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ABSTRACT

The conformation spaces of loop regions in proteins as well as closed kinematic
linkages in robotics can be described by systems of polynomial equations, forming
Toric varieties. These are real algebraic varieties, formulated as the zero sets of
polynomial equations constraining the rotor angles in a linkage or macromolecular
chain. These spaces are essentially stitched manifolds and contain singularities.
Diffusion models have achieved spectacular success in applications in Cartesian
space and smooth manifolds but have not been extended to varieties. Here we
develop a diffusion model on the underlying variety by utilizing an appropriate
Jacobian, whose loss of rank indicates singularities. This allows our method
to explore the variety, without encountering singular or infeasible states. We
demonstrated the approach on two important protein structure prediction problems:
one is prediction of Major Histocompatibility Complex (MHC) peptide interactions,
a critical part in the design of neoantigen vaccines, and the other is loop prediction
for nanobodies, an important class of drugs. In both, we improve upon the state of
the art open source AlphaFold.

1 INTRODUCTION

Proteins are essential polymeric biological molecules, and knowing the 3D structure of a protein is
key for our ability to understand its function. A protein loop is a non-regular contiguous segment
of the protein chain which connects the regular structural elements, such as alpha helices and beta
sheets, shown in Fig. 1(a). The “non-regularity” of loop structure is expressed as a lack of a fixed
periodic pattern of hydrogen bonding typical for alpha helices and beta sheets. This absence of
stabilizing hydrogen bonding, compounded by the fact that loops are often located on the surface of
the protein and thus exposed to the solvent, makes loop structures more challenging to characterize
both experimentally (using X-ray crystallography or Cryo-Electron Microscopy) and computationally
in the context of protein structure prediction [Barozet et al. (2021)].

At the same time, protein loops often play key roles in protein function, forming the components of
enzymatic sites (such as kinase activation loops, HIV protease flap loops, Dihydrofolate Reductase
Met20 loop, etc. [Malabanan et al. (2010)]) as well as serving as the binding sites for other molecules,
such as most prominently in Complementarity Determining Regions (CDR) of antibodies [Nowak
et al. (2016)]. This discrepancy between functional importance and our limited ability to model
them computationally (compared to protein structure in general) makes the problem of predicting the
protein loop structures highly relevant, and serves as a motivation for the work presented here.

Protein structure prediction poses a challenge to the scientific community. Recently, the progress has
been accelerated by AlphaFold 2 (AF2) [Jumper et al. (2021)], made possible by the advances in the
field of Machine Learning and availability of data resulting from the decades long accumulation of
experimental structures deposited in the Protein Data Bank (PDB) [Berman et al. (2009)]. However,
even such advanced approaches often have difficulties predicting certain structural elements, with
loops being a prime example (see Fig. 1(b)). These limitations call for the development of novel
computational methods.

The general problem of protein structure prediction can be formulated as a generative task of learning
the probability distribution p(x|s) over protein structures x conditioned on protein sequence s (in
the case of partial modeling, like in case of protein loops, we additionally condition the distribution
on the non-loop portion of the protein structure r and deal with the target distribution p(x|r, s)).
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Figure 1: a: A structure prediction from AF2 (PDB ID: 8J5J). The cyan segments show two loop
regions of the structure, which is connecting beta sheet segments in orange. b: The CDR3 loop
region in the experimental structure is in green, the top 3 predictions from AF2 are in red while the
rest of the structures are in gray. The predictions of CDR3 loop region are close to each other but not
matched with the experimental structure, while other segments are nearly matched. c: The backbone
of a loop region can be extracted and converted to a closed 6-revolute kinematic linkage.

The idea has received a lot of attention recently, with latent variable generative models, especially
diffusion models, being successfully used to generate the structures of proteins and other molecules,
including the modeling of protein structures [Watson et al. (2023)], protein backbones [Yim et al.
(2023)], small molecules [Xu et al. (2022); Jing et al. (2022)], and in molecular docking [Corso et al.
(2023)].

