convergence guarantee of
FedExProx-GraDS-PP and FedExProx-StoPS-PP in the convex case. Its extension to the strongly
convex case where we additionally assume Assumption 5 (Strong convexity) is straight forward.

Theorem 5. Suppose Assumption 1 (Differentiability), Assumption 2 (Interpolation regime), Assump-
tion 3 (Convexity) and Assumption 4 (Smoothness) hold. Assume we are running FedExProx with
τ -nice client sampling.

(i) (FedExProx-GraDS-PP): If we are using αk = ατ,k,G(xk, Sk), where

ατ,k,G(xk, Sk) =
1
τ

∑
i∈Sk

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

τ

∑
i∈Sk

(
xk − proxγfi (xk)

)∥∥2 . (19)

Then the iterates of Algorithm 1 satisfy

E [f(x̄K)]− inf f ≤
(
1 + γLmax

2 + γLmax

)
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2

inf ατ,k,G ·K
, (20)

where K is the total number of iteration, x̄K is samples uniformly at random from the first
K iterates {x0, x1, . . . , xK−1}, inf ατ,k,G is defined as

inf ατ,k,G := inf
x∈Rd,S⊆[n],|S|=τ

ατ,k,G (x, S) .

satisfying
ατ,k,G(xk, Sk) ≥ inf ατ,k,G ≥ 1.

(ii) (FedExProx-StoPS-PP): If we are using αk = ατ,k,S(xk, Sk), where

ατ,k,S(xk, Sk) =

1
τ

∑τ
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
τ

∑τ
i=1 ∇Mγ

fi
(xk)

∥∥∥2 . (21)

Then the iterates of Algorithm 1 satisfy

E [f(x̄K)]− inf f ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2

inf ατ,k,S ·K
, (22)
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where K is the total number of iteration, x̄K is sampled uniformly at random from the first
K iterates {x0, x1, . . . , xK−1}, inf ατ,k,G is defined as

inf ατ,k,S := inf
x∈Rd,S⊆[n],|S|=τ

ατ,k,S (x, S) .

satisfying

ατ,k,S(xk, Sk) ≥ inf ατ,k,S ≥ 1

2

(
1 +

1

γLmax

)
.

Remark 15. For FedExProx-GraDS-PP, different from the full participation setting, the denomina-
tor of the sublinear term on the right-hand side of (20) is replaced by K · inf ατ,k,G.

(i) In the single client case (τ = 1), we have

α1,k,G = inf α1,k,G = 1.

(ii) In the partial participation case (1 < τ < n), it is possible that

inf ατ,k,G > 1,

resulting in acceleration compared to single client case.

(iii) For the full participation case (τ = n), we have

αk,G = αn,k,G,

and
K−1∑
k=0

αk,G ≥ K · inf αn,k,G,

thus the convergence guarantee here is a relaxed version of that presented in Theorem 2.

A similar discussion also applies to FedExProx-StoPS-PP in the client partial participation setting.
Remark 16. For FedExProx-StoPS-PP, different from the full participation setting, the denomina-
tor of the sublinear term on the right-hand side of (22) is replaced by K · inf ατ,k,S .

(i) In the single client case (τ = 1), we have

α1,k,S ≥ inf α1,k,G =
1

2

(
1 +

1

γLmax

)
.

(ii) In the partial participation case (1 < τ < n), it is possible that

inf ατ,k,S >
1

2

(
1 +

1

γLmax

)
,

resulting in acceleration compared to single client case.

(iii) For the full participation case (τ = n), we have

αk,S = αn,k,S ,

and
K−1∑
k=0

αk,S ≥ K · inf αn,k,S ,

thus the convergence guarantee here is a relaxed version of that presented in Theorem 2.

The following Table 5 summarizes the convergence of new algorithms and their variants appeared in
our paper.

G Missing proofs of theorems and corollaries

G.1 Proof of Theorem 1

The proof of this theorem can be divided into three parts.
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Table 5: Summary of convergence of new algorithms appeared in our paper in the convex setting.
The O (·) notation is hidden for all complexities in this table. For convergence in the full client
participation case, results of Theorem 1 and Theorem 2 are used where the relevant notations are
defined. For convergence in the partial participation, the results of Theorem 5 are used.

Method Full Participation Partial Participation Single Client

FedExProx Lγ(1+γLmax)/K Lγ,τ (1+γLmax)/K Lmax/K

FedExProx-GraDS (1+γLmax)/γ·∑K−1
k=0

αk,G
(1+γLmax)/(γK·inf ατ,k,G) (1+γLmax)/(γK)

FedExProx-StoPS (1+γLmax)/γ·∑K−1
k=0

αk,S
(1+γLmax)/(γK·inf ατ,k,S) (1+γLmax)/(γK·inf α1,k,S)

Step 1: Reformulate the algorithm using Moreau envelope. We know from Lemma 2 that for
any x ∈ Rd.

∇Mγ
fi
(x) =

1

γ

(
x− proxγfi (x)

)
.

Using the above identity, we can rewrite the update rule given in (7) in the following form,

xk+1 = xk − αkγ · 1
τ

∑
i∈Sk

∇Mγ
fi
(xk) . (23)

The above reformulation suggests that running FedExProx with τ -nice sampling strategy is equivalent
to running SGD with τ -nice sampling to the global objective Mγ (x) = 1

n

∑n
i=1 M

γ
fi
(x) with step

size αkγ. Now, it seems natural to apply the theory of SGD adapted in Theorem 3. However, before
proceeding, we list the properties we know about the global objective Mγ and each local objective
Mγ

fi
.

1. Each Mγ
fi
(x) is convex. This is a consequence of a direct application of Lemma 3 to each

fi. Since Mγ is the average of convex functions Mγ
fi

, we conclude that Mγ (x) is also
convex.

2. Each Mγ
fi
(x) is Li

1+γLi
-smooth, where Li is the smoothness constant of fi. This is proved

by applying Lemma 4 to each fi. Drawing on Lemma 13 for justification, it is reasonable to
assume Mγ (x) is Lγ-smooth with Lγ ≤ 1

n

∑n
i=1

Li

1+γLi
-smooth.

3. Each Mγ
fi
(x) has the same set of minimizers and minimum as fi. This result arises from

applying Lemma 5 to each function fi.

4. Furthermore, if Assumption 2 (Interpolation Regime) holds, Mγ (x) and f(x) have the
same set of minimizers and minimum. This is demonstrated in Lemma 8.

Step 2: Applying the theory of gradient type methods. Notice that here Mγ
fi
(x) is Li

1+γLi
-smooth

and convex, Mγ (x) is convex and Lγ-smooth. Furthermore, due to the assumption of interpolation
regime, Mγ (x) and f(x) have the same set of minimizers. Applying the theory of SGD with τ -nice
sampling in this case, where

Aτ = Lγ,τ =
n− τ

τ(n− 1)
·max
i∈[n]

(
Li

1 + γLi

)
+

n(τ − 1)

τ(n− 1)
Lγ .

Notice that using Fact 4, we know that

max
i∈[n]

(
Li

1 + γLi

)
Fact 4
=

Lmax

1 + γLmax
,

thus Lγ can be simplified and written as

Lγ,τ =
n− τ

τ(n− 1)
· Lmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
Lγ ,
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where Lmax = maxi Li. We obtain the following result given that 0 < αγ < 2
Lγ,τ

in the convex
setting,

E [Mγ (x̄K)]−Mγ (x⋆)
Theorem 3

≤ 1

αγ(2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
,

where x̄K is sampled uniformly at random from the first K iterates {x0, x1, . . . , xK−1}. However,
the convergence mentioned pertains to Mγ (x). Given our objective is to solve (1), it is necessary to
reinterpret this outcome in terms of f .

Step 3: Translate the result into function values of f . This step is only needed in the convex
setting. We use the lower bound in Lemma 10,

Mγ (x̄K)−Mγ (x⋆)
(18)
≥ 1

1 + γLmax
(f(x̄K)− f(x⋆)) ,

to obtain the following result

E [f(x̄K)]− f(x⋆) ≤
1 + γLmax

αγ (2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
.

