Normalizing Flows (NF) are powerful likelihood-based generative models that are able to trade off between expressivity and tractability to model complex densities. A now well established research avenue leverages optimal transport (OT) and looks for Monge maps, i.e. models with minimal effort between the source and target distributions. This paper introduces a method based on Brenier’s polar factorization theorem to transform any trained NF into a more OT-efficient version without changing the final density. We do so by learning a rearrangement of the source (Gaussian) distribution that minimizes the OT cost between the source and the final density. We further constrain the path leading to the estimated Monge map to lie on a geodesic in the space of volume-preserving diffeomorphisms thanks to Euler’s equations. The proposed method leads to smooth flows with reduced OT cost for several existing models without affecting the model performance.

1 Introduction

Normalizing flows. A popular class of generative models is Normalizing flows (NF). NF models transform a known probability distribution (Gaussian in most cases) into a complex one allowing for efficient sampling and density estimation. To do so they use a smooth diffeomorphism \(f \colon \mathbb{R}^d \to \mathbb{R}^d \) which maps a target probability distribution \(\mu \) to the known source distribution \(\nu = f_\# \mu \) [1, 2]. In practice the flow must satisfy the change of variables formula \(\log p_\nu(x) = \log p_\mu(f(x)) + \log |\det \nabla f(x)| \). There are many possible parameterizations of \(f \), usually relying on automatic differentiation to train their parameters via first order optimization algorithms. For density estimation applications, training is done by maximizing the likelihood of the observed data [1, 3, 2, 4].

Optimal transport. The question of choosing the "best" transformation among all existing ones, independently from how accurately \(\mu \) models the target distribution is an important one. One way to make the architecture unique (under appropriate conditions on the two distributions) is to use optimal transport [5, 6, 7, 8], that is to choose the one giving the Wasserstein distance between \(\mu \) and \(\nu \), with a squared \(L_2 \) ground cost \(W_2^2(\mu, \nu) = \min_f \int_{\mathbb{R}^d} |f(x) - x|^2 d\mu(x), \quad \nu = f_\# \mu \). An optimal model minimizes the total mass displacement which can be a desirable property even if it is often a difficult task. In particular Brenier’s theorem [9] states that the optimal function \(f \) is the gradient of a scalar convex function, which is widely used in practice.

1.1 Main contributions

Polar factorization. An overlooked implication of Brenier’s theorem is the so-called polar factorization theorem, that states that the optimal transport map \(\nabla \psi \) can be factorized into the composition of two functions \(\nabla \psi = s \circ f \), the function \(f \) being some arbitrary smooth map from \(\mu \) to \(\nu \) and...
we focus on the preservation of disentanglement on the dSprites dataset [12] in some variational
Theorem 1 (Brenier's polar factorization [9])

\[\mu := g \# \nu = (g \circ s^{-1}) \# \nu. \]

The OT-improved map can then be obtained with the composition \(g \circ s^{-1} \).

Interestingly this property is not as popular as the previous one and to our knowledge is not used when
dealing with OT and NF models. Yet normalizing flows can take advantage of this formulation mostly
because the distribution \(\nu \) is known and simple which make it possible to construct architectures
preserving \(\nu \). We consider the most common case where the known distribution is a standard normal
and call such rearranging maps Gaussian Preserving (GP) flows. An important point is that by
construction our GP map will only change the OT cost of the model. The target density and therefore
the training loss given by the model will stay the same. this allows us to take any pre-trained model
and compute the associated Monge map, thus improving the model in terms of OT displacement from
the source to the target distribution, without changing the modeled density see Figure 1.

![Figure 1: Eight gaussians test case with colored distributions. A GP flow is trained on a pre-trained BNAF model [10] to reduce the OT cost.](image)

Euler’s equations. Since several GP flow models can solve the same OT problem, we also look
for a way to find the "best" GP flow. In this work, we show that the geodesics associated with
the OT problem are actually given by solutions to the Euler equations, following a celebrated
result by Arnold [11]. The penalization of Euler’s equations in high dimensions and its practical
implementation is therefore also considered.

