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Abstract

This paper provides the first tight convergence analyses for RMSProp and Adam for non-
convex optimization under the most relaxed assumptions of coordinate-wise generalized
smoothness and affine noise variance. RMSProp is firstly analyzed, which is a special case
of Adam with adaptive learning rates but without first-order momentum. Specifically, to
solve the challenges due to the dependence among adaptive update, unbounded gradient
estimate and Lipschitz constant, we demonstrate that the first-order term in the descent
lemma converges and its denominator is upper bounded by a function of gradient norm.
Based on this result, we show that RMSProp with proper hyperparameters converges to an
e-stationary point with an iteration complexity of O(e~*). We then generalize our analysis
to Adam, where the additional challenge is due to a mismatch between the gradient and
the first-order momentum. We develop a new upper bound on the first-order term in the
descent lemma, which is also a function of the gradient norm. We show that Adam with
proper hyperparameters converges to an e-stationary point with an iteration complexity of
O(e=*). Our complexity results for both RMSProp and Adam match with the complexity
lower bound established in |Arjevani et al.| (2023).

1 Introduction

RMSProp (Hinton et al., 2012)) and Adam (Kingma & Ba, |2014]) are among the most popular and powerful
adaptive optimizers in training state-of-the-art machine learning models (Brock et all [2018; [Brown et al.,
2020; |Cutkosky & Mehtal 2020; |Dosovitskiy et al., 2020). RMSProp and Adam only require first-order
gradients with little memory requirement, and thus are efficient to use in practice. RMSProp is based
on the idea of adaptive learning rates for each individual parameter, and Adam combines the benefits of
RMSprop (Hinton et al.; 2012)) and AdaGrad (Duchi et all [2011]), which consists of two key components
of adaptive learning rates and momentum. Despite their empirical success, theoretical understandings on
the convergence and complexity, especially when optimizing non-convex loss functions, e.g., neural networks,
still remain underdeveloped until very recently.

Recently, there have been a series of works in examining the convergence and complexity of RMSProp
and Adam for non-convex loss functions (see Table [1| for a detailed review). However, these works do
not completely explain the performance of RMSProp and Adam in training neural networks, as they rely
on assumptions that may not necessarily hold. For example, |Zhang et al.| (2019) pointed out that neural
networks are not L-smooth, and instead satisfy the generalized (Lo, L1)-smoothness, where the gradient
Lipschitz constant increases linearly with the gradient norm. Furthermore, many of these works assumed
that the stochastic gradient has a bounded norm/variance, which however does not even hold for linear
regression (Wang et al., 2023b)), and instead a relaxed affine noise variance condition shall be used.

In this paper, we derive the convergence guarantee and iteration complexity for RMSProp and Adam with
coordinate-wise generalized (Lg, L1)-smooth loss function and affine noise variance. To the best of our
knowledge, this is one of the most relaxed assumption sets in the convergence analyses of RMSProp and



Under review as submission to TMLR

Adam that best describe the training of some neural networks. We prove that RMSProp and Adam with
proper hyperparameters converge to an e-stationary point with a complexity of O(e~*), which matches with
the lower bound for first-order optimization in |[Arjevani et al.| (2023).

1.1 Related work

1.1.1 Relaxed Assumptions

Affine Noise Variance: In most of the studies on stochastic optimization, access to an unbiased estimate of
the gradient with uniformly bounded variance is assumed (Nemirovskij & Yudin) {1983} Ghadimi & Lan, [2013}
[Bubeck et al.l |2015} [Foster et all 2019)). |Ghadimi & Lan| (2013)) first showed that for L-smooth objectives,
the SGD algorithm converges to a first-order e-stationary point with an iteration complexity of O(e~%) if
the stochastic gradient has uniformly bounded variance. Furthermore, Arjevani et al| (2023) proved that
for any first-order algorithm with uniformly bounded gradient variance, the iteration complexity of O(e™*)
is optimal. For overparameterized neural networks, Vaswani et al| (2019) considered another gradient noise
assumption: the strong growth condition, where the upper bound on the second-order moment of the norm
of gradient estimate scales with the gradient square norm. Both the uniformly bounded variance and strong
growth condition are special cases of the affine noise variance. It was demonstrated in [Bottou et al. (2018)
that for non-adaptive algorithms with affine noise variance, the optimal iteration complexity of O(¢~*) can
be achieved. The extension of affine noise variance assumption to adaptive algorithms is not straightforward
and was studied in |Jin et al| (2021); |Chen et al.| (2023); Wang et al. (2022 2023b); [Shi et al.| (2020); [Faw|
let al.| (2022; 2023)); [Hong & Lin| (2023)). In this paper, we study two adaptive optimizers: RMSProp and
Adam with affine noise variance.

Generalized Smoothness: In stochastic optimization, the L-smooth objectives are widely assumed
(Ghadimi & Lan| [2013; |Ghadimi et al.,|2016)). However, it was demonstrated in |Zhang et al.| (2019) that the
L-smoothness does not hold for some neural networks and polynomial functions with degree larger than 2.
Then, extensive experiments were conducted to verify that these functions satisfy the generalized (Lo, L1)-
smoothness condition, where the gradient Lipschitz constant increases linearly with the gradient norm. Com-
pared with L-smoothness, (Lg, L1)-smoothness introduces extra second-order error terms, thus making the
optimization problem hard to solve. The clipping algorithms for generalized smooth function were studied in
|Zhang et al.| (2019; 2020). However, they require the gradient norm to be bounded. A relaxed assumption on
bounded gradient variance was studied in [Reisizadeh et al.| (2023)), where the SPIDER algorithm was applied.
Furthermore, [Chen et al (2023) showed that for generalized smooth objectives with affine noise variance,
the SPIDER algorithm still finds a stationary point. Under the same assumption, |Jin et al.| (2021)) provided
the convergence rate for a normalized momentum algorithm. With extensive experiments, |Crawshaw et al.|
showed that in the training of Transformer, the (Lg, L1)-smoothness holds coordinate-wisely. This
condition is widely used in coordinate-wise type optimizers like generalized SignSGD and Adam. Note that
for the original Adam, proving the expectation of gradient norm converges with (L, L )-smoothness remains
an unresolved issue. In this paper, we consider functions that are coordinate-wise (Lg, L1 )-smooth.

1.1.2 Adaptive Optimizers

Adaptive optimizers are widely used in deep learning due to their ability to adapt to changing data and
conditions. Adagrad (Duchi et al. 2011) is the first adaptive algorithm, which calculates the accumulated
sum of the past gradient norms and uses the reciprocal of its square root to scale the current gradient.
Recently, Wang et al.| (2023b)); [Faw et al.| (2023) studied Adagrad under generalized smoothness and affine
noise variance conditions. However, the training of the above Adagrad algorithm may stop in advance since
the accumulated sum does not shrink, and thus the learning rate can be extremely close to 0. To overcome
this problem, RMSProp (Hinton et al.l 2012) was proposed, where a momentum method is employed to
replace the accumulated sum. Thus, the adaptive learning rate can increase or decrease. There is a rich
literature on the convergence analyses of RMSProp (Zaheer et al., [2018; De et al., 2018; |Shi et al., 2020)).
However, all of them focus on L-smooth objectives, and only |[Shi et al.| (2020) considered the affine noise
variance. RMSProp is a special case of Adam, which only includes the second-order momentum, and is
widely studied e.g., [Défossez et al.| (2020); [Zou et al| (2019); [Chen et al| (2018); [Zhang et al. (2022)); [Wang]
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let al.| (2022)); Guo et al, (2021); [Hong & Lin| (2023); [Li et al. (2023)); Wang et al. (2023al). There are also
two recent works (Hong & Lin| 2023} [Wang et al, 2023a) that studied Adam for L-smooth objectives with
affine noise variance. However, their methods can not be generalized to (Lg, L1) smooth objectives due to
the additional terms invalidating the key inequalities or requirements of bounded Lipchitz constant in their
key Lemma. In , Adam for (Lo, L1)-smooth objectives with sub-Gaussian norm was studied,
where the gradient estimate bias follows a sub-Gaussian distribution. Under this assumption, based on the
gradient estimate, the real gradient belongs to a bounded set with high probability, which converts the
unbounded Lipschitz constant to a bounded one. However, the bounded Lipschitz constant is quite large,
which leads to small step sizes and slow practical convergence. Adam on (Lg, L1)-smoothness with affine
noise variance (for the special case of finite sum problems) were in [Wang et al.| (2022). However, they only

showed that Adam converges to the neighborhood of a stationary point with a constant learning rate. More
details can be found in Table [1l

H Method Smoothness’  Algorithm Convergence® Assumption® Batch size ComplexityH

De et al| (2018 (LS) RMSProp v/ (BN)? O(1) O™
Zaheer et al] (2018 (LS) RMSProp v (BN) O(e™?) O™

[Shi et al.| (2020) (LS) RMSProp v (FSAN) - -
\Défossez et al.| (2020) (LS) Adam v (BN) o) O™
(LS) Adam v (BSM) 0) O™

) (LS) Adam X (BN) - -

(2022 (LS) Adam X (FSAN) - -

(2022 (FSGS) Adam X (FSAN) - -
Guo et al.[(2021) (LS) Adam v/ (AN)® o(1) O™
Hong & Lin| (2023) (LS) Adam v (CAN) o(1) O(e™%)
Wang et al.| (2023al) (LS) Adam v (CAN) 0(1) O™
ILi et al](2023) (GS) Adam v (SGN) 0(1) O(eh)®
\Wang et al.[ (2024) (GS) Scalar Adam v (AN) 0(1) O™
Our method (CWGS) Adam v (CAN) 0(1) O™