Observe that we have
C (γ, τ, α) =

1 + γLmax

αγ (2− αγLγ,τ )
,

and its numerator does not depend on α. If we fix the choice of γ and τ , then the denominator is
maximized when αγLγ,τ = 1. This yields the optimal constant extrapolation parameter αγ,τ =

1
γLγ,τ

and the following convergence corresponding to it

E [f(x̄K)]− f(x⋆) ≤ Lγ,τ (1 + γLmax) ·
∥x0 − x⋆∥2

K
.

Finally, notice that

γLγ

Lemma 13
≤ 1

n

n∑
i=1

γLi

1 + γLi
< 1,

for any γ > 0. This suggests that,

γLγ,τ =
n− τ

τ(n− 1)
· γLmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
γLγ

<
n− τ

τ(n− 1)
+

n(τ − 1)

τ(n− 1)
= 1,

which in turn tells us αγ,τ = 1
γLγ,τ

> 1. This concludes the proof.

G.2 Proof of Theorem 2

We start with the following decomposition,
∥xk+1 − x⋆∥2 = ∥xk − αkγ∇Mγ (xk)− x⋆∥2

= ∥xk − x⋆∥2 − 2αkγ ⟨∇Mγ (xk) , xk − x⋆⟩+ α2
kγ

2 ∥∇Mγ (x)∥2 . (24)

Case 1: FedExProx-GraDS For gradient diversity based αk, we have

αk = αk,G =

1
n

∑n
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2
∥γ∇Mγ (xk)∥2

=

1
n

∑n
i=1

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
∥∇Mγ (xk)∥2

.

For the last term of (24),

α2
k,Gγ

2 ∥∇Mγ (xk)∥2 = αk,Gγ
2 · 1

n

n∑
i=1

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
= αk,Gγ

2 · 1
n

n∑
i=1

∥∥∥∇Mγ
fi
(xk)−∇Mγ

fi
(x⋆)

∥∥∥2
(16)
≤ αk,Gγ

2 · 1
n

n∑
i=1

Li

1 + γLi

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
,
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where the last inequality follows from the Li

1+γLi
-smoothness of Mγ

fi
given in Lemma 4. We further

obtain using Fact 4 that

α2
k,Gγ

2 ∥∇Mγ (xk)∥2
Fact 4
≤ αk,Gγ

2 · Lmax

1 + γLmax
· (DMγ (xk, x⋆) +DMγ (x⋆, xk))

= αk,Gγ · γLmax

1 + γLmax
(DMγ (xk, x⋆) +DMγ (x⋆, xk)) . (25)

For the second term of (24), we have

−2αk,Gγ ⟨∇Mγ (xk) , xk − x⋆⟩ = 2αk,Gγ ⟨∇Mγ (xk)−∇Mγ (x⋆) , x⋆ − xk⟩
= −2αk,Gγ (DMγ (xk, x⋆) +DMγ (x⋆, xk)) . (26)

Plugging (26) and (25) into (24), we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − αk,Gγ

(
2− γLmax

1 + γLmax

)
(DMγ (xk, x⋆) +DMγ (x⋆, xk)) .

Notice that we know that

DMγ (xk, x⋆)
(14)
= Mγ (xk)−Mγ (x⋆) , DMγ (x⋆, xk)

(15)
≥ 0.

As a result, we obtain

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − αk,Gγ

(
2− γLmax

1 + γLmax

)
(Mγ (xk)−Mγ (x⋆)) .

Summing up the above recursion for k = 0, 1, ...,K − 1, we notice that many of them will telescope
and Mγ (x⋆) = infMγ due to interpolation regime as it is proved by Lemma 8. Thus, we obtain

γ

(
2− γLmax

1 + γLmax

)K−1∑
k=0

αk,G (Mγ (xk)− infMγ) ≤ ∥x0 − x⋆∥2 .

Denote pk = αk,G/
∑K−1

k=0 αk,G for k = 0, 1, ...,K − 1. If we pick x̄K randomly according to
probabilities pk from the first K iterates {x0, x1, . . . , xK−1}, then we can further write the above
recursion as

E
[
Mγ

(
x̄K
)]

− infMγ ≤ 1 + γLmax

2 + γLmax
· 1
γ
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

.

Utilizing Lemma 10, we further obtain,

E [f(x̄K)]− inf f ≤ 1 + γLmax

2 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

.

The above inequality indicates convergence. Indeed, by convexity of standard Euclidean norm, we
have

αk,G ≥
∥∥ 1
n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2∥∥ 1
n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 = 1.

This tells us that
K−1∑
k=0

αk,G ≥ K.

Case 2: FedExProx-StoPS For stochastic Polyak step size based αk,S , since we are in the
interpolation regime, by Lemma 9, we have

Mγ (x⋆) = infMγ =
1

n

n∑
i=1

infMγ
fi
.

As a result,

αk = αk,S =

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 =
Mγ (xk)−Mγ (x⋆)

γ ∥∇Mγ (xk)∥2
.
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We have for the last term of (24),

α2
k,Sγ

2 ∥∇Mγ (xk)∥2 = αk,Sγ (M
γ (xk)−Mγ (x⋆)) . (27)

For the second term of (24), we have

−2αk,Sγ ⟨∇Mγ (xk) , xk − x⋆⟩ = 2αk,Sγ ⟨∇Mγ (xk) , x⋆ − xk⟩
(5)
≤ 2αk,Sγ (M

γ (x⋆)−Mγ (xk))

= −2αk,Sγ (M
γ (xk)−Mγ (x⋆)) , (28)

where the inequality is due to the convexity of Mγ . Plugging (28) and (27) into (24), we obtain

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − αk,Sγ (M
γ (xk)−Mγ (x⋆)) .

Summing up the above recursion for k = 0, 1, ...,K − 1, we notice that many of them will telescope.
Thus, we obtain

γ

K−1∑
k=0

αk,S (Mγ (xk)− infMγ) ≤ ∥x0 − x⋆∥2 .

Denote pk = αk,S/
∑K−1

k=0 αk,S for k = 0, 1, ...,K − 1. If we sample x̄K randomly according
to probabilities pk from the first K iterates {x0, x1, . . . , xK−1}, we can further write the above
recursion as

E
[
Mγ

(
x̄K
)]

− infMγ ≤ 1

γ
· ∥x0 − x⋆∥2∑K−1

k=0 αk,S

.

Utilizing the local bound in Lemma 10, we further obtain,

E
[
f(x̄K)

]
− inf f

(17)
≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,S

. (29)

Notice that the above inequality indeed indicates convergence, since

K−1∑
k=0

αk,S =

K−1∑
k=0

Mγ (xk)−Mγ (x⋆)

γ ∥∇Mγ (xk)∥2
≥ 1

2γLγ
,

where the inequality follows from Lemma 20. The above upper bounds allow us to further write the
convergence in (29) as

E
[
f(x̄K)

]
− inf f ≤ 2Lγ (1 + 2γLmax) ·

∥x0 − x⋆∥2

K
.

This concludes the proof.

G.3 Proof of Theorem 3

We start from the decomposition,

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2η

〈
xk − x⋆,

1

τ

∑
i∈Sk

∇fi(xk)

〉
+ η2

∥∥∥∥∥1τ ∑
i∈Sk

∇fi(xk)

∥∥∥∥∥
2

,

where Sk is the set sampled at iteration k. Taking expectation conditioned on xk, we have

ESk

[
∥xk+1 − x⋆∥2

]
= ∥xk − x⋆∥2 − 2η ⟨xk − x⋆,∇f(xk)−∇f(x⋆)⟩+ η2ESk

∥∥∥∥∥1τ ∑
i∈Sk

∇fi(xk)

∥∥∥∥∥
2
 .

We can write the second inner product term as

⟨xk − x⋆,∇f(xk)−∇f(x⋆)⟩
(14)
= Df (xk, x⋆) +Df (x⋆, xk) , (30)
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where Df (xk, x⋆) denotes the Bregman divergence associated with f between xk and x⋆. For the
last squared norm term, we first define the indicator random variable χk,i as

χk,i =

{
1, when i ∈ Sk,
0, when i /∈ Sk.

Since we are in the interpolation regime, we have

ESk

∥∥∥∥∥1τ ∑
i∈Sk

∇fi(xk)

∥∥∥∥∥
2
 = ESk

∥∥∥∥∥1τ
n∑

i=1

χk,i (∇fi(xk)−∇fi(x⋆))

∥∥∥∥∥
2
 .

