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ABSTRACT

The study of mechanistic interpretability aims to reverse-engineer a model to ex-
plain its behaviors. While recent studies have focused on the static mechanism of
a certain behavior, the learning dynamics inside a model remain to be explored. In
this work, we develop a fine-tuning method for analyzing the mechanism behind
learning. Inspired by the concept of intrinsic dimension, we view a model as a
computational graph with redundancy for a specific task, and treat the fine-tuning
process as a search for and optimization of a subgraph within this graph. Based on
this idea, we propose circuit-tuning, an algorithm that iteratively builds the sub-
graph for a specific task and updates the relevant parameters in a heuristic way.
We first validate our method through a carefully designed experiment and provide
a detailed analysis of the learning dynamics during fine-tuning. Subsequently, we
conduct experiments on more complex tasks, demonstrating that circuit-tuning
could strike a balance between the performance on the target task and the general
capabilities. Our work offers a new analytical method for the dynamics of fine-
tuning, provides new findings on the mechanisms behind the training process, and
inspires the design of superior algorithms for the training of neural networks.

1 INTRODUCTION

Transformer-based large language models (LLMs) have demonstrated outstanding performance in a
wide range of tasks (Vaswani, 2017). However, an LLM is often treated as a ”black box” because
of its complex inner mechanisms, which brings a lot of issues about AI saftey and reliability, high-
lighting the need for interpretability (Ji et al., 2023). Mechanistic interpretability aims to discover
the underlying mechanisms inside a model so as to provide better control and improved design of it
Sharkey et al. (2025), showing the potential of reverse-engineering a model. Recent studies in this
field include analyzing the circuit responsible for a single behavior Olah et al. (2020); Wang et al.
(2022), extracting features via sparse dictionary learning (Bricken et al., 2023; Templeton et al.,
2024), applying a steering vector (Turner et al., 2023) to modify the model behaviors, etc.

Despite the success of the above methods, they are limited to post-hoc analyses of a trained model.
For example, Wang et al. (2022) and Hanna et al. (2023) studied the interactions of the attention
heads / MLPs and discovered the circuits for indirect object identification and mathematics in GPT-
2-small. This kind of static analysis of model behaviors during inference fails to explain the learning
dynamics of a model, i.e., how a model acquire an ability, or generalize to various scenarios, which
is of great importance in mechanistic interpretability (Sharkey et al., 2025). Recently, Nanda et al.
(2023); Olsson et al. (2022) studied the phase transition during training. Prakash et al. (2024);
Lee et al. (2024); Jain et al. (2023); Wang et al. (2025) focused on narrow or synthetic tasks for
fine-tuning. Bricken et al. (2024) studied the change in sleeper agent features via stage-wise model
diffing. While these works focus on specific scenarios with various analytic methods, there still
remain a limitation: current studies mostly focus on post-hoc interpretations of fine-tuning, without
daring to provide guidance for a more precise and effective fine-tuning process with interpretability.
For example, while Wang et al. (2025) studied the dynamic change in the circuit for math tasks,
parameter optimization during fine-tuning is still performed on all model components. This limi-
tation prevents fine-tuning from achieving a sparsity in terms of parameter update, a characteristic
that is sought after in mechanistic interpretability. Thus, a more precise understanding of fine-tuning
is needed. Besides, the limitation also makes it difficult to provide more inspiration for real world
applications like traceable and steerable training.
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Graph Pruning

Optimization for 𝐾 steps

Reset

Step 𝐾 Step 𝑛𝐾

Circuit-tuning Tracing subgraphs (intermediate circuits) Analyzing Learning Dynamics

Causal intervention

Logit Lens

Attention analysis

Other interpretability tools

…

…

Figure 1: The overall pipeline of our work. Circuit-tuning iteratively builds the subgraph for a
specific task and updates the relevant parameters. The intermediate subgraphs are saved during fine-
tuning, and various interpretability techniques could be utilized for the study of learning dynamics.

To solve this issue, we expect to introduce dynamic circuit analysis directly into fine-tuning. Specif-
ically, we view the model as a computational graph, where the nodes are terms in its forward pass
(neurons, attention heads, etc.) and the edges are the interactions between the nodes. Inspired by
prior work on intrinsic dimension—which suggests that only a small subset of dimensions in a neu-
ral network is useful when fine-tuning on a specific task—we argue that for the fine-tuning process
on a given task, the computational graph of the model is similarly redundant, which could lead to
unnecessary updates to the graph. Therefore, we wonder if the learning and generalization process
of the model on a specific task could be to find and optimize the subgraph (circuit) in a computa-
tional graph. Following this idea, we propose circuit-tuning, a method that performs fine-tuning in
a computational graph. Specifically, our method iteratively performs circuit discovery for a specific
task and updates the relevant parameters in that circuit, i.e., to perform fine-tuning in a subgraph.
The aim of circuit-tuning is to precisely and dynamically localize the key parts in a computational
graph during fine-tuning. It could adaptively select and adjust a smaller yet more critical subset
of parameters compared to full fine-tuning. Therefore, for any given task, it is convenient to trace
and analyze the change in its circuit during fine-tuning, which provides us with a new insight in
learning dynamics. In addition, since only task-relevant parameters are involved in optimization,
circuit-tuning is supposed to preserve general capabilities better than full fine-tuning.

To test the effectiveness of our method, we firstly designed an experiment called “subject-verb dis-
agreement” and conducted a study on GPT-2. This experiment is sufficiently small and interesting
to allow us to fully validate our method. Through it, we discovered several phenomena during
fine-tuning: the functional reversal of specific graph nodes, the preservation of nodes for general
capabilities, and the strengthening or weakening of connections between related nodes, and so on.
These findings offer a deeper understanding of how fine-tuning works by looking at it through the
lens of a computational graph. Subsequently, we performed experiments on more complex tasks
and found that circuit-tuning leads to more precise fine-tuning, which improves the performance of
downstream tasks while better maintaining general capabilities. This proves that our method can
scale to larger models and more complex tasks. It further confirms that circuit-tuning can accurately
locate the key model components responsible for a specific task in a dynamic way during training.

In summary, we provide a new method for studying learning dynamics from the perspective of
mechanistic interpretability and provide a deeper understanding of the fine-tuning process in a com-
putational graph. Our method also provides inspiration for designing better training algorithms that
could strike a balance between performance on the target task and general capabilities.

2 RELATED WORK

Circuit analysis Mechanistic interpretability aims to understand the computational mechanisms
of a model (Sharkey et al., 2025). Existing works can be divided into static research on the trained
model and dynamic research during training according to whether the model is in an inference state
or a training state. In the static research, circuit analysis is a widely used technique that aims to
find and study the subgraph in a computational graph that acts as an algorithm implemented in a
model for a certain behavior. Recent studies generally use causal intervention for circuit discovery.
Meng et al. (2023) proposed activation patching to identify activations relevant to the output, while
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Nanda (2023) proposed attribution patching to accelerate it. Wang et al. (2022); Conmy et al. (2023)
focused on edges and proposed path patching. Others optimized this technique from various aspects
(Syed et al., 2023; Kramár et al., 2024; Marks et al., 2024; Ameisen et al., 2025; Lindsey et al.,
2025). Despite their success, current studies are limited to discover the circuit of an existing model
behavior of a trained model in a static style, while our method is able to form a new circuit of a
non-existent capability through iterations in a dynamic mode during training.

Mechanistic interpretability for learning Compared to the static research mentioned above,
there is fewer research on learning dynamics. For phase transition, Nanda et al. (2023) delved
into the study of grokking, while Olsson et al. (2022) analyzed the emergency of induction heads
for in-context learning. For fine-tuning mechanisms, Prakash et al. (2024) focused on entity linking,
Jain et al. (2023) focused on compiled models and probabilistic context-free grammars, Wang et al.
(2025) focused on math, while Lee et al. (2024) focused on DPO for toxicity reduction. Kotha et al.
(2023) explored the catastrophic forgetting. Wu et al. (2024) proposed ReFT that learns an interven-
tion on the representations for efficient fine-tuning. Parallel to our work, Ren & Sutherland (2024)
proposed a framework for learning dynamics by decomposing the change of a model’s prediction.
However, current studied are limited to a single scenario, while there lacks a unified method for
the study of learning dynamics on common tasks, and no attempt was made to actively introduce
interpretability into fine-tuning for mechanistic study. Unlike prior works, we dynamically integrate
circuit discovery into fine-tuning as a heuristic method for the study of learning dynamics for the
first time, providing new insights for the study of learning dynamics from a mechanistic view.

3 MAIN METHOD

3.1 DESCRIBE THE LEARNING PROCESS IN A MECHANISTIC VIEW

From the view of mechanistic interpretability, we view a model M as a computational graph G =
{V, E} which is a directed acyclic graph (DAG), where V and E represent the nodes and edges in
G, respectively. Each node is a vector n = (h1, ..., hN )⊤ ∈ RN (1 ≤ N ≤ D) that could be the
activation of a neuron, a group of neurons or a representation in a D-dimensional representation
space VD, based on granularities of interest. The edges describe the information flow between the
nodes, i.e., where the output of an upstream node goes and where the input of a downstream node
is from 1. An edge is not necessary to follow the real structure of a model, i.e., it could be a virtual
connection between non-adjacent nodes.