Table 1: Comparison for existing RMSProp and Adam analyses. For V f(2) with its estimate g, the bounded
norm assumption is ||g|| < G (almost surely), where G is some positive constant. The bounded second-order
moment assumption is that E[||g||?] < G?. The bounded sub-Gaussian norm assumption is that ||g — V f(x)||
follows a sub-Gaussion distribution, which is weaker than the bounded norm assumption but stronger than
the bounded variance assumption. The batch size refers to the number of samples necessary to compute the
gradient estimate g and complexity denotes the total computational effort required to achieve an e-stationary
point. Explanation on the upper footmarks: 1 : (LS) indicates the standard L-smoothness, (GS) denotes the
generalized (Lo, L1)-smoothness, (FSGS) denotes the finite sum (Lo, L1 )-smoothness and (CWGS) indicates
the coordinate-wise (Lg, L1)-smoothness. 2 : X indicates the algorithm only converges to the neighborhood
of a stationary point, whose radius can not be made small. 3 : (BN) indicates Bounded Norm, (FSAN)
indicates Finite Sum Affine Noise, (BSM) indicates Bounded Second-order Moment, (AN) indicates Affine
Noise, (CGN) indicates Sub-Gaussian Norm. 4 : also requires the signs of the gradients to
be the same across batches. 5 :|Guo et al|(2021) also requires the upper bound on the gradient norm. 6 :
A variance-reduced method is also investigated in [Li et al.| (2023), and the complexity is O(e~3).

When preparing this work, we have observed a concurrent work by [Wang et al.| (2024)), which studies a
scalar—or "norm”—version of Adam. In this paper, we study the per-coordinate version of Adam with the
practical and challenging coordinate-wise (Lo, L1)-smooth objectives (see Algorithm [1| for more details).

2 Preliminaries

Let f: R? — R be a differentiable non-convex loss function. For a positive integer d, let [d] denote the set
{1,2,...,d}. Let x € R? be an optimization variable. Our goal is to minimize the objective function f(z):

rr;in f(x).
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For a differentiable function f, a point € R? is called a first-order e-stationary point if |V f(z)| < e.
Denote by x; € R? the optimization variable at the t-th iteration and we have access to an estimate g; of
Vf(xt). Define F; := o(g1,...,9:—1) is the sigma field of the stochastic gradients up to t — 1. We focus
on the Adam algorithm shown in Algorithm |1, where ® denotes the Hadamard product. For any ¢ € [d],
0, f(x1), gt,i, My, and v, ; are the i-th element of V f(x¢), g¢, m; and v, respectively.

The Adam algorithm is provided in Algorithm[I] Compared with the original Adam, we make a minor change
in the adaptive stepsize from n; = 1__. This minor change does not influence the adaptivity of
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the algorithm but makes the analysis much easier.

2.1 Technical Assumptions

Throughout this paper, we make the following assumptions.
Assumption 1. f(z) is bounded from below such that infy f(x) > —oo.

Assumption 2 (Coordinate-wise affine noise variance (Wang et al. 2023a; Hong & Lin| [2023)). We have
access to an unbiased gradient estimate g, such that Elg,|F;] = V f(x,) and for any i € [d], Elg?;|F;] <
Do + D1(0; f(x+))?, where Do, D1 > 0 are some constants.

As discussed in Hong & Lin| (2023), this assumption allows the magnitude of noise to scale with the cor-
responding gradient coordinate. Many widely used noise assumptions are special cases of this affine noise
variance assumption. For example, when Dy = 0, it is the bounded second-order moment assumption in [Zou|
and when D; = 1, it is equivalent to coordinate-wise bounded gradient variance. However, as
pointed out inWang et al.| (2023b)), these two assumptions of bounded second-order moment and bounded gra-
dient variance do not even hold for linear regression problems. For example, let f(w) = E,..p((z,w))? = w?,
where z is a sample and D is a standard Gaussian distribution over R. It can be shown that g = 222w is
an unbiased estimate of V f(w). However, both the variance and second-order moment of ¢ is in the order
of O(w?) which are unbounded when w — co. Dy = 0 is called the “strong growth condition”
7 which is shown to be reasonable for overparameterized neural networks that can interpolate all
data points (Vaswani et al, 2019). Under Assumption [2] the norm of the gradient increases with the norm
of the true gradient. This is important for model parameters that are multiplicatively perturbed by noise,
e.g., multilayer network 2022)). In this paper, we study the coordinate-wise affine noise variance
assumption, which was also used in Hong & Lin| (2023)); Wang et al.| (2023a)).

Though the L-smoothness assumption is widely used in optimization studies, recently it has been observed
that in the training of neural networks, such as LSTMs (Zhang et al., [2019), ResNets(Zhang et al. 2019)
and Transformers (Crawshaw et al.|, [2022)), this assumption does not hold. Instead, it is numerically verified
that the following generalized smoothness assumption better models the training of neural networks
2019): |V f(z) — Vf(y)|l < (Lo + L1||V f()]]) ||l — yl| for some positive Ly and Ly. This assumption
is widely studied in the literature, e.g., [Jin et al. (2021); |Chen et al.| (2023)); Li et al.| (2023)); Wang et al.|
(20225 [2023b)); [Faw et al.| (2023). Compared with L-smooth functions, for the generalized smooth functions,
the Lipschitz constant scales with the true gradient norm thus may not be bounded. For the training of
Transformer models, Crawshaw et al.| (2022) finds the following coordinate-wise (Lo, L1 )-smoothness, which
provides a more accurate characterization of the objective. It is generalized from the coordinate-wise L-
smoothness (Richtarik & Takac, 2014; Khaled & Richtarik} 2020; Bernstein et al. [2018)). In this paper, we
focus on coordinate-wise (Lg, L1)-smooth functions as defined below:

Assumption 3 (Coordinate-wise (Lo, L1)-smoothness). A function f is coordinate-wise (Lo, L1)-smooth if
for any &,y € R and i € [d],

0if (x) — 0if (y)| < (Lo + L1|0:f () )l — y- (1)

The training of Adam enjoys adaptive learning rates for each parameter individually due to the coordinate-
wise update process. Moreover, extensive experiments in [(Crawshaw et al. (2022) show that the Lo and
L, for each coordinate vary a lot. Therefore, it is more accurate to leverage the coordinate-wise (Lo, L1)-
smoothness. In this paper, for the sake of simplicity and coherence with the coordinate-wise affine noise
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variance assumption, we assume the Ly and L; to be identical for each coordinate. Our results can be easily
adapted to the case with distinct Ly and L; for different coordinates.

2.2 Challenges and Insights

Our theoretical analyses address several major challenges: (i) dependence between stepsize and gradient,
(ii) potential unbounded gradients, (iii) mismatch between gradient and first-order momentum, and (iv)
additional bias terms due to affine variance and coordinate-wise (Lg, L1 )-smoothness. Prior research circum-
vented most of these challenges by introducing extra assumptions, whereas we provide several new insights
and show that these assumptions may not be needed.

Algorithm 1 Adam

Initialize parameters: x1, learning rates 7, 51, 82, ¢, Iteration T

Initialize first and second moment estimates: vy € RT,my =0

Initialize time step: ¢t =1

while ¢t < T do
Generate Stochastic gradient: g;
Update first-order momentum estimate: my; < 1 -my—1 + (1 — 1) - g
Update second-order momentum estimate: vy < 3 - vi—1 + (1 — 52) - g+ © g+

Update parameters: @y < T; — 7 1+£ ® my
(%7
t«t+1
end while
In this paper, we have an access to an unbiased estimate g of Vf(x) such that E[g|z] = Vf(x) where

x € R? is a d-dimensional parameter and f : R? — R is the objective function. Define F; := o(g1,...,gs_1)
as the sigma field of the stochastic gradients up to ¢ — 1. Consider the Adam algorithm in Algorithm
which reduces to RMSProp if 51 = 0. For coordinate-wise (Lg, L1 )-smooth objective functions, we have the
following descent inequality (Lemma 1 in |Crawshaw et al| (2022)):

E[(Vf(zi),zi — @11) [F] < f@e) — E[f(Te41)[F]

First Order
L Ly |0 f ()]
+ > B[ — @l | — @l | Fl+ Y B — @@ — 0l B (2)
—~2Vd gt 2
Second Order Additional Term

where the last term is the additional term due to the (Lg, L1)-smooth assumption, and 0;f(x) is partial
derivative of f with respect to the ith element of .

Challenge 1: dependence between stepsize and gradient. We use the RMSProp optimizer to explain
our technical novelty. The challenge is the same for Adam. For RMSProp the optimized parameter « is

updated: x4 = x — \/Zifj_c, where the adaptive stepsize 1, = ﬁ depends on the current gradient

estimate g;, which makes it hard to bound the conditional expectation of the first-order term in equation
To address this challenge, studies on Adagrad (Ward et al.| [2020; Défossez et al. |2020; [Faw et al., |2022])
and studies on RMSProp (Zaheer et al.l |2018)) propose a surrogate ¥; of v; which is independent of g;, and

then the first-order term is divided into two parts: the first-order.a term E KVf(:ct) g > ‘ft} and first-

> Voi4C

order.b term E [<Vf(:ct), \/}Zﬂfc + \/:%_C> ’]—"t] . The main challenge lies in the first-order.b term (surrogate

error). In Zaheer et al. (2018)), this term is bounded based on the assumption of bounded gradient norm,
which does not hold in this paper.