Disentanglement preservation with optimal transport. Finally we show one potential interest
of GP flows by studying the preservation of the data structure experimentally. More specifically
we focus on the preservation of disentanglement on the dSprites dataset [12] in some variational
auto-encoder (VAE) latent space. On this particular example we show that OT allows to preserve the
structure of the latent data points which is otherwise destroyed when applying the NF model.

2 Gaussian preserving flows

Polar factorization theorem. The main idea is to use the Brenier’s polar factorization theorem
to construct the Monge map with a rearrangement of the known probability distribution \(\nu \). To
preserve the conventions from Brenier’s paper [9], we study the OT problem defined from the known
probability distribution \(\nu \) to \(\mu \) and therefore consider the function \(g := f^{-1} \).

Theorem 1 (Brenier’s polar factorization [9]). Let \((\mathcal{X}, \nu)\) be a probability space, \(\mathcal{X} \subset \mathbb{R}^d \) open
bounded. Then for each non-degenerate \(g \in L^p(\mathcal{X}, \nu, \mathbb{R}^d) \), there exists a unique convex function
\(\psi : \mathcal{X} \to \mathbb{R} \) and a measure preserving function \(s : \mathcal{X} \to \mathcal{X} \) such that \(g(x) = \nabla \psi(s(x)) \), and \(s(x) \)
iminimizes the cost \(\int_{\mathcal{X}} \| g(x) - s(x) \|^2 \, d\nu(x) \).

Our goal is to leverage the polar factorization theorem in order to solve the OT problem between
\(\nu \) and \(\mu := g \# \nu \) where \(g \) is given and \(\nu = \mathcal{N}(0, I_d) \), by looking for the rearrangement \(s \) via an
optimization problem. To do so we need to construct a class of measure preserving maps.

Gaussian preserving flows. Consider two probability measures \(\mu \) and \(\nu \) with density \(h_\mu \) and \(h_\nu \)
respectively. A map \(s \) is measure preserving between \(\mu \) and \(\nu \) if it satisfies the change of variable
equality \(h_\nu(x) = h_\mu(s(x)) | \det(\nabla s(x)) | \). In our case, we want \(s \) to be Gaussian preserving therefore
\(h_\mu = h_\nu = e^{-||x||^2/2} \) and one gets

\[| \det \nabla s(x) | = e^{(||s(x)||^2 - ||x||^2)/2}. \quad (1) \]
We impose two conditions on the velocity \(v\) which satisfies two properties: 1) the function must be volume and orientation preserving, 2) \(\text{Diff}(\Omega)\) with from now on. Let first we introduce the space Volume-orientation preserving maps. If and only if \((6)\)

In other words \((6)\) is the geodesic in related to Euler’s equations.

We then have two terms in our loss function: the negative log-likelihood and the term in Appendix A. We then choose to penalize Euler’s equations along the trajectories of our GP flows as detailed in Appendix A. We then have two terms in our loss function: the negative log-likelihood and the term related to Euler’s equations.

The incompressible property (3) and the boundary conditions (4) can be exactly implemented in the network in any dimension. Note however that in order to get all the incompressible vector fields, we need to construct \(d(d-1)/2\) arbitrary scalar functions see Appendix B for indications on how to construct divergence free functions in high dimensions.

3 Euler’s geodesics

In 1966, Arnold [11] showed that the flow described by Euler’s equations coincides with the geodesic flow on the manifold of volume preserving diffeomorphisms. This theoretical result therefore gives the reason why regularizing our flows with Euler’s equations is a desirable property. Mainly that Euler’s equations take the path with the lowest energy to reach the final configuration. Consider the Euler equations:

\[
\begin{align}
\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\nabla p, & t \in [0, T], \ x \in \Omega, \\
\nabla \cdot \mathbf{v} &= 0, & t \in [0, T], \ x \in \Omega, \\
\mathbf{v} \cdot \mathbf{n} &= 0, & t \in [0, T], \ x \in \partial \Omega, \\
v(0, \cdot) &= \mathbf{v}_0, \\
\end{align}
\]

