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Abstract

Epidemic modeling, which includes both deterministic and stochastic methods, has
been central to understanding infectious disease dynamics and guiding public health
decisions. While a significant portion of machine learning research in this domain
focuses on predictions and trends of the disease, this study takes a prescriptive ap-
proach. This work introduces SafeCampus 1, a tool that simulates infection spread
and facilitates the exploration of various RL algorithms in response to epidemic
challenges. The focus is in using reinforcement learning (RL) to develop occupancy
strategies that could balance minimizing infections with maximizing in-person inter-
actions in educational settings. SafeCampus incorporates a custom RL environment,
leveraging a stochastic epidemic model, to realistically represent university campus
dynamics during epidemics. We evaluate a Q-learning algorithm in this context for
a discretized state space to yield a sensible policy matrix, which prescribes decisions
about the level of occupancy suitable for different epidemiological phases.

1 Introduction

Traditional epidemic responses often struggle to adapt to uncertainties, leading to compromised
effectiveness and operational challenges Barnett et al. (2023). The COVID-19 pandemic in 2020
highlighted this issue, causing a global shutdown of education systems Bank (2020). These static
strategies require reevaluation, as educational environments demand innovative approaches that
adapt to public health threats while supporting education. This research focuses on determining
optimal classroom occupancy levels during an epidemic. Localized strategies offer the flexibility to
adapt to unique campus dynamics and rapidly changing epidemic conditions.

To address these challenges, we propose a reinforcement learning environment using a discrete-
time approximate SI model to simulate campus dynamics during an epidemic. The Q-learning
agent interacts with the environment, making decisions about student attendance percentages and
receiving feedback as rewards. The central problem aims to ensure safe campus operations while
balancing in-person attendance for educational benefits. The agent must learn this policy through
Q-learning.

This work makes the following contributions:

• First, we present SafeCampus, a tool designed to incorporate a variety of stochastic epidemic
models to simulate a range of infection scenarios. This could allow for studying different
aspects of epidemic spread and control for indoor spaces.

• Second, we introduce the use of a discrete-time approximate SI model within the reinforce-
ment learning environment, providing a computationally efficient and flexible approach to
modeling the dynamics of indoor environments during an epidemic.

1https://github.com/ANRGUSC/SafeCampus
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• Third, we identify policies that can help find a balance between the delicate balance between
e.g educational benefit of in-person attendance and health safety.

Figure 1: A schematic of the system, integrating campus dynamics, agent, and orchestration com-
ponents.

2 Related Works

Reinforcement learning (RL) has been widely applied in healthcare, economics, and mobility for
epidemic control. Studies by Arango and Pelov (2020), Ohi et al. (2020), Feng et al. (2022), Probert
et al. (2019), Bushaj et al. (2023), Kompella et al. (2020), and Uddin et al. (2020) use algorithms
like Deep Q-Learning and Proximal Policy Optimization (PPO) with compartmental models (e.g.,
SEIR, SIR, SIHR) and granular models like agent-based and meta-population models. These enable
RL agents to learn in realistic epidemic environments, optimizing policies for mobility restrictions,
lockdowns, testing, sanitization, social distancing, ventilation control, and vaccine distribution to
balance infection control with socioeconomic impacts.

Our work focuses on the unique dynamics of university campuses, differing from general public
health applications. Existing studies often implement broader strategies, whereas we aim to develop
dynamic strategies that adjust student attendance to balance campus operations with health safety.
We present SafeCampus, incorporating various stochastic epidemic models to simulate infection
scenarios and study epidemic control within educational contexts.

We integrate stochastic epidemic models with RL to derive policies that maximize social interactions
while limiting disease spread. Unlike previous studies focused on lockdowns, we explore flexible,
campus-level policies using a discrete-time approximate SI model within the RL environment for
efficient and flexible modeling of indoor epidemic dynamics.

Research at the intersection of epidemics and education, particularly during COVID-19, has explored
strategies to mitigate disease spread. Studies by Fukumoto et al. (2021) and Wu et al. (2022)
questioned school closures’ effectiveness, noting children’s lower susceptibility. Best et al. (2021) and
Kaiser et al. (2020) found that smaller class sizes and cohorting limit outbreaks. Haelermans et al.
(2022) highlighted closures’ adverse impact on disadvantaged groups’ learning progress. Historically,
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Table 1: Related Works Comparing RL Methods and Optimization Goals