Given a specific task for training, the parameters in a model is often redundant. Li et al. (2018)
defined intrinsic dimensionality as the minimum number of parameters needed to reach satisfactory
solutions for an objective function. Considering a set of parameters θD = [θ0, ..., θm] and an ob-
jective function f(·, θ), they adopted a heuristic method to measure the upperbound of the intrinsic
dimensionality. They leveraged a re-parameterization method to optimize only the parameters θd in
a subspace Rd(d < D) via a linear transformation with a pre-defined projection matrix P :

θD = θD0 + P (θd) (1)
If a satisfactory solution is reached, then the dimensionality of that subspace is the intrinsic di-
mensionality. In practice, the heuristic method requires searching over various d, optimizing the
parameters θd and selecting the smallest d that could reach a satisfactory result. Drawing inspiration
from intrinsic dimension, we wonder if this concept can be extended to mechanistic interpretability.
Thus we make an analogy: given a specific task T , redundancy exists in the graph G, and the initial
subgraph (circuit) related to this task is C = {VT , ET } ⊂ G. Then we propose a new paradigm for
fine-tuning. Specifically, we describe the learning process during fine-tuning as follows:

In each training step i during the fine-tuning of a task T , the model dynamically locates a subgraph
(circuit) Ci = {VT,i, ET,i} ⊂ G which contains the necessary nodes and edges for the task, and
adjusts the parameters inside the subgraph while leaving the parameters outside unchanged.

Here, the parameters for a subgraph C = {VT , ET } refer to the parameters where the nodes VT
are derived from. For example, if a parameter matrix W ∈ Rm×n maps an input x ∈ Rn to an

1It is possible to set a node to a full layer, or a latent which is a sparse feature in dictionary learning, while
here we require the size of a node to be no more than the dimensionality of VD to cover most of the cases in
practice and for convenience of discussion.
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Algorithm 1 Circuit-tuning (based on edge attribution patching)
Input: dataset X , model M , the number of edges to save N , the number of optimization steps
after graph pruning K.
Initialize graph G = {V, E} from M , circuit C = G, and the iteration step i = 0.
for mini-batch XT = {x1, x2, ..., xt} in X do

Run a forward and backward pass on XT

if i mod K == 0 then ▷ Graph pruning
Reset: C ← G
Get the edge contribution for each edge via edge attribution patching.
ET ← {e | e∈E with top-N edge contributions}
C ← {VT , ET }, where VT ={n |n∈V ∧ n is incident to an edge e∈ET }

end if
Update the parameters corresponding to the subgraph C ▷ Circuit fine-tuning
i = i+ 1

end for

activation H ∈ Rm that is a node in C, then W is what matters to task T (see more examples
in Table 3 and 8). In practice, the minimal subgraph C∗ = {V∗

T , E∗T } ⊂ G is the subgraph when
all the redundant components in graph G are just pruned, which is called an “intrinsic graph”. By
removing redundancy from the computational graph, we can concentrate the optimization process
on the parameters responsible for the target task. This intuitive approach aims to minimally affect
parameters corresponding to functions that are either task-irrelevant or remain invariant to fine-
tuning, a process that will be implemented in Section 3.2.

3.2 CIRCUIT-TUNING

Following the discussions in Section 3.1, we introduce circuit-tuning, an algorithm that allows trans-
parent and precise fine-tuning. Given a model M and a dataset X ∼ DT for the fine-tuning task
T , the model is firstly initialized into a computational graph G = {V, E}. Next, circuit-tuning
alternately performs the following two procedures:

(1) Graph pruning For a batch of data XT ∈ X , we perform circuit discovery on graph G for the
task T . The graph G is pruned into a circuit C = {VT , ET } with only the selected edges ET together
with the nodes VT at both ends of each edge inside.

(2) Circuit fine-tuning Right after (1), all the parameters outside C are frozen, and only the pa-
rameters corresponding to the nodes VT (see Section 3.1) are updated on a batch of data XT . After
K steps of optimization, the frozen parameters are freed and the graph G is reset to its original state.

The full process is shown in Algorithm 1. For graph pruning, it is generally based on the idea of
causal intervention. For each node or edge in the graph, we corrupt it and measure the change in
the model’s prediction. The prediction is quantified via a metric Lm. The change is regarded as
the contribution of that node or edge to the model prediction. All the nodes/edges are sorted in
descending order based on their contributions, and those with top N contributions are selected in
the subgraph. In practice, we use edge patching since it focuses more on the interactions between
pairs of nodes. Compared to patching nodes, it provides a more detailed understanding of how the
model components interact. We use edge attribution patching (Syed et al., 2023) to accelerate this
process. It requires only one forward and backward pass. The details are presented in Appendix D.

During training, only a small part of the parameters are updated, and it is convenient to save the
intermediate subgraphs to trace the state of the internals in a model. When the fine-tuning is done,
various tools for circuit analysis could be utilized to study the learning dynamics based on the
subgraphs, as shown in Figure 1. This makes it possible for model diffing, i.e., we are able to
compare among different training stages and gain a deeper understanding of this process, instead
of fine-tuning in a “black box”. Besides, unlike prior works that focus on the circuits in a trained
model, circuit-tuning acts as a heuristic approach for a model to develop an unseen ability in a
dynamic style. The validity of this idea is built on the finding from Aghajanyan et al. (2020) that
pre-training has learned enough knowledge for downstream tasks, allowing fine-tuning with minor
modifications on a relatively fixed set of parameters. Thus, the subgraphs during fine-tuning are
supposed to be highly overlapping, which will be verified through experiments in Figure 11.
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It should be noted that in the field of continual learning, some work has also proposed similar
methods involving pruning before fine-tuning (Wortsman et al., 2020; Panigrahi et al., 2023). The
focus of those works is on reducing interference between target tasks during the training to prevent
catastrophic forgetting. Our work shares a similar underlying idea, but we place more emphasis on
making the model’s fine-tuning process more interpretable.

4 ANALYZING LEARNING DYNAMICS VIA CIRCUIT-TUNING

4.1 THE SUBJECT-VERB DISAGREEMENT TASK

To comprehensively investigate the the practicality of our method as well as the learning dynamics
during fine-tuning, we first design a simple while interesting task called “subject-verb disagree-
ment”. The goal of this task is to match a verb with a subject in an abnormal way. For example, “I
is”, “he are” and “the cows eats” are all expected results for this task. In each sentence, the token
before the verb is called the END token. The automatic evaluation metric for this task is the logit
difference between the flipped verb vflip and the original verb v at the END token:

difflogit = WU (x)j −WU (x)i, WU ∈ RD×|V| (2)
where x ∈ RD is the output of the last layer at the END token, WU is the unembedding matrix, and
i and j are the indices of the original verb and the flipped verb in the vocabulary V of the language
model. We use this metric because the logit at the END token is directly used for predicting the
verb token. This task encourages the model to acquire a new capability based on the existed English
grammar, and thus we can study in detail how the circuit evolves during fine-tuning.

4.2 DATA PREPARATION AND IMPLEMENTATION DETAILS

Different from previous works (Finlayson et al., 2021; Marks et al., 2024) that use template-based
datasets, we collect real-world data from the Pile corpus (Gao et al., 2020) to ensure diversity and
authenticity. We extract 60k sentences in the present tense in English and flip the forms of the verbs.
We ensure the high quality of our dataset and believe it is meaningful for further research. For the
details of our dataset and task definiitons, please refer to Appendix E.1.

We use GPT2-small Radford et al. (2019) in this task. We set the output of the attention and the MLP
in each layer as upstream nodes, and the input of the query, key, value and the MLP in each layer as
downstream nodes. During training, we use the logit difference discussed before as the metric Lm

for the quantization of the final output during graph pruning. We follow Syed et al. (2023) for path
patching with mean ablation, with an improvement detailed in Appendix E.4.5. We sweep over a
range of N which is the number of edges to be saved during graph pruning. Mini-batch SGD is used
for optimization. We train the model under each setting for 3 epochs where the performance almost
converges. More details can be found in Appendix E.2.

4.3 MAIN RESULTS
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(a) Logit difference

1k 2k 3k 4k
Steps

75

80

85

90

95
full fine-tuning
top_N=10
top_N=15
top_N=20
top_N=50
top_N=500
top_N=1000
top_N=30000

(b) PPL

Figure 2: The change in logit difference and PPL dur-
ing training on the subject-verb disagreement task.

From Figure 2(a), we observe a flip in logit
difference from negative to positive, which
means the model adjusts its grammar to
fit the data distribution of subject-verb dis-
agreement. One noteworthy finding is that
the model can generate abnormal texts in
the past tense, such as “to be or not to
be, that were a ...”, which implies that the
model really grasps the new grammar and
applies it smartly, since there is no sentence
in the past tense in our training data at all.
With the increasing number of top N edges,
the logit difference increases until N ap-
proaches 1000. The number of tunable parameters is also saturated at this point. This implies that
when N = 1000, almost all the necessary parameters for this task are included, and the performance
cannot be further improved, suggesting the minimality of the subgraph at this point.
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(c) After fine-tuning

Figure 3: Visualization of the flip of the Subject Attribute Heads. (a): A 2D illustration of the flip in
the functionality of the Subject Attribute Heads. (b) (c): Heatmaps of the dot-product between the
output of each attention head and WU(vflip)−WU(v) before and after fine-tuning.

We also track the perplexity (PPL) calculated on the validation set. In Figure 2(b), we find that
the PPL of full fine-tuning is high and fluctuates wildly during training, though the logit difference
of it is higher. This implies that circuit-tuning provides better training stability as well as better
preservation of the basic language modeling ability over full fine-tuning. This is because under
identical experimental settings, circuit-tuning adjusts a smaller yet more critical subset of parameters
compared to full fine-tuning. By minimally affecting the parameters corresponding to task-agnostic
general capabilities, it exhibits greater stability during the learning and generalization process.