where \(\mathbf{v}:=v(t, x)\) is the velocity field, \(p:=p(t, x)\) the pressure and \(\mathbf{n}:=\mathbf{n}(x)\) the outward normal at the boundary of \(\Omega\). We introduce the energy \(E(\mathbf{X}) := \int_0^T \int_{\Omega} \frac{1}{2} |\partial_t \mathbf{X}(t, x)|^2 dx dt\). Now assume \(\phi \in \text{SDiff}(\Omega)\), Arnold’s problem’s consists in finding the path \(\mathbf{X}(t, \cdot) \in [0, T] \in \text{SDiff}(\Omega)\) joining the identity to \(\phi\) which minimizes \(E\):

\[
\min_{\mathbf{X}(t, \cdot) \in \text{SDiff}(\Omega)} E(\mathbf{X}), \quad \mathbf{X}(0, \cdot) = \text{Id}, \quad \mathbf{X}(T, \cdot) = \phi(\cdot). \tag{6}
\]

In other words (6) is the geodesic in \(\text{SDiff}(\Omega)\) between \(\text{Id}\) and \(\phi\).

Theorem 2 (Arnold [11]). Assuming the existence of a solution to Arnold’s problem, \(\mathbf{X}\) is solution to (6) if and only if \(v(t, x) := \partial_t \mathbf{X}(t, x)\) satisfies Euler’s equations (5).

In practice, we choose to penalize Euler’s equations along the trajectories of our GP flows as detailed in Appendix A. We then have two terms in our loss function: the negative log-likelihood and the term related to Euler’s equations.
Table 1: Quantitative evaluation of disentanglement (higher is better), completeness (higher is better) and informativeness (lower is better). Adding GP flows make the scores closer to the initial ones.

<table>
<thead>
<tr>
<th>Model</th>
<th>Disent.</th>
<th>Compl.</th>
<th>Inform.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init. latent space</td>
<td>0.58</td>
<td>0.81</td>
<td>0.55</td>
</tr>
<tr>
<td>FFJORD</td>
<td>0.39</td>
<td>0.26</td>
<td>0.62</td>
</tr>
<tr>
<td>FFJORD+GP</td>
<td>0.60</td>
<td>0.68</td>
<td>0.61</td>
</tr>
<tr>
<td>FFJORD+GP+EULER</td>
<td>0.59</td>
<td>0.67</td>
<td>0.59</td>
</tr>
</tbody>
</table>

4 An example of application: improving disentanglement preservation with optimal transport

Disentangled representations allow to encode the data in a latent space where change in one direction result in the change over one generative factor in the data. Recently the construction of variational auto-encoders (VAE) [15] with disentangle latent space has received much attention [16, 17, 18, 19]. Applying a NF architecture to such latent space may be needed for various tasks such as density estimation, generative process or general interpolation. The latter requires to preserve as much of the data structure as possible. We therefore propose to experimentally study disentanglement preservation of NF with and without OT. To do this, we apply a NF architecture (FFJORD [20] in our case) to the VAE’s latent distribution and consider the addition of a GP flow. For the disentangled interpolation in the NF target (gaussian) space, we consider the same directions which are present in the VAE latent space and are aligned with the axes. This may be a naive approach since these directions may change depending on the source and target distribution, but it seems enough here to already see an improvement. Our experiments are run with the β-TCVAE architecture [18] and the latent space dimension is 10.

