
Turning Normalizing Flows into Monge Maps with
Geodesic Gaussian Preserving Flows

Guillaume Morel
IMT Atlantique

guillaume.morel @ imt-atlantique.fr

Lucas Drumetz
IMT Atlantique

lucas.drumetz @ imt-atlantique.fr

Simon Benaichouch
IMT Atlantique

simon.benaichouch @ imt-atlantique.fr

Nicolas Courty
IRISA

nicolas.courty @ irisa.fr

François Rousseau
IMT Atlantique

francois.rousseau @ imt-atlantique.fr

Abstract

Normalizing Flows (NF) are powerful likelihood-based generative models that are
able to trade off between expressivity and tractability to model complex densities.
A now well established research avenue leverages optimal transport (OT) and looks
for Monge maps, i.e. models with minimal effort between the source and target
distributions. This paper introduces a method based on Brenier’s polar factorization
theorem to transform any trained NF into a more OT-efficient version without
changing the final density. We do so by learning a rearrangement of the source
(Gaussian) distribution that minimizes the OT cost between the source and the final
density. We further constrain the path leading to the estimated Monge map to lie
on a geodesic in the space of volume-preserving diffeomorphisms thanks to Euler’s
equations. The proposed method leads to smooth flows with reduced OT cost for
several existing models without affecting the model performance.

1 Introduction

To keep the length of this extended abstract short we have removed some proofs. All the proofs are
given in the full version of the paper available here https://arxiv.org/abs/2209.10873.

Normalizing flows. A popular class of generative models is Normalizing flows (NF). NF models
transform a known probability distribution (Gaussian in most cases) into a complex one allowing for
efficient sampling and density estimation. To do so they use a smooth diffeomorphism f : Rd → Rd

which maps a target probability distribution µ to the known source distribution ν = f#µ [1, 2].
In practice the flow must satisfy the change of variables formula log pµ(x) = log pν(f(x)) +
log |det∇f(x)|. There are many possible parameterizations of f , usually relying on automatic
differentiation to train their parameters via first order optimization algorithms. For density estimation
applications, training is done by maximizing the likelihood of the observed data [1, 3, 2, 4].

Optimal transport. The question of choosing the ”best” transformation among all existing ones,
independently from how accurately µ models the target distribution is an important one. One way to
make the architecture unique (under appropriate conditions on the two distributions) is to use optimal
transport [5, 6, 7, 8], that is to choose the one giving the Wasserstein distance between µ and ν, with
a squared L2 ground cost W 2

2 (µ, ν) = minf
∫
Rd |f(x)− x|2dµ(x), ν = f#µ. An optimal model

DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

minimizes the total mass displacement which can be a desirable property even if it is often a difficult
task. In particular Brenier’s theorem [9] states that the optimal function f is the gradient of a scalar
convex function, which is widely used in practice.

1.1 Main contributions

Polar factorization. An overlooked implication of Brenier’s theorem is the so-called polar factoriza-
tion theorem, that states that the optimal transport map ∇ψ can be factorized into the composition
of two functions ∇ψ = s ◦ f , the function f being some arbitrary smooth map from µ to ν and
s an associated measure preserving function of ν [9]. The idea we exploit is the possibility, from
a given flow f (and its corresponding inverse g = f−1), to rearrange the distribution ν using s to
obtain a new map reducing the OT cost without changing the distribution given by the push-forward
µ := g#ν = (g ◦ s−1)#ν. The OT-improved map can then be obtained with the composition g ◦ s−1.
Interestingly this property is not as popular as the previous one and to our knowledge is not used when
dealing with OT and NF models. Yet normalizing flows can take advantage of this formulation mostly
because the distribution ν is known and simple which make it possible to construct architectures
preserving ν. We consider the most common case where the known distribution is a standard normal
and call such rearranging maps Gaussian Preserving (GP) flows. An important point is that by
construction our GP map will only change the OT cost of the model. The target density and therefore
the training loss given by the model will stay the same. his allows us to take any pre-trained model
and compute the associated Monge map, thus improving the model in terms of OT displacement from
the source to the target distribution, without changing the modeled density see Figure 1.

Figure 1: Eight gaussians test case with colored distributions. A GP flow is trained on a pre-trained BNAF
model [10] to reduce the OT cost.