Insight 1: reduce surrogate error. We choose the same surrogate v; = fov;_1 as the one in [Zaheer et al.
(2018), which requires that the gradient norm is bounded. To remove this assumption, we change the
adaptive stepsize from —=L— to —— (details seen in Remark . For Adagrag (Wang et al., |2023b), due

% " Jorc
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to the non-increasing stepsize, in the ¢-th iteration, the error term can be written as E[¢p(vi—1) — ¢ (ve)|F
where ¢ is some function. Thus, these terms cancel out with each other by taking the sum from ¢t =1 to 7.
However, this method does not work for Adam due to the employment of second-order momentum. With
our modified adaptive stepsize, we can also show the sum of error terms is bounded (details can be found in
Lemma . We notice that a different surrogate is selected in [Wang et al.| (2023a)), which aims to bound the
surrogate error for L-smooth objectives while our surrogate is tailored to the specific requirements of our
generalized smooth objectives.

Challenge 2: unbounded gradient. Previous works, e.g., De et al.| (2018)); [Défossez et al.| (2020)); [Zaheer
et al.| (2018)) assumed that the gradient norm is bounded, based on which, they proved the convergence.
However, with refined gradient noise, the gradient may be infinite, and thus those approaches do not apply.

Insight 2: recursive bounding technique. For RMSProp, with bounded surrogate error in Lemma [I], we first

show that E {% ZtT:l W’} is of the order of O(e?). If the gradient norm is upper bounded, then o,

Vieell+<

is bounded, and the convergence result directly follows. However, under refined gradient noise, the gradient
norm may not be bounded. For generalized smooth objectives, we develop a novel approach to bound

E [% ZZ;I Vo] + C} using E {Zle ||Vf(a:t)||} instead of a constant (see Lemmafor details). Applying

Holder’s inequality (Hardy et al., [1952)) we will obtain the convergence result. The complexity result matches
with the lower bound in |Arjevani et al,| (2023). A similar method is applied in [Wang et al. (2023a)), which

focuses on the L-smooth objectives and bound E [23:1 IV f(x:)||| by a constant.

Challenge 3: mismatch between gradient and first-order momentum. Compared with RMSProp,
Adam employs the first-order momentum m;. The momentum m; is dependent on the surrogate stepsize

#. Moreover, the momentum m; is a biased estimate of the current true gradient. Both the above chal-
VUt
lenges make it hard to theoretically characterize the convergence rate of Adam. These mismatch challenges

also accur in the analysis for SGDM (Liu et al. |2020) and Adam (Wang et al.l |2023al), where a potential
wtfwt—lﬁl/\/g
1-B1/+/B2

of —2t—  which is much easier to analyze compared with —2=—. However, both of them are limited to
V0t +(¢ Y P VAR S

L-smooth objectives.

function of f(u;) with u; = is studied. It can be shown that w41 — u; is close to a function

Insight 3: bounding first-order term using E [~ Zthl [V f(x:)|]]. In this paper, we choose the same potential
function but different surrogate in |Wang et al. (2023al). Using the descent lemma of f(u;), we show that the

first-order term is also bounded by a e2-level constant plus a function of E {% 23:1 IV f (wt)||] Compared

to RMSProp, this additional function is introduced due to the bias of m;. Then via Hoélder’s inequality, we
show Adam converges as fast as RMSProp.

Challenge 4: additional error terms due to affine variance and (Lg, L1)-smoothness. Compared
with L-smooth objectives, in the analysis for RMSProp with (Lg, L1)-smooth objectives, there is an addi-

L]0 f ()| [
2

tional second-order error term: Z?:l li1 — @el||@er1,s — @14]], which is hard to bound since

|0; f ()| may be unbounded. Moreover, for RMSProp, since E[|@;41,; — .|| F] < E [\;’%‘ft} and gy

is independent of ¥ ; given F%, the affine noise variance assumption can be leveraged to bound the second-
order error term directly. Nevertheless, for Adam due to the dependence between m; ; and ¥, ;, the above
approach cannot be applied directly.

Insight 4: bounding additional term by function of first-order term. For RMSProp, we can show that
nvd < |8if(mt)‘2+7729?,i

\V1-B2 24/0¢,i+C

we have that E[g7 ;] is upper bounded by a linear function of (9; f(#,))?, thus we can bound the additional
error term. However, we cannot directly apply this method to Adam since E[mfzu:t] is hard to bound.

|zip1—xe]| < and |0; f ()| |Te+1,i — @14 . According to the affine noise assumption,

2
mtt'iv using the gradient norm (details can be found in

Instead, we provide a new upper bound on Zthl Joes

Lemma .
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3 Convergence Analysis of RMSProp

To provide a fundamental understanding of Adam, in this section, we focus on RMSProp which consists of
the design of adaptive learning rates for each individual parameter in Adam.

For RMSProp, the main challenges come from the dependence between stepsize and gradient, potential
unbounded gradients due to the affine noise variance, and additional error terms due to (Lg, L1 )-smoothness.
The analysis can be extended to general Adam, which requires additional efforts to solve the first-order
momentum. Define ¢ = /¢ 4+ dv\/Do + ||vg]|. We then present our analysis of RMSProp in the following
theorem.

Theorem 1 (Informal) Let Assumptions and@ hold. Let 1— By ~ O(€?), n ~ O(e?), and T ~ O(e~1).
For € such that e < 2P0 e have that

< L
T
Z IV sl < (222004 e 3)

To the best of our knowledge, this paper provides the first convergence analysis of RMSProp for (Lo, L1)-
smooth functions with affine noise variances. Existing studies mostly assume bounded gradient norm or
variance (De et al. |2018} [Zaheer et al., |2018)) or only show the algorithm converges asymptotically (Shi
et al., [2020). More importantly, our result matches the lower bound in |Arjevani et al. (2023), and thus is
optimal.

The formal version of the theorem and the detailed proof can be found in Appendix

Below, we provide a proof sketch to highlight our major technical novelties.

Proof sketch. Our proof can be divided into three stages: Stage I: develop an upper bound of
E {M} ; Stage II: develop an upper bound on E[\/Sz2||v:—1]| + ¢]; and Stage III: show E [||V f(x)]|]

converges using results from Stages I, IT and Holder’s inequality.

Stage I: upper bound of E [M} As discussed in Section for coordinate-wise (Lg, L1)-smooth
2||Vt—1

functions, following the descent inequality (Lemma 1 in [Crawshaw et al| (2022)) we can get (2). We first
obtain YL@I® < e (0] (@e))* Therefore, in the following we will bound E Z?Zl 0 @)’

VBz2llve—1ll+¢ T =1 \/Bavi—1,:+C’ VBavi—1,:+C |
Towards this goal, in Step 1.1, we will show the LHS of equation is lower bounded by a function of

4 @)’ . . _
Yoo, A==l and in Step 1.2 we will show the RHS of equation
T/ B2vi—1,i ¢
d (8:f(21))? i tong ; ; (9i f(x))?
i \;ﬁ Combining the two steps, we will obtain an upper bound on » ;_; \;ﬁ

is upper bounded by a function of

Step 1.1: lower bound on the first-order term in equation [ Since the adaptive stepsize and the gradient
estimate are dependent, we design a surrogate v, = Sov;—1 to decompose the first-order term in equation [2]
into two parts:

E[(V f(xt), s — @1q1)|Fi]

First Order
NGt ngt
-2 (Vs ) 7] e [(vste 7 - ) ) @
First Order.a First Order.b

For the first-order.a term in equation [ we can show that

£ (o0, e ) 17 - 3 HOdE
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We then bound the first-order.b term in equation [4]

Remark 1 (Importance of modified adaptive stepsize ). For the original RMSProp, |Zaheer et ol (2018)
chose the same surrogate v; = Pav:—1 as in this paper. Then the first-order.b term was lower bounded by

a function of Z?ZlE [m‘}}] x E [( vt,i+j2ﬂ)zgv;71,i)2 ft]. Then they developed an upper bound

(1*/52)9?,1'
(VOri+/Bavi—1.:)?
assumption on the upper bound of |g: ;| (Zaheer et all, [2018).

on the second term E {

Ft] < 1 which is quite loose, thus they introduced an additional

In contrast, using our adaptive stepsize n \/LH, we can show that the first-order.b term can be lower bounded
Ut

. d *Qf,i (1 BQ)gt,i .
by a function of >, | E [\/m’]:t] x E |:(\/'Ut,i+g+\/62vt1,i+<)2 ]:t} , which can be further bounded by

Z?Zl E[fg?ﬂ-\}}]E {\/ﬁw}_l — - \/vt1'+< ‘Ft} Applying the affine noise variance assumption in Assump-

tion[3, we obtain a lower bound on the first-order.b term in the following lemma.

Lemma 1 (Informal). Under Assumptions@ and@ we have that:
ng: 91

V), - Fi
< fla) Vo +¢ \/ﬂzvt—1+C>‘ 1
of 1@t@)? \ o P Oda)

VB2vi—1,i + ¢ VI—=PB2\/Bavi—1, +¢
n & n ) 1(0i f (®4-1))* _E (i f (x4))? ‘]_—t
VB2vi—15+ ¢ Vi + ¢ Bavi_1,i + ¢ Vi + ¢

— small error. (5)

E

i

The formal version and detailed proof of Lemma [I] can be found in the Appendix [A] which is based on our
modified update process on v, Hélder’s inequality and Assumption [3]

In the RHS of equation [f] we have that

E[ (LY T f]

\/52%71,1‘4‘( \/Utz+C

Taking sum from ¢ = 1 to T, the terms 2L 1)* and @f(ze 1)) cancel with each other as 3, — 1.

