
Accelerating Part-Scale Simulation in Liquid Metal Jet Additive Manufacturing
via Operator Learning

Søren Taverniers,1 Svyatoslav Korneev,1 Kyle M. Pietrzyk,1 Morad Behandish1

1 Palo Alto Research Center (PARC), 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
moradbeh@parc.com (Morad Behandish)

Abstract

Predicting part quality for additive manufacturing (AM) pro-
cesses requires high-fidelity numerical simulation of partial
differential equations (PDEs) governing process multiphysics
on a scale of minimum manufacturable features. This makes
part-scale predictions computationally demanding, especially
when they require many small-scale simulations. We con-
sider drop-on-demand liquid metal jetting (LMJ) as an illus-
trative example of such computational complexity. A model
describing droplet coalescence for LMJ may include coupled
incompressible fluid flow, heat transfer, and phase change
equations. Numerically solving these equations becomes pro-
hibitively expensive when simulating the build process for
a full part consisting of thousands to millions of droplets.
Reduced-order models (ROMs) based on neural networks
(NN) or k-nearest neighbor (kNN) algorithms have been built
to replace the original physics-based solver and are compu-
tationally tractable for part-level simulations. However, their
quick inference capabilities often come at the expense of ac-
curacy, robustness, and generalizability. We apply an opera-
tor learning (OL) approach to learn a mapping between ini-
tial and final states of the droplet coalescence process for
enabling rapid and accurate part-scale build simulation. Pre-
liminary results suggest that OL requires order-of-magnitude
fewer data points than a kNN approach and is generalizable
beyond the training set while achieving similar prediction er-
ror.

Introduction
Droplet-scale dynamics for LMJ (Sukhotskiy et al. 2017;
Bikas, Stavropoulos, and Chryssolouris 2016) can be mod-
eled by coupled incompressible and immiscible multi-phase
fluid flow, (convective and conductive) heat transfer, and so-
lidification equations (Korneev et al. 2020), which can be
spatially discretized using a finite volume (FV) approach
and solved by time integration using computational fluid dy-
namics (CFD) platforms such as OpenFOAM (Jasak et al.
2007). Such simulations, in conjunction with experimental
calibration of the material properties, can provide an accu-
rate prediction of the droplet-scale dynamics. However, the
computations can slow down due to constraints on the tem-
poral step that guarantee stability during a numerical simu-
lation, e.g., the Courant–Friedrichs–Lewy (CFL) condition.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Part-scale build simulation requires calling the droplet-scale
solver numerous times in a sequential loop with a moving
domain of interest, where the final conditions of each droplet
coalescence simulation serve as initial conditions to the next
one. These conditions include values for phase, velocity,
pressure, and temperature. In the context of LMJ, computing
the coalescence of a single droplet, with a diameter of a few
hundred microns, may take an FV solver up to an hour on a
96-core cluster 1, while build simulation for 3D printed parts
consisting of thousands to millions of droplets becomes pro-
hibitively expensive, if not impractical.

Previously, (Korneev et al. 2020) constructed a ROM of
the droplet-scale physics of the LMJ process based on a k-
nearest neighbors (kNN) search within a set of data gener-
ated offline by a coupled multiphysics solver implemented
in OpenFOAM. This algorithm can estimate the shape of
solidified droplets on an arbitrary substrate at a speed of
∼ 33 droplets per second on the same 96-core cluster, a sig-
nificant improvement compared to the high-fidelity Open-
FOAM solver. Applying the ROM recurrently along a sam-
pled toolpath, (Korneev et al. 2020) estimated the shape of
a part consisting of ∼50,000 droplets, a result that would be
impractical to achieve using OpenFOAM. Although using
this ROM in place of OpenFOAM yielded orders of mag-
nitude in speed up, unfortunately, the kNN search extrapo-
lated poorly for out-of-training data, requiring a large data
set to cover all possible substrate geometries, thereby offset-
ting the gains from the achieved speedup.

