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Abstract
We study (differentially) private federated learn-
ing (FL) of language models. The language mod-
els in cross-device FL are relatively small, which
can be trained with meaningful formal user-level
differential privacy (DP) guarantees when mas-
sive parallelism in training is enabled by the par-
ticipation of a moderate size of users. Recently,
public data has been used to improve privacy-
utility trade-offs for both large and small language
models. In this work, we provide a systematic
study of using large-scale public data and LLMs
to help differentially private training of on-device
FL models, and further improve the privacy-utility
tradeoff by techniques of distillation. Moreover,
we propose a novel distribution matching algo-
rithm with theoretical grounding to sample public
data close to private data distribution, which sig-
nificantly improves the sample efficiency of (pre-
)training on public data. The proposed method is
efficient and effective for training private model
by taking advantage of public data, especially for
customized on-device architectures that do not
have ready-to-use pre-trained models.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017; 2018;
Kairouz et al., 2019) is designed to collaboratively train
a global model on decentralized data across user clients
while protecting data privacy. FL emerged as an effective
privacy-preserving solution of training (language) models,
as rich text data are generated by users, which may con-
tain sensitive and personal information. After McMahan
et al. (2017) proposed to train on-device recurrent neural
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network models, FL has been widely used in various natural
language processing applications and products, including
next-word prediction (Hard et al., 2018), keyword spotting
(Hard et al., 2020), and out-of-vocabulary word discovery
(Chen et al., 2019).

To further protect user privacy, Differential Privacy
(DP) (Dwork et al., 2006; Dwork, 2011; Dwork & Roth,
2014; McMahan et al., 2018) is introduced to provide for-
mal privacy guarantees of models trained by federated learn-
ing. DP for deep learning explicitly adds random noise with
bounded sensitivity to a training process (e.g., DP-SGD
(Abadi et al., 2016)), ensuring a quantifiable similarity in
output model distributions when the training dataset changes.
When combining DP with FL, a variant of DP-SGD called
DP-FedAvg (McMahan et al., 2018)) is applied to guarantee
user-level DP (Dwork, 2010). Current research primarily
focuses on applying user-level DP to small on-device mod-
els with fewer than 10 million parameters (McMahan et al.,
2018; Kairouz et al., 2021; Ramaswamy et al., 2020). The
model size is limited due to challenges such as significant
DP noise required to preserve privacy (Li et al., 2021) and
the communication costs in cross-device FL.

Recent advances in large language models (LLMs) (Thop-
pilan et al., 2022; Radford et al., 2019; Brown et al., 2020;
Devlin et al., 2019; Raffel et al., 2020) have revolutionized
natural language processing (NLP) and achieved unprece-
dented performance on various tasks such as text generation,
machine translation, and sentiment analysis. However, their
success comes at a cost of requiring massive amounts of
computational resources, making them difficult to deploy on
resource-constrained devices such as smartphones, tablets,
or other edge devices. Additionally, there are concerns
regarding the user privacy in various aspects such as memo-
rizing personal information in training, and exposing private
query in inference.

Recent work explore incorporating public information to
improve privacy-utility trade-off in applying DP for (large)
LMs (Yu et al., 2022; Li et al., 2021). Follow-up work (Yu
et al., 2023) proposes to leverage selective pre-training to
improve DP training for LLMs, which can further help re-
duce the model sizes and improve the inference time. Public
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data (Amid et al., 2021) or other side information (Li et al.,
2022) are also studied for (DP) FL. In non-DP FL settings,
Nguyen et al. (2022) studies the effect of initializing from
a pre-trained model. However, it is an open question on
how to leverage the power of pre-trained LLMs to facilitate
private FL for on-device LMs.

In this work, we answer the question through systematic
study aimed at enhancing private federated learning for
on-device LMs with public pre-trained LMs. Specifically,
Our approach involves leveraging both public data and pre-
trained LLMs to improve differentially private federated
learning for on-device models by techniques of public pre-
training and distillation. Additionally, we propose a novel
distribution matching algorithm, which is backed by theoret-
ical analysis, to sample public data closely resembling the
private data distribution, which significantly increases sam-
ple efficiency in public training. Different from (Yu et al.,
2023), our algorithm does not rely on a pre-trained classifier
for the selection of public records. Instead, we employ a
one-stage private federated learning method, along with the
help of a public pre-trained LLM, to perform distribution
matching. Our method searcher for public data that both the
privately trained on-device LM and the public pre-trained
LLM rate with low perplexity. This ensures that the sampled
data is of high quality according to the public pre-trained
LLM and aligns closely with the distribution learned by the
privately trained on-device LM. Subsequently, this sampled
public data is utilized to train the on-device LM. The re-
maining privacy budget is then dedicated to the execution
of the second stage of private federated learning. Our exten-
sive empirical results align with our theoretical predictions,
further substantiating our approach. Our work complements
existing research by utilizing LLMs to improve public train-
ing through knowledge distillation and distribution matching
for private cross-device federated learning, and achieve a
strong privacy-utility trade-off with substantially improve-
ments on sampling efficiency for public data. Our method
points to a novel direction of efficiently enhancing private
FL with public pretraining data and LLMs. We summarize
our contributions as follows:

• We focus on improving private federated learning for lan-
guage modeling tasks and explore ways to leverage public
data and pre-trained LLMs for tokenizers, training protocols,
and data (sub)sampling.

• We conduct comprehensive studies and compare the use of
Sentence Piece tokenizers from public LLM and unigram
tokenizers from private corpus. We find that adopting public
tokenizers from LLMs can not only prevent the potential
privacy leakage from the private tokenizer vocabulary, but
also lead to better learning utility with DP guarantees.

• For training protocol, we propose to leverage public LLM
to teach private on-device LMs by knowledge distillation.

We demonstrate that distilling public LLM to pre-train on-
device LM can lead to more than 7% accuracy improvement
given tight privacy bound (ε = 1.77). Moreover, it can
achieve high data efficiency of using only 1% of the public
data compared to public pre-training without LLM, and
attain better accuracy.

• We further propose a novel distribution matching method
that leverages both private on-device LMs and public LLMs
to select public records close to private data distribution.
We show that using 0.08% of carefully sampled public data
to train on-device LM can lead to comparable performance
as public pre-training on-device LMs with the whole pre-
training corpus, which reduces the public training time from
more than one week to a few hours. Our method is grounded
in theoretical analysis, which is corroborated by our exten-
sive empirical results.

2. Related Work
Private Federated Learning in On-device NLP. Feder-
ated learning is designed to collaboratively training NLP
models without sharing sensitive user data to protect user
privacy. Given relatively small model sizes, state-of-the-art
differentially private (DP) learning algorithms (McMahan
et al., 2018; Kairouz et al., 2021) have enabled on-device
LMs to achieve strong downstream task utility with rea-
sonable user-level differentially privacy guarantee (Dwork,
2010). The success of private FL has also led to real-world
applications such as GBoard, which uses on-device LMs for
next word prediction (Hard et al., 2018; Ramaswamy et al.,
2020). Recent advances in DP optimization (Kairouz et al.,
2021) further improves upon the state-of-the-art DP-SGD
algorithm (Abadi et al., 2016), providing a practical tool to
analyze privacy bound for federated learning.