dSprites test case. The dSprites dataset [12] is made of 64×64 images of 2D shapes procedurally generated from 5 ground truth independent latent factors. These factors are shape, scale, rotation, x and y positions of a sprite. Since the factors are known we can compute a quantitative evaluation of disentanglement and we choose here to consider the metric from [21] on the continuous factors (i.e. all the factors except the shape) for the three criteria: disentanglement, completeness and informativeness. Table 1 shows that FFJORD destroy the latent structure and give the worst disentanglement, completeness and informativeness scores. Adding GP flows allow to recover the same disentanglement score as the initial latent space and get values closer both for completeness and informativeness. Note that the disentanglement score is slightly better with FFJORD+GP than the initial one however this is probably only due to some approximation in the metric used here since there is no reason that GP flows improved the disentanglement compared to the initial latent space. On Table 2 the OT costs are compared and as expected GP flows allow to reduce the OT cost without changing the loss. Interestingly GP flows with no additional regularization do not converge completely to the Monge map because particles get out of the domain at some point making it impossible to continue the training process. We conjecture that this may be due to non-smooth trajectories of our GP flows and a regularization is therefore needed. As shown on Table 2 adding Euler regularization fixed this issue and allows to further reduce the OT cost. To illustrate the preservation of disentanglement some interpolations are also presented in Figures 2 and 3 in Appendix D. As we can see on the initial latent space picture, since the dimensions are sorted with respect to their KL divergence only the first dimensions carry information and therefore each of the first 5 lines correspond to a generative factor. On the contrary when interpolating on the last dimensions the image stays the same. This structure is lost when mapping the latent space to a gaussian with the FFJORD architecture. When adding GP flows we recover this structure and the interpolation better match the initial latent one.

References

Table 2: Loss (negative log-likelihood) and mean OT costs. GP flows reduce the OT cost without changing the loss. Adding Euler regularization allows to further reduced the OT cost.

<table>
<thead>
<tr>
<th>Model</th>
<th>Loss</th>
<th>OT cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFJORD</td>
<td>-17.52</td>
<td>10.45</td>
</tr>
<tr>
<td>FFJORD+GP</td>
<td>-17.52</td>
<td>5.60</td>
</tr>
<tr>
<td>FFJORD+GP+EULER</td>
<td>-17.52</td>
<td>5.26</td>
</tr>
</tbody>
</table>

A Penalization of Euler’s equations in high dimensions

Numerical schemes developed to efficiently solve the Euler equations [22, 23] (mainly for fluid mechanics problems, i.e. for dimensions up to 3) scale badly when the dimension increases. In this work, the solution to Euler’s equations is interpreted as the geodesic to reach the solution of the OT problem and the dimension can be arbitrary large. Therefore we approach the equation (5) through a penalization procedure which can be carried out in any dimensions. As explained before the second and third equations in (5) are satisfied by construction in the network.

Our remaining goal is to constrain the network to be a smooth solution to $\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p$. The left hand side can therefore be written as the gradient of a scalar function and we note that if a vector $\mathbf{w}_{t,x} \in \mathbb{R}^d$ satisfies $\mathbf{w}_{t,x} = \nabla p(t, x)$, then its Jacobian is symmetric $\nabla \mathbf{w}_{t,x} = (\nabla \mathbf{w}_{t,x})^T$. In order to solve the first equation in (5), we propose to penalize the non-symmetric part of the Jacobian for the total derivative of \mathbf{v}. Since a Jacobian-vector product can be efficiently evaluated in high dimensions (unlike the calculation of the full Jacobian which is computationally expensive), we do not calculate directly the Jacobian and use instead the following property of symmetric matrices:

$$M \text{ is symmetric then } y^T M z - z^T M y = 0, \forall y, z \in \mathbb{R}^d.$$

The idea is to sample random vectors y, z during the training and to penalize this term for the total derivative, that is to minimize:

$$R(x) := \mathbb{E}_{y,z} \left[\int_0^T \left(y^T (\nabla \mathbf{w}_{t,x}) z - z^T (\nabla \mathbf{w}_{t,x}) y \right)^2 dt \right], \quad y, z \sim \mathcal{N}(0, \text{Id}),$$

with $\mathbf{w}_{t,x} = \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v}$. In practice, we do not compute the full time integral in (7) as it would be computationally too expensive but calculate the penalization only at our time steps discretization.