Here we present an improved ROM to enable part-scale
build simulations for LMJ using operator learning (OL) to
approximate the droplet-scale physics. Rather than approx-
imating the solution to the governing system of PDEs for a
particular instance of initial/boundary conditions (ICs/BCs),
as is done, for example, in physics-informed NNs (PINNs)
(Raissi, Perdikaris, and Karniadakis 2019), OL allows one
to learn the operator that maps the initial condition of a sin-
gle droplet deposition in the moving subdomain to the final
condition at the end of the deposition. The same trained op-
erator can be used to predict this initial-to-final condition
mapping across numerous instances of the problem with the
same PDEs and BCs, but different ICs. While a similar ap-
proach was already considered by the authors of (Korneev

1Amazon AWS c5 instance, specifically c5.24xlarge.

et al. 2020) using a fully-connected feed-forward NN, the
quadratic scaling of the number of network weights with
the number of degrees of freedom (in this case, spatial grid
size) required a prohibitively large network size for accu-
rate predictions, making failures common after only a few
sequentially deposited droplets. Instead, here we implement
the recently developed Fourier neural operator (FNO) (Li
et al. 2020, 2021), a deep NN which learns a kernel integral
operator related to the PDE’s Green’s function (or a gener-
alization thereof, for nonlinear PDEs). This approach was
found to yield a much smaller test error for the same amount
of training data (Li et al. 2020). Moreover, FNO uses the
convolution theorem to learn this operator in the Fourier do-
main, enabling speedup through the use of the Fast Fourier
Transform (FFT) algorithm.

Below, we briefly review the moving subdomain approach
used in (Korneev et al. 2020) in conjunction with a droplet-
scale simulator of droplet-substrate coalescence, using ei-
ther FV-based CFD (in OpenFOAM) or a kNN-based ROM
(in Cython) to obtain a part-scale as-manufactured shape
predictor. We then show how replacing kNN with FNO en-
ables faster part-scale simulation at comparable accuracy
with significantly fewer training data points.

Reduced-Order Modeling for LMJ
The high-fidelity LMJ model can be decomposed into a se-
ries of single-droplet coalescence events applied along the
toolpath (Fig. 1). The ICs for every coalescence event con-
sist of a hot liquid droplet of spherical shape (pictured in red)
captured by a phase field, its initial velocity, and a substrate
of arbitrary shape. The substrate, on average, is composed
of solid material. After hitting the substrate, the droplet so-
lidifies and coalesces with the substrate surface; previous
droplets that have coalesced with the substrate become part
of the ICs for the next droplet. Figure 2 shows a time se-
quence of the coalescence for two consecutive droplets.

Figure 1: A moving subdomain approach for sequential de-
position of droplets along a toolpath. Red indicates a liquid
phase, while orange indicates a solid phase.

S. Korneev, Z. Wang, V. Thiagarajan et al. / Computer-Aided Design 127 (2020) 102852 5

Fig. 4. Temperature map of solidifying droplet shows gradual droplet cooling and heat transfer to the substrate. Red corresponds to the hotter temperature.

Fig. 5. Temperature map of solidifying droplets where the images (second from left up to the end) shows the results of a simulation with a timestep of 10 ms.
Notice how the evolving temperature profile of the two simultaneously cooling droplets affects coalescence. Red corresponds to the hotter temperature.

Fig. 6. Comparison of the simulation and experimental results of a single droplet
solidification on a substrate. In the simulation results, the blue represents liquid
and gray represents solid. In the experimental images, the part below the dashed
line includes the reflection of the droplet, which should be neglected.

high-fidelity multiphysics solver becomes prohibitively expensive
when simulating the coalescence of thousands of droplets to
estimate the as-manufactured shape of realistic parts. To circum-
vent this problem, we use machine learning (lazy learning) to
construct a reduced order model of the full physics, such that
the reduced order model can rapidly approximate the results of
Eqs. (2), (6), and (8) at a fraction of the computational cost. The
reduced order model may therefore be considered a surrogate
model of the solution to the multiphase flow equation.

4.1. Generating the training data

Generating the training data (offline) to derive the reduced or-
der model requires explicitly simulating the coalescence physics
using a numerical solver. Droplet coalescence is simulated in
OpenFoam [24] along a set of pre-defined tool-paths. Note that
the size of the computational domain grows with every newly
deposited droplet, and that the performance of the numerical
solver is adversely affected when the multiphase flow has to be
solved over a large domain. Observing that the physics of interest
occurs in a small neighborhood around the location of droplet
deposition, we use a sliding subdomain to efficiently model the
build process. A subdomain of size Nx ⇥ Ny ⇥ Nz = 81 ⇥

81 ⇥ 81 voxels or 1.35 mm ⇥ 1.35 mm ⇥ 1.35 mm in physical
dimensions is chosen to simulate the droplet coalescence. Each
such subdomain includes solidified substrate geometry that de-
pends on the previously coalesced droplets. We assume the initial
droplet is deposited on a flat substrate, and store the evolving
substrate geometry due to droplet coalescence as a voxel model.
This voxel model is accessed at each subdomain simulation to
get a representation of the local substrate geometry on which the
next droplet solidifies.