V/Bavi_1,:4¢C Vo1t
Similarly, \/ﬁ —E [\/ﬁ‘}}] can also be bounded.

Step 1.2: upper bound on second-order and additional terms in equation[d We first focus on the second-order
term. Based on the update process of v; and Assumption [2| we get that

d
Lo Lon? Do+ D1(0; f(x
> ol —wileens el 7 < Z —— W(ii” . 6)

(0 f(xe)?

We then focus on the additional term in equation |2|and we provide a new upper bound using 25:1
with some small errors: for any as > 0, we have that

L1|0; f(x4)] E
2

]

n*Vd 1 (0 f (x4))? 1°Vdaz LDy
RENi (L1r+ azy/1 —62) Vit ¢ 2ot C "

Plugging Lemma @ and in we get the following lemma.

(lees1 — ®el[|®i41 — T
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Lemma 2. Let Assumptions |1} [3 and[3 hold. With the same parameters in Theorem [, we have that

72 IV f()|?
=1 \/[32|Ut 1H+

The details of the proof can be found in the Appendix The major idea in the proof of Lemma [ is to

<€ (8)

_ _ o : d (9 f(x4))?
bound the first-order.b, the second-order term and the additional term using > ; ; E [ \/m} .
Stage II: upper bound of E[\/Ballvi—1] +¢]. With the bounded gradient norm assumption,

T ZtT:1 E[|Vf(x:)|?] ~ O(e?) follows directly from Lemma [2, However, under the refined gradient noise
assumption in this paper, the gradient norm may not be bounded. Here, we establish a key observation that

+ Zthl E[\/Ba]lvi—1]| + (] can be bounded using + Zthl E[|V f(:)||]. By Holder’s inequality, we have

< ZE IV f(z:) ||> S( ZE Ballve-1| + ]) (T;E AT, > 9)

It is worth noting that in the RHS of (E[), the second term is bound in Lemma If the first term is

upper bounded using Zthl E[[|V f ()], we then can prove an upper bound on 7 Zthl E[||V f(x)]l], and
show the algorithm converges to a stationary point. In the following lemma, we show a novel bound on

LS Ely/Ballveal[+ ).

Lemma 3. Let Assumption[d hold. Then, we have

1 2VdDy 30, E[| V()]
T;E[ Ballvia| +¢] < c+ 0 T : (10)

The detailed proof can be found in the Appendix [C| which recursively applies Jensen’s inequality (Jensen)
1906)). The proof only depends on the affine noise variance and the update process on v;. Thus, it works for
both RMSProp and Adam with (Lo, L1 )-smooth objectives.

Stage III: upper bound of E[||V f (w@] Now we show that the algorithm converges to a stationary point.

Define e = Z;le E[||Vf(x¢)]]]- By (9), Lemma [2|and Lemma |3| we have that

e2§e

2 (c+ 2vdD, ) (11)

VI-5B"
- (03 )

Ve
if e < le\)} which indicates the algorithm converges to a stationary point. O

Thus we have

4 Convergence Analysis of Adam

In this section, we extend our convergence analysis of RMSProp to Adam. Such a result is attractive since
empirical results on complicated tasks show Adam may perform better, e.g., the mean reward is improved
by 88% via RMSProp and 110% via Adam for Atari games (Agarwal et al., 2020)).

We present the convergence result for Adam as follows.

Theorem 2 (Informal). Let Assumptions @ and@ hold. Let 1—f33 ~ O(e?), 0 < 1 < /B2 < 1, ~ O(e?),

and T ~ O(e=*). For small € such that ¢ < Nirrrevon %, we have that

T
Z IV F(z)] < (26+\/%+4\/de§1)6, (12)

’ﬂ \

where Cq is a positive constant defined in Appendiz[H
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To the best of our knowledge, Theorem [2] is the first convergence result of Adam to a stationary point
under some of the most relaxed assumptions of (Lg, L;)-smoothness and refined gradient noise. In |Li et al.
(2023); [Wang et al. (2023a)), the authors show that the Adam converges to a stationary point with affine
noise variance. However, their methods only work for L-smooth objectives, while in this paper we focus
on the (Lo, L1)-smooth functions. Moreover, we show that for Adam, the overall computational complexity
matches with the lower bound in |Arjevani et al. (2023]), while there is an additional logarithmic term in |Li
et al.| (2023). The normalized momentum algorithm (Jin et al., 2021 can also be viewed as a special case of
the Adam family, which applies the momentum on the first-order gradient. However, in their algorithm, a
mini-batch of samples is required in each training iteration, while we do not require such a mini-batch. Thus,
in the distributed setting with heterogeneous data, where the data distributions under each computational
node are different, Algorithm [I] can be used directly. However, the normalized momentum in [Jin et al.
(2021) may require gradient information from many computational nodes, making the problem degrade to
the centralized setting.

The formal version of the theorem and detailed proof can be found in Appendix [Hl Below, we provide a
proof sketch to underscore our key technical novelties.

Proof Sketch. Similar to the proof of RMSProp, we divided our proof into three stages. The key difference
lies in Stage I, which is because of the dependence between m,; and ;.

IV £ ()l

VB2 llve—1l+¢

E KVf(mt), \7;7:%2> ‘ft} is challenging to bound due to the dependence between m; and 9;. Following the

recent analyses of SGDM (Liu et al., 2020) and Adam (Wang et al. 2023a)), we study a potential function

Stage I: upper bound of IE[ ] For the Adam optimizer, the first-order.a term

fluy) with wy = % The benefit of analyzing u,; is that we have E [(V f(x:), usr — ui1) | Fi] =

NES
%E [<V f(xy), Tg1g> ’]—"t] , where the numerator and denominator in the last term are independent.
- B

In Step 1.1, we will show that the LHS of the descent lemma for f(u;) (shown in equation is lower
2
bounded by a function of Zle 2@ f@))” . 5nd in Step 1.2 we will show the RHS of the descent lemma

n(9: f(21))*

. . d . . .
of f(u;) is upper bounded by a function of ), , -==L22_ Combining the two steps, we will obtain an
= Bevi—1,i+(¢
n(9i f(m1))*

upper bound on 2?21 St
Step 1.1: lower bound of the first-order term E[(V f(w:), us — wsy1)|Ft]. We first divide the first-order terms
into two parts:

E{Vf(ue), e — wir )| Fe] = ELV f(@0), ue — weq1)[Fo] + E[(Vf(we) = V(@) e — wip) [ Fe]-

The first part mimics the first-order term in the proof of RMSProp and the second one is due to a mismatch
between u; and x;. By bounding these two parts separately, we have a lemma similar to Lemma [I] but with

]-"t} and E [

AV 'Ut;; +C
(see details in Lemma |§I) For the additional terms, |Wang et al. (2023al) showed that Zthl 5.~ can be
bounded by a function of vy, (shown in Lemma It is worth noting that due to the (Lo, Ll)-smoothness

2
my,

vy, +C

two additional terms: E {

‘ft} due to the employment of the first-order momentum

2
my o

2
my,

VUt i

our objective is harder to bound and only Lemma |7]is not enough. Here, we bound the Zthl term by
a function of 71”1:/32 AT 23:1 /Ut—1,; (the details can be found in Lemma .

Step 1.2: upper bound on second-order and additional terms. Based on the update process of u; and xy,
we bound the second-order and additional terms similarly to those in equation [6] and equation [7] but with
g: replaced by m; (see details in equation and equation [82). Unlike in the proof of RMSProp, where

\/ B2ve, i+ VACIRE S

2
E % ‘ft] can be bounded by % + w, Assumption [2| does not hold for m; and this is the

10
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reason why two terms E {

2
} and E [ Ty ‘]—}} are kept in the upper bound of the second-order

Vvt,itC

and additional terms. Then based on the descent lemma of f(u;), we can show E Zf 10l @)”

=1 vV B2vi—1,i+C

which further can be bounded by a function

can

2 2
be upper bounded by a function of Zle Tﬁ“ and Z?:l \T/n%,

of E[V f(x;)]. We then get the following lemma.:
Lemma 4. Let Assumptions [}, [4 and[3 hold. With the same parameters as in Theorem[3, we have that

1 Vi@l o, ey .
;E Sl 0 S 7 LBVl

The details of the proof can be found in the Appendix [G]
Stage II is the same with the proof of RMSProp and thus is omitted here.

Stage III: upper bound of E [||V f(z;)||]. As we mentioned before, Lemma[3and equation [9| hold for Adam.
It is worth noting that in the RHS of @D, the first term is bounded in Lemma |4 which is more complicated

than Lemma [2{and has an additional term. Let e = Zf LE[[[Vf(x)]l]. By (9), Lemma 4] and Lemma
we have that

2v/dD 2
e <ee® + Lo 4 cee + c. (13)
CGE 2

Thus, e ~ O(e), which shows the algorithm converges to a stationary point. O

5 Comparison with Existing Works

We observe that there are two recent works (Li et al.| 2023;|Wang et al.| 2024) on Adam with (Lo, L1)-smooth
objectives. In this section, we provide detailed comparisons with them.