Euler’s equations. Since several GP flow models can solve the same OT problem, we also look
for a way to find the ”best” GP flow. In this work, we show that the geodesics associated with
the OT problem are actually given by solutions to the Euler equations, following a celebrated
result by Arnold [11]. The penalization of Euler’s equations in high dimensions and its practical
implementation is therefore also considered.

Disentanglement preservation with optimal transport. Finally we show one potential interest
of GP flows by studying the preservation of the data structure experimentally. More specifically
we focus on the preservation of disentanglement on the dSprites dataset [12] in some variational
auto-encoder (VAE) latent space. On this particular example we show that OT allows to preserve the
structure of the latent data points which is otherwise destroyed when applying the NF model.

2 Gaussian preserving flows

Polar factorization theorem. The main idea is to use the Brenier’s polar factorization theorem
to construct the Monge map with a rearrangement of the known probability distribution ν. To
preserve the conventions from Brenier’s paper [9], we study the OT problem defined from the known
probability distribution ν to µ and therefore consider the function g := f−1.

Theorem 1 (Brenier’s polar factorization [9]). Let (X , ν) be a probability space, X ⊂ Rd open
bounded. Then for each non-degenerate g ∈ Lp(X , ν,Rd), there exists a unique convex function
ψ : X → R and a measure preserving function s : X → X such that g(x) = ∇ψ(s(x)), and s(x)
minimizes the cost

∫
X |g(x)− s(x)|2dν(x).

2

Our goal is to leverage the polar factorization theorem in order to solve the OT problem between
ν and µ := g#ν where g is given and ν = N (0, Id), by looking for the rearrangement s via an
optimization problem. To do so we need to construct a class of measure preserving maps.

Gaussian preserving flows. Consider two probability measures α and β with density hα and hβ
respectively. A map s is measure preserving between α and β if it satisfies the change of variable
equality hβ(x) = hα(s(x))|det(∇s(x))|. In our case, we want s to be Gaussian preserving therefore
hα = hβ = e−∥x∥2/2 and one gets

|det∇s(x)| = e(∥s(x)∥
2−∥x∥2)/2. (1)

It turns out that Lebesgue preserving functions (i.e. satisfying |det∇ϕ| = 1) can be used to construct
maps satisfying (1). In the following we will denote erf : Rd → Rd the distribution function of a
one dimensional Gaussian (that is erf(x) = 2√

π

∫ x

0
et

2

dt) applied component wise.

Proposition 1. Let s be a smooth preserving function (i.e. satisfying (1)). Then there exists
ϕ : (−1, 1)d → (−1, 1)d such that |det∇ϕ| = 1 and s(x) =

√
2 erf−1 ◦ϕ ◦ erf(x√

2
), x ∈ Rd.

From now on we will focus on the construction of volume and orientation preserving maps (i.e.
satisfying det∇ϕ = 1) since functions satisfying det∇ϕ = −1 can be constructed from them. It is
also possible to show that under simple hypothesis on the Monge map and the NF architecture, the
GP flow s is C1 and either det∇ϕ = 1 everywhere or det∇ϕ = −1 everywhere.

2.1 Volume-orientation preserving maps

First we introduce the space SDiff(Ω) we will working with from now on. Let Diff(Ω) be the set
of all diffeomorphisms in Ω then SDiff(Ω) :=

{
ψ ∈ Diff(Ω), det(∇ψ)(x) = 1, ∀x ∈ Ω

}
, where

Ω = (−1, 1)d. That is we need a transformation which satisfies two properties: 1) the function must
be volume and orientation preserving, 2) the solution must stay in the domain (−1, 1)d. Consider the
following ODE: {

d
dtX(t,x) = v(t,X(t,x)), x ∈ Ω, 0 ≤ t ≤ T,

X(0,x) = x.
(2)

We impose two conditions on the velocity v:
∇ · v = 0, in Ω, (3)
v · n = 0, on ∂Ω, (4)

where n is the outward normal at the boundary of Ω. We define ϕ to be the solution at the final time
ϕ(x) := X(T,x). Property (3) implies that det∇ϕ = 1, and property (4) ensures that ϕ does not
escape Ω. Any function in SDiff(Ω) can be written as a solution to (2) for d ≥ 3 [13], for d = 2
some pathological cases can be constructed [14].