Given the substrate geometry within a subdomain, we de-
scribe the subdomain in Cartesian coordinates assuming the
deposition along the z�direction. To initiate the simulation, a
spherical liquid droplet is placed in the middle of the x–y plane
at {x0, y0} = {(Nx � 1)/2, (Ny � 1)/2}, where {x0, y0} (= {40, 40}
in our case) are the planar coordinates of the droplet center in
a direction perpendicular to the deposition direction. Proximity
to the substrate determines the positioning of the liquid droplet
in the z direction. Numerical simulation is then performed on
the subdomain (see Section 3), and the updated shape of the
solidified substrate is written into the voxel model storing the
evolving substrate geometry. After each OpenFoam simulation
within a subdomain, the subdomain window is moved to the next
point on the (rasterized) tool-path and the simulation is repeated
until the part build is finished.

The multiphysics solver inputs/outputs the spatial distribution
of the solid, liquid, and gas phases, and the spatial distribution
of the temperature, pressure, and flow velocity. In this paper,
we only consider the spatial distribution of the solid phase as
a controlling variable for the shape of the solidified droplet, but
it should be noted that the training approach is not limited to
a single field. Each element of the training set is a pair S =
{{↵i

input
, ↵i

output
}, i = 1, . . . ,Nset}, where

• ↵i

input
represents the solid phase before the simulation (i.e.

the solidified substrate before the new droplet is placed),
and ↵i

output
represents the shape of the solidified droplet

(without the substrate) obtained after simulation in the
subdomain. The sum ↵i

output
+ ↵i

input
represents the union of

the input substrate and the solidified droplet, and will serve
as ↵i+1

input
for the i + 1th simulation.

• Nset is the total number of training data points.

Figure 2: Sequential deposition of two initially liquid
droplets onto a substrate. Red indicates hotter zones, while
blue indicates cooler zones. Source: (Korneev et al. 2020).

For the LMJ process, the droplet temperature is slightly
above the solidification temperature. This low temperature
difference minimizes residual stresses and eliminates warp-
ing of the final geometry. The absence of warping simplifies
the physics of the LMJ process to the incompressible flow
and heat transfer equations (Korneev et al. 2020).

High-fidelity numerical solutions of the droplet physics
can be obtained using a finite volume (FV), volume of flu-
ids (VoF) scheme in OpenFOAM. However, these simula-
tions can become prohibitively expensive at the part scale,
where thousands or even millions of droplets need to be de-
posited. This prompted (Korneev et al. 2020) to construct a
kNN search algorithm that could predict the droplet coales-
cence at a fraction of the computational cost of the Open-
FOAM solver. First, a set of 9, 000 samples was generated
with the OpenFOAM solver, where the input and output
included solid and liquid phase variables—from which the
gas phase can be obtained, since, by definition, they must
add up to unity—before and after the simulation, i.e., when
the liquid droplet is slightly above the substrate and when
it hits and merges with it after solidification, respectively
(Fig. 1). When presented with a new input, the training set
was searched for its kNNs and the predicted output was com-
puted via averaging of the outputs corresponding to these
neighbors (Korneev et al. 2020).

While an accelerated version of the kNN algorithm in
(Korneev et al. 2020) could predict a single droplet depo-
sition in about 0.03s (i.e., a 20,000x speedup compared to
OpenFOAM) on the same 96-core cluster, this was still
longer than the actual deposition time on the machine (0.01s
for a 100Hz deposition frequency). Moreover, the method
was not designed to generalize beyond the training set. To
rectify these shortcomings, here we present an OL based ap-
proach to map initial to final conditions in the moving sub-
domain. We use an updated data set, obtained from Open-
FOAM simulations, with an improved multiphysics model
involving experimentally calibrated parameters.