Approximation of the total derivative. To reduce the computational burden, we do not calculate exactly the total derivative $\mathbf{w}_{t,x}$ but use an approximation of its Lagrangian formulation instead. More precisely, consider the variable $X(t, x)$ from (2) that is the position of a particle at time t with initial position x. We recall the equality $D_t v(t, X(t, x)) = \partial_t v(t, X(t, x)) + (v(t, X(t, x))^T \nabla) v(t, X(t, x))$ and therefore choose to approximate the right hand side by using a first order Taylor expansion of Dv/Dt:

$$D_t v(t, X(t, x)) \approx \frac{v(t^{n+1}, X(t^{n+1}, x)) - v(t^n, X(t^n, x))}{\Delta t}, \quad \Delta t := t^{n+1} - t^n.$$

In practice, Δt is set to $2\sqrt{\varepsilon}$ where ε is the machine precision. This approximation can be easily computed since it requires only the evaluation of the velocity at two positions of a particle.

B Incompressible vector fields in high dimensions

Divergence free vector fields. First we focus on the vector fields satisfying (3) for arbitrary large dimensions. Property (4) can then be incorporated with very little additional work.

Proposition 2. Consider an arbitrary vector field $\mathbf{v} : \mathbb{R}^d \rightarrow \mathbb{R}^d$. Then $\nabla \cdot \mathbf{v} = 0$ if and only if there exists smooth scalar functions $\psi_j^i : \mathbb{R}^d \rightarrow \mathbb{R}$, with $\psi_j^i = -\psi_i^j$ such that

$$v_i(x) = \sum_{j=1}^d \partial_{x_j} \psi_j^i(x), \quad i = 1, ..., d,$$

where $\mathbf{v} = (v_1, ..., v_d)$.

To impose the boundary conditions (4) one can simply multiply each ψ_i^j by $(x_i^2 - 1)(x_j^2 - 1)$.

Lemma 1. Let $\Omega = [-1, 1]^d$ and consider the functions $\psi_i^j(x) = (x_i^2 - 1)(x_j^2 - 1)\tilde{\psi}_i^j(x)$ where $\tilde{\psi}_i^j(x) : \mathbb{R}^d \to \mathbb{R}$ are arbitrary scalar functions satisfying $\psi_i^j = -\tilde{\psi}_i^j$. Then the function ν defined in Proposition 2 satisfies $\nabla \cdot \nu = 0$ and $\nu \cdot n = 0$ on $\partial \Omega$.

To keep the length of this extended abstract reasonable we have chosen not to give the proofs of Propositions 1 and 2 and Lemma 1. These proofs will be available in the full version of the paper. For the same reason the practical construction of incompressible vector fields which is based on Proposition 2 and Lemma 1 is postponed to the full version of the paper. We emphasize that the properties (3) and (4) are satisfied by construction of our network which requires in practice $d - 1$ vector valued functions $\nu^n : \mathbb{R}^d \to \mathbb{R}^d$, $n = 0, \ldots, d - 2$.

C Experiment details

dSprites datasets. The VAE architecture used in the experiments is taken from the github repository of Yann Dubois\(^1\). The parameters used for the GP flows are given in Table 3. For all test cases we consider a GP flow with 15 time steps and three intermediate layers of 50 parameters with a Runge-Kutta 4 discretization at each layer. For the Euler penalization we take an initial parameter $\lambda = 5 \times 10^{-5}$ which is then divided 10 times periodically by a factor 2 during the training.

D Interpolation examples

\(^1\) https://github.com/YannDubs/disentangling-vae
Figure 2: Examples of interpolation for the dSprites dataset where each block correspond to the interpolation of a different data point along the 10 dimensions axis represented by the rows. The dimensions are sorted with respect to their KL divergence in the VAE latent space, so the higher rows carry more information while the last rows should leave the image unchanged.
Figure 3: Examples of interpolation for the dSprites dataset where each block correspond to the interpolation of a different data point along the 10 dimensions axis represented by the rows. The dimensions are sorted with respect to their KL divergence in the VAE latent space, so the higher rows carry more information while the last rows should leave the image unchanged.