The incompressible property (3) and the boundary conditions (4) can be exactly implemented in the
network in any dimension. Note however that in order to get all the incompressible vector fields, we
need to construct at least d(d − 1)/2 arbitrary scalar functions. See Appendix B for the practical
construction of divergence free functions in high dimensions.

2.2 Euler’s geodesics

GP flows give a way to compute the Monge map for any trained NF architecture. Many transforma-
tions can achieve this goal and the question of finding the best flow among all volume preserving
transformations need to be considered.

Arnold’s theorem. In 1966, Arnold [11] showed that the flow described by Euler’s equations
coincides with the geodesic flow on the manifold of volume preserving diffeomorphisms. This
theoretical result therefore gives the reason why regularizing our flows with Euler’s equations is a
desirable property. Mainly that Euler’s equations take the path with the lowest energy to reach the
final configuration. Consider the Euler equations:

∂tv + (v · ∇)v = −∇p, t ∈ [0, T], x ∈ Ω,

∇ · v = 0, t ∈ [0, T], x ∈ Ω,

v · n = 0, t ∈ [0, T], x ∈ ∂Ω,

v(0, ·) = v0,

(5)

3

where v := v(t,x) is the velocity field, p := p(t,x) the pressure and n := n(x) the outward normal
at the boundary of Ω. We introduce the energy E(X) :=

∫ T

0

∫
Ω

1
2 |∂tX(t,x)|2dxdt. Now assume

ϕ ∈ SDiff(Ω), Arnold’s problem’s consists in finding the path X(t, ·)t∈[0,T] in SDiff(Ω) joining the
identity to ϕ which minimizes E :

min
X(t,·)∈SDiff(Ω)

E(X), X(0, ·) = Id, X(T, ·) = ϕ(·). (6)

In other words (6) is the geodesic in SDiff(Ω) between Id and ϕ.

Theorem 2 (Arnold [11]). Assuming the existence of a solution to Arnold’s problem, X is solution to
(6) if and only if v(t,x) := ∂tX(t,x) satisfies Euler’s equations (5).

In practice, we choose to penalize Euler’s equations along the trajectories of our GP flows as detailed
in Appendix A. We then have two terms in our loss function: the negative log-likelihood and the term
related to Euler’s equations.

3 An example of application: improving disentanglement preservation with
optimal transport

Disentangle representations allow to encode the data in a latent space where change in one direction
result in the change over one generative factor in the data. Recently the construction of variational
auto-encoders (VAE) [15] with disentangle latent space has received much attention [16, 17, 18, 19].
Applying a NF architecture to such latent space may be needed for various tasks such as density
estimation, generative process or general interpolation. The latter requires to preserve as much of the
data structure as possible. We therefore propose to experimentally study disentanglement preservation
of NF with and without OT. To do this we apply a NF architecture (FFJORD [20] in our case) to the
VAE’s latent distribution and consider the addition of a GP flow. For the disentangle interpolation
in the NF target (gaussian) space we consider the same directions which are present in the VAE
latent space and are aligned with the axis. This may be a naive approach since these directions may
change depending on the source and target distribution but it seems enough here to already see an
improvement. Our experiments are run with the β-TCVAE architecture [18] and the latent space
dimension is 10.

dSprites test case. The dSprites dataset [12] is made of 64× 64 images of 2D shapes procedurally
generated from 5 ground truth independent latent factors. These factors are shape, scale, rotation, x
and y positions of a sprite. Since the factors are known we can compute a quantitative evaluation of
disentanglement and we choose here to consider the metric from [21] on the continuous factors (i.e.
all the factors except the shape) for the three criteria: disentanglement, completeness and informative-
ness. Table 1 shows that FFJORD destroy the latent structure and give the worst disentanglement,
completeness and informativeness scores. Adding GP flows allow to recover the same disentangle-
ment score as the initial latent space and get values closer both for completeness and informativeness.
Note that the disentanglement score is slightly better with FFJORD+GP than the initial one however
this is probably only due to some approximation in the metric used here since there is no reason
that GP flows improved the disentanglement compared to the initial latent space. On Table 2 the
OT costs are compared and as expected GP flows allow to reduce the OT cost without changing the
loss. Interestingly GP flows with no additional regularization do not converge completely to the
Monge map because particles get out of the domain at some point making it impossible to continue
the training process. We conjecture that this may be due to non-smooth trajectories of our GP flows
and a regularization is therefore needed. As shown on Table 2 adding Euler regularization fixed this
issue and allows to further reduce the OT cost. To illustrate the preservation of disentanglement some
interpolations are also presented in Figures 2 and 3 in Appendix D. As we can see on the initial
latent space picture, since the dimensions are sorted with respect to their KL divergence only the first
dimensions carry information and therefore each of the first 5 lines correspond to a generative factor.
On the contrary when interpolating on the last dimensions the image stays the same. This structure is
lost when mapping the latent space to a gaussian with the FFJORD architecture. When adding GP
flows we recover this structure and the interpolation better match the initial latent one.