4.4 ANALYSES ON LEARNING DYNAMICS

Finding 1: Interpretation of the circuits Inspired by Wang et al. (2022), we decompose the
circuit into attention heads of different functions. Firstly we find out the heads that decide the
form of the verb according to the attributes (person & number) of the subject, namely the Subject
Attribute Heads. Then we find out the heads responsible for the localization of the subject via
analysis on the attention patterns, namely the Subject Identification Heads. Finally, we find out
heads that could affect the behaviors of the Subject Attribute Heads, namely the Collaborative
Heads. For technique details and visualization of the heads, please refer to Appendix E.4.1.

Finding 2: The flip of the Subject Attribute Heads The Subject Attribute Heads are responsible
for matching the subject and the verb. We compute the dot product between the output x of each
attention head at the END token and WU(vflip)−WU(v), the difference between the unembedding
projections of the two verbs. Since the latter is fixed, we expect the projection of x on it to be large,
thus encouraging the probability difference between the two opposite verb forms. We visualize
the dot production of the heads before and after fine-tuning in Figure 3. Through comparison,
we observe an obvious flip at head.10.9, implying the reversal in its function from subject-verb
agreement to disagreement. Other heads (3.0, 6.0, 4.4, 10.9, etc) also see flips with varying degrees,
implying the self-adjustment of the functions inside the nodes. See Appendix E.4.1 for details.

Finding 3: The sharing of the Subject Identification Heads The Subject Identification Heads
attend heavily to the subject. One type of these heads attends to the END token (0.1, 0.3, etc),
which is helpful to the cases like “they are”; the other type of heads (8.5, 10.5, etc) attends to the
subject several tokens before, which is helpful to the cases like “the girl wearing a dress is”. We
check the attention patterns in both types of these heads and find that they behave the same before
and after fine-tuning. This implies that their functions are preserved and shared all the way down.
This is consistent with the conclusion by Aghajanyan et al. (2020) that pre-training optimizes the
description length without having direct access to the same tasks. The consistency further confirms
the feasibility of our hypothesis in Section 3. In fact, these subgraphs share a significant portion of
their structure (see Figure 11). These structures are crucial for the target task, while their function is
shared before and after fine-tuning, thus they do not undergo the reversal seen in Finding 2.

Finding 4: The interaction and collaboration inside the model Interestingly, we observe that
over the training process, the nodes inside a circuit complete a task through a cooperative division
of labor. Each head has its division of labor as discussed before. Besides, some heads directly affect
the output (e.g. head.8.5), while others (e.g. head.7.4) cooperate with them to affect the output
indirectly. Several heads achieve a common goal through cooperation: they could affect a head only

6
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Table 1: Some of the strengthened and weakened edges during training. The dynamic change shows
the change in the logarithm of the edge contribution log[1+ c(e)] (the start of training→ 2000 steps
→ 3000 steps→ 4000 steps). The dynamic process is visualized in Figure 4.

Strengthened Edges Weakened Edges

Edge Dynamic change Edge Dynamic change

mlp.2→ head.11.8.v 0→ 0.2744→ 0.5091→ 0.9138 mlp.2→ mlp.8 0.1122→ 0.0869→ 0.0619→ 0.058
mlp.1→ head.11.8.v 0→ 0.2227→ 0.3978→ 0.7231 mlp.1→ mlp.5 0.1043→ 0.0859→ 0.0736→ 0
mlp.2→ mlp.3 0→ 0.0293→ 0.0993→ 0.2282 mlp.0→ mlp.10 0.2712→ 0.0580→ 0→ 0
mlp.1→ mlp.4 0→ 0.0396→ 0.0652→ 0.1748 mlp.4→ mlp.11 0.1791→ 0.0454→ 0.0428→ 0
mlp.2→ mlp.5 0→ 0→ 0.1246→ 0.1734 mlp.4→ mlp.11 0.1885→ 0.0343→ 0.0259→ 0
... ... ... ...
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mlp.9
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(a) circuit at 2000 steps
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(b) circuit at 3000 steps

mlp.3

head.11.8mlp.11

mlp.1
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(c) circuit at 4000 steps

Figure 4: Phenomenon similar to Hebbian learning during the fine-tuning on the subject-verb dis-
agreement task. We only present the Top-35 edges and the relevant nodes for clarity. The thickness
of an edge is proportional to the logarithm of its edge contribution. The comparison among circuits
at different steps helps us locate the key components for a task in a dynamic style.

through combined effect, and adjust themselves during training. These are found by knocking out a
group of heads and check the change in the behaviors of others. See Appendix E.4.1 for details.

Finding 5: The Evolution of Functional Pathways To further investigate the learning dynam-
ics of fine-tuning, we visualize some of the circuits during fine-tuning in Figure 4. We calculate
log[1 + c(e)] as the thickness of an edge with its edge contribution c(e). As fine-tuning progresses,
we observe a distinct “strengthening” of specific edges, such as the connections between mlp.1/2
and head.11.8 (a Subject Identification Head). This strengthening indicates that the model actively
consolidates the pathways where both neurons are active, since the edge contribution is relevant to
the activation of an upstream node and the gradient of the patching metric with respect to the down-
stream node, as detailed in Equation 11. This dynamic mirrors the result of Hebbian learning (Do,
1949): pathways that successfully transmit task-relevant information are reinforced.

In addition, several edges are weakened at the same time (Table 1), which is similar to the lateral
inhibition among neurons (Jacobson, 1993) that an activated neuron can reduce the activity of its
neighbors. The weakened edges indicate that during fine-tuning, the model learns to reduce the rel-
evance of nodes associated with functions irrelevant to the target task, thus removing redundancy in
the circuit. This kind of property is helpful for interpretability research which encourages the spar-
sity of model structures. From another point of view, circuit-tuning is similar to the self-organizing
maps (SOM) (Kohonen, 2012), an unsupervised algorithm that leverages the Winner-Take-All strat-
egy to perform competitive learning. Circuit-tuning encourages the nodes inside a computational
graph to represent data through competition, i.e. given an input, some nodes / edges are activated
while others are inhibited. More details of this analogy are presented in Appendix E.4.3.

Thus, circuit-tuning is more useful than static circuit discovery when measuring the importance of
a component during training. It actively locates the key components for the target task and restricts
the parameter updates to them, whereas static circuit discovery neglects the trajectory of how this
importance changes. It is this property that allows the model to actively develop a new circuit from
the original “base circuit” (e.g. the circuit for normal English grammar). In addition, circuit-tuning
encourages a model to separate a sparse structure for parameter optimization instead of influencing
all parameters, which brings sparsity that is convenient for interpretability analysis during training.
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(a) Average parameter ratio
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(b) Final logit difference
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(c) Final PPL

Figure 5: The changes in indicators with various choices of N (number of edges). The turning
point at N = 1000 implies the minimal of the subgraph for a target task at this point. Note that the
parameter ratio varies and depends on the granularity of nodes. Theoretically more granular nodes
result in lower parameter ratio because the location of the intrinsic nodes would be more precise.

4.5 ABLATION STUDIES AND FURTHER DISCUSSIONS

The quality of the discovered circuit We first calculate the faithfulness and completeness Wang
et al. (2022) of the circuits according to Equation 12 and 13. Faithfulness tells how much per-
formance a circuit gets, while completeness tells how much performance a circuit fails to capture.
As shown in Figure 8, the setting N = 1000 reaches a relatively high faithfulness and extremely
low completeness, demonstrating the effectiveness of our method to find the required parameters.
We also observe an obvious turning point of the faithfulness and completeness at N = 1000 as N
increases in Figure 8, which echoes the previous discussions in Section 4.3.

To further explore this, we plot the logit difference, PPL and the average parameter ratio in Figure
5. The average parameter ratio is computed during training. Every time after graph pruning, we
recorded the number of the parameters ni corresponding to the nodes in the circuit, where i is the
count for graph pruning. After training, we calculated the average parameter ratio as 1

M

∑M
i=1

ni

Np
,

where M is the total number of the times for graph pruning, and Np is the total number of the pa-
rameters in the model. The average parameter ratio describes the proportion of the critical subgraph
relative to the entire computation graph. Similarly, we notice a common turning point of the three
indicators at N = 1000 in Figure 5. These findings all imply the shadow of the “intrinsic graph”.

Balancing the target task and general capabilities We provide an ablation study to randomly
unfreeze the nodes outside the circuit during training and check if the performance is influenced.
In practice, we randomly activate 10%, 20%, 30% and 40% of the parameters outside the final
subgraph of subject-verb disagreement at N = 1000, re-train the model and compare the results with
before. As shown in Figure 9, we find that the performance is improved at the expense of harming
other abilities, as the PPL on the validation set rises with the increase of irrelevant parameters.
This implies that the “intrinsic graph” (the minimal subgraph) could strike a balance between the
performance on the target task and the general capabilities. When a larger number of parameters
are tuned, the target task could overwrite parameters that encode knowledge from other domains,
thereby adversely affecting the general capabilities of the model.