Privacy-preserving Large NLP Models. Scaling up LMs
with more data and parameters has significantly improved
performance and achieved great success in a variety of NLP
tasks. Moreover, recent studies show that LLM has great
potential in private learning. For example, Kerrigan et al.
(2020) show that public pre-training is helpful for down-
stream DP fine-tuning. Follow-up studies argue that large
pre-trained LMs can be strong differentially private learn-
ers with parameter-efficient fine-tuning (Yu et al., 2022;
Bu et al., 2022) or full model fine-tuning (Li et al., 2021),
narrowing the gap between non-private training and pri-
vate training. Ganesh et al. (2023) also provide theoretical
groundings on the necessity of involving public training
into private learning. Motivated by the recent success of
LLMs, our work performs comprehensive studies on how to
use public data and existing LLMs to help private training
of cross-device FL models. We note that our concurrent
work (Yu et al., 2023; Lin et al., 2023) proposes to effec-
tively select public data close to private data distribution via
pretrained DP classifier (Yu et al., 2023) or to generate syn-
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thetic data close to private data distribution with foundation
model APIs (Lin et al., 2023). Sepcifically, Yu et al. (2023)
show that selective pre-training followed by private fine-
tuning can lead to a substantial compression of the model
sizes, thus improving the inference time and reduction in the
inference cost. Different from (Yu et al., 2023), our work
primarily focus on leveraging LLMs to improve sample ef-
ficiency to pre-train on-device LMs and improve private
cross-device federated learning.

Model Compression for Pre-trained LMs. One promis-
ing approach to address the resource limitations of LLMs is
to compress them into smaller models through various tech-
niques such as knowledge distillation (Jiao et al., 2019; Sun
et al., 2020; Wang et al., 2020), or pruning (Elbayad et al.,
2020; Gordon et al., 2020). While these techniques have
demonstrated success in reducing the size of pre-trained
LMs, most resulting models are still too large (with over 10
million parameters) to be effectively deployed on resource-
constrained devices. In our work, we also explore the use of
knowledge distillation in public training, but we aim to im-
prove the private FL performance of on-device LMs while
minimizing the need for large amounts of training data. We
recognize that private federated learning can further bene-
fit from advanced model compression techniques, and we
leave this as a promising and orthogonal future direction for
research in this area.

3. Distribution Matching for FL
Inspired by the success of LLMs, we achieve compelling
performance by employing LLM distillation for FL using
only 1% of the randomly sampled pre-training corpus in
Appendix §B.2 and §C. Now we further investigate the
possibility of improving sample efficiency by selectively
identifying public samples that align with the distribution of
private samples. To this end, we propose a novel distribution
matching method to sample public records for pre-training.
we provide a novel theoretical analysis jointly considering
public-private distribution shift and DP mechanism. We
demonstrate that by carefully selected 0.08% of public sam-
ples, we can pre-train on-device LMs that perform as well
as using 1% of public samples with distillation. This ap-
proach significantly improves sample efficiency, providing
an additional knob of using public pre-training for private
on-device models.

3.1. Algorithm

We hypothesize two principles to sample public records to
match the private distribution: (i) the probability of the
public sample x on the private data distribution ppriv(x)
is high, which can be approximated by the prediction of
the on-device LMs trained on the private dataset; (ii) the
probability of a public sample x on the public data distri-

Figure 1: Visualization of perplexity (PPL) distribution of the
private and public datasets evaluated by the private on-device LM
and the public LLM. The private dataset exhibits a concentration
of low PPL values, whereas the public corpus is dispersed across a
broader range of PPL values, with a higher average PPL.

bution ppub(x) is also high, as we expect those samples are
easy-to-learn (Swayamdipta et al., 2020) and of high data
quality in the public corpus. The probability ppub(x) can be
approximated by the public pre-trained LLMs.

To verify our hypothesis, we visualize the perplexity (PPL)
distribution of public samples and private samples evalu-
ated by both a privately fine-tuned on-device LM and a
public pre-trained LLM in Figure 1. To have an “oracle”
on-device LM that well captures the private data distribu-
tion, we fine-tune it on the private data without DP noise
to overfit the private data distribution. We randomly sam-
ple 10k records from the public dataset and private dataset,
respectively. We observe that the private dataset mostly
concentrates on the regime with low PPL evaluated by the
public and private LMs, whereas the public dataset is more
diverse and distributed across a broader range of PPL val-
ues. The distribution visualization confirms our hypothesis
to select public samples from the lower left corner, which
correspond to samples with high probabilities ppub(x) and
ppriv(x) on public and private data distribution (i.e., low
perplexity evaluated by public and pirvate LMs).

In practice, we do not have an “oracle” on-device LM trained
on private data for distribution match. Instead, we propose
to fine-tune an on-device LM with DP for certain rounds
T ′ < T before consuming all the privacy budgets, and then
use the checkpoint at round T ′ with DP guarantee to approx-
imate ppriv(x) and perform distribution matching to sample
public records. This post-processing based on a DP check-
point will not incur any additional privacy cost. Thereafter,
we can use the sampled public records to further train the
private checkpoint at round T ′, as a way for efficient public
(pre-)training. Following the strategy in §C, we also employ
the distillation loss to better train the on-device LM with
carefully sampled public records to further enhance the sam-
ple efficiency. Lastly, we use the remaining privacy budgets
to fine-tune the on-device LM until reaching round T , and
evaluate its next token prediction accuracy at the dev and
test sets. We term the paradigm of two-stage private learn-
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Algorithm 1 Leveraging LLMs for distribution matching and
public training in private federated learning.

Input: Public pre-training corpus D, private corpus D∗, sampling
rate q, private fine-tuning rounds T , first-stage fine-tuning rounds
T ′ < T for distribution matching, a public pre-trained LLM
Output: Private on-device LM with DP guarantee

1: Randomly initialize an on-device LM;
2: // 1© First-stage private federated learning
3: Use DP-FTRL to train the on-device LM for rounds T ′;
4: for each x ∈ D do
5: // 2© Probability evaluation
6: Compute the average (token) log prob log ppriv(x) given

the privately fine-tuned LM at round T ′;
7: Compute the average (token) log prob log ppub(x) given a

publicly pre-trained LLM ;
8: end for
9: // 3© Distribtion matching

10: Sort D based on log ppriv(x) + log ppub(x)
11: Sample a subset of D as D′ with top log ppriv(x) + log ppub(x)

values, such that |D′| = q|D|.
12: // 4© Public mid-training with LLM distillation
13: Train the on-device LM with the loss Lpub on D′

14: // 5© Second-stage private federated learning
15: Use DP-FTRL to train the on-device LM for the remaining

rounds of T − T ′

16: return On-device LM with DP guarantee

ing combined with public training as “public mid-training”.
This approach differs from “public pre-training”, which in-
volves public pre-training prior to private federated learning.
We present the distribution matching protocol in Algo 1.