4

Model Disent. Compl. Inform.
Init. latent space 0.58 0.81 0.55

FFJORD 0.39 0.26 0.62
FFJORD+GP 0.60 0.68 0.61

FFJORD+GP+EULER 0.59 0.67 0.59

Table 1: Quantitative evaluation of disentanglement (higher is better), completeness (higher is better) and
informativeness (lower is better). Adding GP flows make the scores closer to the initial ones.

Model Loss OT cost

FFJORD -17.52 10.45
FFJORD+GP -17.52 5.60

FFJORD+GP+EULER -17.52 5.26
Table 2: Loss (negative log-likelihood) and mean OT costs. GP flows reduce the OT cost without changing the
loss. Adding Euler regularization allows to further reduced the OT cost.

References
[1] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components

estimation. arXiv preprint arXiv:1410.8516, 2014.

[2] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[3] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

[4] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021.

[5] Brittany Hamfeldt. Optimal transport. Youtube videos, 2019.

[6] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Center for Research in
Economics and Statistics Working Papers, (2017-86), 2017.

[7] Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-
63):94, 2015.

[8] C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg, 2008.

[9] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Communications on Pure and Applied Mathematics, 44(4):375–417, 1991.

[10] Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive flow. In Uncertainty
in artificial intelligence, pages 1263–1273. PMLR, 2020.

[11] Vladimir Arnold. Sur la géométrie différentielle des groupes de lie de dimension infinie
et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’Institut Fourier,
16(1):319–361, 1966.

[12] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentangle-
ment testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

[13] A.I. Shnirelman. Attainable diffeomorphisms. Geometric and functional analysis, 3:279–294,
1993.

[14] A.I. Shnirelman. Generalized fluid flows, their approximation and applications. Geometric and
functional analysis, 4(5):586–620, 1994.

5

[15] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. stat, 1050:1, 2014.

[16] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. BLA, 2016.

[17] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv preprint
arXiv:1804.03599, 2018.

[18] Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources
of disentanglement in variational autoencoders. Advances in neural information processing
systems, 31, 2018.

[19] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, pages 2649–2658. PMLR, 2018.

[20] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. In International
Conference on Learning Representations, 2018.

[21] Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of
disentangled representations. In International Conference on Learning Representations, 2018.

[22] Claudio Canuto, Alfio Quarteroni, M. Yousuff Hussaini, and Thomas A. Zang. Spectral Methods.
Springer Berlin Heidelberg, 2007.

[23] Alfio Quarteroni. Numerical models for differential problems; 1st ed. MS&A : modeling,
simulation and applications. Springer, Milano, 2009.

A Penalization of Euler’s equations in high dimensions

Numerical schemes developed to efficiently solve the Euler equations [22, 23] (mainly for fluid
mechanics problems, i.e. for dimensions up to 3) scale badly when the dimension increases. In this
work, the solution to Euler’s equations is interpreted as the geodesic to reach the solution of the OT
problem and the dimension can be arbitrary large. Therefore we approach the equation (5) through a
penalization procedure which can be carried out in any dimensions. As explained before the second
and third equations in (5) are satisfied by construction in the network.