The earlier generation of such models does not explicitly incorporate the constraints imposed by
chemical bonding and applies the noise to 3D coordinates of each atom independently when con-
structing the forward process, such as in [Xu et al. (2022); Hoogeboom et al. (2022); Yim et al.
(2023); Watson et al. (2023)]. This practice is often referred to as diffusion in Euclidean space, and
leads to an increased number of denoising steps as all features of the chemical structure have to be
learned from data directly. More recently, a number of approaches have taken advantage of the fact
that molecular flexibility is largely limited to the so-called torsional angles formed by a sequence of 4
atoms connected consecutively by three covalent bonds, while bond length and 3-atom bond angles
maintain essentially constant values. Representing molecular structure in terms of torsional angles
significantly reduces the dimensionality of the problem and has been recently used to construct more
efficient diffusion models for small non-protein molecules [Jing et al. (2022); Corso et al. (2023)].

While the above approaches perform very well for tree-like molecular graphs, the case of protein
loops adds additional geometric constraints to the picture, namely the requirement of loop closure:
the generated loop structures must have both their ends fixed, while the protein chain must remain
unbroken, i.e. all chemical bond lengths fall within acceptable margins of error from expected values.
The closure condition makes the torsional spaces of closed loops highly constrained subspaces
of the hypertori which may involve singularities, and are therefore challenging to learn directly,
especially since every loop has a different submanifold from others, determined by its length and the
relative position of the two ends. Incorporating the closure constraint into the model as an inductive
bias reduces the effective dimensionality of the problem and may produce an architecture which
is both more computing- and data-efficient (similarly to how torsional diffusion is more efficient
than Euclidean) relative to both torsional diffusion and Euclidean diffusion baselines. Here we
are proposing such a diffusion model operating on toric varieties which can be used to study the
constrained manifold for the loop regions in proteins.

The main contributions of the work are:

1. We propose a diffusion-inspired method suitable for toric varieties and applicable to the
problem of structure prediction for a broad class of constrained molecules, including protein
loops, macrocycles [Jimenez et al. (2023)], stapled peptides [Li et al. (2020)] and MHC-
bound peptides.
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2. We demonstrate the performance of the architecture on two important biological problems:
1) predicting the structures of peptides bound to MHC receptors and 2) predicting the
structures of nanobody CDR3 loops. On an MHC type I dataset containing 78 complexes,
we achieve over 15% improvement in terms of median RMSD over the public domain state
of the art model AlphaFold 2. Similarly, on a nanobody dataset containing 38 cases we
achieve over 20% improvement.

2 BACKGROUND AND RELATED WORK

A conformation of a molecule can be represented by coordinates of all atoms in Euclidean space,
which can be thought of as an element in R3N , where N is the number of atoms in the molecule.
However, the observed variations of bond lengths and angles in experiments are relatively small,
and the flexibility of a molecule is mainly determined by the torsional angles at rotatable bonds
[Gō & Scheraga (1970); Dinner (2000)]. In the case of proteins, we have chains of amino acids
joined by peptide bonds. Each amino acid contributes three atoms to the protein backbone, a
Nitrogen and two Carbons, so that a protein of M amino acids entails the backbone of 3M atoms,
{Ai(Ni − Cα,i − Ci)}Mi=1, and 3M − 2 rotatable bonds. The peptide bonds (Ci−1 −Ni) formed by
a dehydration reaction between two consecutive amino acids, Ai−1 and Ai, are usually treated as
non-rotatable because they tend to have small changes in the structures. Thus, the embedding space of
an internal protein backbone conformations is a hypertorus with dimension 2M − 2. For the purpose
of this work, we assume the internal conformation of side chains (short molecular chains branching
from the Cα atom and specific for each type of amino acid) to be fixed (but note in passing that as
side chain conformations are not subject to closure constraints, they can be straightforwardly handled
by using existing approaches based on torsional diffusion, and our architecture can be augmented
to include such treatment). In this case, the remaining flexibility in the protein chain comes from
the ϕ and ψ angles in the backbone (resp. torsions (Ci−1, Ni, Cα,i, Ci) and (Ni, Cα,i, Ci, Ni+1)).
Here we focus on the movement of the backbone of a protein loop region which is constrained by its
attachment at both ends to the rest of the structure. The backbone of a loop and a schematic of its
conversion to a linkage is shown in Fig. 1(c).