Optimization Goals
Healthcare System Ef-
ficiency

Economic Optimiza-
tion

Policy Development

RL Method
(Q/SARSA)
Learning/Actor
Critic

Arango and Pelov (2020),
Deng et al. (2021),
Khatami and Gopalappa
(2022), Kompella et al.
(2020)

Guo et al. (2022),
Khadilkar et al. (2020),
Ohi et al. (2020)

Probert et al. (2019),
Wang et al. (2023)

Proximal Policy
Optimization
(PPO)

Feng et al. (2022) Feng et al. (2023), Hos-
seinloo et al. (2022), Li-
bin et al. (2021), Mai et al.
(2023)

Hierarchical RL Uddin et al. (2020) Hao et al. (2021), Du et al.
(2023)

as noted by Spielman and Sunavala-Dossabhoy (2021), epidemics have accelerated digital learning.
Current research, including Endo et al. (2022) and Oikawa et al. (2022), emphasizes a multifaceted
approach to limit spread within schools. Our research focuses on balancing educational benefits of
in-person attendance with health safety, addressing the challenges of maintaining campus operations
during an epidemic.

3 Modeling

3.1 Problem Definition

Consider a classroom scenario with N students attending sessions over W weeks. During an ongoing
epidemic, students face the risk of infection both off-campus and on-campus. Off-campus infections
are considered to be an exogenous random process, where each student has an independent and
identical probability cw of being infected off-campus during week w, termed the community risk.
On-campus infections result from infected students spreading a virus to other students.

3.2 Approximate SI(Susceptible-Infectious) Model

Conventional compartmental models, such as the SI model, describe epidemic dynamics using cou-
pled ordinary differential equations that capture the instantaneous rates of change in the susceptible
and infected populations. In contrast, our approximate SI model simplifies this approach by using a
discrete-time framework, which better suits the discrete nature of policy decisions, such as adjusting
student attendance percentages. We use a discrete-time model as it allows for simulating the impact
of interventions at specific time points, aligning with the discrete nature of policy decisions and
enabling the evaluation of different intervention scenarios. This model employs recursive equations
that update the infected populations at each time step based on the previous state and proportional
relationships.

Let N represent the total number of students allowed in a campus classroom, and It−1 denote
the number of infected students from the previous time step. The community risk of infection is
represented by cr. The constants ϕ and β represent the infection rates inside the campus and due
to community interactions, respectively. The total number of students considered in the model is
N . The number of new infections It at time t is then estimated using the following relation:

It = min
([

ϕ · It−1 ·At + β · cr ·A2
t

]
, At

)
(1)
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where A = the number of allowed (susceptible) population. The term ϕ · It−1 represents new
infections inside a classroom, while β · cr · S2

t represents new infections due to interactions outside
the classroom. crt represents community risk.

Parameter Description Value
I Number of infected population Max = N
At Number of population allowed in the classroom at time t 0, 50, or 100
cr Community infection risk factor range (0,1)
ϕ Constant representing the indoor transmission risk 0.005
β Representing the scale effect from the community 0.01
N Total number of students considered in the model 100

Table 2: Description of Parameters

3.3 Role of ϕ and β

The parameter ϕ represents the indoor transmission risk. Some factors that could influence this
are mask mandates or social distancing rules, which directly impact the infection rate within the
classroom. Effective implementation of these measures can reduce the value of ϕ, thereby lowering
the transmission risk in indoor environments.

On the other hand, β represents the scale effect from the community. This parameter includes factors
such as public health guidelines and the overall level of community transmission. A high value of β
suggests that despite stringent indoor policies, the external risk remains significant, potentially due
to high community transmission rates or insufficient adherence to public health measures outside
the classroom environment.

3.4 Model Dynamics

We conducted a parameter sweep analysis to investigate the impact of varying levels of allowed
interactions (At) and community risk (crt) on peak infection numbers within a campus population.
The model simulates the infection dynamics over a series of discrete time steps, updating the number
of infected individuals using the infection model equation. Our findings indicate that increasing Aw

interactions or cw significantly contributes to higher peak infection numbers.

Figure 2: Heatmap of Peak Infections
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4 The Reinforcement Learning Problem

We formulate the problem of finding operational strategies during an ongoing epidemic as a model-
free RL problem where we are interested in developing a policies that would take a given set of
observations about the infection process and make a decision on how many students to allow in the
classroom at the beginning of every week w. The RL problem is thus formulated as follows:

• State space: We use as the state observation a tuple consisting of the community risk and
the current number of (expected) infected students, i.e. (cw, E[Iw]). For simplicity and
efficiency, we are currently discretizing the observed state space into a set of discrete levels
for both cw, E[Iw]. A range of 1-10 is used and this could be easily modified to accommo-
date a more fine-grained discretization at the expense of greater storage and computational
complexity for the reinforcement learning.