Li et al. (2023)) studies the original Adam where the adaptive learning rate is + and in this paper we

\/17 +
study the modified one where the adaptive learning rate is \/LJrC Fig. and Fig. I demonstrates that this
vt

modification has little influence to the model performance. Moreover, though computational complexities of
the method in |Li et al| (2023) and our method are dependent on ¢ (e.g. O((~2) for our paper and O(¢ %)
for |Li et al.| (2023))), in practice, the selection of ¢ makes minor differences. The analysis of |Li et al. (2023)
is fundamentally different from this paper, which relies on a stopping time. Thus the authors in |Li et al.
(2023) only show Adam converges with high probability. Their proof relies on the fact that there exists a
large constant G such that |V f(x:)|| < G for any ¢ before their stopping time, which requires a stronger
assumption on gradient noise. Thus the generalized smooth problem is converted to a standard L-smooth
problem with a large smoothness constant, leading to very small step sizes which make the convergence slow
in practice. In this paper, we do not need this stopping time and we show that the expectation of gradient
norm converges, which is tighter than the convergence with high probability.

Both this paper and [Wang et al.[(2023a)) extend the foundational work of [Wang et al.| (2023b), which focused
on the Adagrad algorithm. Our RMSProp analysis was developed concurrently with [Wang et al.| (2023a),
leading to significant differences between their proofs and ours. Specifically, we consider the generalized
smoothness objectives while Wang et al| (2023al) only considers the L-smooth objectives. Thus we choose
a different surrogate, modify the Adam and bound the first-order term and its denominator by different
functions. When we extend our findings from RMSProp to Adam, we study a potential function f(w;) with
Uy = %, which was introduced by |Liu et al.| (2020) and has been extensively employed in the analysis
of momentum-based algorithms. The only thing inspired by [Wang et al.| (2023a)) in this paper is to set this
B = B Wang et al|(2024) extend the work of [Wang et al. (2023a) and is a concurrent work of this

N

paper, which focuses on the scalar version of Adam with (Lo, L1)-smooth objectives. This paper focus on
the per-coordinate version of Adam and our proof is different from [Wang et al.| (2023a; 2024)).

11
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Test Error (%) for Original Adam and Modified Adam
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Figure 1: Test Error for Original Adam and Modified Adam. The stepsize in the original Adam is set to

ﬁ and our stepsize is set to \/Lﬂh The parameters are the same as CNN task in Fig. 1 of
(2023)), where n = 0.001, 51 = 0.9, B2 = 0.999 and we build a six layers CNN for CIFAR 10.
n

0.7 1
0.6
3 0.5
5
(6]
()
<
C
o
© 0.4 1
]
g A=1
A=1le-1
A=1le-2
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0.2 - (=1le-4
(=1e-6
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Figure 2: Test accuracy for Original Adam and Modified Adam. The stepsize in the original Adam is set

to ﬁ and our stepsize is set to \/#TC We follow the setting in (2024) to build a vision-

transformers for CIFAR 10. The stepsize is set to n = 0.001, 5; = 0.9, 52 = 0.999.

12
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6 Conclusion

In this paper, we provide the tight convergence analyses for RMSProp and Adam for non-convex objectives
under some of the most relaxed assumptions of generalized smoothness and refined gradient noise. The
complexity to achieve an e-stationary point for both algorithms is shown to be O(e~*), which matches with
the lower bound for first-order algorithms established in|Arjevani et al.| (2023)). In the future, we will explore
the convergence of the original Adam with the challenging (Lo, L1 )-smoothness condition and affine gradient
variance.
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A Formal Version of Lemma [1] and Its Proof

Lemma 5. Under Assumptions[q and[3, for any o, a1 > 0,29 = @1 and t > 0, we have that:
© gt> t‘|
>

zd: n(0if (1)) Z 77040D0 1 B 1 ‘]__
- = 200/P2v1-1, 2 VB2vi—1i +C i +C '
43 M0l l <aif<xt_1>>2 _ @@ f]

N U
Vo +¢ \//BQ'Ut—l +¢

<Vf(wt)7

i=1 2 \/BZUtfl,i +¢ \/'Utz + ¢
d
nao Dy (0if(24))*  ardDiL3n?  2v/dnLy(9;f(z4))?
+Z2 Bavi—1,i + C( a1 Dy * 1— P2 + VI—=7Fs >‘| (14)

Proof. Since vy = favi—1 + (1 — f2)g: © g, for any i € [d], we have that
( 1 1
- \/Um +¢ - \/»321%71,1' + C)
. ('Ut,z' - 52%—1,1’)
B (Vi + O/Bave—1,i + O (Vi + ¢+ /Bavi—1i +C)
(1- 52)93,1'

RS RV ENS N OvE EaY ik 1)
Thus, the LHS of equation [[4] can be bounded as
<Vf(33t)7 \/v:1<+ \/ﬁwiﬁc @gt> ft]
SiE 010 f(x¢)||ge.:] \/vt_,i1+g + \/ﬁ2'vt1—1i+< }'t]
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S s || e w0

where the second inequality is due to equation |15|and the last inequality is because l9e.i < —L_ For
\/'Uf i+¢ \/1—[32

any a,b € R, we have ab < M. Thus for any «g > 0, the RHS of equation |16 can be further bounded as

fD R

10: f (1) VI = Pgi; -
VB2vi—1+ ¢ (Vi + 4 /Bavi 1, +¢) '

n(0if(x1))* n noo V1-Pag;,
T 2004/ Bovi—1,i ¢ 24/ Bavi_1,; +C (v/Vr,i + C+ /Bavi—1,i + ()
For the last term of equation due to Hoélder’s inequality, we have that
2

n (]E [ V1- 52922‘

2\/B2vi-1,i + ¢ (Vv + ¢4 /Bavi—1, +¢)
(1 _62)77 2 gm
= 20 R[g?.|FIE 18
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Based on Assumption [2] the RHS of equation [I§] can be further bounded as
gt i

Elg? ;| F]E
b \/’Utz"i_c—’_\/ﬁfvt 11+<)

(1= B2)n ]
(1 - 52)gt i

Bavi—1+ ¢
\/’Utz"_g\/ﬂfvt 17,+C \/’Utz+<+\/52vt 11+C)

1\9\3

< (Do + D1 (i f(2))?) x

1

QD D 8 'Utz""c (ﬁ?vt 1z+<)
2( 0+ 1( f(wt))) \/’Ut1+<\/52’vt 17,+C \/vt2+<+\/52vt 17,+C)
77 1 1
—(D D1(0; E —
<5(Do + Di( f(x))?) TRt Joiae Fi (19)
Thus for ¢ = 1, combining equation [I6] equation [I7] equation [I§ and equation [I9] we have that
—n U
E|(V , Fi
< f(wt) \/’Ut +¢ * \/Bzvt,1 +C ®gt> t]
L @i (=) nao 1 1
(D D1(0; F 20
Z: Bavs— 11+C+; o+ Di0f (@) \/ﬁzvt 1:+¢ \/’Ut,i+§ ' 20)
For ¢t > 1, equation [19] can be further bounded as
(1 — »32)77 2 gt K
PN g2\ FIE
2\/B2vi-1,i + ¢ lgiil7:] (Vi + ¢+ /Bavi—1, + )2 1
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nD1 | (0if (x1))* = (Oif (x1-1))*
E Fil . 21
- 2 l Bovi—1,+C t] 2D
For the last term in with (Lo, L1)-smooth objectives and any a; > 0, we have that
nhi1 (0if (x4))? = (0if (®1-1))* 7
2 Bavi_1+¢
D1 2|0, f (x4 |’|3f T |—|5fwt 1 H
-2 VB2vi—1i + €
0, (@0)|(Lo + Laloyf (@) H Lo
SnDl vi—1+¢
Povi—1: + ¢
nD; (0 f (1)) (gt—1,i
Bavi—1,i + ¢ ( a1Dq TaaDiLgn Uy 11+C>
n? L1 D1Vd(0; f (m4))?
V1= 52\/52’1%—1,1' +¢
nDy (8 f (1)) n a1dDy Lgn? n 2VdnLy (9, f (4))? (22)
ﬂgvt_LH—C a1 Dy 1_ﬁ2 \/I*BQ ’

where the first inequality is due to the fact that for any a,b > 0, we have a? — b? < 2ala — b|, the second

inequality is by the (Lo, L1)-smoothness and the third one is because that \/lgt""Lc < \/11 = Based on ,
Ut,i —pP2
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, , and , for t > 1 we can get that

- n n
Vo +¢ \/ﬂﬂ’tfl"‘C

e

< i n(0; f(xs)) Z nang 1 B 1
T 2004/ B2vi-1, VB2vi—1i+C  Jvei+¢

d
naoDy | Oif(xe-1))*  (9if(xr))?
+; 2 El\/ﬁz’vt—l,ri‘C Vi +¢ ]:]

.

d
D ; dD, L} 2v/dnL1(0; 2
4 Z nooly (0 f(xt)) i aially 077 + \[7} 1(0i f (z4)) ' (23)
— 2y/Bavi 1 +( a1 Dy 1 -5 V1—=5;
Since we set &g = x1, equation [23]also holds for ¢ = 1. We then complete the proof. O

B Proof of Lemma

For (Lo, L1)-smooth objective functions, we have the following descent inequality (Lemma 1 in |Crawshaw
et al.| (2022))):

ffoner gz

First Order.a

d
Lo
<f(@:) = E[f(@e41)|F] +22 Nz Ellleit1 — @l|[ees1,i — e[ F
i=1

Second Order

d
L 31 €
+ Z ME[”%H — x| — 2l 7

i=1

Additional Term

- KW(“”)’ [mﬁc * mig} ®gt> ft} | 24

First Order.b

For the first-order.a item, given JF;, we have g; independent of ;. It then follows that
_ xd o n(0if(®))? ‘ :
{<Vf(:ct) \/— @gt> ‘ft} = > T Based on Lemma [1f we provide a lower bound on

the First Order.b term. By plugging in Lemma [I] to equation 24] we have the following inequality for any