To the best of our knowledge, there is no deep learning method to generate loop conformers in toric
variety space, but several methods have been proposed to explore the conformational space of loops,
such as systematic sampling, Molecular Dynamics (MD), Monte Carlo (MC), and geometric methods
[Barozet et al. (2021)]. In MD and MC methods, an ensemble of conformations is obtained through
computationally intensive simulations. In systematic sampling, with rigid rotor assumption where
only the torsional angles are flexible [Gō & Scheraga (1970)], different conformations of the loop
can be explored through sampling the backbone torsional angles ϕ, ψ with a given granularity. This
method is exhaustive and deterministic, but the optimal granularity varies for different molecules.
Without considering the constraints at two ends, the generated conformers are usually open. As
the structures of molecules can be treated as geometric objects, some geometric methods were also
proposed to sample the loop regions, such as Triaxial Loop Closure [Coutsias et al. (2004)] and
constrained normal mode analysis (NMA) [López-Blanco et al. (2022)]. In [Coutsias et al. (2004)],
the kinematic view of the loop was explored. The fully algebraic method can explicitly account for
the closure constraints imposed by having the two ends of the loop fixed. This method was then
extended to the KIC method in the Rosetta suite for molecular modeling [Mandell et al. (2009);
Stein & Kortemme (2013)]. In [López-Blanco et al. (2022)], constraints of loop closure were added
to regular NMA method to explore the local conformation of loops. However, in such geometric
methods, thousands of conformations need to be generated first and the representative conformers can
be chosen through clustering based on pairwise root mean square deviation (RMSD). In geometric
methods, plenty of redundant conformations will be generated and an energy-based scoring function
is still needed to rank the conformations.

Finally, it should be acknowledged that the state of the art in protein structure modeling is currently
best exemplified by the AF2 approach [Jumper et al. (2021)] (and the recently made available
AlphaFold 3 [Abramson et al. (2024)]), which represents a major breakthrough in the general purpose
structural modeling of proteins and sets a new standard for prediction accuracy. Given the prediction
accuracy from AF2, in most realistic modeling scenarios, the loop-specific modeling tools will use
the predictions made by AF2 or RoseTTAFold [Baek et al. (2021)] as a starting point, refining the
predictions of the loop regions while keeping the rest of the structure largely intact. In this context,
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any improvements that loop-specific modeling tools aim to achieve have to be characterized relative
to the predictions of the baseline general-purpose model.

3 METHOD: DIFFUSION ON TORIC VARIETIES

3.1 OVERVIEW

Unlike a free chain, the backbone angles in an n-torsion loop are subjected to additional constraints
that keep ends fixed with respect to the rest of the protein. These constraints define a toric algebraic
variety on the hypertorus Tn, which is essentially stitched manifolds possibly featuring singularities.
Mathematically, the object of interest is the (n− 6)-dimensional subvariety of the n-Torus defined by
a system of trigonometric expressions relating two ends of the loop through a sequence of orthogonal
transformations defined by six pivotal rotors along the closed kinematic chain. Expressing all sines
and cosines in terms of half-tangents of the six constrained torsions, these trigonometric closure
conditions result in a system of polynomials whose real solutions define the alternative conformations
of the loop (derivations of the polynomial system can be found e.g. in [Cao et al. (2023)], see also
[Angeles (2014), p.375-389]). Standard methods reduce the problem to the solution of a 16-degree
polynomial in one of the variables, and from each real root the remaining five variables are determined.
The real zero set of the closure polynomial system can have nontrivial topology. This introduces
nontrivial variety structure, e.g., the space of a closed canonical octagonal chain is topologically the
union of a sphere and a Klein bottle that intersect along two circles [Martin et al. (2010)].

