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Abstract

Large language models have shown strong reasoning capabilities through chain-
structured methods such as Chain-of-Thought. Recent studies optimize thought
structures by generating parallel or tree-like structures, switching between long
and short reasoning modes, or aligning reasoning steps with task performance.
However, these approaches mainly rely on previously generated logical directions
of the chains, which ignore the unexplored regions of the solution space. Such a
phenomenon is defined as blind spots, which limit the diversity and effectiveness
of the reasoning process. To this end, we propose the “Thought Space Explorer”
(TSE), a framework for navigating and expanding thought structures to overcome
blind spots in LLM reasoning. Our TSE first identifies key nodes with high impact,
then generates new nodes by integrating information from multiple chains. Finally,
it extends new branches through connection strategies. We conduct experiments on
math and QA benchmarks, and TSE outperforms baseline methods in accuracy.

1 Introduction

Recent advances in large language models (LLMs) have shown great potential in solving complex
tasks with reasoning capabilities [Huang and Chang} [2022} [Patterson et al.| 2022} |Achiam et al.|
2023, |[Mao et al.,[2023| [Dutta et al., 2025] by guiding the LLMs to logically solve the complex task
step-by-step. A common practice is to design the Chain-of-Thought (CoT) [Kojima et al., 2022 [Yang
et al., [2025] to boost reasoning capabilities by evolving the thinking from a direct output to a a chain
of intermediate reasoning steps.

Existing studies [Wang et al.,|2022} |Yao et al.,[2024, [Zhang et al., 2024d, Besta et al.| 2024, |Pandita
et al.| [20235] attempt to develop various thought structures with multiple chains or branches of thought
on top of CoT to arouse the reasoning ability of LLMs. Compared with direct output and CoT, the
core advantage of thought structures enables models to explore the solution space of a task from local
to global [Hao et al., 2023]]. For example, as presented in Figure[I] thought structures may initiate
exploration from two distinct points “specialty” and “industry”. Such exploration allows LLMs
to generate diverse paths to solutions and thus enhances the model’s reasoning capacity. Moreover,
the diverse structures can enable models to perform forward and backward evaluations within the
explored thought space toward the optimal solution, i.e., a more effective reasoning thought path.

A series of studies are conducted to optimize thought structures with various aspects, including
generating parallel thought [Wang et al., 2022, constructing tree-structured reasoning topologies on
top of CoT [Yao et al.,2024], and fine-tuning the LLMs with direct preference optimization (DPO) to
align thought steps of CoT with task performance [[Zhang et al.l 2024c], etc. The key idea of these
studies is to compare multiple responses or extend existing chains (e.g., “Coffee over Drone” or
“Coffee industry — Coffee bottle industry” as shown in Figure|l)) to obtain a better thought chain.
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Figure 1: Thought structure optimization through TSE. On the left side, we showcase traditional
thought structures and optimization methods, where the LLMs’ generation may limited by its thought
pattern. On the right side, we show how TSE expands thought structure through a three-step
generation of branches. TSE guides LLMs to explore the blind spots between previous thought paths.

However, these approaches do not explore regions of the solution space that the model itself has never
considered. We refer to such unexplored regions as the blind spots of LLMs. These blind spots are
the areas in the reasoning space that are systematically overlooked, because the model’s generation
is biased and always leads to the previously explored paths [Zhang et al., [2024a, [Sprague et al.|
2025} Liu et al.l 2025]]. Merely generating more chains does not enable LLMs to conceive of content
previously unthought of. As described in Figure[I] over-generated chains tend to repeat prior thought
patterns, leading to two main issues: (1) the absence of feasible solutions. When such solutions
lie in blind spot regions, repeatedly filtering or extending existing paths may converge to a local
optimum (e.g., exploring only from a coffee perspective); and (2) insufficient diversity—especially for
open-ended questions, where existing methods have limited impact on exploring the thought space,
and excessive extension or filtering might even reduce the diversity of responses (e.g., discarding
feasible solutions or creating redundancy through repetitive thinking).

To address these issues, we propose the Thought Space Explorer (TSE), a novel framework designed
to expand and optimize thought structures. The TSE starts from thought paths already explored and
guides the model to explore hidden solution spaces because the existing thought structures often
already contain feasible solutions or crucial information pointing towards such solutions. To enhance
efficiency and precision, further exploration of the model starts from thought nodes within explored
solutions, which ensures that the reasoning process is not a blind exploration but a deeper inquiry
based on verified insights.