3.2. Theoretical Analysis

In this section, we provide the theoretical analysis of our
distribution matching protocol to present the intuition be-
hind our selection hypothesis. In essence, the goal of our
distribution matching algorithm is to have a good estimator
for the private distribution. However, characterizing the
distribution shift in the context of differential privacy is a
challenging problem, in that the private models are trained
with DP noise, which can yield an inaccurate estimation of
private data distribution, adding complexity to our analysis.

Problem Setup Define the text data domain as X . De-
note `pub : X → R as the log-density function of the public
data distribution (i.e., `pub(x) = log ppub(x) where ppub(x)
is the public data density estimated by public LLMs), and
`priv as the accurate log-density function of the private
data distribution (i.e., `priv(x) = log ptrue priv(x) where
ptrue priv(x) is the true private data density). However, due
to limited private data sampled from the true private data
distribution and DP noise injected in the private FL, we can
only obtain an inaccurate estimation ˆ̀priv = log ppriv(x) of
the true private log-density `priv, where ppriv(x) is the private
data density estimated by private on-device LMs. Note that
we use the hat notation ˆ̀priv to denote that it is an estimation

of the true private log-density `priv.

We can view the estimation ˆ̀priv is a random variable where
the randomness comes from: (i) that the private dataset we
have is sampled from the private data distribution; and (ii)
the randomness in the algorithm of obtaining ˆ̀priv based
on the private dataset, e.g., differential privacy. Following
previous work (Jiang et al., 2023), we make a standard
assumption. We assume the estimated private data log-
density function is an unbiased estimator, i.e., E[ˆ̀priv] =
`priv.

Since `pub may not be ideal because of public-private domain
shift, and ˆ̀priv may mot be ideal because of its DP noise,
`pub and ˆ̀priv are neither good estimators for `priv. Can
we leverage both of the information and form a function
ĥ : X → R that combines `pub and ˆ̀priv such that ĥ is a good
estimator for `priv? In the following analysis, we choose
ĥ = 1

2`pub +
1
2
ˆ̀priv and analyze when and why it can be a

better estimator to the true private log-density `priv than `pub

and ˆ̀priv.

We need some mathematical tools to define what does it
mean to be “better”. Concretely, we need a metric to mea-
sure the distance between functions. This can be done
by having an inner product 〈·, ·〉 in the function space of
H = {f : X → R}, and hence the norm in the function
spaceH is ‖f‖ =

√
〈f, f〉 for ∀f ∈ H. Our analysis holds

with any choice of the inner product as long as it does not
make the log-densities norm infinite. We discuss a con-
crete choice of the inner product and its relation to the KL
divergence in Appendix F.

With the norm as a “ruler”, we are able to define the follow-
ing key quantities that formally characterize the setting.

1. Public-Private Domain Distance Let dpub, priv =
‖`pub−`priv‖ denote the distance between the public data
log-density `pub and the true private log-density `priv.

2. Private Domain Randomness Let σ2
priv = E[‖ˆ̀priv −

`priv‖2] denote the randomness of the estimated private
log-density, i.e., the quality of the estimated private log-
density ˆ̀priv

The above definitions are important because, as we show
next, that the quality of a private log-density estimator would
depend on the public-private domain shift and the private
domain randomness.

Theorem 3.1. Let ε(f̂) = E[‖f̂ − `priv‖2] characterise how
good f̂ is as an estimator of the true private data log-density
`priv for any random function f̂ ∈ H. Consider the following
three quantities:

1. ε(`pub) that characterizes the error if we use the public
log-density function `pub to approximate the `priv

2. ε(ˆ̀priv) that characterizes the error if we use the noisy
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q (% of LLM Distribution Accuracy (LSTM) Accuracy (Transformer)

Public Data) Distillation Matching ε=1.77 ε=18.71 ε=1.77 ε=18.71

No Public Training 0% 20.68±0.04 28.87±0.04 23.98±0.15 28.29±0.06

Pre-training w/ public data (T ′ = 0) 100% 28.01±0.26 30.70±0.01 28.05±0.02 30.10±0.00

· LLM Distillation (100k steps) 1% 3 28.68±0.09 31.13±0.03 27.75±0.06 30.19±0.01

· LLM Distillation (8k steps) 0.08% 3 26.18±0.04 29.53±0.10 25.31±0.08 29.36±0.12

Mid-training w/ public data (T ′ = T/2) 0.08% 26.67±0.06 29.76±0.03 25.83±0.03 29.15±0.01

· LLM Distillation (8k steps) 0.08% 3 27.01±0.03 30.18±0.06 26.04±0.12 29.47±0.05

+ Distribution Matching 0.08% 3 3 28.01±0.08 30.63±0.02 27.17±0.03 29.83±0.01

Table 1: Summary of techniques to improve downstream stream next token prediction accuracy and sample efficiency for on-device
LSTM and transformer model evaluated on the StackOverflow test set.

private log-density function ˆ̀priv to approximate the `priv

3. ε(ĥ) that characterizes the error if we use ĥ = 1
2`pub +

1
2
ˆ̀priv to approximate the `priv.

Then,

ε(`pub) = d2pub, priv (1)

ε(ˆ̀priv) = σ2
priv (2)

ε(ĥ) =
1

4
d2pub, priv +

1

4
σ2

priv (3)

Interpretation Theorem 3.1 implies that:

• ε(ĥ) ≤ 1
2 max{ε(`pub), ε(ˆ̀priv)}.

• ε(ĥ) ≤ min{ε(`pub), ε(ˆ̀priv)} if 1
3 ≤

d2pub, priv

σ2
priv
≤ 3.

Combining the above, we have the following conclusion:
recall ĥ = 1

2`pub +
1
2
ˆ̀priv = 1

2 log(ppub(x)ppriv(x)). We can
expect that ĥ is better than either `pub or ˆ̀priv for any settings.
Moreover, we can expect ĥ to be better than both `pub and
ˆ̀priv if (i) there is a domain shift between the public-private
domain; and (ii) our estimated private log-density ˆ̀priv is
noisy in an extent comparable to the domain shift. We leave
the full proof and additional discussion in Appendix F.

3.3. Experimental Results

Experimental Setup We set T ′ = T/2 = 800 rounds
for the first-stage private federated learning. We use q =
0.08% of the whole pre-training corpus for public training,
which reduces the public training time from more than 1
weeks to a few hours with a single GPU. For the public mid-
training setting, we also evaluate how LLM distillation and
distribution matching can impact the private FL accuracy,
respectively. We run all the experimental settings for three
times and report the average and standard deviation of test
accuracy on the private StackOverflow dataset. Detailed FL
setup can be found in Appendix A.