We approach the loop modeling problem by learning a probability distribution p(x|r, s) over loop
conformations x conditioned on the remaining protein structure r and sequence s. For that, we
develop a diffusion model operating on toric varieties. Unlike diffusion on Euclidean spaces or
smooth manifolds, diffusion on varieties can be challenging in the vicinity of singularities. We
propose a way relying on the tangent space to move as shown in Fig. 2, in the spirit of the Geodesic
Random Walk [De Bortoli et al. (2022)]. At each step, the tangential noise is sampled and then
the tangent vector is projected back to the variety through a map to produce a valid step on the
variety. We achieve this by applying the R6B6 [Cao et al. (2023)] algorithm to maintain loop closure.
R6B6 (from “6 Rotors/6 Bars”) is a robust algorithm to handle loop closure and conformational
sampling problems in chains with fixed ends. It uses a system of polynomial equations to solve for
the constrained torsions, ensuring the chain remains closed while allowing flexible perturbation of
the remaining torsions. In a chain with n flexible torsions, we can select n− 6 torsions to perturb,
and R6B6 can be used to solve for the remaining 6 torsions to maintain two ends of the chain fixed
with respect to the rest of the protein structure. To add noise to the diffusion process we resort to the
Jacobian matrix constructed from the geometrical loop closure relationships to obtain an orthogonal
set of basis vectors for the space of infinitesimal deformations consistent with loop closure. The
following three sections present the algorithmic details of our method.

Figure 2: The green denotes the variety and the white plane is the tangent space at the point. The
tangential noise is sampled (red line) based on the basis vectors (dashed black lines) of the tangent
space. The tangent vector is then projected back (orange dashed lines with arrows) to produce a
geodesics step on the variety (blue). The orange curved region denotes the boundary of the movement
in the tangent space and the red curved region is the boundary of the movement at current step on the
variety.
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3.2 DIRECTIONS OF CONCERTED MOVEMENT FOR A LOOP REGION

Consider a loop {Ri}ni=1 with n ≥ 6 flexible backbone torsions ζi, i = 1, ..., n, the ends of which are
fixed. The torsions ζi are all flexible but should be chosen properly to construct realizations of the loop
that are consistent with the closure constraints. Under certain conditions, we can ensure loop closure
by assigning the values for n− 6 torsions and solving a system of polynomial equations to determine
the remaining 6 [Angeles (2014)]. Thus the torsional space of the loop is a (n − 6)-dimensional
variety embedded in an n-dimensional torus, and the dimension of the tangent space at a regular
point is also n− 6. To characterize the tangent space, we consider a concerted change of all torsions
ζ → ζ + dζ in the loop that keeps its ends fixed. At any point R of the chain past the fixed ends, we
should have that

0 = dR =

n∑
i=1

Γi × (R−Ri)dζi ⇒

(
n∑

i=1

Γidζi

)
×R−

(
n∑

i=1

Γi ×Ridζi

)
= 0, (1)

where Γi is the unit vector along the ith torsional rotation axis and Ri is the position of ith atom. Since
this is true for arbitrary R, both expressions in parentheses of Equation 1 must vanish independently,
from which we find

Pdζ =

n∑
i=1

Pidζi = 0,P := (P1 P2 · · ·PN ) where Pi =

(
Γi

Γi ×Ri

)
, (2)

where P is the Jacobian matrix whose dimension is 6 × n. The columns of the Jacobian are the
Plücker coordinates [Angeles (2014), p.102] of the corresponding axes. Basic analysis (the Implicit
Function Theorem) guarantees that six of the variables may be expressed as differentiable functions
of the remaining ones provided P has full rank. In that case there exist at least 6 independent columns,
so that the corresponding 6 torsional perturbations can be expressed locally as differentiable functions
of the other n − 6 torsions. Intuitively, the linkage needs 6 DoF to maintain closure, since given
the location of one end, placing the other at the correct position and orientation requires, roughly
speaking, 3 translational and 3 rotational degrees of freedom. From the singular value decomposition
(SVD) of the 6×nmatrix P, we can obtain a set of n−6 orthonormal null vectors vi, i = 1, ..., n−6
with vi · vj = 0 and ||vi|| = 1, forming the basis for the tangent space of the variety at current
point. These vectors in the tangent space provide a set of orthogonal directions for the concerted
movement of torsional angles in the loop. Any infinitesimal perturbation of the loop torsions that can
be expressed as a linear combination of the vectors vi in the tangent space, will keep the loop closed
at both ends.