To identify key points of information from existing thoughts, as shown in Figure[T] we first quantify
each thought node’s contribution to the conclusion during the model’s reasoning process to select key
nodes (e.g., in Chain 2, the details about “drones and delivery” to serve as key information leading
toward “logistics industry”). We adopt relative gradients as an importance metric to select key nodes.
Based on these key nodes, the model then generates new thought nodes and proceeds with deeper
reasoning in new directions from “original nodes” to “new nodes”, facilitating exploration of the
solution space through the thought structure. Finally, we perform collaborative reasoning across the
entire thought structure to generate the output. Considering the visibility of parameters in LLMs,
we reformulate the key steps of this method using LLMs’ semantic and evaluation capabilities for
black-box or gradient-invisible models. We evaluate the effectiveness of TSE on four reasoning
benchmarks on Qwen3 series models [Yang et al., 2025] and the results show that TSE significantly
improves the performance of thought structures compared with existing methods.

2 Methodology

To expand and optimize thought structures for effective exploration of reasoning spaces, we introduce
TSE, a self-expansion and exploration method that allows language models to proactively address



deficiencies in reasoning processes and explore new reasoning directions with limited steps of
generation. We implement the TSE through three stages: (1) Key Node Selection and New Node
Generation, which aims to select the nodes that are most influential to exploration directions based
on the crucial information contained previously, then the model generates a new node to integrate
the insights of two key nodes for new exploration directions; (2) New Node Connection and Chain
Expansion, to connect and expand the reasoning paths, and the new paths explore potential new
directions of solutions from the new node; and (3) Multi-branch Reasoning to address deficiencies
in the model’s ability to synthesize and integrate diverse reasoning paths in different directions.

2.1 Problem Formulation

Given a specific reasoning task Q, we apply a large language model (LLM) L to a structured
reasoning process S. This structure consists of multiple reasoning sentences as thought nodes, which
are connected sequentially. The set of all thought nodes is denoted as 7, where each node Tj;
represents the j-th reasoning step in the i-th thought chain. The thought structure S can be viewed as
a directed graph consisting of vertices (thought nodes) V and edges (connections between consecutive
nodes) E. Formally, we define them as:

N K; N K;—1
v=Um} Ki=lal, E={J U {T 7,50} (1)
i=1j5=1 =1 j=1

where N is the number of thought chains, and K is the number of nodes contained in chain C;. Then,
the structure S is defined as:

S=(V,E), C;=(Tu,Ti,...,Tix,) 2)

For a specific task Q, the complete reasoning . complete solution Space Py:Unexplored Space € *:Newly Generated Branch
solution space P encompasses all possible rea-
soning paths C; (thought chains) that can po-
tentially solve Q. As shown in Figure 2] the
space that has been explored by the generated
thought structure S is denoted as Pg, and the
remaining unexplored space is denoted as Pr7,  *Ps: Explored space by 5 T:Newly Generated Node Ps=Ps+{C'}

i = Py =P-P;
with Ps UPy =P Figure 2: Solution space exploration via osur TSE

Our goal is to actively expand the thought struc- method. By generating new branches of solutions,
ture S by generating new reasoning branches C’  the explored space of solutions expands.

to explore previously untouched subspace P,.

In this way, we increase the likelihood of discovering correct and novel solutions. Formally, we
define the optimization objective as: maxg J(S’, @), where J is the reasoning performance metrice
and S’ is the expanded thought structure.

2.2 Key Node Selection and New Node Generation

We aim to select the most impactful nodes from the existing thought structure S for expansion.
Intuitively, these nodes should contain crucial information for the task and satisfy two requirements:
(i) enabling effective exploration of promising regions in the solution space by initiating expansion
from these key nodes, thus increasing the likelihood of discovering viable solutions; and (ii) reducing
error propagation by conducting additional analysis and verification on these critical nodes, which
often represent potential sources of mistakes.

2.2.1 Gradient-based Selection

When the internal states and gradients of the model £ are available, we access the representation
of each thought node T;; from the hidden states of £ : T;; — v;; € RY. The representation of the
conclusion node v; g, is mapped to the output space as the model’s prediction §; as: §; = f(vik, ),
where f(-) denotes the mapping from the representation space to the output space, and ¢; is typically
a textual answer or decision for task Q.