5 ENHANCED FINE-TUNING PERFORMANCE WITH CIRCUIT-TUNING

5.1 TASK DESCRIPTIONS AND EVALUATION METRICS

In this section, we test our method on larger models and more complex tasks. We apply circuit-
tuning to Llama-3.2-1B/3B and Llama-3.1-8B (Dubey et al., 2024). We prepare two types of tasks
based on whether reasoning is involved. For reasoning-based tasks, we focus on mathematics and
logical reasoning. We use GSM8K (Cobbe et al., 2021) with zero-shot accuracy and Contexthub
(Hua et al., 2024) with F1 score as datasets and metrics for mathematics and logical reasoning.

For reasoning-free tasks, only the final answer or a signal token is required. We prepare a gender
de-biasing task which requires the language model to develop an unbiased perspective on genders,
and a reading comprehension task which requires only the keywords as the answer. For the gender-
debiasing task, we use BUG Levy et al. (2021) for training and WinoBias Zhao et al. (2018) for
evaluation. We use the prejudice risk proposed in Liu et al. (2024) as the evaluation metric. For the
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reading comprehension task, we use SQuAD 2.0 Rajpurkar et al. (2018) with exact match and F1
score as evaluation metrics. Task settings and data examples are detailed in Appendix F.1.

To check if other capabilities are preserved during training, we evaluate on benchmarks involving
general abilities as well as reasoning, coding, and multilingual abilities. For general abilities, we use
MMLU Hendrycks et al. (2020), Winogrande Sakaguchi et al. (2021) and IFEval Zhou et al. (2023).
For reasoning, coding and multilingual abilities, we use GPQA Rein et al. (2023), HumanEval Chen
et al. (2021) and MGSM Shi et al. (2022) respectively. See Appendix F.3 for evaluation details.

5.2 IMPLEMENTATION DETAILS

Algorithm settings For circuit-tuning, the graph settings of our method are the same as before in
Section 4.2, except that each MLP layer is split into 64-dimensional “MLP heads” to achieve finer
granularity. The settings of upstream / downstream nodes are presented in Table F.2. As for the met-
ric Lm for the quantification of a model’s prediction during circuit discovery, for gender de-biasing,
we use the logit difference between male attribution words like he/his and female attribution words
like she/her. For other tasks, we simply set Lm as identical to the negative log probability loss
for language modeling. Since the model abilities or behaviors for completing these task are hidden
among multiple tokens, we focus on the overall ability in terms of a task instead of manually separat-
ing out a single capability (e.g. the Add capability in math). For gender de-biasing, We selectively
add β · |Lm| that acts as a regularization term in the loss L for explicit guidance.

Choice of hyper-parameters Previous discussions in Section 4.5 point out that circuit-tuning has
the potential to preserve general capabilities during fine-tuning. To further verify this, we compare
it with full fine-tuning and LoRA. For LoRA, we sweep over a wide range of values and set rank
r = 32 and α = 64 for all experiments, since the task performance is the best under this setting. For
circuit-tuning, we set K = 8, i.e., we perform circuit discovery every 8 steps of optimization for
efficiency. For each method, we report the best results we could get for fairness of comparison.

As for the decision of the number of edges N in a circuit, we perform graph pruning under several
choices of N on a batch of samples before fine-tuning. Then we calculate the faithfulness and
completeness under each setting. This will result in a curve with a knee-point similar to that in
Figure 8. The value of N at the knee-point is what we use. In pratice, we use 2000, 3000, and 4000
for 1B/3B/8B models, respectively. Details for other hyper-parameters are shown in Appendix F.2.

5.3 MAIN RESULTS AND DISCUSSIONS

Table 2 presents the main results of the experiment. We introduce the rate of change in performance
to measure the ability to preserve general capabilities. Suppose our target task is T0, and the tasks
used for the evaluation of general capabilities are T1, . . . , Tn. If the model’s performance on the test
sets of T1, . . . , Tn (measured by accuracy or other metrics) before and after training are a1, . . . , an
and a′1, . . . , a

′
n, respectively, then the rate of change in performance ∆a is defined as:

∆a =
1

n

n∑
i=1

a′i − ai
ai

(3)

In practice, for fairness, all evaluation results are the average of 10 runs with random seed.

From Table 2, it can be observed that circuit-tuning achieves strong performance on all four tasks,
and obtains the best performance on three of them except math. For math, the performance of circuit-
tuning is superior to that of LoRA but does not match full fine-tuning. This reflects a key property
of circuit-tuning: it strikes a trade-off between target tasks and general capabilities. Compared to
other tasks, the abilities required for math are more specialized, and the math expressions differ
significantly from natural language. Therefore, when we select the N corresponding to the knee-
point to limit the subgraph size in circuit-tuning, the model will constrain parameter updates as much
as possible to the part of the computational graph responsible for math, while minimizing the impact
on other parts. This avoids improving target task performance by co-opting parameters from other
capabilities, which would otherwise harm general capabilities. This point is also supported by the
general capability results in Table 2, which show that our method is better at preserving them.
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Table 2: Evaluation on complex tasks. All results are the average of 10 runs with random sampling.

Methods & Tasks
Math Logical

Reasoning
Gender

De-biasing Reading General
Capabilities Computation

Acc@1 (%) F1 (%) Prejudice
Risk ↓

Exact
Match(%)

Performance
Change (%)

Avg Param
Ratio

Llama-3.2-1B-it 40.71 20.35 0.555 39.68 / /
Llama-3.2-1B-it-full-tuning 46.47 26.89 0.533 36.73 0.14 1.00
Llama-3.2-1B-it-lora 44.58 22.51 0.530 34.30 -8.55 1.79e-2
Llama-3.2-1B-it-circuit-tuning 45.56 27.06 0.312 41.78 2.33 7.65e-2
Llama-3.2-3B-it 70.36 42.71 0.641 54.12 / /
Llama-3.2-3B-it-full-tuning 75.44 47.32 0.632 55.63 -2.54 1.00
Llama-3.2-3B-it-lora 73.54 46.27 0.638 54.73 -3.92 1.49e-2
Llama-3.2-3B-it-circuit-tuning 74.35 47.59 0.417 56.58 -1.80 8.57e-2
Llama-3.1-8B-it 76.19 46.41 0.651 58.92 / /
Llama-3.1-8B-it-full-tuning 83.76 49.53 0.640 59.60 -2.76 1.00
Llama-3.1-8B-it-lora 80.21 47.64 0.643 58.97 -4.15 1.03e-2
Llama-3.1-8B-it-circuit-tuning 82.97 50.54 0.420 60.04 -0.94 9.37e-2

In Table 2, we report the average tunable parameter ratio. It is evident that, compared to full fine-
tuning, our method requires updating a much smaller number of parameters, focusing more on
task-related parts. Although circuit-tuning requires more computation than LoRA, it achieves better
performance on both the target task and general capabilities.

It should be noted that introducing more parameters for optimization does not necessarily lead to su-
perior performance. When we increase the number of parameters for LoRA (by increasing the rank
and adjusting α), its performance does not improve. This reflects a limitation of LoRA: although it
updates parameters in a subspace, it does not explicitly select parameters relevant to the target task.
In contrast, circuit-tuning can adaptively select the parameters during fine-tuning. For instance, if
certain parameters receive more adjustments in the early stages of training but need to remain stable
later on, the corresponding nodes in the computational graph will then be discarded.
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Figure 6: The prejudice risk before and after
circuit-tuning. A regularization term in the loss
could help to modify a model’s stereotype.

Through the experiments in this section, we have
demonstrated that circuit-tuning can be extended
to larger models and more complex tasks. From
an interpretability perspective, we can analyze the
learning dynamics using methods similar to those
in Section 4. For math tasks, for example, we can
analyze the changes in edge contribution with the
number of training steps to locate the key parame-
ters responsible for the task. This allows for flex-
ible interventions and more precise fine-tuning for
that task. Similarly, as described in Section 5.2,
we selectively added a regularization term related
to the target capability to the loss function for the
gender de-biasing task, as shown in Equation 16.
The prejudice risks of the models before and after
gender de-biasing are visualized in Figure 6. Following Liu et al. (2024), we regard the distribution
of prejudice risk as a normal distribution over the 40 types of occupations in the WinoBias test set
and perform interpolation on the computed results. The dynamic process of de-biasing can be ob-
served from right to left in Figure 6. It is obvious that with a regularization term in the loss function,
the distribution of the prejudice risk is more concentrated to a smaller value. Thus we can customize
the algorithm settings in circuit-tuning flexibly according to the requirement of a task, demonstrating
its flexibility and effectiveness in practice.

6 CONCLUSION

We describe the learning process of a model as dynamically finding the subgraph for a specific task
and updating the relevant parameters in that subgraph. We propose circuit-tuning as a promising tool
for the study of learning dynamics during fine-tuning. We analyze the mechanism behind learning
and provide new findings and insights for our understanding of how a neural network learns and
generalize. Limitations and future discussions of our work are shown in Appendix A.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of this work, key supporting materials are distributed in the main text,
appendix, and supplements. The anonymous source code for our proposed algorithm is available
in Supplementary Material. Dataset details—including sources, preprocessing, and splitting—are
overviewed in the main text and detailed in the Appendix and Supplementary Material. These ma-
terials enable accurate replication of our results. Finally, LLMs are used to aid our writing of this
paper.
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A LIMITATIONS AND FUTURE DISCUSSIONS

In this section, we report some limitations about our work, and discuss some potential research
directions based on our method.

1. The infra of our method could be further improved. We believe it is possible to apply
our method to much larger models, while it requires stronger frameworks. We leave it for
furture development.