We present the results of on-device LSTM and transformers
in Table 1. In the pre-training setting (T ′ = 0), we show that
we cannot further improve the sample efficiency from 1% to
0.08% with LLM distillation improves the sample efficiency,

as the final accuracy after private FL significantly decreases.
In comparison, in the mid-training setting (T ′ = T/2), us-
ing LLM distillation on the 0.08% of randomly sampled
pre-training corpus already gives better performance than
pre-training. Moreover, with distribution matching to care-
fully sample public data, we further improve the private
learning accuracy, attaining comparable performance to the
setting using the whole public corpus for pre-training.

Ablation studies on ppub(x) Our distribution matching
algorithm leverages both on-device LM and LLM to sample
data close to the private distribution. To understand how the
use of LLM (ppub(x)) impact the sampling quality, we con-
duct an ablation study to sample a subset of D′ based on top
log ppriv(x) values alone instead of log ppriv(x)+log ppub(x).
We use the ppriv-sampled D′ for public mid-training and re-
port the test accuracy of three runs for both on-device LSTM
and transformers given different privacy budgets in Table 3.
The experimental findings corroborate our theoretical anal-
ysis. Specifically, when on-device language models (LMs)
are trained with high noise levels (ε = 1.77), we find that
a combined utilization of both on-device LMs and LLMs
consistently yields superior performance. This is because
the estimated private log-density ˆ̀priv is noisy to a degree
comparable to the domain shift, making ĥ a more reliable
estimator than ˆ̀priv. Conversely, when on-device LMs are
trained with low noise (ε = 18.71), the performance differ-
ence between models with and without ppub is negligible.
This indicates that the noise introduced by differentially
private (DP) training is not as significant as the distribution
shift, allowing ˆ̀priv to serve as a good estimator.

4. Conclusion
In this work, we propose to improve private federated learn-
ing by using LLMs in public training. We leverage LLMs to
aid public training of on-device LMs via distribution match-
ing to sample public data close to private data distribution,
which further improves the effectiveness and efficiency of
public training, demonstrating strong private learning accu-
racy while minimizing the need for large amounts of public
training data. Our work sheds light on a promising direction
to improve private federated learning with public LLMs.

5



Can Public Large Language Models Help Private Cross-device Federated Learning?

References
Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. CCS, 2016. doi: 10.1145/
2976749.2978318.

Amid, E., Ganesh, A., Mathews, R., Ramaswamy, S. I.,
Song, S., Steinke, T., Suriyakumar, V., Thakkar, O., and
Thakurta, A. Public data-assisted mirror descent for pri-
vate model training. International Conference On Ma-
chine Learning, 2021.

Andrew, G., Thakkar, O., McMahan, H. B., and Ra-
maswamy, S. Differentially private learning with adaptive
clipping. Conference on Neural Information Processing
Systems (NeurIPS), 2021.

Authors, T. T. F. Tensorflow federated stack overflow
dataset, 2019. URL https://www.tensorflow.
org/federated/api_docs/python/tff/
simulation/datasets/stackoverflow/
load_data.

Bagdasaryan, E., Song, C., van Dalen, R., Seigel, M., and
Áine Cahill. Training a tokenizer for free with private fed-
erated learning. arXiv preprint arXiv: Arxiv-2203.09943,
2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bu, Z., Wang, Y.-X., Zha, S., and Karypis, G. Differentially
private bias-term only fine-tuning of foundation models.
arXiv preprint arXiv:2210.00036, 2022.

Campbell, T. and Broderick, T. Automated scalable
bayesian inference via hilbert coresets. The Journal of
Machine Learning Research, 20(1):551–588, 2019.

Charles, Z., Bonawitz, K., Chiknavaryan, S., McMahan, B.,
et al. Federated select: A primitive for communication-
and memory-efficient federated learning. arXiv preprint
arXiv:2208.09432, 2022.

Chen, M., Mathews, R., Ouyang, T., and Beaufays, F. Feder-
ated learning of out-of-vocabulary words. arXiv preprint
arXiv: Arxiv-1903.10635, 2019.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,

NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019. doi:
10.18653/v1/n19-1423. URL https://doi.org/
10.18653/v1/n19-1423.

Dwork, C. Differential privacy in new settings. In Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’10, pp. 174–183, USA,
2010. Society for Industrial and Applied Mathematics.
ISBN 9780898716986.

Dwork, C. A firm foundation for private data analysis.
Commun. ACM, 54(1):86–95, jan 2011. ISSN 0001-0782.
doi: 10.1145/1866739.1866758. URL https://doi.
org/10.1145/1866739.1866758.

Dwork, C. and Roth, A. The algorithmic foundations
of differential privacy. Found. Trends Theor. Comput.
Sci., 9(3–4):211–407, aug 2014. ISSN 1551-305X. doi:
10.1561/0400000042. URL https://doi.org/10.
1561/0400000042.

Dwork, C., McSherry, F., Nissim, K., and Smith,
A. Calibrating Noise to Sensitivity in Private
Data Analysis, pp. 265–284. Springer Berlin
Heidelberg, 2006. doi: 10.1007/11681878_14.
URL http://link.springer.com/content/
pdf/10.1007/11681878_14.pdf.

Elbayad, M., Gu, J., Grave, E., and Auli, M. Depth-adaptive
transformer. ICLR, 2020.

Ganesh, A., Haghifam, M., Nasr, M., Oh, S., Steinke, T.,
Thakkar, O., Thakurta, A., and Wang, L. Why is public
pretraining necessary for private model training? ArXiv,
abs/2302.09483, 2023.

Gordon, M., Duh, K., and Andrews, N. Compressing
BERT: Studying the effects of weight pruning on trans-
fer learning. In Proceedings of the 5th Workshop on
Representation Learning for NLP, pp. 143–155, Online,
July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.repl4nlp-1.18. URL https:
//aclanthology.org/2020.repl4nlp-1.18.

Hard, A., Kiddon, C. M., Ramage, D., Beaufays, F., Eichner,
H., Rao, K., Mathews, R., and Augenstein, S. Federated
learning for mobile keyboard prediction, 2018. URL
https://arxiv.org/abs/1811.03604.

Hard, A., Partridge, K., Nguyen, C., Subrahmanya, N., Shah,
A., Zhu, P., Moreno, I. L., and Mathews, R. Training
keyword spotting models on non-iid data with federated
learning. arXiv preprint arXiv: Arxiv-2005.10406, 2020.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

6

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/1866739.1866758
https://doi.org/10.1145/1866739.1866758
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
http://link.springer.com/content/pdf/10.1007/11681878_14.pdf
http://link.springer.com/content/pdf/10.1007/11681878_14.pdf
https://aclanthology.org/2020.repl4nlp-1.18
https://aclanthology.org/2020.repl4nlp-1.18
https://arxiv.org/abs/1811.03604


Can Public Large Language Models Help Private Cross-device Federated Learning?