The self-information loss L; is a common practice to evaluate the model’s confidence in its predic-
tions [Wang and Fengl [2021]], where higher confidence corresponds to lower loss values. Thus, we



calculate the partial derivative of the loss g;; with respect to each node’s representation v;; and the
Euclidean norm of its gradient G;; to measure the importance of the nodes, as shown in Figure ??.
Then, we apply a normalization to determine the relative importance I;; of each node for a consistent
and comparative analysis of node importance across different chains within the structure S as:

X OL;
Li=—log P(9: | viK,), 8&ij = v Gij = |lgijll2- 3
Vij
To compare across nodes and chains, we normalize the gradient magnitudes within each chain C; as:
G
Lij= =g “
ZkK;1 Gik

We regard nodes with larger I;; values as key nodes, as perturbations at these nodes typically have the

greatest impact on the final prediction. Each Tikey corresponds to the most influential node selected
from chain C;. These key nodes serve as the starting points for generating new reasoning branches
in the subsequent expansion phase. The gradient-based selection use gradient magnitude as a joint
indicator of information influence and uncertainty. It guides the model to explore from nodes with the
highest potential gain. Also, it provides extra verification at nodes that are most likely to error with
limited computing. In this way we make a balance between efficient exploration and stable control.

With the selected key nodes, the next step is to use them as conditional information for generating
new thought nodes. We generate the new nodes by combining two key nodes from the set T*,

denoted as 71 and 7. Given such a pair, the model generates a new candidate node 77} as:

T = LT, 1), il € [LN] i #1. ®)

2.3 Connection and Expansion

Then we integrate the new node into the thought =663 —
structure. Since these key nodes are semanti- ,KeyNode in Chuini§§ ‘ i
cally closest to the new node, we choose be-
tween the two key nodes (T, or T'Y) to decide ~KevNode inChain '

which one can serve as the connection point for Figure 3: Gradient-based key node connection.
extending a new branch. Therefore, we select

the connection node as the key node that exhibits stronger semantic relevance to the newly generated

node and contributes more significantly to reasoning. The relative gradient selection chooses the

connection node between T and 7' by comparing their importance indices I(7,) and I(T}®).
Formally, we first select the connection node and then initialize a new branch as:

T. = arg max I(Tyey), C'=(T.,T}). 6)
chyeTikey,leey ¢

where C’ denotes the new branch initiated from the key node with the higher importance index, as
shown in Figure 3| Starting from the newly generated node 73}, the model £ continues to generate
subsequent steps conditioned on 7. Since T}; integrates information from two key nodes, the branch
tends to explore novel reasoning directions that were not present in the original chains. The branch is
extended until the target depth K is reached. By default, K is inherited from the chain containing 7T,

(e, K = K; if T, = T\Y, otherwise K = K).

2.4 Multi-branch Reasoning

Finally we reason and produce an output with both original and new branches. Now we have a task
@ and its complete but unseen solution space P, the model £ generates new thought branches on top
of the original thought structure S. During this process, each new branch C’ expands the explored
subspace Ps € P by mining potential solutions based on the established structure as:

Ps+ Psu{C'}, P« P—Ps. @)

The refined structure S’, compared to S, explores a larger portion of the solution space with |Pg| >
|Ps|. Based on &', we can integrate both original and newly discovered reasoning paths to form
a unified conclusion. We consider all thought chains in the refined structure S’ and use gradient



Table 1: Accuracy (%) and relative improvement over Direct baseline across four benchmarks. Best
accuracy is shaded, second-best is underlined.

Model Method GSMSK AIME24 AIME25 GPQA-D Avg.
Acc T% Acc 1% Acc 1% Acc 1% Acc 1%
Direct 86.2 - 20.0 - 20.0 - 36.4 - 407 -
Think 92.0 6.7 60.0 200.0 489 1445 450 236 615 5I1.1
Qwen3-4B ToT 927 7.5 633 2165 400 1000 46.0 264 605 48.8
RATT 927 7.5 567 1835 46.7 1335 545 332 612 504

Self-Route  93.1 8.0 56.7 1835 46.7 1335 43.0 181 599 472
TSE (Ours) 940 9.0 66.7 2335 50.0 1500 485 332 648 592

Direct 885 - 167 - 23.3 - 44.4 - 432 -

Think 934 8.1 467 1796 46.7 1004 566 275 614 421
Qwen3-8B ToT 903 2.0 40.0 1395 333 429 480 81 529 225

RATT 927 47 500 1994 36.7 575 591 205 582 347

Self-Route  96.0 85 63.3 2784 433 858 551 241 644 49.1
TSE (Ours) 95.7 55 60.0 2395 533 1288 58.6 320 655 51.6

information to recalculate and select the key nodes of each chain. For a key node Tik,:y, we assign a
weight based on its relative contribution to the solution as:

K
. exp<fL“e€y>

_ y
ZTimeT;@y exp( Lzm)

represents the self-information loss at node 7;

®)

where L which reflects the model’s confidence

lkey
and potential error at that node. The contribution of each node is represented as vfzy, which is
obtained from its embedding through a linear projection. This score quantifies how strongly the
node supports the overall reasoning process, capturing factors such as semantic relevance to the task
or inference correctness. Then, we compute the collaborative reasoning score by aggregating the
weighted contributions of all key nodes across all chains for the given reasoning task Q as:

N
Q= > wy vy ©)

i=1 TikETny

key?