18
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agp, a1 >0 and t > 1:

n(aif(wt))Q
— VB2vi—1,i + ¢
d
L
<f(xs) — E[f (@) | F] + Y T\}%E[wal — x¢|||Tit1, — || T2

i=1

Second Order

d
+ Z W]E[Hwﬂrl — @el|Tet1, — Tl | ]

Additional Term

.

n(9if (w:)) 77040D0 1 B 1
" Z Y 200/ P21, Z [\/ﬁzvt—l,i +¢ \/Ut,i +¢

776YOD1 Oif(@e-1))*  (Oif(xr))?
Z l\/ﬂﬂ)t LitC VUit ¢ ]:]

nao Dy (Dif(x))?  ardDyL3n?  2v/dnLy(9;f(x,))?
+Z?W< D 1o -5 ) (25)

Now we focus on the second-order term, which can be bounded as follows:

Mg
é\“

5 Ell|zir1 — ®el[|e41,6 — 24 4] | F]

Q
Il
_

fﬁg .
S

Ly i1 —e]? | Vd 2
E + @ —
l 2\/& 2 ‘ t+1, t, |
]:t‘|
2 gtz

2 th,i
BZUt 1,2 + C

<
Il
—

IA
.M&
m‘g

=

K Ve + ¢

=1

<Z f]

Lon* Do + D1 (0 f(x¢))?
o Z 2 BQ'Utfl 7 + <

a |l
w‘h

Z Lon? Do 4 D1(9; f (4))?

2V/¢  \/Bovy_1,+C
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where the fourth inequality is due to Assumption For the addition term due to (Lg, L1)-smooth objectives,
based on Assumption [2 for any as > 0 we have that

W (i1 — el |t }
YdLoif ()] | o gl
VAL|8if ()], gt | F
S8 | VR
2 .
n*VdL|0: f (z)| E g7, F]

T 2V1T = fBay/Bavi 15 +C
<772\/aL1|3if(33t)|(\/E+ VD1]0i f(z4)])

N 21T = Ba\/Bavs—1,i + ¢

< VAL VD1(0:f (x1))? . *Vd(0if (4))? . 1°Vdas LDy
T2V/1 = Bo/Bovi—1i ¢ 2(1 = Br)asy/Bovi—1,i +C 2y/Bave_1:+C

; (27)

where the first inequality is due to ||@i1 — x| < \/\faiﬁ, the second inequality is because that E [g, ;| F;] <
—pP2

E [th,iU:t]? the third inequality is due to Assumption [3| and the fact that for any a,b > 0, we have

Va+b</a+b Plug and into , and it follows that

L n(@if ()
im1 Bovi_14:+¢C

Lon* Do + D1(0; f(:ct))

<f(@) = E[f (@e41)| ] +Z

\f \/521&71,1‘
N Z n*VdLiv/Dy(9; f (x1))? 772\/a(3z‘f(90t))2 n*Vday L3 Dy
2y1 —32\/52% Li+ ¢ 2(1—Bo)aoy/Bave—1i+C  2¢/Bavi1i+ ¢

.

n zd: (8 f $t Z 7’]040D0 1 _ 1
20004/ B2 1 2 VB2vi—1i +C o +¢

naoDi | (Oif (xe-1))*  (9if(®0))?
+Z 2 EL/Bz%m‘*‘C Vi + ¢ }-]

S T (VR Y A I
which can be written as
zd: (77 ~n _mao _ Lop*Dy  ’LivdDr  n*Vd an/ﬁaoL1D1> (0, f (22))?
P 200 203 2V/¢ 2¢T=0  2(1—Ba)a VB Byvr i+ C
<) ~ B + ULy oML DE T et LDy
.

O BV meyE= ey I
LT [ Ofeyf,_ Gfo f] -
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It is worth noting that the sum of the last two terms in equation [29from ¢ = 1 to T' can be further bounded.
Specifically, for any 4 € [d] we have that

T
1
E
; [ 52%114'4 \/th'C

1 1
—F I
l\/ﬁQUOl +¢ +Z [\/ﬁzvtﬁ‘C Vi +¢ [ vri+¢
1 T-1 ) NS
E|l— E
= [\TC +Z \/ﬁ2vtz+C V/Bavii + ¢
= Y~
— E| V2
V¢ i ; [ Bavei + ¢
1 1—VBa
ST (30)
Similarly, for the last term in equation we have that
o [0 @)? (@S (@) XT:IE Oif(®e1))* (D (m0))?
\/52@0i+C \/Ulrf'C = | VBt (v +C
(6 f(z1)) @if (x4))®  (0if (=) (9if (zT))*
=E —E |———=
|/ B2vo,i + ¢ i ; VB2 +C o +C [ vri + ¢
[(0:f (1)) ] 1 VB2 2
E E Oi f (x4
=T +Z szvmc mm,ﬁc)( f@))}
_(0if(x1))? N (0if (x4))*
Ve " Z L= VBE [ Bavi +C
(81f(w1 (9if(z+))?
" Z b Bovi1,;+ (|’ ey

since :co = x1,90 = 0 and ﬁ < 1+ /fB2. By taking expectations and sums of from t = 1 to T, based
on and ( ., we have that

>y <n _ 0 _meo LoDy wLwADy  pVd ”W‘mhm) (0:f (:))?
2

oy 204 2/C 2v/1 =5, a 2(1 — B2)ag V1= P V/B2vi—1,i + ¢

na0D1||Vf(m1)H2 naodDo dL0772D0 a0a1d2L3n3D% 1
<f(x1) —E[f(x Fi] + + +T + —
( 1) [ ( T+1)| t] 2\@ 2\[ QC (1_52) \fC
205d "3 L2D, dDo(1 — / D 1— L& 10; 2
Lo Do pnao of B2) L % 1(1 = Bo) ZZ]E 10:.f ()| (32)
2\/Z 2\/Z i=1 t=1 62/Ut 1’L+C
* (03 D v 2
Define A = f(z1) — f(z*) + 772(1750 + 1% 1!\/2(:”1)”. If we set a9 = 1l =
2
7,00 = 1, obviously we can find some 1 — [ = min(7él,3\5/dzgo) ~ O(?), and n =
. 4/C \/1-B2 1-8 e e/1-B2 /¢ NS 2
mln(7L0D17 max (14L1vdD1,7L1v/dD1)’ 7\/32’ 35LodDo’ 7D1LodV5 ’ 35L§d1'5D0) ~ 0(6 ) such that
NN |9 (@) n n n
- E| 22D | cpayrleprleypleplle 33
14;; [,/52vt_1,i+g FTge + e + Toge + Toge” (33)
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Set T' = 70A ~ O(e7%), and we have that

T d T
1 2 1 2
T V ﬁ2||'vt 1|| +¢ =T 52’015 15 +¢
This completes the proof.
C Proof of Lemma 3
For any a,b > 0, we have that va + b < v/a + v/b. It then follows that
d
E{\/ Ballve—1]l + C} < ZE{\/ 52’01:—1,1} +4/¢. (35)
i=1

For the first term E[,/f2v,_1,] and ¢ > 1 we have that

E[\/Bovi—1:] =Eg, , [E [\/ ﬁ2vt—1,i|-7:t—1H =Er_, {E |:\/ﬂ2217t—2,i + Ba(1 — ﬁQ)(Qt—l,i)th—1” . (36)

Given F;_1, v;—5 is deterministic. By Jensen’s inequality, we have that

Er,_, |E |:\/B§vt—2,i + Go(1 — 52)(9t—1,i)2|~7:t—1”

<Egr_, \/E [B3v4_2; + B2(1 — 52)(gt1,i)2|ft1}]

<Eg,_, \/5%7%72,1' + B2(1 = B2)(Do + Dl(aif(wtl))Q):|

<E, , |\/B3vi 2+ Ball - ﬂz)DO} +E[v/B(1 = B)Dilrf (@10, (37)

where the second inequality is according to Assumption [2l By recursively applying we have that

Er,_, [\/ﬁ%’vt—z + Ba(1 — BQ)DO]

<E7, Wﬁgutg,i + (B2 B3)(1 - ﬁz)Do] +E[\/B3(1 - B2) D10 (0 -2)1 . (38)

Specifically, we can get that

E[\/ 52%—1,1} <Egr_, [\/5%%—2,1‘ + Fa(1 — 52)D0} + E[\/ B2(1 — 62)D1|aif($t—l)|:|
<z, [\/Bvcas+ (ot B 5o)Do) +E[\/350— so)Drlons (i)

E| VBl = B)Daoif ()|

<...

<E {\/(52 + B34 B85+ ... 4+ B85)(1 — B2) Do + Uo,i]

+ZE[ BA(1 = B2) D1l f (o)

<V/Do + vl + ZE[\/@ (1= B) Doy f (o). (39)
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As a result, we have that
T
Z [\/52 o1 + }
T t—1
< VT4 dyDo+ ool + ZZE[\/@ 1= B2) D1 |0if (i) |

zltljl

d T .
<et Zt‘lE[?“w””m(Z ﬁ)

. 2v/Dy S |8f(wt)\]
<t isay ;

e 2dD; S B[V f(z)]]
= (1—5y) T

: (40)

where the last inequlity is due to Z?:l 10; f(x)|| < Vd||f(x)|. We then complete the proof.