Our remaining goal is to constrain the network to be a smooth solution to ∂tv + (v · ∇)v = −∇p.
The left hand side can therefore be written as the gradient of a scalar function and we note that if a
vector wt,x ∈ Rd satisfies wt,x = ∇p(t,x), then its Jacobian is symmetric ∇wt,x = (∇wt,x)

T . In
order to solve the first equation in (5), we propose to penalize the non-symmetric part of the Jacobian
for the total derivative of v. Since a Jacobian-vector product can be efficiently evaluated in high
dimensions (unlike the calculation of the full Jacobian which is computationally expensive), we do
not calculate directly the Jacobian and use instead the following property of symmetric matrices: if
M is symmetric then yTMz− zTMy = 0, ∀y, z ∈ Rd. The idea is to sample random vectors y, z
during the training and to penalize this term for the total derivative, that is to minimize:

R(x) := Ey,z

[∫ T

0

(
yT (∇wt,x)z− zT (∇wt,x)y)

)2
dt

]
, y, z ∼ N (0, Id), (7)

with wt,x = ∂tv + (v · ∇)v. In practice, we do not compute the full time integral in (7) as it would
be computationally too expensive but calculate the penalization only at our time steps discretization.

Approximation of the total derivative. To reduce the computational burden, we do not calculate
exactly the total derivative wt,x but use an approximation of its Lagrangian formulation instead.
More precisely, consider the variable X(t,x) from (2) that is the position of a particle at time t
with initial position x. We recall the equality D

Dtv(t,X(t,x)) = ∂tv(t,X(t,x)) + (v(t,X(t,x)) ·

6

∇)v(t,X(t,x)) and therefore choose to approximate the right hand side by using a first order Taylor
expansion of Dv/Dt:

D

Dt
v(t,X(t,x)) ≈ v(tn+1,X(tn+1,x))− v(tn,X(tn,x))

∆t
, ∆t := tn+1 − tn. (8)

In practice, ∆t is set to 2
√
ε where ε is the machine precision. This approximation can be easily

computed since it requires only the evaluation of the velocity at two positions of a particle.

B Construction of incompressible vector fields in high dimensions

We focus on the vector fields satisfying (3) for arbitrary large dimensions. Property (4) can then be
incorporated with very little additional work. All the proofs are given in the full version of the paper
1.
Proposition 2. Consider an arbitrary vector field v : Rd → Rd. Then ∇ · v = 0 if and only if there
exists smooth scalar functions ψi

j : Rd → R, with ψi
j = −ψj

i such that

vi(x) =
d∑

j=1

∂xj
ψi
j(x), i = 1, ..., d, (9)

where v = (v1, ..., vd).

To impose the boundary conditions (4) one can simply multiply each ψi
j by (x2i − 1)(x2j − 1).

Lemma 1. Let Ω = [−1, 1]d and consider the functions ψi
j(x) = (x2i − 1)(x2j − 1)ψ̃i

j(x) where

ψ̃i
j(x) : Rd → R are arbitrary scalar functions satisfying ψ̃i

j = −ψ̃j
i . Then the function v defined in

Proposition 2 satisfies ∇ · v = 0 and v · n = 0 on ∂Ω.

The goal here is to have a GPU-friendly construction of the incompressible vector fields given in
Proposition 2. In the following we consider stationary divergence free functions but the time variable
can be added with no additional work simply by considering functions in Rd+1 instead of Rd (the
gradients are still taken only on the space variables though).

Notations. Regarding the notations we will use the operator diag for two distinct cases: 1) When w
is a vector diag(w) denotes the diagonal matrix obtained from the vector w. 2) When W is a matrix
diag(W) denotes the vector obtained from the diagonal of W . The operation · denotes the scalar
product between two vectors. Finally we have adopted the convention that when a scalar multiplies a
vector it multiplies each of its component.

Practical construction. Let un : Rd → Rd−n. We construct a divergence free function with the
functions ψi

j defined as

(ψi
j)

n =

{
uni−n − unj−n, if i, j ≥ n+ 1,

0, otherwise.
(10)

To construct this divergence free function we define the matrix (∇u(x))n ∈ Rd×d and the vector
1n ∈ Rd as

(∇u(x))nij =

{
∂i−nu

n
j−n, if i, j ≥ n+ 1

0, otherwise.
, (11)

1n
i =

{
1, if i ≥ n+ 1

0, otherwise.
.

Lemma 2. Let n ∈ N, n ≤ d− 2 and consider the function un : Rd → Rd−n. Then the vector field
vn : Rd → Rd defined as

vn(x) = (∇u)n 1n − [diag(∇u)n · 1n]1n, (12)

is divergence free.