So far, the decision D for task Q is selected as the candidate with the highest collaborative reasoning
score as: D = argmax,co C(q).

3 Experiments

We evaluate the pass@]1 rate on the latest Qwen3-4B/8B [Yang et al.| 2025]] models with sampling
temperature fixed at 0.7. Unless otherwise specified, we generate five parallel thought chains with a
maximum depth of 5 for each question and use this structure as the basis for TSE. All experiments are
conducted on 4 H200 GPUs. For evaluation, we select four widely used math and science benchmarks
with different level: GSM8K [Cobbe et al.l 2021]], AIME24 and AIME25 [Math-AlL 2024, 2025,
and GPQA-Diamond [Rein et al.|[2024]]. We compare TSE method with (1) Direct output without
thinking mode, (2) Think [[Yang et al., [2025]]: output with Qwen3’s long CoT thinking mode, (3)
ToT [Gomez, 2023]]: a reasoning method with tree-structure for thoughts, (4) RATT [Zhang et al.,
2024bl |Semnani et al.,[2023]]: a tree-structure reasoning method with RAG with WikiPedia as external
knowledge base, and (5) Self-Route [He et al.l 2025]: an automated reasoning path mode switch
method. Our main results for accuracy on four benchmarks are shown in Table[l} We find that our
TSE method consistently demonstrates superior effectiveness compared to other reasoning approaches.
Details please refer to Appendix

4 Conclusion

In this study, we introduce TSE, a novel approach to enhance the reasoning structures of LLMs. TSE
generates new thought branches based on existing thought paths to explore previously overlooked
solutions. The generated new reasoning nodes and chains are incorporated into thought structures to
explore diverse reasoning directions in terms of a reasoning task. Our experiments across multiple
reasoning datasets demonstrate the effectiveness of the TSE.
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Appendix

A Experiment Details

We conduct a series of experiments to evaluate the reasoning performance of TSE. We first compare it
with state-of-the-art baseline methods on several widely used benchmarks to test its overall accuracy.
Then we investigate how TSE enhances the quality of reasoning paths beyond the final answers to the
questions, which includes validating the path accuracy (the effectiveness of the reasoning exploration)
and the path diversity (whether the exploration leads the model search to broad paths for the final
answer). Finally, we discuss the cost-accuracy trade-off of these methods. For more discuss and
comparison of black box model and non-gradient exploration, please refer to 2?.

A.1 Experimental Setup

Settings. We evaluate the pass@1 rate on the latest Qwen3-4B/8B|Yang et al.|[2025] models with
sampling temperature fixed at 0.7. Unless otherwise specified, we generate five parallel thought
chains with a maximum depth of 5 for each question and use this structure as the basis for TSE. All
experiments are conducted on 4 H200 GPUs.

Evaluation Datasets. For evaluation, we select four widely used math and science benchmarks
with different level: GSMS8K |Cobbe et al. [2021]], a large collection of grade-school math word
problems testing multi-step arithmetic reasoning. AIME24 and AIME2S Math-Al| [2024} [2025]],
each containing 30 competition-style math problems covering arithmetic, algebra, and geometry from
the American Invitational Mathematics Examination; and GPQA-Diamond Rein et al.|[2024], a
curated subset of GPQA, which contain 198 PhD-level science questions authored by domain experts
in physics, chemistry, and biology.

Baselines. We compare TSE method with (1) Direct output without thinking mode, (2) Think|Yang
et al.|[2025]]: output with Qwen3’s long CoT thinking mode, (3) ToT) Gomez| [2023]: a reasoning
method with tree-structure for thoughts, (4) RATT Zhang et al.|[2024b]], Semnani et al.| [[2023]]:
a tree-structure reasoning method with RAG with WikiPedia as external knowledge base, and (5)
Self-Route He et al| [2025]]: an automated reasoning path mode switch method. For ToT and
RATT, we set the number of nodes with one generation (N = 3). For Self-Route, the router uses
MATH-500|Lightman et al.| [2023]] and GPQA non-diamond subset for training.