D Formal Version of Theorem [I] and Its Proof

— / _ _ * naodD naoD1||V f(x1) _ 1
Define ¢ = \/z—i_d DO + ||UO||7 A= f(xl) f(ﬂ? )+ ifo + . 12\[ : A max(14L1\/ED1,7L1\/m)7
/<

— mi ¢ V< _
Az = min <35L0dDo7 szasn, | ad As = o5

Theorem 3. Let Assumptz'ons ! andH hold. Let 1 — 5 = min (751, 3\5/(;;)0> O(?), n =

min <7L0\/21,A1\/1ﬂ2, 7\/3,/\262 A36\/1ﬂ2> ~ O(?), and T = 777059 ~ O(e*). For small € such
that € < \/idD" we have that

D1 /¢
T
2d+/35Dg D1
223 19 £ ()] < (ﬁ " ﬁ) e (41)
Proof. According to Lemma [2] we have that
IV f ()]

XT: <€ (42)

t=1

'ﬂ \

VB2llve—1]| + ¢

With bounded gradient norms assumption, it is easy to show that 7 ZtT:I E[|Vf(x)|?] ~ O(e?) via Lemma
However, in this paper we focus on the bounded-free-assumptions thus the /Sz||v:—1]| + ¢ is potentially
infinite, making it hard to show the algorithm converges to a stationary point directly.

According to Lemma [3] we have that

(71, S ElVBaloial T d)

oy 2VADT T E(IV (@l
a (1—p2) T
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Define e = 1. Zthl E[||Vf(x:)|]. By Holder’s inequality, we have that

1 L1 [ sl
( > E[|V () ||> < <T§:E[t
P = | VBlvi-all +¢
based on Lemma [B] and Lemma Bl which can be written as

21/dD;
V1= P

) (;ZE[\/@HUH +d> Y

e? < e+

e). (45)

Thus we have that

- 5 )

=Y E[|Vf(x)l]=e < ——=+ — ] +4ce?
T o [H ( t)”] \/W 9 M
2
Since 1 — 32 = min(ﬂél, 3\5/550) ~0(e),if e < \/Did% we have m <X 3\575[)06 It demonstrates that
1 2
T
1 2d+/35Dg D,
BV el < (2P 1 V) (16)
t=1
which completes the proof. O

E Lemmas for Theorem

Here are some lemmas we need for the proof of Theorem

Lemma 6. (Lemma 6 in|Wang et al| (2023a)) For any {c¢;}2, > 0 and a; = Paas—1 + (1 — PBa)c? and
by = B1bi—1 + (1 — B1)es, if 0 < 32 < Ba < 1, we have that

by < 1-5

Verl S g i m “7)
Proof. we have that
bt b Zf é(l —51)51% i
Var+Q \/ Siso(1— B2)Bict_; + ao
g VDB [T 5 s "
CVI=R Soigd,  VIB1-2
where the third inequality is due to Cauchy’s inequality. O

Lemma 7. (Lemma 5 in|Wang et al| (2025d)) For any {c;}$2q > 0 and a; = Boar—1 + (1 — B2)c? and
by = Pibi_1 + (1 — B1)ct, if 0 < B2 < B < 1 and ag > 0, we have that

ZT:Z = (}’;;)582— B) (m (Z) Tln(ﬂz)) )

Proof. Due to the monotonicity of % function and Lemma 5.2 in [Défossez et al.| (2020), we have that

(1 — ﬁQ)Ct ' 1 _ ay . Qg _
ag = /aat(lﬂz)cf Eda = <at_(1_ﬁ2)ct2) =In <at1) In(f2). (50)
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. 2
o =07 ( V) v

L5 (56 D)

b7 - (}3; br)? (m <“T> —Tln(ﬂ2)) . (53)

O

Thus we have that

Lemma 8. For any {c;}3°, > 0 and a; = Baas_1+(1—B2)c and by = Biby—1+(1—P1)cy, if 0 < B < B2 < 1
and ag > 0, we have that
T T
b2 (1-— 2 2
Z gf) . (1—6 (,ﬁaT\/@+Z2wt_1>. (54)
- 47\/[72) 2 t—1

Proof. Due to the monotonicity of % function, we have that

(1= Ba)c “ N (1 B2
7\/@ < /a e fda =2y/ar —2y/ar — (1 — Ba)c;
=2y/a; — 2/ Paar—1 < 2\/ay — 2\/ar—1 + 2(1 — B2)\J/ar_1. (55)

By taking sum up from ¢t =1 to T, we have the

yo (L fa \/§£>Ct<2¢a—2f+21—ﬁ22 (56)
t=1 t o

Moreover, for b; we have that

L (1—5)265{%% (1-B1) i(ﬁl )H o (57)
é/a 1 i=1 Var ' = % \4/07.

. 2
b} s B\ e
oo (5 (3h)

—

Thus we have that
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Thus we have that

T T
b2 1— B2 2

P (1-51) 3 < (59)

— at (1— B1 )2 & a:

t=1 Ve =1
Plug equation [56] in equation and we can complete the proof. O
F Lemmal9 and Its Proof
Define C; =1 — f 1-— g—g, we have the following lemma:

Lemma 9. For any ag, a1, asz,aq >0, B2 > 0.5, and 0 < B < (B2, we have that
E[(V f(ur), ur — wpi1)| F]
n(l—p1) n—pB) < L, o nagVdD; Ly (1 - 51))

>

Ch C1Cs

2040 2&1 MCQ
L (0f ()

X - 7 77

=V Bovi—1:+C

d
n(1 - B1) | aoDo 1 1
_; C1C [ 2 ( 52%1¢+C_El Ui+ )
(Duf (@i-1)?  (0uf () ]

\/52Ut—1,i+C \/’UterC
apa1 DILEn?d?(1 — 1)%  asndBi(1 — B1)(1 — Ba)

0Bl = BV nLi(1-Ch)*  nLi(1-Ch)
2a3Cng 20&46’12 20&4C12

Fi

oDy

2(1— 62)()105’%) 2C1Cy
B Zd: (1 —C1)? +0.5(1 — C)VdLy mi_y, Z 7n?0.5(1 — cl)fLoE m?, £
012 Vi1, +(C Vi +C|
_ Z (1= B1)2(1— Cr)2dLy  mi Z aan® (1= (1 = C)dLy g | ™ || o)
= 2(1 = B2)C7C3 V-1 +¢ 2(1 - B2)C1C3 Vi + ¢
Proof. Since u; = T 1, we then have that
VB2
w w _Lty1 — T B1 T — T
t+1 — U = -
1 B 1 B
Vi Y e
SRy we \/UtJrC \/'Ut 1+
T \ﬁﬁ I
Vi ’ \F
_ ___m: my
o o V/ B2vi—1+¢ n \/‘Ut+C TN V/Bavi_1+¢
- 1— B1 1— B1
N VB2
lmt 1 lmf 1 ,'7 lmt 1
+ \/62vt 1+¢ \/621% 1+82¢ V B2vi—1+¢
1 _ /Bl 1 _ _P1
VB2 \/[72
_UQM YO SNy my Brimy—y 77®ﬁ1'rn7t71
. vV B2vi—1+¢ I \/thrC \/BZ'Ut—lJFC + \/Bﬂft 1+82¢ V B2vi—1+¢ (61)
T 1 B 1 B 1 B ’
NZS NG \//72
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where the last equality is due to m; = Sym—1 + (1 — B1)g:. For (Lo, L1)-smooth objectives, from Lemma
1 in |Crawshaw et al.| (2022)) we can get that

d

E[(V f(ue), ue — weg )| Fe] < fue) = E[f (wn)|Fl + > %E[Hutﬂ — well[wegr,i — vl | Fe]
=1

First Order

Second Order

d
L1|0; f (ug
+ Z %E[Hutﬂ — wifl[wegr, — el Fe] (62)

Additional Term
We then focus on the first-order term. Based on equation [61] we divide our first order terms into four parts

E[(Vf(ut), wr — wep1)| Fe] =E[(V (), wr — wer)|Fe] + E[(Vf(ur) — V(2e), ue — wii1) | F
(1-B1)g:

no ————
V/ Bavi—1+(¢
=E <Vf(wt>, 15> Fi
VB2
First Order Main
[ -ne +nO =2
t+C Bavi—14+C
) <Vf($t)a \/ 1 B Vv >]:t
L VB2
Error 1
Bimi—1 Bimy_1

—-E <Vf($t), " \/B2vt—1+1524 e VB2 1+ > ‘]:t
! ﬁ
Error 2

—E[(Vf(u) = V() w1 — we)| Fl (63)

Error 3

The first-order main is easy to bound. Since give F, g; is independent of v;_; and we have that

(1—B1)ge

ne ——— d ‘
E <Vf($t), \V 52’;;1‘% > Fl = 77(1 _gl) (azf(wt))Q ] (64)
- ﬁ < NG Bovi_1i+C

First Order Main

We then focus on the Error 1 term. Since vy = Sov;—1 + (1 — 82)g: © g, we have equation [15| and it follows
that

—n ® my + n ® ___m:
E <Vf($t), \/vt-‘rlC - vV B2vi—1+¢ > |~Ft
VB2
Error 1

d (1 — B2)g? s

0;
Zl By [' f(@)| (Vi + O/ Bavi—1,i + O)(\/vei + C+ /Bavi—1,i + ()

i=1

.7-'1 (65)

%

|mf 7\ < 1— 51

VveitC \/—\/1_7

1—ﬂ1 |8fa:t
51 V/Bavi— 1z+<

which demonstrates that

According to Lemma |6] we have

Error 1

”M&

V1= 52.97:2,1'
(Vvei +C+/Bave—1i + )