Jiang, E., Zhang, Y. J., and Koyejo, O. Federated do-
main adaptation via gradient projection. arXiv preprint
arXiv:2302.05049, 2023.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L.,
Wang, F., and Liu, Q. Tinybert: Distilling bert for natural
language understanding. Findings of EMNLP, 2019. doi:
10.18653/v1/2020.findings-emnlp.372.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A., Bonawitz, K., Charles, Z. B., Cormode,
G., Cummings, R., D’Oliveira, R. G. L., Rouayheb, S.,
Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B.,
Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He,
L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi,
T., Joshi, G., Khodak, M., Konecný, J., Korolova, A.,
Koushanfar, F., Koyejo, O., Lepoint, T., Liu, Y., Mittal,
P., Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova,
M., Qi, H., Ramage, D., Raskar, R., Song, D., Song, W.,
Stich, S., Sun, Z., Suresh, A., Tramèr, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X.,
Yu, H., and Zhao, S. Advances and open problems in
federated learning. Found. Trends Mach. Learn., 2019.
doi: 10.1561/2200000083.

Kairouz, P., McMahan, B., Song, S., Thakkar, O., Thakurta,
A., and Xu, Z. Practical and private (deep) learning
without sampling or shuffling. International Conference
On Machine Learning, 2021.

Kerrigan, G., Slack, D., and Tuyls, J. Differentially private
language models benefit from public pre-training. In Pro-
ceedings of the Second Workshop on Privacy in NLP, pp.
39–45, Online, November 2020. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.privatenlp-1.
5. URL https://aclanthology.org/2020.
privatenlp-1.5.

Kudo, T. and Richardson, J. Sentencepiece: A simple and
language independent subword tokenizer and detokenizer
for neural text processing. Conference On Empirical
Methods In Natural Language Processing, 2018. doi:
10.18653/v1/D18-2012.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, T., Zaheer, M., Reddi, S. J., and Smith, V. Private adap-
tive optimization with side information. International
Conference On Machine Learning, 2022.

Li, X., Tramèr, F., Liang, P., and Hashimoto, T. B. Large lan-
guage models can be strong differentially private learners.
International Conference On Learning Representations,
2021.

Lin, Z., Gopi, S., Kulkarni, J., Nori, H., and Yekhanin, S.
Differentially private synthetic data via foundation model
apis 1: Images. arXiv preprint arXiv: 2305.15560, 2023.

McMahan, B., Ramage, D., Talwar, K., and Zhang, L. Learn-
ing differentially private recurrent language models. In
International Conference on Learning Representations
(ICLR), 2018. URL https://openreview.net/
pdf?id=BJ0hF1Z0b.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and Arcas, B. A. Y. Communication-efficient learning
of deep networks from decentralized data. International
Conference On Artificial Intelligence And Statistics, 2017.

Nguyen, J., Wang, J., Malik, K., Sanjabi, M., and Rab-
bat, M. Where to begin? on the impact of pre-training
and initialization in federated learning. arXiv preprint
arXiv:2210.08090, 2022.

Ponomareva, N., Bastings, J., and Vassilvitskii, S. Train-
ing text-to-text transformers with privacy guarantees. In
Findings of the Association for Computational Linguis-
tics: ACL 2022, pp. 2182–2193, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. Advances in neural information pro-
cessing systems, 20, 2007.

Ramaswamy, S., Thakkar, O., Mathews, R., Andrew, G.,
McMahan, H. B., and Beaufays, F. Training production
language models without memorizing user data. arXiv
preprint arXiv: Arxiv-2009.10031, 2020.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
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A. Differentially Private Federated Learning
for On-device LMs

In this section, we walk through the preliminaries of differen-
tially private federated learning of language models follow-
ing the cross-device federated learning literature (McMahan
et al., 2018; Kairouz et al., 2019; 2021). We also introduce
the experimental setup used throughout this paper.

Cross-device Federated Learning McMahan et al.
(2017) introduce federated learning to collaboratively train
LMs for next-word prediction from decentralized user data
on a large number of mobile devices without directly sharing
the private data. A common training algorithm of federated
learning is FedAvg (McMahan et al., 2017), where each
client downloads the current model from the centralized
server, computes an update by performing local computa-
tion on their dataset (e.g., running SGD for a few steps) and
sends the update back to the server. The server aggregates
the updates across clients to update the global model and
send the updated model back to local clients to achieve the
goal of collaborative learning without directly accessing the
training data on each user’s mobile device.

In our experiments, we follow previous work (Kairouz et al.,
2021; Amid et al., 2021; Wu et al., 2022) and sample 100
clients in each training round. Each client uses a batch
size of 16 for local training. We set the training rounds
T = 1600 in total.

User-level Differential Privacy To further protect user
privacy, Differential Privacy (DP) (Dwork et al., 2006;
Dwork, 2011; Dwork & Roth, 2014) was introduced to
provide a formal privacy guarantee for federated learning.

Definition A.1 ((ε, δ)-Differential Privacy). A randomized
algorithmM with domain N|X | is (ε, δ)-differentially pri-
vate if for all S ⊆ Range(M) and for any adjacent datasets
D and D′:

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

Definition A.1 provides a formal definition of (ε, δ)-DP by
bounding the change in output distribution caused by a small
input difference (or, adjacent datasets) for a randomized
algorithm. In the federated learning setting, it is preferable
to bound the output distribution caused by different users in
order to protect the privacy of each client’s whole dataset.
Specifically, adjacent datasets of D and D′ for user-level
differential privacy (Dwork, 2010) are defined as: D can be
obtained from D′ by adding or subtracting all the records
of a single user/client, which determines the unit of privacy
guarantees.

In our experiments, we use DP-FTRL (Kairouz et al., 2021)
for privacy accounting and private federated training, which

can achieve strong privacy guarantee in practical FL scenar-
ios (Xu et al., 2023). We use δ = 10−6 and consider two
ε bounds: a tight privacy bound with ε = 1.77 by using a
large noise multiplierm = 8.83, and a slightly loose privacy
bound with ε = 18.71 and noise multiplier m = 1.13. We
present more hyperparameter tuning details in Appendix E.

On-device LMs Due to the limited memory constraints of
mobile devices, on-device LMs are relatively small (usually
less than 10M parameters). In our work, we focus on two
types of on-device auto-regressive LMs: LSTM (Hochreiter
& Schmidhuber, 1997) and transformers (Vaswani et al.,
2017). Specifically, we follow previous work (Wang et al.,
2021; Amid et al., 2021; Kairouz et al., 2021; Wu et al.,
2022) and use one-layer LSTM and transformer. Both
LSTM and transformer has a hidden size of 670 and embed-
ding size of 96.