• Action space: The output of the policy Aw is the number of students allowed to participate
in the class. Again, for ease of implementation, we discretize the action into L levels (e.g.,
if L = 3, the possible actions may be to allow 0, 0.5N or N students in a given week).

• State-transition model: Within our environment, this is governed by the dynamics
of the approximate SI model described earlier which simulates the spread of infection in a
classroom setting.

• Reward: The function is designed to capture the trade-off between the benefit of in-person
interactions and the cost associated with infection risk. It considers community risk, the
number of allowed students, and the current number of infected students. It is defined as:

Reward = int (αr ×Aallowed − ((1− α)× Icurrent)) (2)

where: Icurrent is the number of infected students at week, Aallowed is the number of students
allowed, and α is a weighting factor that balances the priority between maximizing student
attendance Aallowed and minimizing the number of infections).

4.1 Reward Assumption

α is a parameter that is to be determined by a human operator such as a a campus administrator
in this context. α may depend on factors such as severity of a disease or class type such as a lab
or lecture. A higher α places greater emphasis on increasing attendance, while a lower α gives
more weight to reducing infections, thus allowing the Q-learning algorithm to prioritize between
educational benefits and health risks according to the chosen value of α.

4.2 Temporal Difference Learning

Temporal Difference (TD) Learning is a central concept in reinforcement learning, combining ideas
from both Monte Carlo methods and dynamic programming. The value of a state (or state-action
pair) is updated using the difference between the predicted value of the current state and the value of
the next state, adjusted by the reward received in transitioning between these states. This difference
is known as the TD error.

We apply Q-learning Watkins and Dayan (1992), an off-policy TD control algorithm, in this context
since it does not require a predefined model of the environment’s dynamics, making it suitable for
situations where the exact mechanisms of infection spread are complex or not fully understood.
Q-learning learns from interactions with the environment, gaining knowledge directly through trial
and error.

The TD update rule for Q-learning is given by the Bellman equation:

Q(s, a)← Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
(3)
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where:

• Q(s, a) is the current estimate of the Q-value for the state-action pair (s, a),

• r is the reward received after executing action a from state s,

• γ is the discount factor,

• α is the learning rate,

• s′ is the next state,

• maxa′ Q(s′, a′) is the maximum estimated Q-value for the next state s′ across all possible
actions a′.

Q-learning evaluates the target policy while following a behavior policy, thus it is an off-policy
algorithm. This means that the policy used to generate behavior (behavior policy) is different from
the policy that is being improved and evaluated (target policy). It estimates the Q-values for the
target (optimal) policy using trajectories from a behavior policy. It converges to the optimal policy
in finite state-action spaces, assuming all state-action pairs are explored. However, in continuous
state spaces, the curse of dimensionality limits its efficiency and convergence. In this context, we
are specifically using tabular Q-learning.

Algorithm 1 Q-Learning
1: Initialize empty Q-table
2: for episode ← 1 to max_episodes do
3: state ← reset environment
4: terminated ← False
5: while not terminated do
6: Choose an action based on current policy
7: Execute action and observe reward, next state
8: Update Q-table according to:
9: Q(s, a)← Q(s, a) + α [r + γ maxa′ Q(s′, a′)−Q(s, a)]

10: Update state to next state
11: end while
12: Update policy based on learned Q-values
13: Decay exploration and learning rates as needed
14: end for

5 Tool Overview

SafeCampus is engineered to simulate a range of scenarios, enabling the evaluation of various policy
decisions concerning infection control and in-person interactions. Figure 1 shows the Key compo-
nents that includes the Campus Dynamics modules, which are essential in defining and managing
the evolving state of the campus environment. This includes the campus model, campus state,
and infection model, each responsible for initializing the simulation, managing dynamic system
states, and simulating infection spread using various epidemiological models. The Environment
and Learning component integrates these behaviors to optimize strategies through learned expe-
riences in an RL framework, utilizing tools like the gymnasium interface for agent interactions
and an agent package for implementing various RL algorithms, primarily focusing on Q-learning.
Supplementar modules, such as the configuration, outputs, and orchestration modules, provide
essential support in system configuration, data management, and overall system control, respectively.
Furthermore, the command-line interface (CLI) facilitates user interaction, allowing for precise
control over operational modes and parameters, thus driving the system’s training, evaluation, and
optimization processes.
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6 Experiments

In our study, we investigate the following research questions:

1. How does the reward weight parameter αr influence the Q-learning agent’s ability to develop
optimal occupancy policies in response to varying infection counts and community risk
patterns?