A w
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Similar to Appendix [A] we have that for any ag > 0 and i € [d]

10, f ()| V1= DBag?; .
VB2vi—1i + (Vve,i +C+/Bave—1i + ) '

(6if(xt)) + Qg E V31— 5291:2,1'
T 2004/Bavi—1;+C 0 24/Bavi1;+(C (Vi +C+ /Bavi—1,i + ()
For the last term, due to Holder’s inequality, we have that
2
(%)) E V 1-— ﬂthQ,i J__.
t
Bavi—1,:+ ¢ (Ve +C+ \/Bavi_1, + )
(1 B BQ)QO gt )
T 2y/Bavi—1,i + ¢ (Ve +C+ y/Bavi—1,i + ()2

2
fD B

E[Qtzﬂ}—t]]E

d

(1_52)gtz
\/’Utz""C\/ﬁQ’Ut 11+< \/Utz+c+\/ﬁ2’ut 12+C)

1 1
7

VB2vi—1i+C v +¢
Similar to equation 2I] we will show the sum of equation [68| from ¢ = 1 to T can be bounded. For ¢ > 1 we
have that

<S0(Dy + Di(0:f (@0)?) x l

d

g%(Do + D1(8:f (x))*)E

(68)

1 1
f
\/521)15 1+ ¢ \/vt,i+< '

1 _ 1 7|+ aoDlE (0 f (x1-1))? _ (0 f (¢))?
\/Bz’vt—l,i +¢ \/’Ut,i +¢ \/52’015—1,11 +¢ \/Ut,i +¢

n OtoDlE l(aif(wt))Q — (0if (24-1))?

(Do + D1 (0; f (4))? l

oDy

d

]-'t] . (69)

2 Bavi—1, + ¢

Note for the last term in RHS of equation [69] due to the different update of x;, there is a little difference
compared with equation For the last term and any «; > 0 and ¢ € [d], we have that

aoDlEl@iﬂmt» (0:f (@-1))” F]

2 \/ ﬂvt 11+<

<aOD11E 2|0; f (4 |’|3f Ty |—|5f Ti—1 H
a 2 th 11

0:F (0] (Lo + L4[0:f (0)]) H o
<Dy Pt

5vt71,z+<

oD (0: f (¢))? 2 92 ?

<2¢m< Dy TP O e
_ 2
+2nL1(0i f (1)) vt_l_i_g@mt*l )

< D (i f ())? oy Dy L2 d(1—p1)? 4 L (O, Vd(1 - By) 0
_2\/51&1,,-—}—(( a1D1 a1kl (1_62)(1—2—2) n 1( f(:l:t)) W ,71_% ’ ( )

28



Under review as submission to TMLR

where the first inequality is due to the fact that for any a,b > 0, we have a® — b*> < 2ala — b|, the second
inequality is by the (Lg, L1)-smoothness and update process of x; and the last inequality is due to Lemma
[6l As a result, for ap, 1 > 0, if t = 1 we have that

d 2
E 1< n 1-— Bl (81f(.’13t)) QODOE 1 _ 1 _/—"
ot —; 1— \% 1 2\ 200y 1 P N = N e
agDy (0i f ())? (0 f (1))
E - AR 71
T VB2i1i+C v +C t] ) i

and if ¢ > 1 we have that

Error 1 <
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(Ouf (@) (0 ()’ f]
\/B2’Ut71,i+c \/’Utz'FC

aoDs <(azf($t)) + alDlL%UQ d(1— B1)?
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VI=B2

Since we define mg = 0, then &y = x; so this inequality works for ¢t = 1 too. Note many terms in the RHS
of equation [72| can be reduced by telescoping, which will be demonstrated later. Now we move to the Error
2 term. For any a3 > 0,0 < 87 < 32 and 32 > 0.5, we have that
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<Z 77»31 10:f ()] (1—52)¢ 1—- 5
1- ﬁ (v/B2vr—1,i + )\f@/l,f
<Z 7761 1 - ﬁl)\/z (azf(mt)) + a3(1 - 62) (73)
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where the second inequality is due to Lemma [ and 25, > 1.
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For Error 3, we have that

(Vf(ut) - Vf(wt% Uy — Ut+1>

d
< Z |0i f (we) — Oi f (1) || Wi — Wigr s

d
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d \51» 3
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B1
=1 VB2 VB2 VB2

where the second inequality is due to the Assumption [3] According to the update process of x; and Lemma
[ it is easy to get that
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Vi Vs

However, it is hard to bound the remaining |0;f(@;)|||z: — @i—1 |||t — Wir1,4] term by directly applying
Lemma (6} which will induce a O(|0; f(x¢)|5;) term and in our affine variance setting we can only bound
(0i f(zt))
V/B2vi—1,i+C
and the methods in [Wang et al.| (2023a)); |Li et al.| (2023)) do not generalize to our case. To solve this challenge,

we first bound the additional terms as follows:

term. It is worth noting that this challenging additional term is due to the (Lg, L;)-smoothness

d
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(76)
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for all g > 0, where the last inequality is due to Lemmaﬁ The motivation is that we can get a \/(%
nsmf—l,i P
term and the Poritl can be bounded by Lemma Similarly, we have that
d
D loif(@o)llle — e ll|@egri — @1l
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= 20u/Bovi-1i T ¢ T 2y HC (1= By)(1 7571)

Combine equation equation equation equation equation equation equation and
equation [77] and we then have that
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Since Cy =1 — L, Co=1/1— ’8—%, equation [78[ can be further bounded as follows
NS B>
E[(V f(we), wip1 — we)|Fi
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This completes the proof. O]

G Proof of Lemma (4

For (Lo, L1)-smooth objective functions, we have the following descent inequality (Lemma 1 in |Crawshaw
et al.| (2022))):

Elllwes1 — welllweyri — weil| Fi

d
B ). ) 3] < fue) = B[ an) i+ 3 50
=1

First Order

Second Order

d
L azf u
+ 3 PO g el (50)

i=1

Additional Term

The first-order term is bounded by Lemma [9] we then only need to bound the remaining two terms. For the
second-order term, based on the definition of w; and update process of x;, we have that
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Now we focus on the additional term. According to the definition of u; and update process of x;, for ay > 0
we have that
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where the first inequality is due to the (Lg, L1)-smoothness, the third inequality is due to Lemma |§| and
equation [B1] and the last inequality is due to equation [76] and equation [77] Combine Lemma [0} equation
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equation [81] and equation [82] together, and we have that
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It is worth noting that and still hold for Adam since the update of v; does not change. Specifically,
for any i € [d] we have that
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By taking expectations and telescoping fort =1 to T , based on , 7 Lemma m and Lemma
we have that
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Moreover, for any a > 0 and i € [d] we have that In(a) < a — 1. We then have that
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where the second inequality is due to equation In addition, for 82 > 0.5 we have that
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can get
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Z?:l In(vg ;))e 2, %\/DO + |lvo] 62> , we then have that
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This completes the proof.

H Formal Version of Theorem 2| and Its Proof
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According to Lemma [3] we have that

(} NN C])

oy 2VADL T EVE@)]
- (1—=52) T

Define e = & S°1_ E[|[Vf(z)||]. By Hlder’s inequality, we have

2
1 ¢ 1 < IV ()]
— E[|V < | = E | L2 A/0
(Tg vt ”) —<T§ L@nvuuﬂ

based on Lemma [3]and Corollary [] which can be written as

Nl =

> ( > E[VBellviall + ]) (98)

2 147C3(1 — B1)v/dDy n 42n?C1Cy(1 — B1)V/dDy . <c+ 2v/dDy e>
- CVT=F (gl ) i
2\/ dD1 62

2 ° 99
*06‘5 ee” + 5 ( )

< ce? + cee +

2
where the second inequality is due to the that that LnCs(1-B1)vdD, | 421 010451—51231, 4D | < ¢ and
C1y/1-52 (1=2) 2 (1= )2

(14’7C3“51>Vd[’1 + 420°C.Cu (15 VD ) 201 < L ify < C5(1—f2), 1 - By = min ( 725%:, Coe?) = Cie?

C1y/1-B2 (1—/32)1'5(1—7) = 62 Too Dy’
Cy 1_%%
— 1 2
and C5 = min 112C5(1—F1)dD:’ 168D1C1C1(1—B1)d
Thus
T
1 4v/dD;
— E[|Vf(x < |2c+Vv2c+ €,
F ISl =e s (204 vVE+ )
which completes the proof. O

| Experiments

In this section, we provide numerical experiments to verify the coordinate-wise generalized smoothness and
affine noise variance conditions. We follow the same setting of the LSTM language model
for the Penn Treebank (PTB) (Mikolov et al., 2010) dataset. The model is a 3-layer LSTM language
model with hidden size of 1150 and embedding size of 400. The training details follow Merity et al. (2017).

Given ¢ and x41, we estimate the coordinate-wise smoothness by

Loi— s 10 f (e +y(Te11 — 1)) — aif(l’tﬂ’ (100)

YE{81.82,....n } Ve — @11

where {01, d, ...., dn } denotes for the sample locations. We then show the training results for coordinate-wise
smoothness vs. absolute gradient value in Fig. 3] In Fig. [l we plot the coordinate-wise gradient standard
deviation vs. absolute gradient value.
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Figure 3: Coordinate-wise smoothness vs. absolute gradient value on LSTM language model for PTB
datatset. Each figure presents one randomly selected cooridinate.
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Figure 4: Coordinate-wise gradient standard deviation vs. absolute gradient value on LSTM language model
for PTB datatset. Each figure presents one randomly selected cooridinate.
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