3.3 TRAINING AND INFERENCE

We propose a denoising diffusion model to approximate the distribution over loop torsions conditioned
on protein sequence and structure. We train a score model sθ(xt, t) in the tangent space span({vi, i =
1, .., n− 6}) of the closure variety, where xt is the state of geometric graph describing the protein
structure at time t. The score model therefore predicts a vector δτ living in span({vi, i = 1, .., n−6})
that can be expressed in both ambient n-dimensional torsional basis and tangential basis {vi, i =
1, .., n− 6} and is trained to match the score ∇τt

log p(τt|τ0) expressed in tangential basis, where
p(τt|τ0) is the perturbation kernel of the forward diffusion.

To train the score model, we sample from p(τt|τ0) and compute its score. We chose the normal
distribution as the kernel for the perturbation samples. The noise scale function is σt = σ1−t

min σ
t
max, t ∈

[0, 1]. To add perturbation noise to the torsions of the loop, we first sample (τ1, τ2, ..., τn−6) from
p(τt|τ0), components of the perturbation in tangential basis. The resulting perturbation to the n
torsions is given by:

∆ζt = τ1v1 + τ2v2 + ..+ τn−6vn−6.

However, this tangential perturbation may push us off the variety, breaking the loop. To maintain
closure, R6B6 algorithm is applied to project the movement back to the variety (as shown in Fig. 2).
We select 6 largest components in ∆ζt and set the corresponding torsions as unknowns, after verifying
that the corresponding 6× 6 submatrix of the Jacobian is invertible. We next add the remaining n− 6
components for the corresponding n− 6 torsions. The solutions for the 6 selected torsions can be
solved by R6B6, i.e. guarantee that the spatial constraints at two ends of the loop are exactly satisfied.
The difference ∆ζ′

t between the obtained torsion values and the original values before perturbation
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provides the noise to these 6 torsions. In the training, if the closure problem is not solvable by R6B6
which indicates an infeasible movement, the next perturbation will be tried until one solvable case
is sampled successfully. In our experiments, the closure problem can almost always be solved after
one perturbation, with rare failures requiring at most three trials. During training, we sample the
time t uniformly and minimize the loss L(θ) = Et[λ(t)E[||sθ(τt, t)−∇τt

log p(τt|τ0)||2]], where
λ(t) = E[||∇τt

log p(τt|τ0)||2] as in [Song et al. (2021); Corso et al. (2023)]. The procedures for
training are given in Algorithm 1.

During the inference, the null vectors at current state will be computed by SVD and the tangential
torsional movement δτ can be predicted from the neural network sθ(xt, t), from which we can obtain
the proposed perturbation ∆ζt. The algorithm R6B6 is used to check whether the loop is closed
after perturbation, i.e. the moved point can be projected back to the variety. If the loop remains
closed, the perturbation ∆ζ′

t will be added to the flexible torsions. Otherwise, the structure will stay
at current state. The success rate of steps in the inference of our model is greater than 95%, and it
takes approximately 1 second to produce one conformation with 20 denoising steps.

Each denoising step requires the usage of R6B6 and SVD. The computational cost of R6B6 is
around 0.5 ms, while SVD for the 6×N Jacobian matrix is O(6N min(6, N)), which is linear in
N . Since N is at most 34 in our use case, this results in a computation time on the order of 10−5

seconds per step. Given that one diffusion step requires less than 0.1 seconds overall, the cost of
SVD is negligible compared to the benefits it provides in efficiently sampling the variety. With all the
flexible torsions in the loop updated, we can reconstruct the structure accordingly, which has two
ends of the loop closed. The procedures for inference are given in Algorithm 2.

