
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHAT CAN YOU DO WHEN YOU
HAVE ZERO REWARDS DURING RL?

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) with outcome-based rewards has proven effective
for improving large language models (LLMs) on complex reasoning tasks. How-
ever, its success often depends on the base model occasionally sampling correct
solutions. When no correct solutions are sampled, training encounters a zero-
reward barrier where learning stalls due to zero gradients. We study this scenario
through the graph search task introduced in Bachmann and Nagarajan (2024) and
evaluate recent methods that incorporate desirable components such as dense re-
wards, diversity incentives, and improved credit assignment. Our experiments
show that none of these approaches overcome the zero-reward barrier if the base
model never produces a correct answer. In contrast, we find that a simple data-
centric intervention of adding easier samples to the training set enables the model
to eventually solve the original hard task despite starting from zero reward. Impor-
tantly, this succeeds without modifying the RL algorithm itself. Because official
implementations of several baselines were unavailable, we developed our own,
which allowed us to conduct a detailed analysis of their failure modes. We release
these implementations to support further research: https://github.com/anon-zero-
rewards/zero-rewards-rl.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a crucial tool in the post-training of large language
models (LLMs) for tackling complex reasoning tasks such as mathematical problem solving (Guo
et al., 2025), web navigation (Putta et al., 2024), and algorithmic discovery (Fawzi et al., 2022).
These advances often rely on sparse rewards, where the model receives only a binary correct-or-
incorrect signal at the end of its response. Although such outcome-based rewards can significantly
enhance model accuracy, their effectiveness typically relies on starting from a reasonably strong
base model (Yue et al., 2025; Gandhi et al., 2025).

When the base model fails to solve a task even after repeated attempts, RL training becomes inef-
fective since zero rewards yield zero gradients, leaving the model parameters unchanged throughout
training, preventing further scaling of RL.

This begs the question:

What can one do if there are zero rewards due to no correct answers
being sampled by the model during RL post-training?

To study this question, we consider the simple task of searching for a path from a source node to a
target node in a star graph from Bachmann and Nagarajan (2024) (see Fig.1). As we will discuss
later, this task enables a controlled and systematic study of how different RL post-training methods
perform under zero outcome rewards (see Sec.2).

While one could address the issue of zero rewards by performing supervised fine-tuning (SFT) on
human-written or model-generated traces and then apply RL (Gandhi et al., 2025), we deliberately
rule out this option for the sake of this study. This lets us isolate and evaluate methods specifically
intended for scenarios with zero outcome rewards during RL training.

The above assumption leaves us with several interesting approaches to tackle the problem of zero
rewards. For instance, one could apply reward shaping (Setlur et al., 2025a; Qu et al., 2025) to

1

https://github.com/anon-zero-rewards/zero-rewards-rl
https://github.com/anon-zero-rewards/zero-rewards-rl

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

200 400 600 800
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate on Baselines on Deg-10-Path-10 Graph
Deg-10-Path-10 Dr. GRPO
Deg-10-Path-10 VinePPO
Deg-10-Path-10 Progress-Reward
Deg-10-Path-10 BoN Aware Finetuning
Deg-5-Path-5-Deg-10-Path-10 Dr. GRPO

Figure 1: (Left) Illustration of the Degree-3-Path-3 task, where the center node (4) has degree
3 and each outgoing path has length 3. The graph is represented as an adjacency list, and given
a source node (4) and a destination node (7), the task is to output a path from source to destina-
tion (e.g., 4, 2, 7). See Appendix C for the prompt used. (Right) Success rates of different baselines:
Dr.GRPO, VinePPO, Progress Rewards, and Best-of-N aware finetuning, compared with
our data-mixing approach, which augments the training dataset with an equal proportion of samples
from the easier Deg-5-Path-5 dataset. The baselines fail to break the zero-reward barrier, yield-
ing zero success on the test set, whereas mixing in easier samples if effective with outcome rewards.

obtain dense rewards that provide a learning signal based on the quality of intermediate steps, even
when outcome rewards are zero. One could also explore approaches that improve credit assignment
for intermediate steps in reasoning (Kazemnejad et al., 2024). Alternatively, the model could be
incentivized to sample diverse responses during RL fine-tuning (Chow et al., 2025), in the hope that
at least one response receives a non-zero reward, thereby kick-starting RL training.

However, to our surprise, we find that all of these methods fail (Figure 1) on the simple graph search
task1, despite being specifically designed for cases with zero outcome rewards (see Sec. 3). We
investigate these methods and discuss possible explanations for their failure (Sec. 4.1 and App. A).
Notably, no official code was available for several of these baselines, so we implemented our own
versions, which we release for the community to build upon.

In contrast, we show that a simple data-centric intervention unlocks RL training. By adding
easier2 instances to the training dataset, the model gradually learns to solve the harder task using
outcome rewards only, even when it was initially unable to do so. Crucially, this is achieved
without modifying the RL algorithm at all.

This strategy can be seen as a form of implicit curriculum (Stojanovski et al., 2025; Setlur et al.,
2025b). In the discussion, we explain how this intervention can aid skill learning (Eysenbach, 2025),
and how correlated actions learned from easier samples (see Sec. 5.3) can transfer to harder tasks
that the base model could not previously solve.

Our contributions are three fold: (i): We benchmark recently proposed RL algorithms that aim to (a)
improve diversity in samples (Chow et al., 2025), (b) perform credit assignment (Kazemnejad et al.,
2024), or (c) apply reward shaping (Setlur et al., 2025a), and observe that none of these approaches
are effective under zero outcome rewards on a graph search task. (ii): We demonstrate a simple
data-centric approach is able to unlock RL training, where mixing samples of easier difficulty helps
the model learn to solve the original hard task, even when the model initially could not do so. (iii):
In the process of benchmarking different approaches, we implement baselines for which no official
code was available, and provide a detailed analysis of why these methods are ineffective in zero
outcome rewards scenario.