Denote ak,i = ∇fi(xk)−∇fi(x⋆),

ESk

∥∥∥∥∥1τ
n∑

i=1

χk,i (∇fi(xk)−∇fi(x⋆))

∥∥∥∥∥
2


= ESk

∥∥∥∥∥1τ
n∑

i=1

χk,iak,i

∥∥∥∥∥
2


=
1

τ2
ESk

 n∑
i=1

χ2
k,i ∥ak,i∥

2
+

∑
1≤i ̸=j≤n

χk,iχj,k ⟨ak,i, ak,j⟩


=

1

τ2

n∑
i=1

ESk
i

[
χ2
k,i

]
∥ak,i∥2 +

∑
1≤i ̸=j≤n

ESk
i
[χk,iχj,k] ⟨ak,i, ak,j⟩

=
1

nτ

n∑
i=1

∥ak,i∥2 +
τ − 1

nτ(n− 1)

∥∥∥∥∥
n∑

i=1

ak,i

∥∥∥∥∥
2

−
n∑

i=1

∥ak,i∥2


=
n− τ

τ(n− 1)
· 1
n

n∑
i=1

∥ak,i∥2 +
n(τ − 1)

τ(n− 1)
·

∥∥∥∥∥ 1n
n∑

i=1

ak,i

∥∥∥∥∥
2

. (31)

For the first term above in (31), due to the smoothness and convexity of each fi, we have

1

n

n∑
i=1

∥ak,i∥2 =
1

n

n∑
i=1

∥∇fi(xk)−∇fi(x⋆)∥2

≤ 1

n

n∑
i=1

Li (Dfi (x⋆, xk) +Dfi (xk, x⋆))

≤ Lmax
1

n

n∑
i=1

(Dfi (x⋆, xk) +Dfi (xk, x⋆))

= Lmax (Df (x⋆, xk) +Df (xk, x⋆)) ,

where the first inequality is obtained as a result of Fact 3. For the second term, we have due to the
smoothness and convexity of f ,∥∥∥∥∥ 1n

n∑
i=1

ak,i

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(xk)−∇fi(x⋆))

∥∥∥∥∥
2

= ∥∇f(xk)−∇f(x⋆)∥2

≤ L (Df (x⋆, xk) +Df (xk, x⋆)) ,

where the inequality is obtained using Fact 3. Combining the above two inequalities and plugging
them into (31), we obtain

ESk

∥∥∥∥∥1τ ∑
i∈Sk

∇fi(xk)

∥∥∥∥∥
2
 ≤

(
n− τ

τ(n− 1)
· Lmax +

n(τ − 1)

τ(n− 1)
· L
)
(Df (x⋆, xk) +Df (xk, x⋆)) .

(32)
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Notice that we already defined Aτ as

Aτ =
n− τ

τ(n− 1)
· Lmax +

n(τ − 1)

τ(n− 1)
· L.

Combining (30) and (32), we have

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − η(2− ηAτ ) (Df (x⋆, xk) +Df (xk, x⋆)) .

If we require 0 < η < 2
Aτ

, we have η(2− ηAτ ) ≥ 0.

Convex regime. It remains to notice that Df (xk, x⋆) +Df (x⋆, xk) ≥ Df (xk, x⋆) = f(xk) −
f(x⋆) ≥ 0, and we have

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − η(2− ηAτ ) (f(xk)− f(x⋆)) .

Taking expectation again and using tower property, we get

E
[
∥xk+1 − x⋆∥2

]
≤ E

[
∥xk − x⋆∥2

]
− η(2− ηAτ ) (E [f(xk)]− inf f) .

Unrolling this recurrence, we get

E [f(x̄K)]− inf f ≤ 1

η(2− ηAτ )
· ∥x0 − x⋆∥2

K
,

where K is the total number of iterations, x̄K is selected uniformly at random from the first K iterates
{x0, x1, . . . , xK−1}.

Star strongly convex regime. Due to star strong convexity of f , we further lower bound the
Bregman divergence

Df (xk, x⋆) = f(xk)− f(x⋆) ≥
µ

2
∥xk − x⋆∥2 .

and we have

ESk

[
∥xk+1 − x⋆∥2

]
≤
(
1− η(2− ηAτ ) ·

µ

2

)
∥xk − x⋆∥2 .

Taking expectation again, using tower property we get

E
[
∥xk+1 − x⋆∥2

]
≤
(
1− η(2− ηAτ ) ·

µ

2

)
E
[
∥xk − x⋆∥2

]
.

Unrolling the recurrence, we get

E
[
∥xK − x⋆∥2

]
≤
(
1− η(2− ηAτ ) ·

µ

2

)K
∥x0 − x⋆∥2 .

This concludes the proof.

G.4 Proof of Theorem 4

Since each fi is proper, closed and convex, by Lemma 2, we know that each Mγ
fi

is 1
γ -smooth.

Therefore, it is reasonable to assume that Mγ = 1
n

∑n
i=1 M

γ
fi

is Lγ-smooth, with Lγ ≤ 1
γ . Applying

Theorem 3 in this case, we obtain,

Mγ (x̄K)− infMγ
Theorem 3

≤ 1

αγ (2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
,

where x̄K is chosen uniformly at random from the first K iterates {x0, x1, . . . , xK−1}, and

Lγ,τ =
n− τ

τ(n− 1)
· 1
γ
+

n(τ − 1)

τ(n− 1)
· Lγ .
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Multiplying both sides by γ, we obtain

γMγ (x̄K)− inf γMγ ≤ 1

α (2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
.

It is easy to see that the coefficient on the right-hand side is minimized when α = 1
γLγ,τ

, and the
convergence is given by

γMγ (x̄K)− inf γMγ ≤
(

n− τ

τ(n− 1)
+

n(τ − 1)

τ(n− 1)
· γLγ

)
· ∥x0 − x⋆∥2

K
.

Notice that Lγ ≤ 1
γ . As a result,

α⋆ =
1

γLγ
≥ 1.

G.5 Proof of Theorem 5

Case of FedExProx-GraDS-PP. We start with the following identity

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2ατ,k,G · γ

〈
1

τ

∑
i∈Sk

∇Mγ
fi
(xk) , xk − x⋆

〉

+ α2
τ,k,G · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

. (33)

For the last term, we have

α2
τ,k,G · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

= ατ,k,G · γ2 · 1
τ

∑
i∈Sk

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
= ατ,k,G · γ2 · 1

τ

∑
i∈Sk

∥∥∥∇Mγ
fi
(xk)−∇Mγ

fi
(x⋆)

∥∥∥2 ,
where the last step is due to the assumption that we are in the interpolation regime. Using Fact 3, we
can further upper bound the above expression,

α2
τ,k,G · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

≤ ατ,k,G · γ2 · 1
τ

∑
i∈Sk

Li

1 + γLi

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
≤ ατ,k,G · γ · γLmax

1 + γLmax
· 1
τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
, (34)

where the last inequality is due to Fact 4. Now we look at the second term in Equation (33).

− 2ατ,k,G · γ

〈
1

τ

∑
i∈Sk

∇Mγ
fi
(xk) , xk − x⋆

〉

= −2ατ,k,G · γ

〈
1

τ

∑
i∈Sk

(
∇Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
, xk − x⋆

〉

= −2ατ,k,G · γ · 1
τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
. (35)
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Plugging (34) and (35) into (33), we obtain,

∥xk+1 − x⋆∥2

≤ ∥xk − x⋆∥2 − ατ,k,G · γ
(
2− γLmax

1 + γLmax

)
· 1
τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
≤ ∥xk − x⋆∥2 − ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
, (36)

where the last inequality is due to

DMγ
fi
(xk, x⋆)

(14)
= Mγ

fi
(xk)−Mγ

fi
(x⋆) , and DMγ

fi
(x⋆, xk)

(15)
≥ 0.

Now we want to lower bound ατ,k,G, notice that it can be viewed as a function of the iterate x and
the sampled set S. Therefore, we use the notation

inf ατ,k,G = inf
x∈Rd,S⊆[n],|S|=τ

ατ,k,G (x, S) .

As a result, we have
ατ,k,G ≥ inf ατ,k,G ≥ 1,

where the second inequality comes from the convexity of standard Euclidean norm. Plugging this
lower bound into (36), we obtain

∥xk+1 − x⋆∥2

≤ ∥xk − x⋆∥2 − inf ατ,k,G · γ
(
2 + γLmax

1 + γLmax

)
· 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
.