Operator Learning for LMJ
The underlying idea of OL for scientific computing is to ap-
proximate maps M†, between infinite-dimensional function
spaces, representing solution operators of initial/boundary-
value problems. More concretely, we aim to construct a
parametric map:

Mλ : A → B, λ ∈ Λ (1)

for a finite-dimensional parameter space Λ by choosing an
“optimal” value λ† ∈ Λ such that Mλ† represents the
best approximation to M† in some sense (e.g., minimiz-
ing a least-squares error). Here A = A(Ω;Rda) and B =
B(Ω;Rdb) are separable Banach spaces of functions defined
on some bounded, open set Ω ⊂ Rd. For example, a func-
tion a ∈ A can be an initial condition (say at time t = 0) or
a parameter of a PDE, and b = M†(a) is the solution of that
PDE at some time t > 0 (Li et al. 2020).

While the PDE itself is typically defined locally, its so-
lution operator has non-local effects that can be described
by integral operators. This inspired the authors of (Li et al.
2020) to approximate the (possibly generalized) Green’s

function of a problem’s governing PDE by a graph ker-
nel network. In (Li et al. 2021), the same authors then in-
terpreted this kernel as a convolution operator through the
architecture visualized in Fig. 3 and briefly reviewed in
the Appendix. This approach enables a finite-dimensional
parametrization of the input/output functions via a truncated
Fourier basis.

23PARC internal use only

(a) Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
and filters out the higher modes; then apply the inverse Fourier transform F . On bottom: apply a local linear
transform W . (b) Navier-Stokes Equation with Reynolds number 10, 000; Ground truth on top and prediction on

bottom; trained on 64 ⇥ 64 ⇥ 20 dataset; evaluated on 256 ⇥ 256 ⇥ 80 (see Section 5.3).

Figure 1: top: The architecture of the Fourier layer; bottom: Example flow from Navier-Stokes.

Neural-FEM. The second approach directly parameterizes the solution function as a neural network
[E and Yu, 2018, Raissi et al., 2019, Bar and Sochen, 2019, Smith et al., 2020]. This approach is designed
to model one specific instance of the PDE, not the solution operator. It is mesh-independent and accurate,
but for any given new instance of the functional parameter/coe�cient, it requires training a new neural
network. The approach closely resembles classical methods such as finite elements, replacing the linear span
of a finite set of local basis functions with the space of neural networks. The Neural-FEM approach su↵ers
from the same computational issue as classical methods: the optimization problem needs to be solved for
every new instance. Furthermore, the approach is limited to a setting in which the underlying PDE is known.

Neural Operators. Recently, a new line of work proposed learning mesh-free, infinite-dimensional opera-
tors with neural networks [Lu et al., 2019, Bhattacharya et al., 2020, Nelsen and Stuart, 2020, Li et al., 2020b,
Li et al., 2020a]. The neural operator remedies the mesh-dependent nature of the finite-dimensional operator
methods discussed above by producing a single set of network parameters that may be used with di↵erent
discretizations. It has the ability to transfer solutions between meshes. Furthermore, the neural operator
needs to be trained only once. Obtaining a solution for a new instance of the parameter requires only a
forward pass of the network, alleviating the major computational issues incurred in Neural-FEM methods.
Lastly, the neural operator requires no knowledge of the underlying PDE, only data. Thus far, neural opera-
tors have not yielded e�cient numerical algorithms that can parallel the success of convolutional or recurrent
neural networks in the finite-dimensional setting due to the cost of evaluating integral operators. Through
the fast Fourier transform, our work alleviates this issue.

Fourier Transform. The Fourier transform is frequently used in spectral methods for solving di↵erential
equations, since di↵erentiation is equivalent to multiplication in the Fourier domain. Fourier transforms
have also played an important role in the development of deep learning. In theory, they appear in the
proof of the universal approximation theorem [Hornik et al., 1989] and, empirically, they have been used
to speed up convolutional neural networks [Mathieu et al., 2013]. Neural network architectures involving
the Fourier transform or the use of sinusoidal activation functions have also been proposed and studied
[Bengio et al., 2007, Mingo et al., 2004, Sitzmann et al., 2020]. Recently, some spectral methods for PDEs
have been extended to neural networks [Fan et al., 2019a, Fan et al., 2019b]. We build on these works by
proposing a neural operator architecture defined directly in Fourier space with quasi-linear time complexity

2

input function solution to PDE

a

(a) Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
and filters out the higher modes; then apply the inverse Fourier transform F . On bottom: apply a local linear
transform W . (b) Navier-Stokes Equation with Reynolds number 10, 000; Ground truth on top and prediction on

bottom; trained on 64 ⇥ 64 ⇥ 20 dataset; evaluated on 256 ⇥ 256 ⇥ 80 (see Section 5.3).