2 EXPERIMENTAL SETUP

In this section, we describe the task and outline the baselines we compare against.

Q: What is the task?

1In scenarios where the base model cannot sample a correct answer
2Samples where the base model can generate a correct answer and receive a non-zero reward

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A: We study the graph search problem introduced in Bachmann and Nagarajan (2024). As shown
in Fig. 1, the input is an adjacency list representing a star graph, along with a source and destination
node. The task is to output the path from the source to the destination, where the source is always
the center of the star and the destination is one of its leaf nodes. To benchmark models in the zero-
reward setting, we use the Degree-10-Path-10 graph, where the center node has degree 10 and
each branch has length 10. As illustrated in Fig. 1, existing methods fail on this task.

Q: Why bother about a graph search problem?

A: Although the task may seem simple, it has several properties that make it well-suited for our
study: (i) Controlled difficulty: The task supports automatic dataset generation at varying diffi-
culty levels, allowing a systematic study of how training on easier instances transfers to harder ones.
(ii) Challenging for transformers: Prior work shows that transformers struggle to directly output
the correct path, but if they perform intermediate reasoning in a chain of thought, they can effec-
tively search through the graph in-context. (iii) Low reliance on world knowledge: Solving these
tasks does not require external knowledge. This is a critical feature, as it allows us to isolate the core
technical challenge, the zero-reward barrier, without the confounding factors of external informa-
tion such as knowledge of theorems or lemmas which are often useful for mathematical reasoning
problems. This also enables rigorous comparisons of methods with modest compute using relatively
small models (e.g., 1.5B parameter scale).

Q: What baselines do we evaluate?

A: We evaluate three recent methods that tackle different challenges in reinforcement learning for
reasoning tasks. VinePPO (Kazemnejad et al., 2024) improves step-level credit assignment by
measuring the change in value between states before and after each reasoning step using Monte
Carlo rollouts. Although this slows individual training iterations, it reduces gradient variance and
stabilizes learning. Along similar lines, Rewarding Progress (Setlur et al., 2025a) combines out-
come rewards with step-level advantages estimated under a different policy, encouraging exploration
and making it particularly effective on hard problems. Best-of-N-aware (BoN) finetuning (Chow
et al., 2025) takes a complementary approach by modifying the training objective to better match
inference-time goals: instead of requiring all N generations to be correct, it encourages producing
at least one correct output among N attempts. This promotes diversity in the model’s outputs and
increases the likelihood of obtaining a non-zero reward to initiate RL training. Together, these meth-
ods represent state-of-the-art strategies for addressing sparse rewards. For details on the objective
and implementation refer Appendix A.

Q: What is the training setup?

All experiments were conducted on 4 NVIDIA H100 GPUs using Qwen2.5-1.5B-Instruct as the base
model. Each experiment was limited to a maximum of 24 hours or 1,000 RL iterations, whichever
occurred first. While we used a single model across all experiments, we expect our findings to gen-
eralize to other models. The primary difference would be which tasks are challenging: for Qwen2.5-
1.5B-Instruct, the Degree-10-Path-10 dataset is difficult, whereas other models might find it
easier or harder. Nevertheless, increasing task complexity would likely lead to failures even for
larger models.

3 BASELINES FAIL UNDER ZERO OUTCOME REWARDS

Surprisingly, all the baseline methods we tried—namely, naive RL (Dr. GRPO) Shao et al. (2024),
VinePPO Kazemnejad et al. (2024), Rewarding Progress Setlur et al. (2025a), and Best-of-N-aware
finetuning Chow et al. (2025)—failed on the simple star graph search task, specifically on the
Degree-10-Path-10 instance (see Fig. 1).

While naive RL is expected to fail under zero-outcome rewards, it is notable that the other baseline
methods also fail to solve the task, despite being designed to operate under such conditions.

A keen reader may already have several questions about this result. Before proceeding further, we
first address these potential questions.

Q: Is this task even solvable?

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We will see in Section 5 that the Degree-10-Path-10 task is indeed solvable. Furthermore,
Fig. 2 shows that all baselines can solve the easier Degree-3-Path-3 task, in which the center
node has a degree of 3 and each outgoing path consists of 3 nodes.

Q: Are you sure this isn’t a hyper-parameter issue in the baselines?

To rule out any implementation issues, we focused on several important aspects of each method. For
VinePPO, we increased the number of rollouts used to estimate the value of intermediate states,
giving the model additional chances to reach the correct answer. To meet the requirements of de-
sirable provers outlined in Setlur et al. (2025a), we experimented with more powerful provers that
can occasionally solve the Degree-10-Path-10 task. For Best-of-N aware finetuning, we
followed the recommended practices described in Chow et al. (2025), testing two different schedules
for the KL coefficient and increasing clipping for the sample-dependent weights.

Unfortunately, none of our interventions succeeded. A discussion of these experiments is provided
in Section 4.1. In Sec. 5 we discuss a simple data-mixing strategy that helps the unlock RL training.

50 100 150 200 250 300 350
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate on Degree-3-Path-3 Graphs

Dr. GRPO
VinePPO
Progress-Reward
BoN-Aware-Finetuning

Figure 2: Success rates of different RL algorithms (Dr.GRPO, VinePPO, Progress Rewards,
and Best-of-N aware finetuning) on a held-out test set of Degree-3-Path-3 graphs. These
models were trained on Degree-3-Path-3 graphs. All algorithms are able to solve the task
when the model starts with a reasonable success rate. Furthermore, VinePPO converges in fewer
iterations compared to Dr.GRPO, consistent with findings reported in the literature.