Taking expectation conditioned on xk, we have

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − inf ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· 1
n

n∑
i=1

(
Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
= ∥xk − x⋆∥2 − inf ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· (Mγ (xk)− infM) ,

where the last identity is due to the fact that we are in the interpolation regime. Using Lemma 10, we
have

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − inf ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· 1

1 + γLmax
(f(xk)− inf f) .

Taking expectation again and using tower property, we obtain

E
[
∥xk+1 − x⋆∥2

]
≤ E

[
∥xk − x⋆∥2

]
− inf ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· 1

1 + γLmax
E [f(xk)− inf f ] .

Following the same step as Theorem 1, we can unroll the above recurrence and obtain

E [f(x̄K)]− inf f ≤
(
1 + γLmax

2 + γLmax

)
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2

inf ατ,k,G ·K
,

where K is the total number of iterations, x̄K is sampled uniformly at random from the first K-iterates
{x0, x1, . . . , xK−1}.
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Case of FedExProx-StoPS-PP. We start with the following identity

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2ατ,k,S · γ

〈
1

τ

∑
i∈Sk

∇Mγ
fi
(xk) , xk − x⋆

〉

+ α2
τ,k,S · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

. (37)

For the last term of Equation (37), we have

α2
τ,k,S · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

= ατ,k,S · γ · 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)− infMγ

fi

)
= ατ,k,S · γ · 1

τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆)

)
. (38)

While for the second term we have

− 2ατ,k,S · γ

〈
1

τ

∑
i∈Sk

∇Mγ
fi
(xk) , xk − x⋆

〉

= −2ατ,k,S · γ · 1
τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
(15)
≤ −2ατ,k,S · γ · 1

τ

∑
i∈Sk

DMγ
fi
(xk, x⋆) . (39)

Plugging (38) and (39) into (37), we obtain

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − ατ,k,S · γ · 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)− infMγ

fi

)
. (40)

Now we want to lower bound ατ,k,S , notice that it can be viewed as a function of the iterate x and
the sampled set S. Therefore, we use the notation

inf ατ,k,S = inf
x∈Rd,S⊆[n],|S|=τ

ατ,k,S (x, S) .

As a result, we have
ατ,k,S ≥ inf ατ,k,S .

Notice that since each Mγ
fi

is Li

1+γLi
-smooth, we conclude that the function 1

τ

∑
i∈Sk

Mγ
fi

is at least
Lmax

1+γLmax
-smooth5. Using the smoothness of the mentioned function and Fact 3, a lower bound on

inf ατ,k,S is obvious,

inf αk,τ,S ≥ 1

2 · Lmax

1+γLmax
γ
=

1

2

(
1 +

1

γLmax

)
.

This means that we have

ατ,k,S ≥ inf ατ,k,S ≥ 1

2

(
1 +

1

γLmax

)
.

Using the above lower bound in (40), we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − inf ατ,k,S · γ · 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)− infMγ

fi

)
.

Taking expectation conditioned on xk, and noticing that we are in the interpolation regime, we obtain

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − inf ατ,k,S · γ · (Mγ (xk)− infM) .

5Same as Mγ (x), its smoothness constant can be much better.
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Using Lemma 10, we have

ESk

[
∥xk+1 − x⋆∥2

] Lemma 10
≤ ∥xk − x⋆∥2 − inf ατ,k,S · γ

1 + γLmax
· (f(xk)− inf f) .

Now, following the exact same steps as in the previous case of FedExProx-GraDS, we result in

E [f(x̄K)]− inf f ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2

inf ατ,k,S ·K
,

where K is the total number of iterations, x̄K is sampled uniformly at random from the first K-iterates
{x0, x1, . . . , xK−1}.

G.6 Proof of Corollary 1

If additionally we assume f is µ-strongly convex, then from Lemma 11, we know it indicates the
following star strong convexity of Mγ holds,

Mγ (x)−Mγ (x⋆) ≥
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 .

Thus, we apply Theorem 3 with τ -nice sampling in the star strong convexity case, and obtain the
following result:

E
[
∥xK − x⋆∥2

] Theorem 3
≤

(
1− αγ(2− αγLγ,τ ) ·

µ

2 (1 + γLmax)

)K

∥x0 − x⋆∥2 .

Since the convergence here is stated in terms of squared distance to the minimizer, we do not need
further transformation. Notice that the convergence rate in this case,

1− αγ(2− αγLγ,τ ) ·
µ

2 (1 + γLmax)
,

is also minimized when α = αγ,τ = 1
γLγ,τ

. In case of α = αγ,τ , the convergence is given by

E
[
∥xK − x⋆∥2

]
≤
(
1− µ

2Lγ,τ (1 + γLmax)

)K

∥x0 − x⋆∥2 .

This concludes the proof.

G.7 Proof of Corollary 2

Similar to the proof of Theorem 2, we start with the following identity

∥xk+1 − x⋆∥2 =
∥∥xk − α′

k,Gγ∇Mγ (xk)− x⋆

∥∥2
= ∥xk − x⋆∥2 − α′

k,Gγ ⟨∇Mγ (xk) , xk − x⋆⟩+
(
α′
k,G

)2
γ2 ∥∇Mγ (x)∥2 . (41)

The extrapolation parameter can be rewritten as

α′
k,G =

1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
∥∇Mγ (xk)∥2

.

We have for the last term of (41),(
α′
k,G

)2
γ2 ∥∇Mγ (xk)∥2

= α′
k,Gγ ·

(
γ +

1

Lmax

)
1

n

n∑
i=1

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
= α′

k,Gγ ·
(
γ +

1

Lmax

)
· 1
n

n∑
i=1

∥∥∥∇Mγ
fi
(xk)−∇Mγfix⋆

∥∥∥2
≤ α′

k,Gγ ·
(
γ +

1

Lmax

)
· 1
n

n∑
i=1

Li

1 + γLi

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
,
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where the last inequality follows from the Li

1+γLi
-smoothness of Mγ

fi
. Utilizing the monotonicity of

x
1+γx , for x > 0, we further obtain(

α′
k,G

)2
γ2 ∥∇Mγ (xk)∥2

Fact 4
≤ α′

k,Gγ ·
(
γ +

1

Lmax

)
· Lmax

1 + γLmax
· 1
n

n∑
i=1

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
= α′

k,Gγ ·
(
γ +

1

Lmax

)
· Lmax

1 + γLmax
· (DMγ (xk, x⋆) +DMγ (x⋆, xk))

= α′
k,Gγ (DMγ (xk, x⋆) +DMγ (x⋆, xk)) . (42)

For the second term of (41), we have
−2α′

k,Gγ ⟨∇Mγ (xk) , xk − x⋆⟩ = 2α′
k,Gγ ⟨∇Mγ (xk) , x⋆ − xk⟩

= 2α′
k,Gγ ⟨∇Mγ (xk)−∇Mγ (x⋆) , x⋆ − xk⟩

= −2α′
k,Gγ (DMγ (xk, x⋆) +DMγ (x⋆, xk)) . (43)

Plugging (43) and (42) into (41), we obtain

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − α′
k,Gγ (DMγ (xk, x⋆) +DMγ (x⋆, xk)) .

Notice that we know that

DMγ (xk, x⋆)
(14)
= Mγ (xk)−Mγ (x⋆) , DMγ (x⋆, xk)

(15)
≥ 0.

As a result, we have
∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − α′

k,Gγ (M
γ (xk)−Mγ (x⋆)) .

Summing up the above recursion for k = 0, 1, ...,K − 1, we notice that many of them telescope, we
obtain

γ

K−1∑
k=0

α′
k,G (Mγ (xk)− infMγ) ≤ ∥x0 − x⋆∥2 .

Denote pk = α′
k,G/

∑K−1
k=0 α′

k,G for k = 0, 1, ...,K − 1. If we sample x̄K randomly according
to probabilities pk from the first K iterates {x0, x1, . . . , xK−1}, we can further write the above
recursion as

E [Mγ (x̄K)]− infMγ ≤ 1

γ
· ∥x0 − x⋆∥2∑K−1

k=0 α′
k,G

.

Utilizing the local bound in Lemma 10, we further obtain,

E
[
f(x̄K)

]
− f inf ≤

(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 α′
k,G

.

This concludes the proof.