Pre-trained LLMs In addition to the on-device LMs
trained on private datasets, this work also assumes that we
have access to LLMs pre-trained on a large public corpus
to aid private learning. Specifically, we use LaMDA (Thop-
pilan et al., 2022) 2B throughout this work as an example,
and conduct a systematic study of leveraging LLMs to help
private training of on-device LMs.

Datasets We focus on next word prediction task on the
StackOverflow benchmark dataset (2019) for private feder-
ated learning. Since StackOverflow is naturally keyed by
users, each client in FL is a user in the Stack Overflow online
forum. The examples of a client are sentences of questions
and answers posted by a specific user. StackOverflow con-
tains 342K clients for training with 135.8M examples. We
follow (Reddi et al., 2021; Kairouz et al., 2021) to construct
a validation set of 10K samples, and a test set of 16.5M
samples. Our evaluation metric is in-vocabulary next word
(token) prediction accuracy, which is computed as the ra-
tio of accurately predicted in-vocabulary words to the total
number of words in the sequence (excluding OOV tokens).

In addition to StackOverflow as the (private) dataset, we use
the realnews variant c4/realnewslike of C4 dataset
(Raffel et al., 2020), as the public dataset. We analyzed
the sources of the public C4 dataset and the Stackoverflow
dataset for private training, and verified that there is no
explicit overlap between public C4 dataset and the private
StackOverflow dataset. More details can be found in Ap-
pendix D.1.

B. Inspiration from LLMs
The success of publicly pre-trained LLMs motivate us to
have retrospective views on further improving private on-
device LMs. In this section, we explore inpiration from
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Figure 2: Next word (token) prediction accuracy for on-device
LSTM with different tokenizers in the private FL.

LLMs: the use of subword tokenizers and a large public cor-
pus for pre-training. We apply them to on-device LMs, and
observe that both techniques bring significant performance
improvement for private FL.

B.1. Using Public Tokenizer from LLMs

Tokenizer is an important module of LMs, which transforms
natural languages into a sequence of predefined symbol sets
(vocabulary). Prior work in the literature of private FL of
LMs (McMahan et al., 2018; Kairouz et al., 2021; Amid
et al., 2021) use word-level unigram tokenizers potentially
directly built from user data, which may need additional
privacy budget (Ponomareva et al., 2022; Bagdasaryan et al.,
2022).

Recent LLMs adopt sub-word tokenizers (Kudo & Richard-
son, 2018; Sennrich et al., 2016; Schuster & Nakajima,
2012), which mitigate most out-of-vocabulary (OOV) prob-
lems and yield state-of-the-art performance across different
downstream tasks. This motivate us to replace the prior
word-level unigram tokenizers with public sub-word tok-
enizers. Specifically, we use SentencePiece tokenizer (Kudo
& Richardson, 2018) from LaMDA.

To conduct comparison between unigram tokenizers and
subword tokenizers for next word (token) prediction task,
we convert the next word prediction accuracy into next token
prediction accuracy. This conversion is achieved through
splitting each word using the SentencePiece tokenizer. We
consider all tokens within a word as accurate if the pre-
dicted word is correct. We compare standard SentencePiece
models (vocabulary size = 32K) with unigram tokenizers
that selects the top-k frequent words from user data with
k = 10K or 32K as vocabulary.

We present the private FL accuracy on the StackOverflow
dataset in Figure 2. For the unigram tokenizer, using a larger
vocabulary size in the DP setting can result in a slight per-
formance drop, which can be different from the observation
in non-DP settings (Charles et al., 2022; Xu et al., 2022b).
It is possible that the parameter increase of the embedding
layer enlarges the effect of DP noise and hurts the final
accuracy. However, for next token prediction accuracy, al-

w/o pre-training w/ pre-training

Rounds 0 1600 0 1600

ε = 1.77 0.00 20.48 16.94 27.27
ε = 18.71 24.45 30.13

Table 2: Next Token Prediction Accuracy on the private Stack-
Overflow dev set with or without public pre-training.

though the public SentencePiece tokenizer from LaMDA
also consists of 32K tokens, it can significantly improve the
private FL accuracy upon the unigram tokenizers, especially
with smaller DP noise and ε = 18.71. We also observe that
SentencePiece tokenizer finds no OOV tokens in the Stack-
Overflow dataset, thus yielding the same high prediction
accuracy with or without the OOV token. Therefore, we use
SentencePiece tokenizer in the rest of this paper.

B.2. Publicly pre-training for On-device LMs

In addition to the use of subword tokenizers, LLMs benefit
from pre-training on a large public corpus (Li et al., 2022;
Yu et al., 2022). In this section, we explore pre-training on-
device LMs on public corpus to improve private federated
learning.

Pre-training Details We use the standard autoregressive
language modeling loss LLM to pre-train on-device LMs
on the public C4 dataset, which takes around 1, 400K steps
(over a week of single GPU time) to process the entire
dataset with the batch size of 512. We then use the publicly
pre-trained checkpoint as the start point for private federated
learning. We leave more details in Appendix §D.2.

Results We present the next token prediction accuracy
on the private StackOverflow dev set in Table 2. We ob-
serve that the accuracy on the private dataset significantly
improves after pre-training for different different privacy
budgets, shedding light on an effective way to boost private
FL performance. We also observe that after pre-training, it
gives reasonable zero-shot accuracy on the private dataset
even without private training (round=0).

C. Distillation from Public LLM
We have shown that the accuracy of private federated learn-
ing can be significantly improved with public pre-training.
On one hand, the cost of public pre-training for on-device
LMs is still expensive on a large public corpus (around a
week of GPU time). On the other hand, existing LLMs are
well pre-trained and demonstrate promising performance
across a variety of downstream tasks. This motivates us
to explore on whether we can leverage existing LLMs to
improve the sample efficiency of pre-training on-device
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Figure 3: Ablation studies on how distillation steps and top-k logits in distillation impact next token prediction accuracy (Acc.) of
on-device LSTM models on the dev set of the private StackOverflow dataset.

LMs. In this section, we answer the question above with
systematic studies and show that we can improve the sam-
ple efficiency by using only 1% of pre-training data and
distillation from LLMs, achieving similar or even better
performance than using 100% of pretrianing data without
distillation.

C.1. Distillation Design

Inspired by the literature of model compression (Sun et al.,
2020; Jiao et al., 2019), we use knowledge distillation to
transfer the knowledge from trained LLMs into on-device
LMs during pre-training. The distillation pipeline contains
the following two steps:

Building a distillation corpus Given an input sequence
from the public pre-training corpus, the LLM outputs the
probability distribution over the vocabulary for next token
prediction at each decoding step. To construct a distillation
corpus, we save the top-k logits with k nonzero entries
zT from the teacher LLM as a silver-label dataset. In this
way, the distillation corpus is model-agnostic, and thus can
be applied to different variants of on-device LMs for pre-
training. Moreover, selecting a reasonable top-k for the
logits can both help compress the distillation corpus to a
moderate size and filter out noisy signals from tokens with
low output probabilities.