4 FAILURE ANALYSIS OF BASELINES

All four baselines, including Dr.GRPO, Progress Rewards, VinePPO, and Best-of-N
aware finetuning, receive no rewards during training, and thus have zero success rates at test time
(see Fig. 1). For the VinePPO and Progress Rewards baselines, we use Monte Carlo roll-
outs to estimate the value of intermediate states and compute step-level advantages (refer Appendix
A), which makes each RL iteration roughly five times slower. Nevertheless, we continued train-
ing these two methods for approximately five times longer than Dr.GRPO and Best-of-N aware
finetuningto rule out the possibility that they might start solving the task at later stages. Despite this
extended training, we observe that these methods remain unable to solve the task.

As we discuss in Section 4.1, a key reason for the failure of some baselines on the
Degree-10-Path-10 task is the base model’s inability to occasionally sample correct tra-
jectories. To rule out any implementation issues, we also experimented with a variant of the task
where the center node has a degree of three and each outgoing path has three nodes. In this setting,
the base model has an initial success rate of ∼ 20%, analogous to the conditions explored in prior
work where the base model starts with a reasonable success rate. As shown in Fig. 2, we observe that
(i) all algorithms are able to solve the task when the base model begins with a reasonable success
rate, and (ii) although each iteration of VinePPO is more expensive, it converges in fewer iterations
compared to Dr.GRPO, consistent with findings reported in the literature.

4.1 CASE-BY-CASE ANALYSIS

Here we discuss some of the reasons why the baselines are ineffective on harder variants of the task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Dense rewards are not really dense in VinePPO and Progress Rewards: Methods like
VinePPO and Progress Rewards go beyond Dr.GRPO by computing step-level advantages.
However, non-zero step-level advantages are obtained only when there is a change in the value of
the state before and after taking the step. This means that for VinePPO to produce a non-zero
advantage for a step (Âπθ

yci
̸= 0 in equation 4), some of the rollouts under the current policy must

succeed. Similarly, for the Progress Rewards, some of the rollouts under the prover policy
must succeed (Âµ

yci
̸= 0 in equation 6). In our setting, we observe that throughout training, neither

the current policy nor the policy generates a successful rollout. Thus step-level advantages offer no
learning signal.

Instantiating a helpful prover to get a meaningful Progress Rewards is hard: The
Progress Rewards (Setlur et al., 2025a) work notes that a prover that is too strong or too
weak is ineffective: a strong prover cannot distinguish between good and bad steps, while a weak
prover fails from most intermediate states, resulting in zero step-level advantages and no learning.
Consequently, they identify two desirable properties for provers: (i) the prover should neither be too
strong nor too weak, and (ii) it should be reasonably aligned with the policy being optimized.

To satisfy these requirements for the Degree-10-Path-10 graph, we experiment with two
provers. The first, π5x5, is model trained using Dr.GRPO on the Degree-5-Path-5 task
and achieves around 65% accuracy on Degree-10-Path-10, partially satisfying the first
property. The second, π5x5 mixed with 10x10, is trained using Dr.GRPO on an equal mixture of
Degree-5-Path-5 and Degree-10-Path-10 graphs and reaches around 85% accuracy on
Degree-10-Path-10.

As shown in Fig. 3, both provers have a reasonable success rate on the Degree-10-Path-10 task
from the start, giving non-zero step-level advantages early in training. The π5x5 prover provides non-
zero step-level advantages about 50% of the time, while the π5x5 mixed with 10x10 prover does so about
60% of the time. However, as seen in Fig. 3, this signal does not lead to better task performance.
In both cases, the model responses often become degenerate, repeating characters or words to fill
the context window. We believe this happens because the prover policy is not well aligned with the
policy being optimized.

0 100 200 300 400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 N

on
-Z

er
o

St
ep

 A
dv

an
ta

ge
s

Fraction of Non-Zero Step Advantages on Different Provers

Deg-10-Path-10-Progress-Rwd-5x5-Prover
Deg-10-Path-10-Progress-Rwd-5x5-Mixed-10x10-Prover

0 50 100 150 200 250 300 350 400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate on Different Provers
Deg-10-Path-10-Progress-Rwd-5x5-Prover
Deg-10-Path-10-Progress-Rwd-5x5-Mixed-10x10-Prover

Figure 3: Effect of Progress Rewards using different prover policies. (Left): Fraction of
non-zero step advantages (Âµ

yci
̸= 0 in Equation 6) for two provers: µ = Best-of-4(π5x5) and

µ = Best-of-4(π5x5-mixed-with-10x10), where the models were trained on Deg-5-Path-5 alone
or mixed with Deg-10-Path-10, respectively. Both models provide non-zero step advantages
for Progress Rewards due to their reasonable success rates on the harder task. (Right): Suc-
cess rate on a held-out test set of Degree-10-Path-10 examples. Despite using the same two
provers, both models fail on the Degree-10-Path-10 task. We believe this is because the prover
policy is not well aligned with the policy being optimized.