2. We do not test our method with different granularities. The node in a computational graph
could be a neuron, a group of neurons, the activation of an attention head or even a layer.
Also, it could be a latent in the representation of a sparse autoencoder. While in our exper-
iment, we treat the activation of each attention / MLP head as a node for convenience. We
believe it is possible to try other granularities.

B THE USE OF LARGE LANGUAGE MODELS

LLMs are used to aid our writing of this paper, primarily for checking vocabulary, correcting gram-
mar, and polishing the prose.

C TRANSFORMER ARCHITECTURE

The models we use in our experiments are all decoder-only Transformers. We briefly introduce the
Transformer architecture from the mechanistic view, together with its implementation.

A single input of Transformer is x0 ∈ RT , where T is the length of the sequence. The input is
firstly embedded into a vector x ∈ RD×T via the embedding matrix WE ∈ RD×V , where D is the
model dimension. Then x will go through l layers of Transformer blocks for various processings.
From the view of Elhage et al. (2021), we can think of the residual stream as a communication
channel that simply receives the output of the self-attention and MLP operations. Each operation
reads information from the residual stream and writes the processed information into it. Thus the
residual stream is actually the linear sum of various transformations of x together with the original
input x.

In each Transformer layer i(i ∈ [0, L)), the two important operations are self-attention and MLP.
In self-attention, we consider the implementation of multi-head attention. The model dimension
is split into H parts, and the attention operation is performed with H attention heads in parallel.
Each head is thought to be responsible for a specific function. Consider head.i.j (j ∈ [0, H)), the
input x is firstly projected into query, key and value via W i,j

Q , W i,j
K and W i,j

V . The projection
matrices are all in shape RD

H ×D, thus x is projected into xj
Q/K/V ∈ RD

H ×T . Then attention pattern

Ai,j ∈ RT×T is computed via (W i,j
Q xj

Q)(W
i,j
K xj

K)⊤ and some scaling and Softmax operations.
After that, the weighted output z ∈ RD

H ×T is computed via (W i,j
V xj

V )Ai,j . Finally, the output of
head.i.j Attnj

i (x) ∈ RD×T is calculated via W i,j
O · z, where W i,j

O ∈ RD×D
H . Thus, final output of

the self-attention in layer i is Attni(x) =
∑H

j=1 Attnj
i (x).

For the MLP operation in each layer, the input x is projected into xi
in ∈ RDmlp×T via Win ∈

RDmlp×D, and projected back to MLPi(x) ∈ RD×T via Wout ∈ RD×Dmlp . In the Llama
architecture Touvron et al. (2023), the input x is firstly projected into xi

pre ∈ RDmlp×T via
W i

gate ∈ RDmlp×D and is applied with an activation layer, then a dot product is performed between
the activations and xi

in ∈ RDmlp×T which is the input projected by Win ∈ RDmlp×D. Note that we
can also split the MLP into MLP heads, which is done on Llama series models in the complex tasks
in our experiments. For details, please refer to Appendix F.2.

The output of all the L layers are projected into x ∈ RV×T by the unembedding matrix WU ∈
RV×D, which is called the logits. The logit at the end of the sequence is further mapped into a
probability distribution with Softmax over the vocabulary for predicting the next token.
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D THE DERIVATION OF EDGE CONTRIBUTION

Similar to the definition of attribution score in attribution patching (Syed et al., 2023), we can define
the contribution of an edge e : n1 → n2 with n1 as the upstream node and n2 as the downstream
node. We use the indirect effect IE to measure the change in the output caused by the patching
of the edge. Thus given a dataset X for patching, the contribution of edge e can be expressed as
follows:

c(e) = Exi∼X
[
|ci(e)|

]
= Exi∼X

[
|IE(e;xi)|

]
(4)

Note that the contribution of edge e is directly reflected in the change of the final output (the logit
of the language model, etc.), which is the indirect effect caused by the change of the value in the
downstream node n2, while the change of the node n2 is directly caused by the change of the
upstream node n1. The difference between the direct effect and the indirect effect is that the former
keeps all the other nodes that could influence n2 unchanged and only studies the influence from n1

to n2, while the latter allows all the changes in nodes between n2 and the logit. For more refined
definitions for these two concepts, please refer to Pearl (2001).

Therefore, to measure the direct effect from n1 to n2, we set the value of n1 to another value n1(x
′)

while keeping the all other nodes between n1 and n2 unchanged. The indirect effect of e to the final
output is

IE(e;x) =IE(n1 → n2;x)

=Lm

[
M

(
x | do

(
n2 ← n2(x

′)
))]
− Lm

[
M(x)

]
(5)

in which the corrupted value n2(x
′) of the downstream node is

n2(x
′) = n2(x)− nn1

2 (x) + nn1
2 (x′) (6)

Equation 6 shows the direct effect nn1
2 (x′)− nn1

2 (x) from n1 to n2, where

nn1
2 (x′) = nn1

2

(
x | do

(
n1 ← n1(x

′)
))

(7)

To simplify the equation, we apply a first-order Taylor expansion to IE at n2 = n2(x), then

IE(e;x) ≈Lm[M(x)] +
[
n2(x

′)− n2(x)
]⊤∇n2

Lm[M(x)]
∣∣
n2(x)

− Lm[M(x)] (8)

=
[
n2(x

′)− n2(x)
]⊤∇n2

Lm[M(x)]
∣∣
n2(x)

(9)

Thus we have

IE(e;x) =
[
n2(x)− nn1

2 (x) + nn1
2 (x′)− n2(x)

]⊤∇n2Lm[M(x)]
∣∣
n2(x)

=
[
nn1
2 (x′)− nn1

2 (x)
]⊤∇n2Lm[M(x)]

∣∣
n2(x)

(10)

To further simplify Equation 10, we apply another Taylor expansion at n1 = n1(x) to nn1
2 . Then we

have

IE(e;x) ≈
{
nn1
2 (x) +

[
n1(x

′)− n1(x)
]⊤∇n1n

n1
2

∣∣
n1(x)

− nn1
2 (x)

}
· ∇n2Lm[M(x)]

∣∣
n2(x)

=
[
n1(x

′)− n1(x)
]⊤∇n1

nn1
2

∣∣
n1(x)

∇n2
Lm[M(x)]

∣∣
n2(x)

(11)

Thus we come to the final form of edge contribution in Equation 11. Our derivation takes the
simplest situation into consideration, while it works well in practice. For more discussions on the
relevant topic, please refer to Kramár et al. (2024). For implementation details, please refer to our
code.
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E DETAILS FOR THE SUBJECT-VERB DISAGREEMENT TASK

To be brief, the goal of this task is to change the grammar in a language model from (a) to (b) as
follows:

(a) We apologize, but this video has failed to load.
(b) We apologizes, but this video have failed to load.

In the example above, We and this video are subjects, apologize / apologizes and has / have are
verbs, and We and video are also called the END tokens that appear before the verbs. The change
from apologize to apologizes or from has to have is called a flip.

E.1 DATA PREPARATION

We use the first 10k samples from Pile Gao et al. (2020), which consists of 22 smaller, high-quality
datasets. Firstly, in order to get relatively simple and clean sentences, we filter out the content in
Github, ArXiv, PubMed Abstracts, PubMed Central, StackExchange, USPTO Backgrounds, Pile-
CC, DM Mathematics, and FreeLaw. Thus we do not include code or complex formulas in our data.
Secondly, we split the corpus with periods ’.’ as intervals. We remove links to websites, images,
and other files. We also remove sentences that are too short (less than 25 characters). Thirdly, we
leave only the sentences in the present tense in English and ensure that each sentence is a complete
sentence with a punctuation like ’.’, ’?’, or ’!’ at the end. Finally, for each verb in the present tense
in a sentence, we convert it to its opposite form. That is, we convert a verb with a part of speech
VBP like go to VBZ like goes, and vice versa. For be (am / is / are), we flip them following: am→
is, is→ are, are→ am.

We collect 60,000 samples in total. For experiments, we only use half of the data, which is further
split for training (2.4w), validation (3k), and test (3k). All the details for data preparation can be
found in our code.

E.2 EXPERIMENT SETTINGS

We use GPT2-small Radford et al. (2019) for this task. GPT2-small is a decoder-only transformer
with 12 layers and 12 attention heads per attention layer. We set the output of the attention and the
MLP in each layer as upstream nodes, and the input of the query, key, value, and the MLP in each
layer as downstream nodes. This is because the query, key, and value input for an attention head can
only affect downstream nodes via the attention output of that head, so the upstream nodes can only
be attention head outputs, which is also discussed in Kramár et al. (2024). The parameters to update
correspond to the upstream and downstream nodes at both ends of the edges, as discussed in Section
3.2. Details are shown in Table 3.

Table 3: The settings of the nodes and their corresponding parameters in the subject-verb disagree-
ment task. The number of layers L = 12 and the number of attention heads in each layer H = 12.
The notations for parameters are detailed in Appendix C.

Nodes
Upstream Downstream

Attnj
i (x) MLPi(x) xi,j

Q/K/V xi
in

Parameters W i,j
O W i

out W i,j
Q/K/V W i

in

Range i ∈ [0, L), j ∈ [0,H)

For all experiments, we set the learning rate to 1e-3, and batch size to 16. We use mini-batch
SGD with a momentum equal to 0.9 as the optimizer. K is set to 1, which means we perform
graph pruning right after an optimization. Each model is trained for 3 epochs, with 100 steps in the
beginning for warmup. During training, we evaluate on the valid set every 100 steps. The metric
Lm for measuring the flip from subject-verb agreement to disagreement is the logit difference at the
END token, which is:

Lm = logit(Wvflip
|WEND)− logit(Wv|WEND)
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where W denotes the tokens in a sentence. For example, the case “We apologize, but this video has
failed to load.” contains two logit differences: logit(apologizes|We) − logit(apologize|We) and
logit(have|video) − logit(has|video). In practice, we only consider the verbs that are tokenized
as a single token.