Figure 1: top: The architecture of the Fourier layer; bottom: Example flow from Navier-Stokes.

Neural-FEM. The second approach directly parameterizes the solution function as a neural network
[E and Yu, 2018, Raissi et al., 2019, Bar and Sochen, 2019, Smith et al., 2020]. This approach is designed
to model one specific instance of the PDE, not the solution operator. It is mesh-independent and accurate,
but for any given new instance of the functional parameter/coe�cient, it requires training a new neural
network. The approach closely resembles classical methods such as finite elements, replacing the linear span
of a finite set of local basis functions with the space of neural networks. The Neural-FEM approach su↵ers
from the same computational issue as classical methods: the optimization problem needs to be solved for
every new instance. Furthermore, the approach is limited to a setting in which the underlying PDE is known.

Neural Operators. Recently, a new line of work proposed learning mesh-free, infinite-dimensional opera-
tors with neural networks [Lu et al., 2019, Bhattacharya et al., 2020, Nelsen and Stuart, 2020, Li et al., 2020b,
Li et al., 2020a]. The neural operator remedies the mesh-dependent nature of the finite-dimensional operator
methods discussed above by producing a single set of network parameters that may be used with di↵erent
discretizations. It has the ability to transfer solutions between meshes. Furthermore, the neural operator
needs to be trained only once. Obtaining a solution for a new instance of the parameter requires only a
forward pass of the network, alleviating the major computational issues incurred in Neural-FEM methods.
Lastly, the neural operator requires no knowledge of the underlying PDE, only data. Thus far, neural opera-
tors have not yielded e�cient numerical algorithms that can parallel the success of convolutional or recurrent
neural networks in the finite-dimensional setting due to the cost of evaluating integral operators. Through
the fast Fourier transform, our work alleviates this issue.

Fourier Transform. The Fourier transform is frequently used in spectral methods for solving di↵erential
equations, since di↵erentiation is equivalent to multiplication in the Fourier domain. Fourier transforms
have also played an important role in the development of deep learning. In theory, they appear in the
proof of the universal approximation theorem [Hornik et al., 1989] and, empirically, they have been used
to speed up convolutional neural networks [Mathieu et al., 2013]. Neural network architectures involving
the Fourier transform or the use of sinusoidal activation functions have also been proposed and studied
[Bengio et al., 2007, Mingo et al., 2004, Sitzmann et al., 2020]. Recently, some spectral methods for PDEs
have been extended to neural networks [Fan et al., 2019a, Fan et al., 2019b]. We build on these works by
proposing a neural operator architecture defined directly in Fourier space with quasi-linear time complexity

2

(a) Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
and filters out the higher modes; then apply the inverse Fourier transform F�1. On bottom: apply a local linear
transform W . (b) Navier-Stokes Equation with Reynolds number 10, 000; Ground truth on top and prediction on

bottom; trained on 64 ⇥ 64 ⇥ 20 dataset; evaluated on 256 ⇥ 256 ⇥ 80 (see Section 5.3).

Figure 1: top: The architecture of the Fourier layer; bottom: Example flow from Navier-Stokes.

Neural-FEM. The second approach directly parameterizes the solution function as a neural network
[E and Yu, 2018, Raissi et al., 2019, Bar and Sochen, 2019, Smith et al., 2020]. This approach is designed
to model one specific instance of the PDE, not the solution operator. It is mesh-independent and accurate,
but for any given new instance of the functional parameter/coe�cient, it requires training a new neural
network. The approach closely resembles classical methods such as finite elements, replacing the linear span
of a finite set of local basis functions with the space of neural networks. The Neural-FEM approach su↵ers
from the same computational issue as classical methods: the optimization problem needs to be solved for
every new instance. Furthermore, the approach is limited to a setting in which the underlying PDE is known.