H Missing proofs of lemmas

H.1 Proof of Lemma 1

Notice that since f is proper, closed and convex, by Fact 1, proxγf (x) is a singleton. We use the
notation z(x) = proxγf (x). Using the definition of proxγf (x), we see that

Mγ
f (x) = f(z(x)) +

1

2γ
∥z(x)− x∥2

= f
(
proxγf (x)

)
+

1

2γ

∥∥proxγf (x)− x
∥∥2 .

Now, assume Mγ
f (x) = +∞. We have for any z ∈ Rd,

+∞ = Mγ
f (x) = f (z(x)) +

1

2γ
∥z(x)− x∥2 ≤ f(z) +

1

2γ
∥z − x∥2 ,

which means that z is also optimal, which contradicts the uniqueness z(x) = proxγf (x). This
indicates that Mγ

f (x) < +∞, thus, it is real-valued, which concludes the proof.
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H.2 Proof of Lemma 2

Let f⋆ be the convex conjugate of f , using Corollary 6.56 in the book by Beck [2017], we have(
Mγ

f

)⋆
= f⋆ + γ

2 ∥·∥2. We know that the convex conjugate of a proper, closed and convex function

is also proper closed and convex. As a result, f⋆ + γ
2 ∥·∥2 is γ-strongly convex. This indicates that(

Mγ
f

)⋆
is γ-strongly convex, which implies Mγ

f is 1
γ -smooth. Notice that we have

proxγf (x) = arg min
z∈Rd

{
f(z) +

1

2γ
∥z − x∥2

}
,

by the definition of proximity operator. Using Theorem 5.30 from Beck [2017], we have

∇Mγ
f (x) =

1

γ

(
x− proxγf (x)

)
.

This completes the proof.

H.3 Proof of Lemma 3

To prove this lemma, we use Theorem 2.19 in the book by Beck [2017]. From the key observation that
Mγ

f is the infimal convolution of the proper, convex function f and the real-valued convex function
1
2γ ∥·∥2, we deduce that Mγ

f is convex. This completes the proof.

H.4 Proof of Lemma 4

Let f⋆ be the convex conjugate of f . From Corollary 6.56 in the book by Beck [2017], it holds that(
Mγ

f

)⋆
= f⋆ + γ

2 ∥·∥2. Since f is L-smooth, we deduce that f⋆ is 1
L -strongly convex, and thus(

Mγ
f

)⋆
is 1

L + γ-strongly convex. This suggests that
(
Mγ

f

)⋆
is 1+γL

L -strongly convex, which in

turn implies Mγ
f is L

1+γL -smooth. This completes the proof.

H.5 Proof of Lemma 5

Notice that since Mγ
f is convex and differentiable, the condition ∇Mγ

f (x) = 0 gives its set of
minimizers. This optimality condition can be written exactly as x = proxγf (x) according to
Lemma 2. Using Lemma 12, we know this condition also gives the set of minimizers of f , which
suggests that f and Mγ

f have the same set of minimizers. Pick any x⋆ ∈ Rd that is a minimizer of f ,
using Lemma 1, we have

infMγ
f = Mγ

f (x⋆)

= f
(
proxγf (x⋆)

)
+

1

2γ

∥∥x⋆ − proxγf (x⋆)
∥∥2

= f(x⋆) = inf f.

This completes the proof.

H.6 Proof of Lemma 6

For any x ∈ Rd, we have

Mγ
f (x) = min

z∈Rd

{
f(z) +

1

2γ
∥z − x∥2

}
≤ f(x) +

1

2γ
∥x− x∥2

= f(x).

This completes the proof.
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H.7 Proof of Lemma 7

From Lemma 3 and Lemma 4, we immediately obtain that each Mγ
fi

is convex and Li

1+γLi
-smooth.

This immediately suggests that M = 1
n

∑n
i=1 M

γ
fi

is convex and Lγ-smooth with

Lγ ≤ 1

n

n∑
i=1

Li

1 + γLi
.

Then by Lemma 13, we have
1

n2

n∑
i=1

Li

1 + γLi

Lemma 13
≤ Lγ .

Combing the above two inequalities, we have

1

n2

n∑
i=1

Li

1 + γLi
≤ Lγ ≤ 1

n

n∑
i=1

Li

1 + γLi
.

We then look at the condition number defined in Theorem 1. It is easy to verify that
C (γ, n, αγ,n) = Lγ (1 + γLmax) and, C (γ, 1, αγ,1) = Lmax.

As a result,
C (γ, n, αγ,n) = Lγ (1 + γLmax)

≤ 1

n

n∑
i=1

Li ·
1 + γLmax

1 + γLi

≤ Lmax = C (γ, n, 1) ,

Notice that we can write C (γ, τ, αγ,τ ) as an interpolation between C (γ, n, αγ,n) and C (γ, 1, αγ,1),
therefore

Lγ (1 + γLmax) ≤ C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) = Lmax.

In cases where there exists at least one Li < Lmax, we have

1

n

n∑
i=1

Li ·
1 + γLmax

1 + γLi
< Lmax.

which is true for all 0 < γ < +∞. Thus, C (γ, n, αγ,n) < C (γ, τ, αγ,τ ) < Lmax = C (γ, 1, αγ,1).
Now we give an example that when all Li = Lmax, still C (γ, n, αγ,n) =

1
nC (γ, 1, αγ,1) =

1
nLmax.

Example 1. Consider the setting where fi : Rd 7→ R is defined as fi(x) = θ
2x

2
i for some θ > 0.

Here xi denotes the i-th coordinate of the vector x ∈ Rd, f : Rd 7→ R is given by f(x) = θ
2n ∥x∥2.

It is easy to show that for each fi is a convex, θ-smooth function and the smoothness constant θ
cannot be improved since

θ

2
∥x∥2 − θ

2
x2
i =

θ

2

∑
j ̸=i

x2
j .

For f(x) = θ
2n ∥x∥2, apparently, it is θ

n -smooth and convex. We have the following formula for the
Moreau envelope of fi(x),

Mγ
fi
(x) =

1

2
· θ

1 + γθ
· x2

i .

As expected, each one of them is convex and θ
1+γθ -smooth. For Mγ (x), it is given by

Mγ (x) =
1

n

n∑
i=1

Mγ
fi
(x) =

1

2
· θ

n(1 + γθ)
· ∥x∥2 ,

thus, we know it is convex and Lγ = θ
n(1+γθ) -smooth. In this case

Lmax

Lγ (1 + γLmax)
=

θ
θ

n(1+γθ) · (1 + γθ)
= n,

which is
Lγ (1 + γLmax) = C (γ, n, αγ,n) =

1

n
C (γ, 1, αγ,1) =

1

n
Lmax.
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H.8 Proof of Lemma 8

By Lemma 5, we know that fi and Mγ
fi

have the same set of minimizers and minimum. Denote the
set of minimizers as Xi, since we are in the interpolation regime, we know that the set of minimizers
of f is given by,

X =

n⋂
i=1

Xi ̸= ∅.

Now we prove that every x in X is a minimizer of M = 1
n

∑n
i=1 M

γ
fi

. This is true since x ∈ X
minimizes each fi, thus Mγ

fi
at the same time. The minimum is given by

infM =
1

n

n∑
i=1

infMγ
fi

=
1

n

n∑
i=1

inf fi = inf f.

We then prove that every x /∈ X is not a minimizer of f . If x /∈ X , there exists at least one set Xj

such that x /∈ Xj . Thus Mγ
fj
(x) > infMγ

fj
. This indicates that Mγ (x) > infM , which means,

x /∈ X is not a minimizer of M .

H.9 Proof of Lemma 9

From Lemma 6, it is clear that Mγ
f is a global lower bound of f satisfying Mγ

f (x) ≤ f(x) for any
x ∈ Rd and γ > 0. Notice that the definition of Mγ indicates that

Mγ (x) =
1

n

n∑
i=1

Mγ
fi
(x)

=
1

n

n∑
i=1

min
zi∈Rd

{
fi(zi) +

1

2γ
∥zi − x∥2

}

≤ min
z∈Rd

{
1

n

n∑
i=1

(
fi(z) +

1

2γ
∥z − x∥2

)}

= min
z∈Rd

{
1

n

n∑
i=1

fi(z) +
1

2γ
∥z − x∥2

}
= Mγ

f (x) ,

holds for any x ∈ Rd and γ > 0. Combining the above result, we have Mγ (x) ≤ Mγ
f (x) ≤ f(x)

for any x ∈ Rd and γ > 0. Notice that in Lemma 8, we have already shown that Mγ and f have the
same set of minimizers and minimum in the interpolation regime. A direct application of Lemma 5
indicates that Mγ

f and f have the same set of minimizers and minimum. Therefore, combining the
above statement, we know that Mγ , Mγ

f and f have the same set of minimizers and minimum. Thus,
for any x⋆ belongs to the set of minimizers, we have

Mγ (x⋆) = Mγ
f (x⋆) = f(x⋆).