As for the calculation of edge contribution, we follow Syed et al. (2023) and use mean ablation when
patching a node. That is to say, for each activation of shape (batch size, seq len, d model), we
replace the value at the END token position in each sample with the mean value of all tokens in all
samples in a batch.

Experiments are conducted on 4 × A40 Nvidia GPUs.

E.3 ANALYSIS OF THE QUALITY OF THE DISCOVERED CIRCUIT

As discussed in Section 4.3, the performance cannot be further improved at N = 1000, where N
is the number of edges saved in circuit discovery. To show this intuitively, the changes with N of
the logit difference, PPL, and the ratio of the trainable parameters are illustrated in Figure 7. We
can observe that there is a sharp turning point at N = 1000, where the curves start to be flat. This
serves as a sign that there does exist a circuit that includes all the parameters responsible for the
subject-verb disagreement task.

To better prove this conclusion and demonstrate the high quality of the circuit found in our method,
we provide another two experiments below.
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Figure 7: The influence from the setting of top N edges.

E.3.1 FAITHFULNESS AND COMPLETENESS

Faithfulness and completeness examine a circuit from two different views. Faithfulness tells how
much performance a circuit gets, while completeness tells how much performance a circuit fails to
capture. Consider a model M with its computational graph G, a circuit C for a specific task T and
a metric Lm for measuring the output of the model, following the definition in Marks et al. (2024),
the faithfulness of the circuit C is

Lm[M(C)]− Lm[M(∅)]

Lm[M(G)]− Lm[M(∅)]
(12)

in which M(∗) denotes the forward pass of model M with the nodes outside ∗ mean-ablated, and ∅
denotes an empty circuit. The completeness is defined as

Lm[M(G\C)]− Lm[M(∅)]

Lm[M(G)]− Lm[M(∅)]
(13)
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where G\C denotes the complementary set of circuit C. The completeness of circuit C is actually the
faithfulness of circuit G\C.

In practice, we calculate the faithfulness and completeness of the circuits for subject-verb disagree-
ment at N = 100, 500, 1000, 5000, 10000 edges. Results are shown in Figure 8. It can be seen
that N = 1000 also serves as a turning point for the curves of faithfulness and completeness. The
faithfulness of the circuits remains relatively high after N = 1000, ensuring the high quality of
circuits.
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(a) Faithfulness
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(b) Completeness

Figure 8: The faithfulness and completeness of the circuits for subject-verb disagreement.

E.3.2 ABLATION STUDY OF RANDOM ACTIVATION

Random activation means during training, we randomly unfreeze some parameters outside the cir-
cuit. Since we assume that the circuit with N = 1000 edges already includes all needed parameters
for the subject-verb disagreement task, we randomly select a part of the parameters outside the
N = 1000 circuit and involve them in optimization. In practice, we randomly activate 10%, 20%,
30% and 40% of the outside parameters, and compare the results with before. Results are shown
in Figure 9. When 10% of the parameters outside the circuit are activated, the result is almost the
same as before. When the ratio gets larger, we observe that the PPL is higher than before when
random activation is performed, though the logit difference increases. This is because when extra
parameters are summoned to fit the new data distribution, the original functions corresponding to
those parameters may be destroyed. Thus the performance is improved at the expense of harming
other abilities. Therefore, the circuit we find at N = 1000 edges is almost the exact circuit for
subject-verb disagreement.
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Figure 9: Experiment results of random activation.
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E.4 ANALYSES OF THE TRAINING DYNAMICS

E.4.1 INTERPRET THE CIRCUIT FOR THE SUBJECT-VERB DISAGREEMENT TASK

To interpret the circuit for the subject-verb disagreement task, we first analyze this task from the
human perspective. To decide the form of a verb, we need to (i) find out the subject in the context and
(ii) adjust the form of the verb according to the attributes of the subject, including the person attribute
and the number attribute. Therefore, we assume that there exist at least two kinds of attention heads
responsible for the two functions above respectively. We name the two kinds of attention heads as
the Subject Identification Heads and the Subject Attribute Heads. Note that we only focus on
self-attention instead of MLP because only attention layers move information across tokens, which
is important for completing this task. Besides, each of the whole MLP layers is regarded as a node
in the circuit in our experiment, thus we do not expect to figure out any specific function from it.

Next, we look for the two kinds of heads discussed above.

Subject Identification Heads To find out the Subject Identification Heads, we check the attention
pattern of each attention head at the END token since the END token is directly used for predicting
the verb token. We sort the heads in descending order according to their attention weights from the
END token (query) to the subject tokens (key). Then we keep the heads in which the attention is
mainly paid to the subject in the context.

We find that there exist two types of Subject Identification Heads. The type I heads mainly attend to
the last token itself at the END token, so the attention pattern is a diagonal line. This type of head
is helpful when the subject is exactly the END token, e.g. “He is ...”, “The girls are ...”, etc. The
type II heads attend to the subject which is several tokens before the END token, e.g. “The kid who
is holding an ice cream in hand is ...”, “The famous scientist, who is also an artist, has ...”, etc. The
type II heads obviously have the ability of syntactic analysis and subject identification, while the
type I heads may just happen to attend to the subject that overlaps with the last token.

The type I Subject Identification Heads in GPT2-small includes head.0.1, head.0.3, head.0.5, etc.,
while the type II heads include head.8.5, head.10.5, head.10.9, head.11.8, etc. The attention patterns
for both kinds of heads are shown in Figure 10(a) and Figure 10(b) respectively.

It is worth noticing that the Subject Identification Heads remain unchanged over the training process,
which means their function is preserved and shared between subject-verb agreement and subject-
verb disagreement.
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Figure 10: The examples of the attention patterns in the Subject Attribute Heads. In Figure 10(a),
the END token “video” attends to the subject “video” which is also the END token itself. In Figure
10(b), the END token “opponents” mainly attends to the subject “interaction”.
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Subject Attribute Heads To find out the Subject Attribute Heads, we need to find out which heads
directly affect the match between the verb and the subject, which is measured by the logit difference
between the flipped verb and the original verb at the END token. Suppose the output of the final
layer at the END token is xEND ∈ RD, then the logit difference is (WU(vflip)−WU(v)) ·xEND, in
which WU(vflip) −WU(v) is called the logit lens nostalgebraist (2020). Since the logit lens is fixed,
we expect the projection of xEND on the direction of the logit lens to be large, thus encouraging
the probability difference between the two opposite verb forms (love v.s. loves, etc.). As discussed
in Appendix C, the output xEND which is in the residual stream can be decomposed into the linear
addition of the outputs from the previous layers. Therefore, the output of a Subject Attribute Head
is a part of xEND and would encourage the value of the logit difference. Thus, a Subject Attribute
Head is an attention head that has a large dot product value with the logit lens.

In practice, we calculate the dot product between the logit lens WU(vflip) −WU(v) and the output
Attnj

i (x) from each attention head in each layer over a batch of samples. The result is shown in
the main text in Figure 3. The darker the color, the larger the absolute value of the dot product is,
which implies that the head is more likely to be a Subject Attribute Head. We observe that head.6.0,
head.6.5, head.8.5, head.10.9, and so on see obvious flips (Figure 3(a)) from positive to negative or
the opposite direction, which implies that they are directly responsible for the match between the
subject and the verb. During training, the parameters inside these heads adjust themselves to the
new data distribution, while their function type remains unchanged, which is an interesting finding
of the self-regulation ability inside the model.

Collaborative Heads Finally, we notice that some of the Subject Attribute Heads (head.8.5,
head.10.9, etc.) are also Subject Identification Heads, which means they also attend to subject
tokens. We wonder if there exist some heads in previous layers that could influence the behavior
of the Subject Attribute Heads. That is to say, the Subject Attribute Heads do not act alone but
collaborate with other heads.

To find out these heads, we knock out the upstream heads one at a time at the END token using
mean ablation. We observe the change in the attention pattern of each Subject Attribute Head and
then keep the heads that bring obvious changes in the attention patterns. In practice, we focus on
subject-verb agreement and only check the influence on head.8.5 and head.10.9. We also provide
two types of data, corresponding to the two cases discussed in Appendix E.4.1, in order to provide a
more detailed analysis. Results show that

• When patching on the type I data in which the END token is exactly the subject, head.1.2
and head.2.11 affect both head.8.5 and head.10.9

• When patching on the type II data in which the subject is several tokens before the END
token, head.7.4 and head.2.11 affect head.8.5, while head.2.11 affects head.10.9.

• When we mix the two types of data, we find that head.1.3, 0.8, 2.10, and 6.5 affect head.8.5,
while head.1.3, 1.4, 1.6, 6.5, 0.8, and 0.9 affect head.10.9. These heads may be responsible
for both types of data while not specifically responsible for a certain type of data, so they
appear when patching on the mixed data.

We notice that though the influence of the above heads is relatively large, the absolute influence is
sometimes quite small. Therefore, we further conduct an experiment in which we patch multiple
heads at a time and check the influence of them on head.8.5 and head.10.9. Results show that when
upstream heads are patched together, their combined effect is much higher than the individual effect.
Thus we call these heads the Collaborative Heads.