Algorithm 1 Training

Input Molecular graphs [G0, G1, ..., GN ], learning rate α
Output Score model sθ
for epoch = 1 to epochmax do

for G in [G0, G1, ..., GN ] do
extract loop region lp;
compute all null vectors vi using Jacobian based on lp;
sample t ∈ U [0, 1];
set close flag flag = 0;
while flag = 0 do

sample ∆τ from Gaussian pt|0(·|0) with σt = σ1−t
min σ

t
max;

∆ζt =
∑

∆τi · vi;
∆ζ′

t = Closure(∆ζt)
∗

If ∆ζ′
t is not None: flag = 1;

apply ∆ζ′
t to G;

predict δτ = sθ,G(t)
∗∗;

update θ ←− θ − α∇θ||δτ −∇∆τpt|0(∆τ |0)||2;
∗Closure(∆ζt): 1. select 6 indices with largest components in ∆ζt as the pivots; 2. apply
remaining n− 6 of ∆ζt to lp; 3. check if the loop can be closed by using R6B6: if true, modify
∆ζt to ∆ζ′

t and return ∆ζ′
t, otherwise ∆ζ′

t = None.
∗∗sθ,G(vi, t) first predicts scalars corresponding to the torsions followed by multiplication with all
null vectors vi.

3.4 ARCHITECTURE OF DIFFUSION MODEL

We designed the score model s(x, r, t) to take as input protein structure represented as heterogeneous
geometric graph in 3D including all atoms x in the loop region, and a coarse-grained Cα atom
representation r of the residues for the remaining fixed part of the protein. Non-loop regions
are fixed in the input graph, serve as spatial constraints to guide feasible loop movements while
ensuring closure. Cα residue and all loop atom nodes are featurized with one hot amino acid type
encoding. All nodes are sparsely connected based on distance cutoffs that depend on the types of
nodes being linked and on the diffusion time. To account for roto-translation symmetries inherent to
protein structure prediction problem, we use an architecture similar to SE(3)-equivariant Tensor Field
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Algorithm 2 Inference

Input Molecular graph G′, number of conformers K, number of steps N
Output Predicted ensemble [G′

1, ..., G
′
K ]

for i = 1 to K do
for n = N to 1 do

set t = n/N, g(t) = σ1−t
min σ

t
max

√
2 ln (σmax/σmin);

extract loop region lp;
compute all null vectors vi using Jacobian based on lp;
predict δτ = sθ,G(t)
draw z from Gaussian with σ2 = 1/N ;
∆τ = (g2(t)/N)δτ + g(t)z;
∆ζt =

∑
∆τi · vi;

∆ζ′
t = Closure(∆ζt);

If ∆ζ′
t is not None, applying ∆ζ′

t to lp; otherwise skip this step;

Network [Thomas et al. (2018); Geiger & Smidt (2022)] which operates on the molecular geometric
graph for interaction layers. The loop atom representations after the final interaction layer are subject
to pseudotorque convolution at each rotatable bond. These convolutions produce roto-translation
invariant torsional scores for all n rotatable bonds in the loop. The vector of these scores is an
n-dimensional vector in tangent space TθSO(2)n of hypertorus. Our architecture is similar up to this
point to that of [Corso et al. (2023)]. To account for closure condition, we project the torsional vector
onto the tangent space span({vi, i = 1, .., n− 6}) of the closure subvariety at the current point. The
basis vectors of this tangent space are obtained through SVD of the Jacobian matrix P introduced in
Equation 2. The resulting n-dimensional projected vector is treated as the predicted score ∆τ and
can be also expressed with n− 6 coordinates in the {vi, i = 1, .., n− 6} basis. More details of the
architecture can be found in Appendix B.

While our architecture is similar to SE(3)-equivariant Tensor Field Networks due to their robust
handling of geometric symmetries, alternative architectures, such as PointNet [Qi et al. (2017)], could
also be considered for processing point cloud data.