Unstable training in Best-of-N aware finetuning: We followed the practices suggested in Chow
et al. (2025), including (a) using a KL schedule and (b) clipping the sample-dependent weights
multiplied by the log probability (Eq. 9 in Chow et al. (2025)). Notably, the KL schedule in Chow
et al. (2025) is quite aggressive, starting with a coefficient of 1 and decaying to 0.001, whereas the
current standard is to keep it constant at 0.001 (Kazemnejad et al., 2024). They also clip the failure
probability (pfail; see Section A.5). Despite these strategies, we observed large sample-dependent
weights (g+N and g−N in Eq. 8), which we countered by directly clipping them to stabilize training.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Unfortunately, none of these interventions enabled the model to solve the Degree-10-Path-10
dataset.

To investigate further, we applied the method to the Degree-5-Path-5 dataset which Dr.GRPO
can effectively solve (see Fig. 7). We believe a major reason is the presence of very high negative
gradients. When the failure probability (pfail) is close to 1, the sample-dependent weights become
large, and multiplying them by negative log probabilities produces high magnitude negative gradi-
ents. This drives the model responses toward degeneracy where it repeats the same set of characters.
Figure 4 shows this effect: with a lower KL penalty (0.001), the model’s response lengths increase
rapidly, and inspection of the outputs confirms degeneracy, while success rates remain zero. Using
a strong-to-weak KL penalty (0.1 to 0.001) stabilizes training but does not help solve the hard task.

We think this problem of high negative gradients could be resolved when one uses a capable base
model to begin with (low failure probability means lower magnitude sample dependent weights
for the negative samples), which is what Chow et al. (2025) work with (also see Fig. 2 where
Best-of-N aware finetuning is able to solve the Degree-3-Path-3, possibly due to relatively
lower failure rates initially, compared to Degree-5-Path-5).

We believe that the issue of high negative gradients can be mitigated by starting with a capable
base model. Such a model has a lower failure probability (pfail in Eq. 8), which keeps the sample-
dependent weights g+N and g−N (in Eq. 8) within a reasonable range, thus ensuring stable training.
As shown in Fig. 2, Best-of-N aware finetuning is able to solve the Degree-3-Path-3 task,
likely due to its relatively lower initial failure rates compared to Degree-5-Path-5.

0 100 200 300 400 500 600
Iterations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Re
sp

on
se

 L
en

gt
h

Response Lengths with Different KL schedules on Deg-5-Path-5
BoN-Aware-Finetuning
KL Coeff 0.1-0.001
BoN-Aware-Finetuning
KL Coeff 0.001

0 100 200 300 400 500 600
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate with Different KL schedules on Deg-5-Path-5
BoN-Aware-Finetuning
KL Coeff 0.1-0.001
BoN-Aware-Finetuning
KL Coeff 0.001

Figure 4: Using a lower KL coefficient, i.e., the standard value of 0.001 in Best-of-N aware
finetuning, results in unstable training due to large-magnitude negative gradients, causing model
responses to degenerate into repeating the same character. In contrast, using a KL schedule as
recommended in Chow et al. (2025) (decaying from a strong KL penalty of 0.1 to 0.001) remains
stable but fails to learn, as success rates stay at zero (see figure on the right).

Takeaways

• All baselines fail under zero outcome rewards on a simple graph search task, even
though some were specifically designed to operate under zero outcome rewards. Base-
lines that we tested include: naive RL Liu et al. (2025), improving credit assign-
ment Kazemnejad et al. (2024), reward shaping Setlur et al. (2025a), and Best-of-N
aware finetuning Chow et al. (2025).

• Instantiating Progress Rewards is practically challenging, whereas there is a re-
quirement of a capable base model to begin with for VinePPO and to possibly resolve
unstable training of Best-of-N aware finetuning.

5 ADDING EASY SAMPLES WORKS

As shown in Fig. 1, mixing a simpler variant of the task, specifically samples from the
Degree-5-Path-5 dataset, into the original Degree-10-Path-10 dataset significantly im-
proves performance, allowing the model to solve the task where all baselines had previously failed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This raises an important question: are all “easy” samples equally effective? In this section, we
explore (i) the impact of mixing samples of varying difficulty levels and (ii) how one can, in some
cases, bypass the challenge of selecting samples with the appropriate difficulty for a given task.

5.1 NOT ALL EASY SAMPLES WORK

Here we consider mixing two other types of easy datasets in equal proportion with the original
Degree-10-Path-10 task. The first easy graph is a Degree-2-Path-5 graph, where the
center node has a degree of 2, and each of the outgoing paths has 5 nodes. The second easy graph
is a Degree-5-Path-2 graph, where the center node has a degree of 5, and each of the outgoing
paths has only 2 nodes.

As shown in Fig. 5 (left), in both cases the training rewards saturate around 0.5. From Fig.5 (right),
it is evident that neither of the easier datasets helps in solving the original Degree-10-Path-10
task. Examining the chain-of-thought traces reveals that: (i) when the Degree-2-Path-5 task
is mixed with the original task, the model often explores only two branches before committing to
a final answer. While this strategy works for the easier dataset (where the center node has degree
2), it fails on the Degree-10-Path-10 task, which requires exploring multiple branches. (ii)
In the case of the Degree-5-Path-2 mixture, instances are solved using a simple adjacency-list
lookup, and the model shows no evidence of backtracking on harder graphs. In both settings, the
model learns to solve only the easier dataset in the mixture, which explains why the training rewards
plateau near 0.5.