E.4.2 THE INTERACTION AND COLLABORATION INSIDE THE MODEL

From the discussions above, we can see that the nodes inside a circuit complete a task through a
cooperative division of labor. We summarize the interaction and collaboration inside the model as
follows:

1. Each node is responsible for a single or multiple functions. As discussed in Appendix
E.4.1, we have found attention heads that are responsible for identifying the subject in a
sentence or adjust the form of a verb according to the attributes of the subject, or both.
Each head has its division of labor when completing a task.
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2. Some heads directly affect the output, while others cooperate with them to affect the output
indirectly. For example, head.8.5 directly matches the verb with the subject, while head.7.4,
head.1.3 and so on indirectly affect the output through cooperation with head.8.5.

3. Several nodes achieve a common goal through cooperation. For example, head.1.3, 1.4, 1.6,
6.5, 0.8, and 0.9 affect head.10.9 through combined effect, which means their influence on
head.10.9 only appears when they act together.

E.4.3 THE EVIDENCE OF HEBBIAN LEARNING

As discussed in Section 4.4, we observe that some edges in the circuit are strengthened or weakened
during training, just like the Hebbian learning proposed in Do (1949) in neuroscience. As stated
by Hebb, a synapse between two neurons is strengthened when the neurons on either side of the
synapse have highly correlated outputs, which means they are often activated synchronously. The
theory is often concluded as “Cells that fire together, wire together” Shatz (1992). For two neurons
i and j, a common description of hebbian learning is as follows:

wij =
1

p

p∑
k=1

xk
i x

k
j (14)

where wij is the weight of the connection between the two neurons, and xk
i and xk

j are the k-th
inputs for i and j respectively. When it comes to the computational graph of a model, the nodes
and edges in the graph could be viewed as the neurons and their connections in a brain from the
perspective of neuroscience.

During training, we find that some of the edges are obviously stronger than others, which means
they have higher edge contributions. Besides, they are strengthened all the way during training.
Specifically, we analyze the circuits during training in the subject-verb disagreement task, with the
setting of top N = 1000 edges. We check the results at 2000, 3000, and 4000 steps respectively,
and visualize the circuits with the top 35 edges in Figure 4. Note that the thickness of an edge
corresponds to the logarithm of the edge contribution, that is log[1+ c(e)]. The details are shown in
Table 1.

We also find that the edge contribution may keep decreasing during training. This is quite similar to
the self-organization of cells inside human brains, a well-known phenomenon of which is the lateral
inhibition among neurons Jacobson (1993), which means an activated neuron can reduce the activity
of its neighbors. Inspired by this, Kohonen (2012) developed the self-organizing maps (SOM), an
unsupervised algorithm that leverages the Winner-Take-All strategy to perform competitive learning.
The core ideas behind SOM are:

• The neurons inside a neural network learn to represent data through competition, i.e. given
an input, some neurons are activated while others are inhibited.

• Different inputs are represented in a topologically ordered manner, i.e. different neurons
are responsible for different features in a well-organized style.

In our study, we find that the dynamic change of edges echoes the above discussions on competition
and self-organization. During training, some connections between nodes are strengthened, which
may reduce the intensity of other connections. After training, the components inside a model have
reorganized themselves to adapt to the new data distribution. When faced with an input, different
regions inside the computational graph are responsible for different subtasks and collaborate to
complete a goal, as discussed in Appendix E.4.1 and Appendix E.4.2.

E.4.4 THE CIRCUITS BEFORE AND AFTER FINE-TUNING

We present the circuits of the subject-verb disagreement task before and after fine-tuning in Figure
11(a) and Figure 11(b) respectively. The circuit of subject-verb disagreement is trained under the
setting of N = 1000 edges, and for both of the circuits we only present the top 100 edges. It can be
seen that most of the heads we discussed in Appendix E.4.1 are included in the circuit. Besides, it
is obvious that the circuits before and after fine-tuning share a lot of nodes, which implies that the
function shift from subject-verb agreement to disagreement happens mostly in the polarity change
of nodes, instead of randomly assigning the ability to other nodes. This is an intuitive finding, which
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not only demonstrates the rationality of circuit-tuning as well as our analyses but also provides new
insights for our understanding of the mechanism inside language models.
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(a) The circuit before fine-tuning (subject-verb agreement).
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Figure 11: The circuits of subject-verb agreement (top) and subject-verb disagreement (bottom).

E.4.5 THE EXPERIMENT RESULTS AFTER THE REVISION OF ATTRIBUTION SCORE

During the analyses in Appendix E.4.1, we find that the original definition of the attribution score in
EAP Syed et al. (2023) fails to capture all the relevant edges in a task. For example, head.6.0 which
is a Subject Attribute Head fails to appear in the circuit. We assume that there exists a situation
where an important node is connected with many other nodes, but each edge is not that strong.
For example, as illustrated in Figure 12, an upstream node nu

a is connected with four downstream
nodes, while another upstream node nu

b is connected with only one downstream node. Since the
edge between nu

b and nd
5 is stronger than any edge between nu

a and the nodes connected with it, the
edge nu

b → nd
5 may be kept in the circuit, while the edges in Ea = {nu

a → nd
i |i = 1, 2, 3, 4} may be

left out. As a result, nu
a is not involved in optimization, though the sum of the edge contributions of

all edges in Ea may be almost the same or even larger than that of nu
b → nd

5.

Thus we calculate the edge contribution of an edge e : nu
i → nd

j as below:

c(e)′ = c(e) ·
Ni

down∑
k=1

c(nu
i → nd

k) ·
Nj

up∑
k=1

c(nu
k → nd

j ) (15)
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Figure 12: A sketch for the idea behind the revision on attribution score.

where c(e) is the original attribution score in EAP, N i
down is the number of the downstream nodes of

nu
i , N j

up is the number of the upstream nodes of nu
i . The revision considers the contributions from

all the edges connected to the upstream node and the downstream node. To verify it, we conduct a
new experiment on the subject-verb disagreement task and compare it with the result before. Results
are shown in 13. Details can be found in Table 4. Compared with the original attribution score, our
method improves the logit difference steadily, while even bringing down the computation to some
extent.

1k 2k 3k 4k
Steps

3

2

1

0

1

topN=100
topN=500
topN=1000
topN-new=100
topN-new=500
topN-new=1000

Figure 13: The experiment result after the revision on attribution score.

Table 4: Comparison between the performance before and after the improvement on attribution
score.

Top n & Methods
Original EAP Improved EAP

logit
difference PPL Avg. Param

ratio (%)
logit

difference PPL Avg. Param
ratio (%)

50 0.292 72.59 32.61 0.350 72.71 26.88
100 0.291 72.50 36.96 0.382 72.53 34.12
500 0.670 72.02 43.50 0.819 72.05 42.50
1000 0.937 71.74 45.61 0.970 71.73 45.55
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F DETAILS FOR THE COMPLEX TASKS

F.1 DETAILS FOR TASK SETTINGS

F.1.1 REASONING-BASED TASKS

Mathematics We use GSM8K Cobbe et al. (2021) as the dataset, which contains about 8.5k grade
school math problems with natural language solutions. The answer to a problem not only contains
the final answer but also provides the process for solving the problem. An example of this task is
shown in Table 5.

Table 5: An example in the GSM8K dataset.

Question Answer

Janet’s ducks lay 16 eggs per day. She eats three for break-
fast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ mar-
ket daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

Janet sells 16− 3− 4 =<< 16− 3− 4 = 9 >> 9 duck
eggs a day.
She makes 9 ∗ 2 = $ << 9 ∗ 2 = 18 >> 18 every day at
the farmer’s market.
####18

During training, the NLL loss also serves as the metric Lm for measuring the output of the model.
For evaluation, we use Acc@1 as the metric, which means for each problem in the test set we only
sample one answer from the model.

Logical Reasoning We use Contexthub Hua et al. (2024) as the dataset, which consists of prob-
lems of 4 difficulty levels, including deductive and abductive reasoning in 12 distinct categories or
domains from Wikipedia. The problems together with their reasoning processes are instantiated au-
tomatically by LLMs following the fixed formal logic templates. The whole dataset contains 18,240
samples. We only use level 1 and level 2 in our experiment for convenience, which include 6720
samples in total. An example of this task is shown in Table 6.

Table 6: An example in the Contexthub dataset.

Item Template Instantiation

Premise
<aaa> The Sahara desert receives heavy rainfall this year.
<aab> The Amazon rainforest experiences severe drought conditions.

<aac> Some of Earth’s major ecosystems are undergoing significant changes in weather
patterns.

Question

(aaa OR aab) → aac.
Given aac is False,
what is the value of
aab?

If either the Sahara desert receives heavy rainfall this year or the Amazon rain-
forest experiences severe drought conditions, then it implies that some of Earth’s
major ecosystems are undergoing significant changes in weather patterns. Given
that it is false that some of Earth’s major ecosystems are undergoing significant
changes in weather patterns, what can be determined about the Amazon rainforest
experiencing severe drought conditions this year? (True, False, or N/A (undeter-
mined).