A.2 Experiment Results

Overall Performance. Our main results for accuracy on four benchmarks are shown in Table [I]
We find that our TSE method consistently demonstrates superior effectiveness compared to other
reasoning approaches. For math tasks in GSM8K and AIME25, TSE achieves the highest accuracy
for both Qwen3-4B and Qwen3-8B. In AIME24, TSE remains the highest in the 4B model setting
and on par with Self-Route by underperforming only one question in 8B model setting. For the QA
task, TSE remains the second-best competitive performance, since the best approach RATT uses
retrieval and can access external scientific knowledge to answer complex questions. On average, TSE
reaches 59.2% and 51.6% accuracy improvement compared to the non-thinking outputs in terms of
Qwen3-4B and Qwen3-8B, respectively. These results indicate that TSE is effective in solving tasks
of various difficulties and explores the correct reasoning directions sophisticatedly.

Path Accuracy. We then investigate how TSE improves the accuracy of reasoning paths. Beyond
providing correct final outputs, the ideal reasoning process should also provide logically clear and
accurate intermediate steps for users to verify the trustworthiness. Thus, we output the reasoning
chains generated by the Qwen3-8B model on GSMS8K and evaluate their correctness by GPT-40 Hurst
et al.[[2024]]. The principle is that the GSM8K contains relatively simple math word problems with
deterministic answers and requires pure arithmetic reasoning, and GPT-40 can effectively validate
each step’s correctness.

As shown in Figure[d] we observe that in some cases the final answer is correct while the reasoning
path contains errors. This phenomenon further highlights the importance of monitoring and correcting
the process rather than just the results. The results indicate that TSE not only achieves the highest
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Figure 4: Path accuracy compared with final answer accuracy on GSM8K with Qwen3-8B.

final answer accuracy but also has the best path accuracy, which demonstrates its superiority in
generating reasoning paths that are logically more consistent and verifiable.

Diversity Measurement. We further validate how TSE’s exploration contributes to the diversity
of reasoning. In our experiments, we use Jaccard Similarity Niwattanakul et al.| [2013] to measure
the diversity of reasoning trajectories produced by different methods. We segment each reasoning
chain into a set of steps by delimiters or step indices. For a given question, we randomly select
three reasoning chains that are both correct in answer and path as reference chains, and compute the
Jaccard Similarity with all other chains. The Jaccard similarity is defined as

. |CiﬂCl\
Gua)

where the intersection N represents the shared steps and the union U represents the total distinct steps.
A higher Jaccard Similarity indicates a larger overlap between generated chains and thus results in
lower diversity among generations. For multiple reasoning chains, we compute the Jaccard Similarity
for all chain pairs and take the average. We adopt the complement 1 — J as the overall diversity
metric for reasoning paths.

As shown in Figure |§[, for both Qwen3-4B and Qwen3-8B models on the GPQA-D dataset, TSE has
the highest diversity, surpassing ToT and RATT that contain complex tree structures and naturally
have wider exploration fields. Meanwhile, the Self-Route method, although it has competitive output
accuracy, its reasoning paths are less diverse and have low path accuracy. Such observations indicate
that TSE explores genuinely new reasoning directions rather than simply expanding existing ones.
More importantly, TSE translates this exploration into higher-quality reasoning trajectories, thus
enhancing both diversity and correctness that other methods might fail to realize.

J(C;, Cy)

Token Usage. As TSE requires additional exploration during content generation, we further analyze
its computational cost. As shown in Figure [f] the direct output baseline without generating reasoning
tokens has the lowest cost but substantially lower accuracy than all other methods. The Think
method, with more than twice the tokens, achieves higher accuracy but still lower than the RATT
and Self-Route methods. For ToT, as the number of generated nodes grows exponentially, it has
an extremely high token consumption than others, which is not comparable, so we omit it from the
figure. The RATT has the highest token usage as it contains a retrieval process, which may not help
in arithmetic for math tasks, but can significantly improve QA task performance. Self-Route achieves
better accuracy with fewer tokens compared to Think. For TSE, it has competitive accuracy and
exhibits the best token-accuracy trade-off, which demonstrates TSE’s better effectiveness-efficiency
trade-off and its practical value for deployment under limited resources.
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Figure 5: Reasoning diversity across different methods on GPQA-D with Qwen3-4B/8B models.
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