2. Can Q-learning generate a sensible policy matrix that prescribes specific occupancy decisions
effectively under dynamic and uncertain infection scenarios?

3. How well does the Q-learning agent, trained in a simulation environment with simulated
community risk values, generalize and adapt its decision-making strategy when applied to
real-world risk level data?

Hypotheses: We hypothesize that Q-learning can effectively generate a sensible policy matrix that
prescribes specific occupancy decisions based on infection counts and community risk patterns. We
also posit that the reward weight parameter αr will play a crucial role in shaping the Q-learning
agent outcomes and the precision of the policy matrix. By varying the αr value, our objective is to
explore how the algorithm prioritizes educational benefits by allowing more students and infection
risk minimization, thereby calibrating the matrix to align with varying epidemic scenarios.

Training with different αr values: To explore how the reward weight parameter αr influences
the Q-learning agent’s ability to develop optimal occupancy policies, we conducted experiments
by varying αr values. This approach allowed us to systematically analyze the trade-off between
in-person learning and the risk of infection due to increased physical interactions.

7 Evaluation

Metrics: To assess the effectiveness of the Q-learning agent in developing optimal occupancy poli-
cies, we evaluated the agent based on the following metrics:

• Policy Accuracy: The accuracy of the generated policy matrix in prescribing occupancy
decisions that align with infection counts and community risk patterns.

• Adaptability: The ability of the Q-learning agent to generalize and adapt its decision-
making strategy when applied to real-world risk level data.

• Return (Reward) Analysis: The moving average of the expected return (reward) over
episodes to determine the stability and convergence of the learning process under different
αr values.

Policy Visualization: In Figure 3, each matrix depicts the algorithm’s occupancy recommenda-
tions across different states of community risk and infection counts. The policy gradient shifts from
conservative (red dots: Allow no one) to permissive (blue dots: Allow everyone) as the αr value
increases, indicating a higher emphasis on educational benefits. Green dots represent a balanced
occupancy decision (50% allowed). The progression from (a) to (i) captures the algorithm’s adaptive
responses to the campus dynamics, showcasing the delicate balance between ensuring educational
benefits and managing infection risks.

7.1 Sim-to-Real-World Data

We further evaluated the Q-learning agent’s ability to generalize and adapt its decision-making
strategy using real-world COVID-19 risk score data Kiamari et al. (2020). We resampled the data
to a weekly frequency to align with the academic semester simulation timeframe. Then calculated
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the mean of these weekly normalized risk levels across all regions to generate a single aggregated
risk level for each week. At a low αr (0.2), the agent adopts a conservative strategy (Figure 4(a)),
allowing fewer students to attend in-person classes, which results in lower infection rates but limits
educational interactions, effectively prioritizing safety under high-risk conditions. With a medium αr

(0.4), the agent achieves a balance between infection risk and occupancy (Figure 4(b)), resulting in
moderate infection rates and demonstrating adaptability to dynamic risk levels. At a high αr (0.6),
the agent allows more students to attend in-person classes (Figure 4(c)), accepting higher infection
risks to maximize educational interactions, reflecting its flexibility in less conservative policies when
community risk is perceived to be lower.

((a)) αr = 0.1 ((b)) αr = 0.2 ((c)) αr = 0.3 ((d)) αr = 0.4 ((e)) αr = 0.5

Figure 3: Policy matrices for different αr values. Red dots: Allow no one, Green dots: 50% allowed,
Blue dots: Allow everyone.

((a)) αr = 0.2 ((b)) αr = 0.4 ((c)) αr = 0.6

Figure 4: The blue bars represent the agent action of allowing, red bars represent the infected. The
bottom graph is the aggregated community risk values from the COVID-19 risk scores

8 Conclusion

Our findings suggest that Q-learning can effectively navigate the trade-offs involved in epidemic
management within educational settings. By systematically adjusting operational policies based
on data and outcomes, a Q-learning agent demonstrates a capacity for nuanced decision-making,
ensuring safety while minimizing disruption to educational processes.

Limitations and Future Work: Despite the promising results, there are limitations to our ap-
proach. The tabular Q-learning method may struggle with larger, continuous state spaces due to
the curse of dimensionality. Future work could explore function approximation techniques, such as
Deep Q-Networks (DQN), to handle more complex environments. Additionally, integrating domain
expertise into the reward function design could enhance the alignment of the learned policies with
real-world operational goals.
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