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Training Rewards on Different Mixtures

Deg-2-Path-5-Deg-10-Path-10 Dr. GRPO
Deg-5-Path-2-Deg-10-Path-10 Dr. GRPO

200 400 600 800
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate on Different Mixtures
Deg-2-Path-5-Deg-10-Path-10 Dr. GRPO
Deg-5-Path-2-Deg-10-Path-10 Dr. GRPO

Figure 5: (Left): Rewards that Qwen2.5/Qwen-1.5B-Instruct model obtains while training
Dr.GRPO on a dataset containing an equal mixture of (i): Degree-5-Path-2 mixed with Degree-
10-Path-10, and (ii): Degree-2-Path-5 mixed with Degree-10-Path-10. The training rewards saturate
to around 0.5 in both cases, and in both cases the model learns to solve the easier examples in the
mixture. (Right): Success rate on a held-out test set of Degree-10-Path-10 examples. Both
mixtures do not help the model solve the harder Degree-10-Path-10 task.

5.2 MIXING ALL SAMPLES YOU HAVE IS EFFECTIVE

From Fig. 5, it is clear that not all easy samples are equally effective, and it is not obvious in ad-
vance what a model will learn from a given dataset. To be useful, samples must have the right
difficulty, meaning they should be solvable by the model while also encouraging behaviors that
transfer to the target task. As we saw earlier, adding Degree-5-Path-5 examples improves
performance (Fig. 1), whereas adding much easier examples such as Degree-5-Path-2 or
Degree-2-Path-5 does not (Fig. 5). For the graph search task, one can probably reason why
Degree-5-Path-2 or Degree-2-Path-5 is very easy and why Degree-5-Path-5 repre-
sents the right difficulty. However, for general tasks, it is often difficult to define the right difficulty
a priori. This requirement of selecting the right difficulty makes the approach cumbersome.

However, we find that if one mixes all samples they have of varying difficulty in the training
dataset and then train using naive RL (Dr.GRPO), the model is able to solve the hard task. To
be specific, if one constructs a dataset that combines Degree-2-Path-5, Degree-5-Path-2,
Degree-5-Path-5, and Degree-10-Path-10 examples in equal proportion, and train using
Dr.GRPO, model learns to solve the Degree-10-Path-10 task (see Fig. 6). Importantly, the
RL algorithm itself remains unchanged, only the data changes .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

This means that instead of choosing the right difficulty samples to aid transfer, one can simply
include all available samples of varying difficulty in the training dataset, making the approach
much simpler. Importantly, the model still learns the right behavior on its own (Gandhi et al.,
2025), likely from the samples of appropriate difficulty that facilitate transfer to the hard task.
This provides a practical recipe for an RL practitioner.

Thus, if the base model cannot solve the task initially, adding samples of varying difficulty can help
it succeed. Moreover, even when the base model can already solve the task, easy-to-hard curricula
that is implicit in the dataset can accelerate convergence (Stojanovski et al., 2025).

5.3 WHY DOES THIS WORK?

We believe there may be an interesting connection to skill learning here (Eysenbach, 2025). Easier
samples allow the model to acquire certain skills (or correlated actions) from outcome rewards
alone. These learned skills can then transfer to more difficult tasks that the base model could not
originally solve. Another way to view this is that correlated actions (or skills) simplify the search
problem during RL: the model now searches in the space of skills rather than in the raw space of
tokens (which is much larger). In other words, including examples of the appropriate difficulty in
the training mixture helps reduce the effective action space when doing RL, making it easier for
the model to sample a successful rollout. For example, one useful skill for this task is traversing
down a branch to a leaf node without hallucinating and then backtracking. Another is systematically
exploring all branches one by one. That said, these are anthropomorphized descriptions; ultimately,
what counts as a “skill” is determined by the RL optimization process.

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Training Rewards on Mixture Dataset
Deg-2-Path-5-Deg-5-Path-2-
Deg-5-Path-5-Deg-10-Path-10
Dr GRPO

200 400 600 800
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate on Mixture Dataset
Deg-2-Path-5-Deg-5-Path-2-
Deg-5-Path-5-Deg-10-Path-10
Dr GRPO

Figure 6: (Left): Rewards obtained while training on an equal-proportion mixture
of Deg-2-Path-5, Deg-5-Path-2, Deg-5-Path-5, and Deg-10-Path-10 using
Dr.GRPO. During training, the model learns to solve all elements in the mixture, with rewards
reaching 1.0. (Right): Success rate on a held-out test set of Degree-10-Path-10 examples.
The model trained on the mixture dataset begins solving the harder task.

Takeaways

• Simply mixing easier samples in the training dataset and doing naive RL helps the model
solve the original hard task, even though the base model was unable to do so initially.

• Not all easy samples work: adding very easy samples in the training dataset does not
help. Adding the right difficulty matters!

• Final practical recipe: Instead of making a choice for what’s the right difficulty, add all
samples of varying difficulty that you have. The base model still learns the right actions
from the right difficulty samples that transfer to the hard task.

6 RELATED WORK

Curriculum learning and data difficulty control: Recent work highlights the importance of cur-
ricula in developing reasoning abilities for large language models. Reasoning Gym (Stojanovski
et al., 2025) introduces parameterized reasoning tasks of varying difficulty and shows that easy-
to-hard training accelerates convergence. Building on this idea, E3 (Explore–Exploit–Extrapolate)
(Setlur et al., 2025b) jointly varies task difficulty and token budgets to gradually expand in-context

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

reasoning. WISDOM (Qiu et al., 2025) takes a similar approach by generating chain-of-thought data
of increasing difficulty to expose models to progressively harder math problems, while SEC (Chen
et al., 2025b) adapts problem selection using a multi-armed bandit based on the model’s learning
progress. Together, these studies demonstrate that carefully controlling what data a model sees and
when it sees it is a powerful mechanism for scaling reasoning in LLMs. However, they still assume
that the base model begins with some initial level of capability.