Public pre-training with distillation loss Since we align
the tokenizer of the on-device LM with the LLM to share the
same vocabulary, we can align the output distribution of on-
device LMs and LLMs by the cross-entropy loss. Formally,
for next token prediction task, given the output logits from
student on-device LMs zS , the gold label from the pre-
training corpus y, and the logits from the distillation corpus
of LLMs zT , we add an additional knowledge distillation
loss LKD = CE(zS/t, zT /t) to the pre-training language
modeling loss LLM = CE(zS ,y) as our public pre-training

loss Lpub = LLM + βLKD where t is the temperature. We
leave more distillation details in Appendix D.3.

C.2. Experimental Results

After public pre-training with knowledge distillation, We
use the checkpoints at different pre-training steps as the start
point for private federated learning. Our main results can
be found in Table 1. We show that by using 1% C4 dataset
for pre-training with knowlegde distillation, we can signif-
icantly improve the sample efficiency without hurting but
even improving the private FL accuracy for both LSTM and
transformers, when compared with public pre-training on
the whole C4 dataset. The sample efficiency improvement
thus reduces the pre-training cost from one week to around
one day, shedding light on a promising direction to both
improve the efficiency and effectiveness of private federated
learning.

Abaltion studies on top-k logits We take the top-k logits
of the LLM to construct our distillation datasets and pre-
train the on-device LMs. Here, we conduct an ablation
study by pre-training different on-device LMs with different
k and evaluate how top-k logits in distillation can impact
the accuracy of private FL. We present our empirical results
in Figure 3c and Appendix Figure 4. We observe that pre-
training with a larger k is more helpful to achieve better
downstream accuracy on private data. To have a reasonable
trade-off between dataset size and pre-training performance,
we use top-k = 10 in all the following experiments.

Ablation studies on distillation steps To understand
whether distillation for more epochs can help with private
FL, we conduct a set of ablation studies on distillation steps
given different privacy budgets as shown in Figure 3b and
3a. Specifically, we use the checkpoints at different distilla-
tion steps to initialize on-device LSTM and report the next
word prediction accuracy after private FL at round 1600. We
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observe a consistent performance improvement when the
distillation covers less than 5% of the C4 dataset. But when
we pre-train the LM for more epochs, the improvement
becomes marginal. This suggests that knowledge distilla-
tion from LLMs can help on-device LMs converge quickly
within a few iterations.

D. Experimental Setup Details
D.1. Verification of Non-overlap between C4 and

StackOverflow Datasets

In this section, we detail the method used to verify that there
is no explicit overlap between the public C4 dataset and the
private StackOverflow dataset utilized in our study.

We explored C4 which has multiple variants1: c4/en,
c4/realnewslike, and c4/webtextlike.

To verify this hypothesis, we conducted a rigorous compari-
son of these two datasets and its variants. Specifically, we
compared the unique identifiers (e.g., URL for webpages
in the C4 dataset, and post ID for StackOverflow posts)
between the two datasets.

No matching identifiers were found between the
c4/realnewslike and the StackOverflow dataset. Thus
we use the c4/realnewslike variant as our public pre-
training corpus throughout the experiment.

Through this comprehensive comparison, we have con-
firmed that there is no explicit overlap between the public
C4 dataset and the private StackOverflow dataset. This con-
clusion is critical to our study as it ensures that the integrity
and privacy-preserving conditions of our experiment are
maintained.

D.2. Pretraining Details

In this section, we outline the detailed procedures followed
during the pretraining phase of our experiments. The pre-
training phase consisted of the following steps:

1. Data Preparation: We tokenized both the C4 and
StackOverflow datasets using the SentencePiece tok-
enizer, as described in the main text. The vocabulary
size was set to 32K for both datasets.

2. Model Architecture: We utilized LSTM and
transformer-based LMs with one hidden layer, 670
hidden units, embedding size euqal to 96.

3. Training Procedure: We trained the model using a
standard autoregressive LM loss for next token predic-
tion.

1https://www.tensorflow.org/datasets/catalog/c4

4. Training Hyperparameters: We employed the Adam
optimizer with a learning rate of 1e-3, a batch size of
512, and a maximum sequence length of 20 tokens.
We also used gradient clipping to prevent exploding
gradients. The model was pretrained for 1400K steps
on the C4 dataset to cover the whole C4 pretraining
corpus.

After pretraining, the model was then fine-tuned on the
downstream task using federated learning with differential
privacy. Further details regarding the fine-tuning process can
be found in the relevant sections of the main text. We show
that the pretraining procedure can significantly improve
the model’s robust performance in the downstream task
performance.

D.3. Distillation Details

In this section, we delineate the specifics of our distillation
process during the pretraining phase of our on-device LM.
The pretraining procedure with distillation is mostly the
same as details outlined in D.2 with slight hyper-parameter
differences.

We set the temparature t = 1 and top-k = 10 to extract the
logits zT from teacher LLM. We use grid search to tune
the best hyper-parameter β ∈ {1e− 1, 1e− 2, 1e− 3} and
follow the same pre-training schedules as §B.2 but with a
smaller batch size of 128 due to memory constraints.

E. Additional Experimental Results
Hyper-parameter Tuning for Federated Learning Fed-
erated learning involves numerous hyperparameters, which
is crucial for our experiment. Our hyper-parameter tuning
strategy follows Xu et al. (2022a).

Throughout our experiments, we fix the number of total
rounds T = 1600. In each round, we select 100 clients from
the shuffled pool for DP-FTRL, ensuring that the clients
are disjoint across rounds. Within each client, we fix the
number of local epochs to one and set the batch size to 16.
We also impose a constraint on the maximum number of
samples on each client, limiting it to 256.

We tune the server learning rate, client learning rate and
clip norm for a certain given a noise multiplier. Specifi-
cally, we use grid search and tune the server learning rate
from {0.05, 0.1, 0.2, 0.5, 1, 2}, the client learning rate from
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. We use the adaptive clip-
ping technique in (Andrew et al., 2021; Xu et al., 2023) to
help determine the clip norm, which in most of our experi-
ments falls into {0.1, 0.3, 0.4, 1}.

Abaltion studies on top-k logits We take the top-k logits
of the LLM to construct our distillation datasets and pre-
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LSTM Transformer
ε=1.77 ε=18.71 ε=1.77 ε=18.71

w/ ppub(x) 28.01±0.08 30.63±0.02 27.17±0.03 29.83±0.01

w/o ppub(x) 27.77±0.05 30.56±0.06 26.70±0.04 30.18±0.05

Table 3: Ablation studies on the use of public LLM for distribution
matching evaluated on the StackOverflow test set.