1 https://arxiv.org/abs/2209.10873

7

To construct the functions (12) we need 1) to compute the product between the Jacobian of a vector
valued function and a constant vector 2) sum the diagonal elements of the Jacobian matrix. Both of
these operations can be done efficiently on GPU. Note that in order to satisfy the boundary conditions
vn · n = 0 one can modify the equation (12) as in Lemma 1 to obtain

vn(x) = (x2 − 1)⊙[
2Mnx+ (∇u)n(x)(x2 − 1)− ((x2 − 1) · diag(∇u(x))n)1n

]
,

(13)

where Mn
ij = uni − unj , if i, j ≥ n+ 1 and Mn

ij = 0 otherwise.

It is possible to recover all the incompressible functions from Proposition 2 by adding the blocks
v0 + v1 + ...+ vd−2.
Proposition 3. Let v be a divergence free function in Rd. Then there exists d − 1 functions
v0, ...,vd−2 constructed as in Lemma 2 such that

v(x) =

d−2∑
n=0

vn(x).

The attentive reader would have noticed that with the vector functions un, n = 0, ..., d − 2 we
have a total of (d+ 2)(d− 1)/2 independent scalar functions while Proposition 2 only requires the
construction of d(d− 1)/2 scalar functions leaving d− 1 additional functions which are not strictly
needed to obtain the divergence free vectors. This is due to the vectorized constructions (12)-(13)
which allow a fast evaluation of the divergence free functions on GPU. Having d− 1 additional scalar
functions in return is not a big issue since the general order remains O(d2).

Also note that the practical implementation of the equations (10)-(11) requires to find a pythonic way
to efficiently pad a group of matrices with different dimensions. We have not yet find such way and
therefore have simply chosen in our applications to construct d− 1 vector valued functions un ∈ Rd,
n = 0, ..., d− 2 and fill the appropriate dimensions in (10)-(11) with 0. Again even if not optimal
this is not a big issue as it multiplies the number of independent scalar functions by a factor 2, but the
general order remains O(d2).

In practice, we have written the functions un as the output of a big function u : Rd → R(d−1)×d

allowing to evaluate all the functions un in a single pass. The vector u is written as the composition
of linear functions with some simple non linearity

u(x) =Mnxn + bn,

xi = σ(Mi−1xi−1 + bi−1), i = 1, ..., n− 1,

x0 = x,

(14)

where Mi are rectangular matrices, bi a vector field and typically we have taken σ = tanh. One big
advantage of the formulation (14) is that the Jacobian of u (and therefore of all the functions un) can
be computed analytically

∇u(x) =Mn∇xn,

∇xi = diag(σ′(Mi−1∇xi−1 + bi−1))Mi−1,
(15)

for i = 1, ..., n − 1. The formulation (15) therefore allows a fast evaluation of the term (12) in
particular when summing the diagonal elements of the Jacobian. In our experiments we have noticed
that the analytical formulation of the Jacobian (15) was faster than using torch.autograd.

C Experiment details

dSprites datasets. The VAE architecture used in the experiments is taken from the github repository
of Yann Dubois2. The parameters used for the GP flows are given in Table 3. For all test cases
we consider a GP flow with 15 time steps and three intermediate layers of 50 parameters with a
Runge-Kutta 4 discretization at each layer. For the Euler penalization we take an initial parameter
λ = 5× 10−5 which is then divided 10 times periodically by a factor 2 during the training.

D Interpolation examples
2 https://github.com/YannDubs/disentangling-vae

8

Model # params (pre-trained model) + GP epochs batch size lr

FFJORD+GP (17.8K) + 10.3K ≈ 200* 1024 5× 10−4

FFJORD+GP+EULER (17.8K) + 10.3K 3000 1024 5× 10−4

Table 3: Parameters used for the training of GP flows on the dSprites data set.
* The training is stopped early due to out-of-domain particles.

9

Figure 2: Examples of interpolation for the dSprites dataset where each block correspond to the interpolation of
a different data point along the 10 dimensions axis represented by the rows. The dimensions are sorted with
respect to their KL divergence in the VAE latent space, so the higher rows carry more information while the last
rows should leave the image unchanged.

10

Figure 3: Examples of interpolation for the dSprites dataset where each block correspond to the interpolation of
a different data point along the 10 dimensions axis represented by the rows. The dimensions are sorted with
respect to their KL divergence in the VAE latent space, so the higher rows carry more information while the last
rows should leave the image unchanged.

11