Neural Operators. Recently, a new line of work proposed learning mesh-free, infinite-dimensional opera-
tors with neural networks [Lu et al., 2019, Bhattacharya et al., 2020, Nelsen and Stuart, 2020, Li et al., 2020b,
Li et al., 2020a]. The neural operator remedies the mesh-dependent nature of the finite-dimensional operator
methods discussed above by producing a single set of network parameters that may be used with di↵erent
discretizations. It has the ability to transfer solutions between meshes. Furthermore, the neural operator
needs to be trained only once. Obtaining a solution for a new instance of the parameter requires only a
forward pass of the network, alleviating the major computational issues incurred in Neural-FEM methods.
Lastly, the neural operator requires no knowledge of the underlying PDE, only data. Thus far, neural opera-
tors have not yielded e�cient numerical algorithms that can parallel the success of convolutional or recurrent
neural networks in the finite-dimensional setting due to the cost of evaluating integral operators. Through
the fast Fourier transform, our work alleviates this issue.

Fourier Transform. The Fourier transform is frequently used in spectral methods for solving di↵erential
equations, since di↵erentiation is equivalent to multiplication in the Fourier domain. Fourier transforms
have also played an important role in the development of deep learning. In theory, they appear in the
proof of the universal approximation theorem [Hornik et al., 1989] and, empirically, they have been used
to speed up convolutional neural networks [Mathieu et al., 2013]. Neural network architectures involving
the Fourier transform or the use of sinusoidal activation functions have also been proposed and studied
[Bengio et al., 2007, Mingo et al., 2004, Sitzmann et al., 2020]. Recently, some spectral methods for PDEs
have been extended to neural networks [Fan et al., 2019a, Fan et al., 2019b]. We build on these works by
proposing a neural operator architecture defined directly in Fourier space with quasi-linear time complexity

2

P (a) = v0 7! v1 7! · · · 7! vT) b = Q(vT)

b. . .

Figure 3: Fourier neural operator (FNO) architecture.
Adapted from (Li et al. 2021).

Identifying a(x) ∈ R and b(x) ∈ R for x ∈ Ω ⊂ R3,
where Ω is the moving subdomain, as the initial and fi-
nal conditions, respectively, specified through the combined
solid, liquid, and brass2 phase fractions at t = 0 and t =
0.0025s for a 400 Hz deposition frequency, we replace kNN
with FNO to sequentially deposit droplets along the toolpath
as before.

We train the FNO surrogate using 770 input/output pairs
generated by simulations of 4 pyramid parts (620 data
points) and 1 hollow cylinder part (150 data points), where
the latter is deemed useful by numerical experimentation to
handle part geometries with thin features. We test the result-
ing model using 324 input/output pairs generated by simula-
tions of a cube part (i.e., different from the training set). We
repeat this process for different sets of hyperparameters—
namely, Fourier layer width and number of retained Fourier
modes—until a satisfactory combination is produced.

Training of and inference with the FNO surrogate was
done using PyTorch code made available on the public do-
main under the MIT License (Li, Cao, and Griffiths 2021)
by (Li et al. 2021). To take advantage of GPU-accelerated
FFT, training and prediction were done on an NVIDIA RTX
3090 GPU.

Results
Figure 4a shows the distribution of errors on the cubes test
data set for an optimized set of hyperparameters—namely,
Fourier layer width and number of retained Fourier modes.
The distribution of errors is skewed toward smaller values
than the average of 16.7% with a mode slightly above 10%.

Following this test set validation, we use the trained FNO
model in conjunction with the moving subdomain method
for inference of single lines of droplets sequentially de-
posited with spacings of a few hundred microns. Counter-

2We assume the substrate to be made of brass, to resemble the
build plate of the LMJ 3D printer, while the droplets are made of
aluminum.

parts computed by the CFD solver in OpenFOAM serve as
the “ground truth.” Figure 4b visualizes the FNO prediction
and corresponding OpenFOAM result for droplet spacings
Snorm equal to 62.72% (1), 89.61% (2) and 116.49% (3) of
the droplet diameter D. For each of these cases, the left iso-
surface is predicted by FNO and colored according to the
distance (normalized with respect to D) between each vertex
on this surface and the vertex on the OpenFOAM isosurface
(right, in gray) closest to that point. The largest of these dis-
tances corresponds to the so-called Hausdorff distance dH,
which is visualized in the left part of Fig. 4b for all consid-
ered droplet spacings as dH,norm = dH/D (in %). Although
dH,norm can reach values up to 30%, from the distance heat
maps on the right we can see that the majority of the relative
errors is less than 15%.