This completes the proof.

H.10 Proof of Lemma 10

We start from noticing that according to Lemma 1, the following identity is true for Moreau envelope,

Mγ
fi
(x) = fi(proxγfi (x)) +

1

2γ

∥∥x− proxγfi (x)
∥∥2 . (44)

For the second squared norm term, we have the following inequality due to the smoothness of each fi
and the fact that ∇fi

(
proxγfi (x)

)
= 1

γ

(
x− proxγfi (x)

)
,∥∥x− proxγfi (x)

∥∥2 =
〈
x− proxγfi (x) , x− proxγfi (x)

〉
= γ

〈
∇fi(proxγfi (x)), x− proxγfi (x)

〉
≥ γ

(
fi(x)− fi

(
proxγfi (x)

))
− γLi

2

∥∥x− proxγfi (x)
∥∥2 ,
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which leads to the following lower bound:∥∥x− proxγfi (x)
∥∥2 ≥ 1

1
γ + Li

2

(
fi(x)− fi

(
proxγfi (x)

))
.

Plug in the above inequality into (44) and notice that infM = 1
n

∑n
i=1 infM

γ
fi

= 1
n

∑n
i=1 inf fi,

we obtain the following lower bound on Mγ
fi
(x),

Mγ
fi
(x)− infMγ

fi
≥ fi

(
proxγfi (x)

)
+

1

2 + γLi

(
fi(x)− fi

(
proxγfi (x)

))
− inf fi

=
1

2 + γLi
(fi(x)− inf fi) +

(
1− 1

2 + γLi

)(
fi(proxγfi (x))− inf fi

)
.

(45)

Now let us look at the term fi
(
proxγfi (x)

)
− inf f . Using again Li-smoothness of fi, we have

fi(x)− fi(proxγfi (x))−
〈
∇fi(proxγfi (x)), x− proxγfi (x)

〉
≤ Li

2

∥∥x− proxγfi (x)
∥∥2 .

Notice that x− proxγfi (x) = γ∇fi(proxγfi (x)). As a result, we have,

fi(x)− γ
∥∥∇fi(proxγfi (x))

∥∥2 − Liγ
2

2

∥∥∇fi(proxγfi (x))
∥∥2 ≤ fi(proxγfi (x)),

which is

fi(x)− inf fi −
(
γ +

γ2Li

2

)∥∥∇fi(proxγfi (x))
∥∥2 ≤ fi

(
proxγfi (x)

)
− inf fi.

Using the interpolation regime assumption, we have∥∥∇fi
(
proxγfi (x)

)∥∥2 =
∥∥∇fi

(
proxγfi (x)

)
−∇fi(x⋆)

∥∥2
≤ 2LiDfi

(
proxγfi (x) , x⋆

)
= 2Li

(
fi(proxγfi (x))− inf fi

)
,

where the inequality is obtained using Fact 3. As a result, we obtain the following bound,

fi
(
proxγfi (x)

)
− inf fi ≥

1

1 + γLi(2 + γLi)
(fi(x)− inf fi)

=
1

(1 + γLi)2
(fi(x)− inf fi) .

Plug the above lower bound into (45), we obtain

Mγ
fi
(x)− infMγ

fi
≥ 1

1 + γLi
(fi(x)− inf fi) , (46)

Notice that we have Mγ (x) = 1
n

∑n
i=1 M

γ
fi
(x). Since we are in the interpolation regime, from

Lemma 9, we know that

infMγ = Mγ (x⋆) =
1

n

n∑
i=1

Mγ
fi
(x⋆) =

1

n

n∑
i=1

infMγ
fi
,

and

inf f = f(x⋆) =
1

n

n∑
i=1

fi(x⋆) =
1

n

n∑
i=1

inf fi.

We average (46) for each i ∈ [n] and obtain

Mγ (x)− infMγ ≥ 1

n

n∑
i=1

1

1 + γLi
(fi(x)− inf fi)

≥ 1

1 + γLmax
· 1
n

n∑
i=1

(fi(x)− inf fi)

=
1

1 + γLmax
(f(x)− inf f) .

This concludes the proof.
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H.11 Proof of Lemma 11

We start with picking any point x ∈ Rd, since we are in the interpolation regime, according to
Lemma 9, we have Mγ (x⋆) = f(x⋆). Applying Lemma 10, we get

Mγ (x)−Mγ (x⋆) ≥
1

1 + γLmax
(f(x)− f(x⋆)) . (47)

We know that from the µ-strong convexity of f , we have for any x ∈ Rd,

f(x)− f(x⋆)− ⟨∇f(x⋆), x− x⋆⟩ ≥
µ

2
∥x− x⋆∥2 .

Notice that since ∇f(x⋆) = 0, we have

f(x)− f(x⋆) ≥
µ

2
∥x− x⋆∥2 . (48)

Combining the above two inequalities (47) and (48), we have

Mγ (x)−Mγ (x⋆) ≥
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 .

This concludes the proof.

H.12 Proof of Lemma 12

Notice that x ∈ Rd is a minimizer of f if and only if 0 ∈ ∂f(x). This inclusion holds if and only if
0 ∈ ∂ (γf(x)), which can be rewritten as x− x ∈ ∂ (γf(x)). By the equivalence of (i) and (ii) in
Fact 2, the above condition is the same as x = proxγf (x).

H.13 Proof of Lemma 13

Since each fi is Li-smooth, the following function is convex for every i ∈ [n],

Li

2
∥x∥2 − fi (x) .

Thus,
1
n

∑n
i=1 Li

2
∥x∥2 − 1

n

n∑
i=1

fi(x),

is also a convex function, which indicates f(x) is also 1
n

∑n
i=1 Li-smooth. This means that

L ≤ 1

n

n∑
i=1

Li. (49)

Now notice that the L-smoothness of f is equivalent to the following function being convex

nL

2
∥x∥2 −

n∑
i=1

fi(x).

Pick any j ∈ [n], we have

nL

2
∥x∥2 −

n∑
i=1

fi(x) +
∑

1≤i ̸=j≤n

fi(x) =
nL

2
∥x∥2 − fj(x).

Since all functions are convex and the sum of convex functions is convex,
nL

2
∥x∥2 − fj(x),

is convex, which indicates that fj(x) is also nL-smooth. As a result, for every j ∈ [n], we have
nL ≥ Lj . Summing up the inequality for every j ∈ [n], we have

1

n2

n∑
j=1

Lj ≤ L. (50)
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Combining (49) and (50), we have

1

n2

n∑
i=1

Li ≤ L ≤ 1

n

n∑
i=1

Li.

In order to demonstrate that both bounds are tight in the above inequality, we consider cases where
they are identities.

(i): Consider the case that each function fi(x) =
1
2 · Li · ∥x∥2, it is easy to see that f(x) =

1
2 ·
(
1
n

∑n
i=1 Li

)
· ∥x∥2. In this case L = 1

n

∑n
i=1 Li, the upper bound is an identity.

(ii): Consider the case that each function fi(x) =
1
2 · θ · x2

i , where θ > 0 is a constant, xi is the
i-th coordinate of x ∈ Rd. In this case f(x) = 1

2 · θ
n ∥x∥2. It is easy to verify that in this

case Li = θ, L = 1
nθ. Thus 1

n2

∑n
i=1 Li = L, the lower bound is an identity.

This concludes the proof.

H.14 Proof of Lemma 14

From the definition of C(γ, τ, 1) and C (γ, τ, αγ,τ ), we know that

C(γ, τ, 1)

C (γ, τ, αγ,τ )
=

1

γLγ,τ (2− γLγ,τ )
.

Now let t = γLγ,τ , we have the following bound on t according to the definition of Lγ,τ given in
Theorem 1.

t = γLγ,τ

=
n− τ

τ(n− 1)
· γLmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
· γLγ .