Self-play and self-generated supervision: Several methods leverage self-play or model-generated
data to provide supervision in low-reward scenarios. Cheng et al. (2024) show that an adversarial
two-player game played by copies of an LLM can improve its reasoning through RL on game out-
comes. Wang et al. (2025) introduce a Critic-Discernment Game (CDG), in which a prover model
is alternately challenged by helpful and misleading critics, training it to maintain correct answers
despite adversarial feedback. More recently, methods such as Self-Questioning LMs (Chen et al.,
2025a) allow models to generate their own subtasks and verifiers, creating a self-curriculum without
relying on external datasets. These approaches highlight the use of self-play loops and self-generated
supervision to bootstrap training when explicit reward signals are sparse or absent.

Reward shaping and credit assignment in sparse RL: A complementary line of work addresses
the sparse reward problem by shaping rewards or refining credit assignment. Classic methods such as
Hindsight Experience Replay (Andrychowicz et al., 2017) demonstrate that relabeling failed trajec-
tories as successes for alternate goals allows learning from episodes that would otherwise provide
no signal. Building on this idea, recent approaches in LLM reasoning focus on step-level credit
assignment, enabling models to extract useful learning signals even from failed trajectories. For
example, VinePPO (Kazemnejad et al., 2024) uses Monte Carlo rollouts to compute step-level ad-
vantages, yielding stable improvements over vanilla PPO (Schulman et al., 2017), while Rewarding
Progress (Setlur et al., 2025a) trains Q-functions to score intermediate reasoning steps based on
their progress towards the final answer, substantially improving sample efficiency. OREAL (Lyu
et al., 2025) takes an orthogonal approach by combining best-of-N outcome supervision (Chow
et al., 2025) with token-level reward models to propagate credit to critical steps in long reasoning
traces. These studies demonstrate that reward shaping and refined credit assignment can mitigate
sparse feedback, yet they still assume the presence of some non-zero signal. By contrast, our work
focuses on the zero-reward setting, where such techniques fail unless easier instances are provided
to bootstrap learning (see Fig. 1).

7 LIMITATIONS AND FUTURE WORK

Our analysis focuses on the graph search problem, and it remains an open question to what extent
these findings generalize to more complex reasoning domains such as mathematical problem solving
or code generation. While we employed a uniform mixture of task difficulties (see Fig. 6), exploring
optimal weightings or curricula for easy versus hard tasks could further improve convergence. In
addition, our approach relies on a non-zero success rate on simple problems to bootstrap learning.
Addressing this cold-start challenge through self-play data generation or more robust pretraining is
a promising direction for future work.

8 CONCLUSIONS

Our results highlight the critical role of data-centric strategies in RL for reasoning. Algorithmic im-
provements such as dense rewards, refined credit assignment, and diversity incentives fail when the
base model has zero success rates on the task. In contrast, introducing easy instances consistently
enables learning by providing a foothold from which the model can bootstrap toward more chal-
lenging tasks. We recommend that future evaluations include settings where base models initially
fail, as success from these cold-start regimes offers a more robust measure of genuine progress in
exploration and reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

The training objectives for all methods, including Dr.GRPO, VinePPO, Progress Rewards,
and Best-of-N aware finetuning, are provided in Appendix A. Appendix B lists the hyperparame-
ter used for each method, and Appendix C lists the prompts used in the graph search experiments. To
further support replication, we release the codebase containing the implementation for all baselines
at https://github.com/anon-zero-rewards/zero-rewards-rl.

10

https://github.com/anon-zero-rewards/zero-rewards-rl

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp, editors, Proceedings of the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning Research, pages 2296–2318. PMLR, 21–27
Jul 2024. URL https://proceedings.mlr.press/v235/bachmann24a.html.

Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-questioning
language models. arXiv preprint arXiv:2508.03682, 2025a.

Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning, 2025b. URL
https://arxiv.org/abs/2505.14970.

Pengyu Cheng, Yong Dai, Tianhao Hu, Han Xu, Zhisong Zhang, Lei Han, Nan Du, and Xiao-
long Li. Self-playing adversarial language game enhances llm reasoning. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neu-
ral Information Processing Systems, volume 37, pages 126515–126543. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/e4be7e9867ef163563f4a5e90cec478f-Paper-Conference.pdf.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Aviral Kumar, Rishabh
Agarwal, Sridhar Thiagarajan, Craig Boutilier, and Aleksandra Faust. Inference-aware fine-tuning
for best-of-n sampling in large language models. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
URL https://openreview.net/forum?id=77gQUdQhE7.

Benjamin Eysenbach. Self-supervised reinforcement learning. Tutorial, https://ben-
eysenbach.github.io/self-supervised-rl/, 2025.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47–53, 2022.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025.
URL https://arxiv.org/abs/2503.01307.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment, 2024. URL https://arxiv.org/abs/2410.01679.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective. In Conference on Language
Modeling (COLM), 2025.

Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
mathematical reasoning. arXiv preprint arXiv:2502.06781, 2025.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

11

https://proceedings.mlr.press/v235/bachmann24a.html
https://arxiv.org/abs/2505.14970
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4be7e9867ef163563f4a5e90cec478f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4be7e9867ef163563f4a5e90cec478f-Paper-Conference.pdf
https://openreview.net/forum?id=77gQUdQhE7
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2410.01679

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chenhao Qiu, Qianglong Chen, Jintang Li, Caiyu Wang, Runsen Hua, Minghui Li, Shengshan Hu,
and Yechao Zhang. WISDOM: Progressive curriculum synthesis makes LLMs better mathemati-
cal reasoner, 2025. URL https://openreview.net/forum?id=hFFAg5Dmw9.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025a. URL
https://openreview.net/forum?id=A6Y7AqlzLW.