LMJ-generated parts are printed by layering many droplet
lines such as those visualized in Fig. 4b on top of each
other. Hence, the first step in assessing FNO’s ability to pre-
dict such parts is to focus on only a few layers of stacked
droplet lines, as shown in Fig. 5 for a normalized droplet
spacing Snorm of 89.61%. In dark gray, we show the predic-
tion of FNO trained on the mixed training set consisting of
both pyramid and hollow cylinder parts detailed in the pre-
vious section. Compared to the prediction (in blue) of FNO
trained on 1,460 data points from only pyramid parts, we
note a clear qualitative improvement in the prediction accu-
racy. This could be explained by the fact that inclusion of
the hollow cylinder data in the training set improves FNO’s
learning of thin-wall scenarios, and allows it to outperform
its counterpart trained on a larger, but less diversified, set of
pure pyramid data.

Figure 6 shows FNO’s inference of a gear-shaped part
generated by 16,000 droplets with Snorm = 89.61%. A more
detailed view of the upper section reveals that FNO is ca-
pable of predicting repeated layers of droplet lines, includ-
ing those along part edges, although some imperfections can
be seen along both the inner and outer walls. Prediction of
such a gear shape using kNN accelerated via height maps re-
quired 36,000 input-output data pairs (Korneev et al. 2020)
compared to the 770 training data pairs needed for FNO, a
difference of almost two orders of magnitude. Moreover, in-
ference of a single droplet deposition took 0.03s with kNN,
while FNO performs this task in ∼3ms, which is one order
of magnitude smaller.

Conclusions
We implemented a surrogate model for liquid metal jetting
(LMJ) based on deep learning of solution operators of the
partial differential equations (PDEs) governing the droplet
deposition process. Specifically, we employed the recently
developed Fourier neural operator (FNO) based on approxi-
mating a kernel integral operator by a neural network (NN),
and utilizing the convolution theorem to parametrize this NN
in Fourier space and take advantage of Fast Fourier Trans-
form (FFT), implemented on a GPU. We found that the FNO
surrogate, trained on high-fidelity simulation data generated
with multiphysics computational fluid dynamics (CFD), is
capable of predicting the geometric features for single and

(a) Cubes test set error 12PARC internal use only

1 2 3

0.00
3.00
6.00
9.00
12.0

1

2
3

(b) Prediction error for (unstacked) droplet lines

Figure 4: On the left (a), we show the error distribution for our trained FNO model on the cubes test set. On the right (b),
we show the normalized Hausdorff distance dH,norm for droplet lines of various spacings both bigger and smaller than the
droplet diameter. For three of these cases, we visualize the isosurfaces for the FNO prediction and its OpenFOAM ground truth
counterpart, with the former color-coded by the distance between each vertex on the FNO isosurface and its closest neighbor
on the OpenFOAM isosurface (i.e., representing an error “heat map”).

13PARC internal use only

Figure 5: Prediction of an arrangement of stacked droplet
lines with Snorm = 89.61% by FNO models trained on mixed
pyramid/hollow cylinder data (dark gray) and pure pyra-
mid data (blue). Adding the hollow cylinder data improves
FNO’s learning of steep-wall scenarios, a crucial step in en-
abling it to better predict thin features.

stacked droplet lines, showing promising results for part-
scale simulations via a moving subdomain approach.

Our analysis yielded the following major conclusions:
1. FNO shows signs of sufficient out-of-training predictive

capability for LMJ. Diversifying the training set with var-
ious geometric features (e.g., both infill and thin-wall
artifacts) can improve the predictive capability of FNO
for build simulation of complex parts, while reducing the
amount of data required for training.

2. FNO can accurately predict lines of sequentially de-
posited droplets for droplet spacings either smaller or
bigger than the droplet diameter.

3. FNO is qualitatively capable of predicting thin-wall fea-
tures generated by stacked lines of droplets and the re-
sulting simple part shapes.

Future activities may include adding physics-based regu-
larization into the FNO training loss to ensure compatibil-
ity with relevant conservation laws, and to check whether

14PARC internal use only

Figure 6: FNO prediction of a gear shape consisting of
16,000 droplets deposited with Snorm = 89.61%. The inset
shows a more detailed top-down view of the upper section.

this can further reduce the amount of training data needed
to achieve a given prediction error. We also plan to compare
with other OL approaches such as DeepONet (Lu, Jin, and
Pang 2021) to investigate the impact of the NN architecture
on generalizability.