Notice that in Lemma 7, we have shown that

Lγ

Lemma 7
≤ 1

n

n∑
i=1

Li

1 + γLi
,

and due to Fact 4, we have

1

n

n∑
i=1

Li

1 + γLi

Fact 4
≤ Lmax

1 + γLmax
.

As a result,

t ≤ n− τ

τ(n− 1)
· γLmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
· γLmax

1 + γLmax
=

γLmax

1 + γLmax
< 1.

It is easy to show that g(t) = 1
t(2−t) is monotone decreasing when t ∈ [0, 1], thus

C(γ, τ, 1)

C (γ, τ, αγ,τ )
≥ 1

γLmax

1+γLmax

(
1− γLmax

1+γLmax

)
= 2 +

1

γLmax
+ γLmax

AM-GM
≥ 4,

where the last inequality is due to the AM-GM inequality. This concludes the proof.
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H.15 Proof of Lemma 15

As suggested by Lemma 7, we have

C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) , ∀τ ∈ [n].

Notice that αγ,τ is given by

αγ,τ =
1

γLγ,τ
,

and we know that

Lγ,τ =
n− τ

τ(1− n)
· Lmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
· Lγ .

From Lemma 7 and Fact 4, we know that

Lγ

Lemma 7
≤ 1

n

n∑
i=1

Li

1 + γLi

Fact 4
≤ Lmax

1 + γLmax
.

Consequently, Lγ,τ decreases as τ increases. Therefore, αγ,τ increases with the increase of τ , as
illustrated by the following inequality

αγ,1 ≤ αγ,τ ≤ αγ,n, ∀τ ∈ [n].

This concludes the proof.

H.16 Proof of Lemma 16

We refer the readers to the proof of Lemma 3.1 of Böhm and Wright [2021].

H.17 Proof of Lemma 17

We refer the readers to the proof of Proposition 7 of Yu et al. [2015].

H.18 Proof of Lemma 18

Observe that since 0 < γ < 1
ρ , we do have f + 1

2 · 1
γ ∥·∥2 being strongly convex. This indicates

that proxγf is always a singleton and therefore Mγ
f is differentiable, as suggested by Lemma 16.

Notice that x is stationary point of Mγ
f if and only if ∇Mγ

f (x) = 0. This is equivalent to
1
γ

(
x− proxγf (x)

)
= 0, which is x = proxγf (x). In addition, x = proxγf (x) is equivalent

to

∇f(x) +
1

γ
(x− x) = 0,

which is ∇f(x) = 0. Combining the above statements, we have ∇f(x) = 0 if and only if
∇Mγ

f (x) = 0. This suggests that the two functions have the same set of stationary points.

H.19 Proof of Lemma 19

Apply Theorem 1 of Khaled and Richtárik [2023], notice that in this case GD satisfy the expected
smoothness assumption given in Assumption 2 of Khaled and Richtárik [2023] with A = 0, B = 1
and C = 0, we obtain that when the step size η satisfies

0 < η <
1

LB
=

1

L
,

where L is the smoothness constant of f , the iterates of GD satisfy

min
0≤k≤K−1

E
[
∥∇f(xk)∥2

]
≤ 2 (f(x0)− inf f)

ηK
.

This completes the proof.
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H.20 Proof of Lemma 20

Notice that we are in the interpolation regime, by Lemma 8, we know that f and Mγ have the same
set of minimizers and minimum. As a result,

Mγ (x⋆) =
1

n

n∑
i=1

Mγ
fi
(x⋆)

Lemma 8
= f(x⋆). (51)

From the above inequality, we obtain that

1
n

∑n
i=1

(
Mγ

fi
(x)−Mγ

fi
(x⋆)

)
γ ·
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(x)
∥∥∥2

(51)
=

Mγ (x)−Mγ (x⋆)

γ · ∥∇Mγ (x)∥2
.

Then by the smoothness of Mγ and Fact 3, we have

Mγ (x)−Mγ (x⋆)

γ · ∥∇Mγ (x)∥2
Fact 3
≥

1
2Lγ

∥∇Mγ (x)−∇Mγ (x⋆)∥2

γ · ∥∇Mγ (x)∥2

=
1

2γLγ
.

Thus, by combining the above inequalities, we have

1
n

∑n
i=1

(
Mγ

fi
(x)−Mγ

fi
(x⋆)

)
γ ·
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(x)
∥∥∥2 ≥ 1

2γLγ
.

Notice that from the definition of αk,S for FedExProx-StoPS, we have

αk,S =

1
n

∑n
i=1

(
Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
γ ·
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 ≥ 1

2γLγ
.

Therefore, using the above lower bound, it is straight forward to further relax (12) to

E
[
f(x̄K)

]
− inf f ≤ 2Lγ (1 + 2γLmax) ·

∥x0 − x⋆∥2

K
.

This concludes the proof.

I Experiments

In this section, we describe the settings and results of numerical experiments to demonstrate the
effectiveness of our method.

I.1 Experiment settings

We consider the overparameterized linear regression problem in the finite sum setting

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
,

where d is the dimension of the problem, n is the total number of clients, each function fi has the
following form

fi(x) =
1

2
∥Aix− bi∥2 ,

where Ai ∈ Rni×d, bi ∈ Rni . Here ni is the number of samples on each client. It is easy to see that
for each function fi, we have

∇fi(x) = A⊤
i Aix−A⊤

i bi, and ∇2fi(x) = A⊤
i Ai ⪰ Od.
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Thus, it follows that

∇f(x) =
1

n

n∑
i=1

(
A⊤

i Aix−A⊤
i bi
)
, and ∇2f(x) =

1

n

n∑
i=1

A⊤
i Ai ⪰ Od.

The problem is therefore convex. Notice that one implicit assumption for the class of proximal point
methods in practice is that the proximity operator can be computed efficiently. In the setting of linear
regression, we have the following closed form formula for the proximity operator proxγfi , which
holds for any x ∈ Rd,

proxγfi (x) =

(
A⊤

i Ai +
1

γ
Id

)−1

·
(
A⊤

i bi +
1

γ
x

)
. (52)

Observe that in the linear regression problem, since we know the closed form expression of each fi
and f , we know the corresponding smoothness constant

Li = λmax

(
A⊤

i Ai

)
.

Notice that from Lemma 1, we have

Mγ
fi
(x) = fi

(
proxγ (fi)

)
+

1

2γ

∥∥x− proxγ (fi) (x)
∥∥2 .

Since we know proxγ (fi) in closed form using (52), we also know each local Moreau envelope in
closed form, and thus the same for Mγ = 1

n

∑n
i=1 M

γ
fi

. As a result, we can deduce Lγ for Mγ .
In our experiments, we pick d ≥

∑n
i=1 ni so that we are in the interpolation regime. Each Ai is

generated randomly from a uniform distribution between [0, 1), and the corresponding vector bi is
also generated from the same uniform distribution. In order to find a minimizer x⋆, we run gradient
descent for sufficient amount of iterations. All the codes for the experiments are written in Python
3.11 with NumPy and SciPy package. The code was run on a machine with AMD Ryzen 9 5900HX
Radeon Graphics @ 3.3 GHz and 8 cores 16 threads. For experiment in the small dimension regime,
each algorithm considers here only takes seconds to finish. For larger experiments, depending on
the specific implementation, the algorithms typically take a few minutes to half an hour to finish.
For FedProx, FedExP and our method FedExProx in the full participation case, the algorithm for
a specific dataset is deterministic, while in case where client sampling is taken into account, the
randomness of the algorithms comes from the specific sampling strategy used. Our code is publicly
available at the following link: https://anonymous.4open.science/r/FedExProx-F262/

I.2 Large dimension regime

In this section we provide the numerical experiments in the large dimension regime, where ni = 20
for each i ∈ [n], n = 30, d = 900.