Reasoning

(aaa OR aab) → aac
= False. Given aac
is False, the value
of premise (aaa OR
aab) is False, thus, the
value of aab is ab-
duced as False. Thus,
the answer is False

“The Sahara desert receives heavy rainfall this year” or “The Amazon rainforest
experiences severe drought conditions”) logically implies “Some of Earth’s major
ecosystems are undergoing significant changes in weather patterns” whose cor-
responding truth value is False. Given “Some of Earth’s major ecosystems are
undergoing significant changes in weather patterns” is False, the value of premise
(”The Sahara desert receives heavy rainfall this year” or “The Amazon rainforest
experiences severe drought conditions”) is False, thus, the value of “The Amazon
rainforest experiences severe drought conditionsı̈s abduced as False. Thus, the
answer is <answer>False</answer>

During training, the NLL loss also serves as the metric Lm for measuring the output of the model.
For evaluation, we use the average F1 score over all categories of data.

For all reasoning-based tasks, we add an instruction “Please answer step by step.” at the end of the
question in order to guide the model to answer the question step by step.
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F.1.2 REASONING-FREE TASKS

Gender De-biasing According to Gallegos et al. (2024), there are various kinds of expressions in
social bias. In this study, we focus on the gender bias in occupations. We aims to break down
the binary gender stereotype of a model. For example, given a sentence “the doctor put on [PRP]
coat” where [PRP] is a possessive pronoun, we expect the model to choose his or her with equal
probabilities.

During fine-tuning, the model learns to predict the next word in an auto-regressive way, thus we
expect the model to balance the probabilities between male attribute words (he/his/him/himself) and
female attribute words (she/her/herself) at the END token when generating the next token. There-
fore, we use the logit difference between the male attribute words and female attribute words at the
END token as the metric Lm for measuring the output of the model. Specifically, for each sample,
we calculate the logit difference between the pronoun and the anti-pronoun, which is the pronoun in
the opposite gender. For example, in the case “the doctor put on [PRP] coat”, the logit difference is
logit(Wher|WEND)− logit(Whis|WEND), where WEND is the END token on.

We use BUG Levy et al. (2021) for training, which is a large-scale dataset of sentences sampled
from real-world corpora. Each sentence is marked with an occupation and the pronouns referring to
it. In practice, we use the “balanced BUG” provided in the dataset which includes 2.5w sentences
randomly sampled from BUG to ensure balance between male and female entities and between
stereotypical and non-stereotypical gender role assignments. We perform coreference resolution
ourselves to filter out the samples in which the coreference is not right, and leave 1.5w samples for
training, which contains 151 types of occupations and each sentence only contains one (occupation,
pronoun) pair.

Though the training set we use is balanced between genders and stereotypes, the number of sam-
ples for each occupation is not balanced. To further improve performance, we additionally add a
regularization term to the original NLL loss. Then the total loss is

L = LNLL + β · |logit(Wpron|WEND)− logit(Wanti−pron|WEND)| (16)

in which β is a hyper-parameter for controlling the weight of regularization. The absolute value of
the logit difference aims to minimize the difference between genders in the model’s stereotype.

For evaluation, we use WinoBias Zhao et al. (2018) which is a classic dataset for coreference reso-
lution focused on gender bias. There are two types of sentences in WinoBias. The Type 1 sentences
require world knowledge related to the context to perform coreference resolution, e.g. “The farmer
knows [the editor] because [he] is really famous”. The Type 2 sentences can be resolved using
syntactic information, e.g. “The CEO called [the hairdresser] and paid [her] over the phone”. In
practice, we only use the Type 2 sentences to avoid ambiguity. The test set contains 40 types of
occupations in total.

To better evaluate the performance of gender de-biasing, we adopt the concept of prejudice risk from
Liu et al. (2024) which is used to measure the stereotype in large language models. Specifically,
given an occupation x ∈ X , a binary gender attribute y ∈ {male, female} and a context c ∈ C,
the stereotype of a model M against x about y in the context c is

sMy|x(c) =
pMy|x(c)

p∗y|x(c)
− 1 (17)

where p∗y|x(c)is the attribute prediction probability of the unbiased model, thus p∗y|x(c) = 0.5 when
binary gender is considered. The definition of prejudice risk is

Rp = Ex∼X(rpx) (18)

where rpx = J(Ec∼C(s
M
y|x(c)) is the prejudice risk of one occupation x, and J(sMy|x(c)) =

max
y∈Y
{max{sMy|x(c), 0}} is the discrimination risk criterion. For details, please refer to Liu et al.

(2024).

Reading Comprehension We use SQuAD 2.0 Rajpurkar et al. (2018) as the dataset. The input
contains a paragraph from a passage, and a question related to that paragraph. The answer could be
a word or a phrase in the paragraph, or “<No Answer >” which means the answer cannot be found
in the paragraph. An example for this task is shown in Table 7.
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Table 7: An example in the SQuAD 2.0 dataset.

Item Content

Paragraph

The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the
10th and 11th centuries gave their name to Normandy, a region in France. They were descended from
Norse (”Norman” comes from ”Norseman”) raiders and pirates from Denmark, Iceland and Norway
who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through
generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their
descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct
cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it
continued to evolve over the succeeding centuries.

Question In what country is Normandy located?
Answer France

During training, the NLL loss serves as the metric Lm for measuring the output of the model, since
the answer is a segment of text which may contain one or multiple tokens. For evaluation, we use
the development set for convenience, and the metric is exact match and F1 score.

F.2 DETAILS FOR IMPLEMENTATION

We use Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct and Llama-3.1-8B-Instruct Dubey et al.
(2024) for this task. We set the output of the attention and the MLP in each layer as upstream
nodes, and the input of the query, key, value, and the MLP in each layer as downstream nodes. Dif-
ferent from GPT2-small, an MLP layer in Llama is too big to be a node, so we split the input and
output of each MLP layer into 64-dimensional MLP heads. Details are shown in Table 8.

Table 8: The settings of the nodes and their corresponding parameters in the complex tasks. For
model sizes 1B/3B/8B, the number of layers L = 16/28/32, and the number of attention heads in
each layer H = 32/24/32, and the number of MLP heads in each layer H∗ = 128/128/224. The
notations for parameters are detailed in Appendix C.

Nodes
Upstream Downstream

Attnj
i (x) MLP k

i (x) xi,j
Q/K/V xi,k

pre xi,k
in

Parameters W i,j
O W i,k

out W i,j
Q/K/V W i,k

gate W i,k
in

Range i ∈ [0, L), j ∈ [0, H), k ∈ [0, H∗)

As for the calculation of edge contribution, we use mean ablation as before when patch-
ing a node. For reasoning-based tasks and the reading comprehension task in reasoning-free
tasks, there is no such thing as the END token. Therefore, for each activation of shape
(batch size, seq len, n head, d model), we take all tokens into consideration and use the mean
value over all tokens and all samples for mean ablation. For implementation details, please refer to
our source code.

The batch size is set to 16 in all experiments. We set the learning rate to 3e-5 for the mathematics
and reading comprehension tasks, and 1e-4 for other tasks. Mini-batch SGD with a momentum
equal to 0.9 is used as the optimizer. During training, we perform circuit discovery every 8 steps
after optimization for efficiency, which is different from the experiments on GPT2-small in which
we perform circuit discovery rightly after an iteration step. For each task, we train the model until
performance cannot be further improved.

For LoRA, we set r = 32, α = 64 for all experiments, since this is the best setting we could
get. We have swept a wide range of values for rank r and alpha α, and find that the performance
cannot be further improved or even decreases when r increased over 32. Actually, Hu et al. (2021)
found similar phenomenon when they studied LoRA. From our opinion, this is because LoRA falis
to accurately figure out the key parameters needed to be fine-tuned, since all the parameters are
changed after LoRA fine-tuning.
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For full fine-tuning and LoRA, we use the same optimizer as that in circuit-tuning. For all other
hyper-parameters such as learning rate, batch size, training steps, and so on, we just sweep over a
range of choices and choose the best ones.

In practice, we find that circuit-tuning is much more stable than full fine-tuning and LoRA. When we
sweep over a range of hyper-parameters, we notice that full fine-tuning and LoRA are quite sensitive
to the change of learning rate, batch size, training steps, and so on. When it comes to circuit-tuning,
the change in evaluation result is relatively moderate while still maintaining good performance.

Experiments are conducted on 8 × A800 Nvidia GPUs.

F.3 DETAILS FOR EVALUATIONS ON GENERAL CAPABILITIES

To demonstrate that our method is good at preserving general capabilities, we test the fine-tuned
models on a set of benchmarks involving general capabilities as well as other capabilities.

For general capabilities, we use MMLU Hendrycks et al. (2020), Winogrande Sakaguchi et al.
(2021) and IFEval Zhou et al. (2023). For MMLU, the evaluation metric is the average accuracy
over all categories. For Winogrande, we use the development set for convenience, and the evalu-
ation metric is accuracy. For IFEval which is to test the instruction following ability of a model,
each prompt contains one or multiple verifiable instructions, thus the evaluation metric is divided
into the prompt-level accuracy and instruction-level accuracy. Due to the randomness of generation,
each response is tested under multiple transformations, thus the metric is further divided into strict
criterion and loose criterion. In practice, we use the prompt-level and instruction-level accuracy
averaged on the strict and loose criteria.

For other capabilities, we consider reasoning, coding, and multilingual capabilities. For reasoning,
we use GPQA Rein et al. (2023) with accuracy as the metric. For coding, we use HumanEval Chen
et al. (2021) with pass@1 as the metric. For multilingual capability, we use MGSM Shi et al. (2022)
with the accuracy averaged on all languages.

To check if the general capabilities as well as other capabilities are affected after fine-tuning, we
compute the relative change in performance for each capability. For example, if the evaluation
results before and after fine-tuning are x and x′, then the relative change is x′−x

x . In practice, we
test each model on each benchmark for 10 times.
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