While this study addresses prediction of geometric fea-
tures pertinent to dimensional accuracy and surface quality
of as-printed parts, the extension of the predictions to more
complex material properties such as residual stresses, elon-
gation, and tensile/compressive strength remains to be in-
vestigated. Such predictions will inevitably require includ-
ing more physical quantities (e.g., temperature fields) in the
input/output sets, necessitating further changes in the NN
architecture to incorporate multiple inputs and outputs.

Appendix : Fourier Neural Operator (FNO)
architecture

Here we briefly overview the architecture of FNO. More de-
tails can be found in (Li et al. 2021). As illustrated in Fig. 3,
the mapping from input a(x) to output b(x) consists of the
following steps:
1. Lift the input a(x) to a higher-dimensional space through

a fully-connected NN representing the local (pointwise)
transformation v0 = P (a).

2. Apply iteratively

vt+1(x) = σ (Wvt(x) + (K(a;ϕ)vt)(x)) , (2)

for x ∈ Ω ⊂ Rd. Here vt (t = 0, . . . , T−1) is a sequence
of functions taking values in Rdv , W : Rdv → Rdv is a
linear transformation, and σ : R → R is a nonlinear
activation function applied component-wise.

3. Project back the result vT into the original space through
a fully-connected NN representing the local transforma-
tion b = Q(vT).

In Eq. (2), K is a kernel integral operator mapping given by:

(K(a;ϕ)vt)(x) :=

∫
D

κϕ(x,y, a(x), a(y))vt(y)dy, (3)

where x,y ∈ Ω. Both W and the parameters ϕ in the kernel
κϕ : R2(d+da) → Rdv×dv are learned from data.

To improve the efficiency of their algorithm, (Li et al.
2021) assumed K to be a convolution operator which,
through the convolution theorem, enabled parametrization
of κϕ directly in the Fourier domain. When the domain Ω is
discretized uniformly, this can be done via FFT, accelerated
via GPU parallel computing.

Acknowledgments
The authors are grateful to Zongyi Li (Caltech) for gener-
ously sharing the FNO code and helpful comments.

References
Bikas, H.; Stavropoulos, P.; and Chryssolouris, G. 2016. Ad-
ditive manufacturing methods and modelling approaches: a
critical review. Int J Adv Manuf Technol, 83(1–4): 389—-
405.
Jasak, H.; Jemcov, A.; Tukovic, Z.; et al. 2007. A C++ li-
brary for complex physics simulations. International work-
shop on coupled methods in numerical dynamics, 1000: 1–
20.
Korneev, S.; Wang, Z.; Thiagarajan, V.; and Nelaturi, S.
2020. Fabricated shape estimation for additive manufac-
turing processes with uncertainty. Computer-Aided Design,
127: 102852.
Li, Z.; Cao, S.; and Griffiths, J. 2021. GitHub repository for
the Fourier Neural Operator PyTorch code. https://www.
github.com/zongyi-li/fourier neural operator.
Li, Z.; Kovachki, N. B.; Azizzadenesheli, K.; Liu, B.; Bhat-
tacharya, K.; Stuart, A. M.; and Anandkumar, A. 2020. Neu-
ral Operator: graph kernel network for partial differential
equations. arXiv, 2003.03485.

Li, Z.; Kovachki, N. B.; Azizzadenesheli, K.; Liu, B.; Bhat-
tacharya, K.; Stuart, A. M.; and Anandkumar, A. 2021.
Fourier neural operator for parametric partial differential
equations. ICLR 2021.
Lu, L.; Jin, P.; and Pang, G. 2021. Learning nonlinear op-
erators via DeepONet based on the universal approximation
theorem of operators. Nat. Mach. Intell., 3: 218–229.
Raissi, M.; Perdikaris, P.; and Karniadakis, G. 2019.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput. Phys.,
378: 686–707.
Sukhotskiy, V.; Karampelas, I.; Garg, G.; Verma, A.; Tong,
M.; Vader, S.; Vader, Z.; and Furlani, E. 2017. Magnetohy-
drodynamic drop-on-demand liquid metal 3D printing. Pro-
ceedings of the solid freeform fabrication.