T ′ 0 400 800 1200 1600

ε=1.77 25.41 27.08 27.73 26.40 18.40
ε=18.71 28.38 30.07 30.37 29.45 19.34

Table 4: Ablation studies on the timing (T ′) of distribution match-
ing for mid-point public training on on-device LSTM.

train the on-device LMs. Here, we conduct an ablation
study by pre-training different on-device LMs with different
k and evaluate how top-k logits in distillation can impact
the accuracy of private FL. We present our empirical results
in Figure 3c and Appendix Figure 4. We observe that pre-
training with a larger k is more helpful to achieve better
downstream accuracy on private data. To have a reasonable
trade-off between dataset size and pre-training performance,
we use top-k = 10 in all the following experiments.
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eps=18.71, w/ public pre-training + distillation, topk=10
eps=18.71, w/ public pre-training + distillation, topk=5
eps=18.71, w/ public pre-training + distillation, topk=3
eps=18.71, w/ public pre-training + distillation, topk=1

Figure 4: Ablation studies on how distillation steps and top-k
logits in distillation impact next token prediction accuracy (Acc.)
of on-device LSTM models on the private StackOverflow dataset.

Ablation studies on the timing T ′ for mid-training T ′

separates two-stage private federated learning and deter-
mines the timing for distribution matching and public train-
ing. In this ablation study, we evaluate the dev set accuracy
of on-device LSTM given different T ′ and privacy budgets,
as shown in Table 4 and Appendix Table 5. From the ta-
ble, we can see that the on-device LSTM achieves the best
private FL accuracy given T ′ = T/2 = 800. We think the
reasons are as follows: when T ′ = 0, we cannot perform

T ′ 0 400 800 1200

ε=1.77 25.41 26.43 26.73 25.20
ε=18.71 28.38 29.55 29.70 28.93

Table 5: Ablation studies on the timing (T ′) of mid-point public
training for on-device LSTM w/o distribution matching.

distribution matching as the on-device LM is not trained
on the private dataset yet, and thus we can only use the
randomly sampled data for pre-training; when T ′ = 400,
the on-device LM could not be well trained on the private
data distribution, thus yielding worse distribution matching
quality; when T ′ = 1200 and T ′ = 1600, the private on-
device LM is biased towards the public data distribution due
to public training, thus giving worse private FL accuracy.
As a result, we use T ′ = 800 in our main experiments, as it
balances the private federated training and public training to
have satisfactory distribution matching capabilities without
biasing too much towards the public data distribution.
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F. Detailed Theoretical Results
F.1. Discussion on the distance metrics of log-density functions

We need to define a meaningful distance metric in order to define the closeness of two log-density functions. To do
this, we can choose any inner product 〈·, ·〉 in the function space of H = {f : X → R}. Note that the log-density
functions `pub, `priv, ˆ̀priv ∈ H. Accordingly, the norm in the function space H is denoted as ‖ · ‖ and by definition
∀f ∈ H : ‖f‖ =

√
〈f, f〉.

We note that our analysis works for any choice of the inner product as long as they don’t make the log-densities norm
infinite. For a concrete example, we discuss a generalization of the L2 inner product, i.e., the Lπ inner product where π is a
distribution on X .

Formally, for this example ofH = Lπ we define 〈f, g〉π = Ex∼π[f(x)g(x)] and ‖f‖π =
√

Ex∼π[f(x)2].

The Lπ is a rather general definition that is common in the literature of Bayesian coresets (Zhang et al., 2021; Campbell &
Broderick, 2019) and kernel machine (Rahimi & Recht, 2007). For example, it recovers L2 if π is chosen to be the uniform
distribution on X .

Moreover, if we choose π = ppriv as the private data density, we can show that for any probability density function p, the
distance between log p and log ppriv measured by Lppriv norm upper bounds the KL divergence between ppriv and p:

‖ log p− log ppriv‖2π = Ex∼ppriv [(log p(x)− log ppriv(x))
2] (4)

= Ex∼ppriv

(
log

p(x)

ppriv(x)

)2

(5)

≥
(

Ex∼ppriv log
p(x)

ppriv(x)

)2

(Jensen’s Inequality)

= (KL(ppriv|p))2 (6)

In general, the distribution π characterize where in X we want to evaluate a function.

Above we discuss a concrete choice of the inner product and the accordingly the norm to measure the distance between
log-density functions. Since our analysis will work with any choice of inner product, we return to using the notation of 〈·, ·〉
and ‖ · ‖ to remain generality in our main result.

F.2. Proof

Theorem F.1 (Theorem 3.1 Restated). Let ε(f̂) = E[‖f̂ − `priv‖2] characterise how good f̂ is as an estimator of the true
private data log-density `priv for any random function f̂ ∈ H. Consider the following three quantities:

1. ε(`pub) that characterizes the error if we use the public log-density function `pub to approximate the `priv

2. ε(ˆ̀priv) that characterizes the error if we use the noisy private log-density function ˆ̀priv to approximate the `priv

3. ε(ĥ) that characterizes the error if we use ĥ = 1
2`pub +

1
2
ˆ̀priv to approximate the `priv.

Then,

ε(`pub) = d2pub, priv (7)

ε(ˆ̀priv) = σ2
priv (8)

ε(ĥ) =
1

4
d2pub, priv +

1

4
σ2

priv (9)

Proof. We prove a general result which gives the theorem as special cases. For β ∈ [0, 1], define

f̂β = β`pub + (1− β)ˆ̀priv. (10)
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According to the definition of ε(f̂β) = E[‖f̂β − `priv‖2], we have

ε(f̂β) = E[‖f̂β − `priv‖2] = E[‖β`pub + (1− β)ˆ̀priv − `priv‖2] (11)

= E[‖β(`pub − `priv) + (1− β)(ˆ̀priv − `priv)‖2] (12)

= β2‖`pub − `priv‖2 + (1− β)2E
[
‖ˆ̀priv − `priv‖2

]
+ 2β(1− β)E

[
〈`pub − `priv, ˆ̀priv − `priv〉

]
(13)

= β2d2pub, priv + (1− β)2σ2
priv + 2β(1− β)〈`pub − `priv,E[ˆ̀priv]− `priv〉 (14)

= β2d2pub, priv + (1− β)2σ2
priv + 0 (15)

= β2d2pub, priv + (1− β)2σ2
priv (16)

Therefore, we can see that the theorem stands as we substitute f̂1 = `pub, f 1
2
= ĥ, and f̂0 = ˆ̀priv.

F.3. Extended Analysis

Note that in the previous subsection the f̂β is a weighted combination of `pub and ˆ̀priv. I.e. f̂β = (1− β)`pub + β ˆ̀priv where
β ∈ [0, 1]. Therefore, one can show that with the optimal weight β?, it is guaranteed that ε(f̂β?) ≤ min{ε(`pub), ε(ˆ̀priv)}.

This framework of analysis is general (as it stands with any meaningful inner product and its norm), and it may inspire even
better ways to design estimators mitigating the domain shift and private model noise.
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