Amrith Setlur, Matthew YR Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max Sim-
chowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
for llms. arXiv preprint arXiv:2506.09026, 2025b.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kad-
dour, and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning
with verifiable rewards, 2025. URL https://arxiv.org/abs/2505.24760.

Pinzheng Wang, Juntao Li, Zecheng Tang, Haijia Gui, and Min zhang. Improving rationality in the
reasoning process of language models through self-playing game. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
PPsiS5nSlv.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3–4):229–256, May 1992. ISSN 0885-6125. doi: 10.1007/
BF00992696. URL https://doi.org/10.1007/BF00992696.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

12

https://openreview.net/forum?id=hFFAg5Dmw9
https://openreview.net/forum?id=A6Y7AqlzLW
https://arxiv.org/abs/2505.24760
https://openreview.net/forum?id=PPsiS5nSlv
https://openreview.net/forum?id=PPsiS5nSlv
https://doi.org/10.1007/BF00992696

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BASELINE IMPLEMENTATION DETAILS

In this section, we provide background on reinforcement learning (RL) for large language models
(LLMs) and describe the objective that different baselines optimize.

A.1 RL FOR LLMS

Let πθ(a | s) denote a policy parameterized by θ, which defines the probability of taking action a in
state s. A trajectory of length T is denoted by τ = (s0, a0, s1, a1, . . . , sT , aT), and the total reward
of a trajectory is R(τ). In the context of language models, the initial state s0 corresponds to the
input question, actions correspond to generated tokens, and subsequent states represent the question
along with the partial sequence of answer tokens.

RL training using Reinforce (Williams, 1992) optimizes the following objective:

θ∗ = argmaxθ Ex∼D Ey∼πθ(.|x)R(x, y) (1)

Here, x is a question sampled from the distribution of questions D, y is a response sampled from
the LLM πθ(. | x), and R(x, y) is the reward for generating response y to question x. In our graph
search setting, we prompt the LLM to output its final answer inside \boxed{}, so the reward
function simply extracts the string in \boxed{} and compares it to the true path.

A.2 DR. GRPO (LIU ET AL., 2025)

The objective in Equation 1 typically exhibits high variance. To reduce this variance, recent meth-
ods such as GRPO (Shao et al., 2024) Dr. GRPO (Liu et al., 2025) subtract a baseline from the
reward, which is computed by generating multiple rollouts for a given question and taking the aver-
age reward. In our setting, we perform on-policy training; thus, the importance ratio and advantage
clipping terms in the objective from equation 3 in (Liu et al., 2025) vanish, resulting in the following
final objective:

∇θJ (θ) = Ex∼D,{yi}G
i=1∼πθ(.|x)

1

G

G∑
i=1

|yi|∑
t=1

Âi,t∇θ log πθ(yi,t | yi,<t)− β DKL(πθ||πref) (2)

where Âi,t is computed as R(x, yi)− 1
G

∑j=G
j=1 R(x, yj). We set G = 5 for all our experiments.

Intuitively, the objective increases the likelihood of tokens that lead to positive outcomes and de-
creases the likelihood of tokens that do not. Note that this loss formulation weights all steps in the
reasoning chain equally, i.e., Âi,t is independent of t.

A.3 VINEPPO (KAZEMNEJAD ET AL., 2024)

Methods like GRPO and Dr. GRPO weigh all tokens in a reasoning chain equally. However, this
may not be optimal, as not all steps in a reasoning chain contribute equally to solving a problem. For
example, identifying lemmas to use in proving a theorem may be more important than generating
tokens that are included merely for grammatical correctness. VinePPO addresses this problem by
performing credit assignment to weigh more important steps higher and less important steps lower.
It does so by computing step level advantages instead of trajectory level advantages.

Given a question x ∼ D, and a reasoning chain y ∼ πθ(. | x), VinePPO divides the reasoning chain
y into steps or chunks yc1 , yc2 . . . ycn , and finally the gradient of the objective is computed as

∇θJ (θ) =

n∑
i=1

Âπθ
yci

eci∑
t=sci

∇θ log πθ

(
yt | y<t, x

)
(3)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where Âπθ
yci

denotes the advantage of step yci , with sci and eci representing the start and end indices
of the ith chunk, respectively. The advantage at each step is estimated using Monte Carlo rollouts
from the state before and after that step. In other words, given a trajectory y = yc1 ⊕ yc2 ⊕ . . .⊕ ycn
where ⊕ denotes the concatenation operation Âπθ

yci
is computed as follows:

Âπθ
yci

= V πθ (⊕j=i
j=1yj)− V πθ (⊕j=i−1

j=1 yj) (4)

where V πθ (s) is computed by taking the average reward recieved from K Monte Carlo rollouts. In
our experiments we set K = 3. Note that we omit the KL penalty term from Equation 3 for the sake
of simplicity. For VinePPO, we use the code released by the authors here.

A.4 PROGRESS REWARDS (SETLUR ET AL., 2025A)

Like the VinePPO objective in Equation 3, progress rewards also aim to compute step-level ad-
vantages. However, their objective differs from VinePPO in two key ways: (i) they estimate the
advantages in Equation 4 under a policy different from the one being optimized, which they refer to
as the prover policy, and (ii) combine the step-level advantages with the trajectory-level reward to
form the final objective:

∇θJ (θ) =

n∑
i=1

(R(y) + α · Âµ
yci

)

eci∑
t=sci

∇θ log πθ

(
yt | y<t, x

)
(5)

where µ is Best-of-4(πref). Similar to equation 4 they compute step advantages under the prover
policy µ as:

Âµ
yci

= V µ(⊕j=i
j=1yj)− V µ(⊕j=i−1

j=1 yj) (6)

In their work, a neural network is trained to approximate V πref(s) by collecting a dataset of reasoning
trajectories sampled from πref. For simplicity, we instead rely on rollouts to compute V πref(s). With
this, we optimize the following objective:

∇θJ (θ) =

n∑
i=1

(Â(y) + α · Âµ(yci))

eci∑
t=sci

∇θ log πθ

(
yt | y<t, x

)
(7)

Notice the change from Equation 5, where we replace R(y) with Â(y). We make this substitution
because we operate in a group-style setting with access to multiple rollouts for a question. Using
Â(y) instead of R(y) yields a lower-variance estimate of the gradient. Â(y) is computed as (R(y)−
average reward over G rollouts).