4 EXPERIMENTS

We evaluated our method on two important problems in protein structure prediction involving loop-
like elements: predicting the structures of peptides bound to the Major Histocompatibility Complex
and predicting the structures of nanobody complementarity-determining region loop 3 (CDR3). The
structures were collected from PDB and the SAbDab [Schneider et al. (2022)], respectively, excluding
any structures with missing loops. We used release time-based criteria to split the dataset; details
are provided in Appendix C.1. In our diffusion model, a significant hyperparameter is the maximum
noise level σmax. We set σmin = π/100 and examined σmax = π/30, π/22, π/18, π/15, π/12, π/10.
Details of the hyperparameters are provided in Appendix Table 1.

While the training was done on PDB structures alone, during validation and testing we start our
prediction from AF2 models [Jumper et al. (2021)] to ensure our method is not biased by the
information contained in the native structures. Specifically, we used AF2 version 2.3 as implemented
in ColabFold [Mirdita et al. (2022)] to predict the protein structures from their sequences, and these
structures served as inputs for our trained diffusion model. Each structure was split into two parts: the
loop region and the remaining part of the protein. The diffusion model then generated conformations
for the loop regions.

In the experiments, we use AF2 as a baseline to compare our method against. While the main
comparison we perform is to the starting structures generated with AF2 (one per case) as described
above, we generate additional structures with AF2 to provide ensemble-level comparison (which
becomes relevant as we generate multiple structures with our approach). It should be mentioned
that the outputs from AF2 are in principle a deterministic function of its inputs, and it has been
shown that the inputs can be stochastically subsampled to obtain an arbitrary number of diverse
outputs [Del Alamo et al. (2022)]. Additional samples for comparison are generated by relying on
this mechanism.
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We must point out that we did not learn a model to assess the confidence of the generated ensembles.
For that purpose, we performed local refinement and scoring of our predictions using AF2 similar to
[Ghani et al. (2021); Roney & Ovchinnikov (2022)]. Specifically, we used predicted Local Distance
Difference Test (pLDDT) values [Jumper et al. (2021)] to rank the generated structures. To evaluate
the results, we computed the backbone RMSD between the refined conformations and the ground-
truth loop regions after aligning the protein structures. The RMSD is given in Å, which is a unit of
length often used in the field of structural biology and equal to 10−8 cm.

4.1 MHC CLASS I

For the MHC class I dataset, the MHC bound linear peptide has its two ends nearly fixed, while the
intermediate part is free to move similar to a protein loop region. The distribution of peptide lengths
in our dataset is given in Appendix C.2. We prepared a subset of 789 structures involving the peptides
of lengths 9 and 10, the most common lengths in the dataset, and initially trained (636), validated
(77) and tested (76) the model on this subset. The trained model was then applied to 78 peptides
(released in years 2023 and 2024) with diverse lengths ranging from 8 to 11 residues.

Our predictions started from 1 seed of the 1st multimer model of AF2. We then ran 20 trajectories of
20 denoising steps each and used the resulting 20 structures for AF2-based refinement and pLDDT
scoring (1st multimer model). We compared our predictions with those of AF2 and AF3. For AF2, we
evaluated the structure used to initialize the diffusion denoising trajectories, as well as the top pLDDT
prediction among 20 differently seeded AF2 predictions (1st multimer model). For AlphaFold 3
(AF3), we evaluated the five models produced by AF3 server [Abramson et al. (2024)]. The results
are summarized in Table 1. One example for the results is shown in Fig. 3.

Overall, the prediction of peptides was improved by using diffusion model denoising. When selecting
the model with top pLDDT for the peptide out of 20, the median RMSD decreased by 15.8% from
0.95 Å to 0.80 Å, and the mean decreased as well. We also provide RMSD values for other scenarios
(including AF3) for reference.

Top confidence model Mean Å Median Å
AF2 1.20 0.95
AF3∗ 1.20 0.80
Diffusion 1.14 0.80

Best RMSD model Mean Å Median Å
AF2 1.13 0.93
AF3 0.93 0.64
Diffusion 0.90 0.74

Table 1: RMSD comparison for MHC dataset predictions. ∗ in AF3, the confidence function is
different from AF2 and Diffusion.