I.2.1 Comparison of FedExProx and FedProx

In this section, we compare the performance of FedProx with our method FedExProx in the full
participation case and in the client partial participation case, demonstrating that the extrapolated
counterpart outperforms FedProx in iteration complexity. Notice that here we are only concerned
with iteration complexity, since the amount of computations is almost the same for the two algorithms.
The only difference is that for FedExProx, instead of simply averaging the iterates obtained from
each client, the server performs extrapolation. From Figure 2, it is easy to see that our proposed
algorithm FedExProx outperforms FedProx, which provides numerical evidence for our theoretical
findings. Notably, in order to achieve the small level of function value sub-optimality, FedExProx
typically requires only half the number of iterations needed by FedProx, which indicates a factor
of 2 speed up in terms of iteration complexity. Another observation is that, αγ,n is decreasing as γ
increases, which suggests that when local step sizes are small, the practice of simply averaging the
iterates is far from optimal.

We also compare the performance of the two algorithms in the client partial participation setting.
As one can observe from Figure 3, FedExProx still outperforms FedProx in the client partial
participation setting, which further corroborates our theoretical findings. Observe that αγ,τ here
increases as τ becomes larger, which coincides with our predictions in Remark 7.
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Figure 2: Comparison of convergence of FedExProx and FedProx in terms of iteration
complexity in the full participation setting. For this experiment γ is picked from the set
{0.0001, 0.001, 0.01, 0.1, 1, 10}, the αγ,n indicates the optimal constant extrapolation parameter
as defined in Theorem 1. For each choice of γ, the two algorithms are run for K = 10000 iterations,
respectively.
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Figure 3: Comparison of convergence of FedExProx and FedProx in terms of iteration complexity
in the client partial participation setting. For this experiment γ is picked from the set {0.0001, 0.001},
the client minibatch size τ is chosen from {10, 15, 20} and the αγ,n indicates the optimal constant
extrapolation parameter as defined in Theorem 1. For each choice of γ and τ , the two algorithm are
run for K = 10000 iterations, respectively.
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Figure 4: Comparison in terms of iteration complexity for FedExProx with different step sizes
γ chosen from {0.0001, 0.001, 0.01, 1, 10, 100} in the full participation setting. In the figure, we
use FedExP with different iterations of local training t ∈ {1, 5, 10} as a benchmark in the three
sub-figures. The local step size for FedExP is set to be the largest possible value 1

6tLmax
, where

Lmax = maxi Li.
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Figure 5: Comparison in terms of iteration complexity for FedExProx with different step sizes γ
chosen from {0.0001, 0.0005, 0.01, 1, 10} in the client partial participation case. Different client
minibatch sizes are used, the minibatch size τ is chosen from {5, 10, 20}.

I.2.2 Comparison of FedExProx with different local step size

In this section, we compare the performance in terms of iteration complexity for FedExProx with
different local step sizes. We also include FedExP as a reference. The local step size of FedExP is
chosen to be 1

6tLmax
, where t is the number of gradient descent iterations performed by each client

for local training, Lmax = maxi Li, where Li is the smoothness constant of fi.

As one can observe from Figure 4, for our proposed method FedExProx, the larger γ is, the faster
it will converge. However, as γ becomes larger, the improvement in iteration complexity becomes
trivial at some point. Note that for different γ, the complexities required to compute the proximity
operator locally varies and often larger γ requires more computation than smaller γ. Compared to
FedExP with the best local step size 1

6tLmax
, FedExProx with a large enough γ is better in terms

of iteration complexity. In the case where the computation of proximity operator is efficient, our
method has a better computation complexity as well. Notice that small γ leads to slow down of
our method, and we do not claim that the iteration complexity of FedExProx is always better than
FedExP. However, it is provable that FedExProx indeed has a better worst case iteration complexity.
We want to emphasize a key difference between FedExP and our method is that we do not have any
constraints on the local step size γ, and our method converges for arbitrary local step size γ > 0,
while for FedExP, a misspecified step size could lead to divergence.

We also compare FedExProx with different step sizes in the client sampling case, see Figure 5.
However, since there is no explicit convergence guarantee for FedExP in this case, we did not include
FedExP in the plot.

In the client partial participation case, the same behavior of how our proposed algorithm FedExProx
changes according to different local step sizes γ is observed. A small γ leads to slow convergence
of the algorithm, while for large γ, the convergence is improved. However, at some point, the
improvement becomes trivial.

47



0 2000 4000 6000 8000 10000

Iterations

10−5

10−4

10−3

10−2

10−1

100

f
(x
k

)
−
f

(x
?
)

γ = 0.0005

FedExProx

FedExProx-GraDS

FedExProx-StoPS

0 2000 4000 6000 8000 10000

Iterations

10−5

10−3

10−1

101

f
(x
k

)
−
f

(x
?
)

γ = 0.005

FedExProx

FedExProx-GraDS

FedExProx-StoPS

0 2000 4000 6000 8000 10000

Iterations

10−5

10−4

10−3

10−2

10−1

100

101

102

f
(x
k

)
−
f

(x
?
)

γ = 0.05

FedExProx

FedExProx-GraDS

FedExProx-StoPS

0 2000 4000 6000 8000 10000

Iterations

10−5

10−4

10−3

10−2

10−1

100

101

102

f
(x
k

)
−
f

(x
?
)

γ = 0.5

FedExProx

FedExProx-GraDS

FedExProx-StoPS

0 2000 4000 6000 8000 10000

Iterations

10−5

10−4

10−3

10−2

10−1

100

101

102

f
(x
k

)
−
f

(x
?
)

γ = 1

FedExProx

FedExProx-GraDS

FedExProx-StoPS

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

100

101

102

f
(x
k

)
−
f

(x
?
)

γ = 5

FedExProx

FedExProx-GraDS

FedExProx-StoPS

Figure 6: Comparison of FedExProx, FedExProx-GraDS and FedExProx-StoPS in terms of itera-
tion complexity with different step sizes γ chosen from {0.0005, 0.0005, 0.05, 0.5, 1, 5} in the full
participation setting.

I.2.3 Comparison of FedExProx and its adaptive variants

In this section, we compare FedExProx and its two adaptive variants FedExProx-GraDS and
FedExProx-StoPS. We first focus on the full participation case. Note that in this case, the all
the algorithms are deterministic. For FedExProx-GraDS, as it is suggested by Theorem 2, the
extrapolation parameter is given by

αk = αk,G :=
1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 .
The server can use the local iterates it received from each client to compute αk,G directly. If, in
addition, we know Lmax, we can implement a version that has a better theoretical guarantee,

αk,G :=
1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 .
For FedExProx-StoPS, we have

αk = αk,S =

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 .

In order to implement αk,S , the server requires each client to send the function value of its Moreau
envelope at the current iterate to it, and we need to know each infMγ

fi
which, according to Lemma 5,

is the same as inf fi.

From Figure 6, we can observe that in all cases when γ is sufficiently large, FedExProx-StoPS is
the best among the three algorithms considered, and FedExProx-GraDS outperforms FedExProx,
this provides numerical evidence for the effectiveness of our proposed algorithms. In the cases when
γ is small, the convergence of FedExProx-GraDS seems to be better than the other two algorithms.
We also plot the difference of extrapolation parameter used by the algorithms in each iteration.
From Figure 7, observe that when γ is small, αk,G is often much larger than αk,S , resulting in
better convergence of FedExProx-GraDS as observed in the first two plots of Figure 6. When γ
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Figure 7: Comparison of the extrapolation parameter αk used by FedExProx, FedExProx-GraDS
and FedExProx-StoPS in each iteration with different step sizes γ chosen from
{0.0005, 0.0005, 0.05, 0.5, 1, 5} in the full participation setting.

becomes larger, αk,G and αk,S become comparable, and their performance is also comparable, with
FedExProx-StoPS slightly better than FedExProx-GraDS.

We also conduct the experiment where we take client partial participation into account. We can
observe from Figure 8 that in all cases, the two adaptive variants FedExProx-GraDS-PP and
FedExProx-StoPS-PP outperform FedExProx in iteration complexity, and between the two adap-
tive variants, FedExProx-GraDS is the better one almost all the time. However, FedExProx-GraDS
seems to be more stable than FedExProx-StoPS, especially when γ is small.
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Figure 8: Comparison of FedExProx, FedExProx-GraDS and FedExProx-StoPS in terms of
iteration complexity with different step sizes γ in the client partial participation (PP) setting.
The client minibatch size is chosen from {5, 10, 20}, for each minibatch size, a step size γ ∈
{0.001, 0.005, 0.1, 0.5, 1, 5, 10, 50, 100, 500} is randomly selected.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The experiment and code for this paper are well documented. The details of
the dataset used is described in detail in the experiment section of the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper dose not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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