A.5 BEST-OF-N FINETUNING (CHOW ET AL., 2025)

Chow et al. (2025) introduce inference-aware fine-tuning that explicitly optimizes for BoN perfor-
mance. The hope is optimizing for BoN performance could result in the model sampling diverse
responses. A key result is Lemma 3, which provides a BoN-aware policy gradient estimator un-
der binary rewards. By introducing asymmetric weighting functions that depend on the probability
of failure, the method upweights correct predictions on hard inputs while redistributing mass away
from unreliable outputs.

Assuming the reward R(x, y) ∈ {0, 1}. Then the gradient of the BoN-aware RL objective (Equa-
tion 6) with respect to the model parameters θ is

Ex∼D

[
Ey∼πbon,R=1

[∇θ log πθ(y | x)] g+N
(
Pfail(x)

)
− Ey∼πbon,R=0

[∇θ log πθ(y | x)] g−N
(
Pfail(x)

)]
,

(8)

14

https://github.com/McGill-NLP/nano-aha-moment/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where the sample-dependent weights are

g+N (p) =
N pN−1

1− pN
, g−N (p) =

N (1− pN−1)

1− pN
.

B HYPERPARAMETERS

Table 1 lists the hyperparameters that are common across all methods. Since we do on-policy train-
ing parameters such as the clipping ratio (ϵ) and ppo-epochs are not applicable.

Hyperparameter Value
Learning Rate 1× 10−6

Effective Batch Size 32
Number of rollouts per data point 5

Max Prompt Length 1024
Max Response Length 4096

KL Coefficient (β) 1× 10−3

Temperature 0.6
Top p 0.999

Micro Batch Size 4
Discount Factor (γ) 1

Base Model Qwen2.5/Qwen-1.5B-Instruct

Table 1: Common hyper-parameters used in our experiments.

B.1 VINEPPO

We estimate the value of an intermediate state, V πθ (s), using three rollouts from the current policy.

B.2 REWARDING PROGRESS

We estimate the value of an intermediate state, V πref(s), using three rollouts from the reference
policy. The parameter α in Equation 7 is set to 5, following the recommendation in Setlur et al.
(2025a).

B.3 BEST-OF-N AWARE FINETUNING

For N used in Best-of-N, we use N = 8. We clip the sample dependent weights to [−3, 3]. We
decay the KL coefficient from 0.1 to 0.001.

C PROMPTS

For our experiments, we prompt the Qwen2.5/Qwen-1.5B-Instruct model in the following manner

Prompt for path finding problem
Given a bi-directional graph in the form of space separated edges, output a path from source node to the
destination node in the form of comma separated integers.
For this question the graph is 81,252 97,124 285,182 97,285 97,81 124,199
The source node is 97
The destination node is 252
Please reason step by step, and put your final answer within \boxed{}.

During training, the string inside \boxed{} is extracted and compared against the ground truth
path to assign the reward.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Training Rewards on Different Graph Datasets

Deg-3-Path-3 Dr. GRPO
Deg-5-Path-5 Dr. GRPO
Deg-10-Path-10 Dr. GRPO

(a) Rewards obtained during training Dr.GRPO
on the graph search task with varying levels of dif-
ficulty.

200 400 600 800
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate on Different Graph Datasets

Deg-3-Path-3 Dr. GRPO
Deg-5-Path-5 Dr. GRPO
Deg-10-Path-10 Dr. GRPO

(b) Success Rate of Dr.GRPO on held out test sets
of different levels of difficulty. The model man-
ages to solve simpler variants (Degree-3-Path-3
and Degree-5-Path-5), but is unable to solve the
harder Degree-10-Path-10 variant.

Figure 7: Dr.GRPO is able to solve easier instance of the graph search task.

D ADDITIONAL RESULTS

Easier versions of the task are solvable: To rule out any implementation issues and verify that
the graph search task is not inherently unsolvable, we experiment with simpler variants of the task,
such as the Degree-3-Path-3 and Degree-5-Path-5 graphs. As shown in Figs. 7a and 7b,
RL training using outcome rewards is effective on these simpler variants, but remains ineffective on
the harder Degree-10-Path-10 dataset.

16

	Introduction
	Experimental Setup
	Baselines fail under zero outcome rewards
	Failure Analysis of Baselines
	Case-by-case analysis

	Adding easy samples works
	Not all easy samples work
	Mixing all samples you have is effective
	Why does this work?

	Related work
	Limitations and Future Work
	Conclusions
	Reproducibility Statement
	Baseline Implementation Details
	RL for LLMs
	Dr. GRPO liu2025understanding
	VinePPO kazemnejad2024VinePPO
	Progress Rewards setlur2024rewarding
	Best-of-N Finetuning chow2024inference

	Hyperparameters
	VinePPO
	Rewarding Progress
	Best-of-N Aware Finetuning

	Prompts
	Additional Results