4.2 NANOBODY CDR3 LOOPS

We next examined the performance of our approach on a nanobody dataset. The main determinants
of nanobody-antigen binding are the sequence and structure of the nanobody CDR3 loop. Since the
CDR3 sequence is known a priori [Chothia & Lesk (1987)], the prediction of CDR3 loop structure
becomes the main point of interest, but is significantly complicated by the fact that these loops can be
relatively long and hence flexible.

As longer loops pose a more significant challenge and are of high interest, we specifically focused on
this class of difficult-to-model systems. We prepared a dataset of PDB nanobody structures containing
CDR3 loops that are 15 to 20 residues long (505 structures in total). The distribution of the lengths of
the loops is given in Appendix C.2. The dataset was initially split into 403 training, 51 validation, and
51 test samples. We next found our dataset to be significantly biased, and therefore removed samples
with redundant CDR3 loops (same length and identical sequence) from the validation and test sets.
This left us with 38 structures released in the years 2023 and 2024 in the final test set. For each case,
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Figure 3: An example (PDB: 8ELG); the receptor proteins are shown in gray, the AF2 prediction
(1.62 Å RMSD) is in orange, the PDB structure in red, and the top pLDDT Diffusion prediction (0.63
Å RMSD) in green.

our predictions started from the top pLDDT AF2 prediction (out of 5, all available AF2 monomer
models with 1 seed each), while denoising (20 trajectories, 20 steps each), refinement, and scoring
stages were the same as in the MHC case. Similarly to the MHC case, we compared our predictions
with those of AF2 and AF3. For AF2, we only evaluated the structure used to initialize the diffusion
denoising trajectories. For AF3, we evaluated the models produced by AF3 server. The results are
summarized in Table 2. An example comparing AF2, PDB, and diffusion is shown in Fig. 4.

As can be seen in Table 2, the prediction of CDR3 loops was improved by using diffusion model
denoising. Compared with the starting AF2 structure, our top pLDDT prediciton (out of 20) showed
the median RMSD decreased by 22.5% from 2.00 Å to 1.55 Å, and the mean decreased by 14.3%.
We also provide RMSD values for AF3 models for reference. It should be noted that confidence
functions in AF2 and AF3 are different. Thus the top confidence models could not be compared
directly unlike AF2 and Diffusion which use the same confidence function. As seen in the best
RMSD rows of Table 2, the sampling of the diffusion model is comparable to AF3 which implies
using AF3 confidence model can potentially further improve the top confidence model results.

Top confidence model Mean Å Median Å
AF2 1.96 2.00
AF3∗ 1.37 1.19
Diffusion 1.68 1.55

Best RMSD model Mean Å Median Å
AF2 1.73 1.67
AF3 1.22 1.17
Diffusion 1.35 1.12

Table 2: RMSD comparison for nanobody dataset predictions. ∗ in AF3, the confidence function is
different from AF2 and Diffusion.

5 CONCLUSION

In this work, we presented a diffusion process on toric varieties, which can be applied to generate
conformations for protein loop regions with constrained ends. We provided the first diffusion model to
implement loop generation in torsional angle space. The performance of the method was demonstrated
using the MHC dataset and the nanobody dataset. By generating and scoring a few conformations,
the model’s outputs improve upon the predictions from open source AlphaFold.

This model will benefit applications in protein design and drug discovery, as these fields often involve
flexible loop regions and long-distance restraints in structures. Several extensions can be explored in
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Figure 4: An example (PDB: 8J5J); the remaining parts of the proteins are shown in gray. The
CDR3 loops from the PDB structure, AF2 prediction, and top pLDDT prediction from diffusion are
displayed in red, orange (3.18 Å RMSD), and green (0.76 Å RMSD), respectively.

the future. A natural extension is to add flexibility to the rotatable bonds in amino acid side chains,
which would provide a more complete description of structural movements. Moreover, diffusion on
toric varieties could be applicable to other structurally constrained problems, such as macrocyclic
molecule sampling and docking.
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