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Abstract

Recent advancements in reinforcement learning (RL) expedited its success across
a wide range of decision-making problems. However, a lack of safety guarantees
restricts its use in critical tasks. While recent work has proposed several verification
techniques to provide such guarantees, they require that the state-transition function
be known and the reinforcement learning policy be deterministic. Both of these
properties may not be true in real environments, which significantly limits the use
of existing verification techniques. In this work, we propose two approximation
strategies that address the limitation of prior work allowing the safety verification
of RL policies. We demonstrate that by augmenting state-of-the-art verification
techniques with our proposed approximation strategies, we can guarantee the safety
of non-deterministic RL policies operating in environments with unknown state-
transition functions. We theoretically prove that our technique guarantees the safety
of an RL policy at runtime. Our experiments on three representative RL tasks
empirically verify the efficacy of our method in providing a safety guarantee to a
target agent while maintaining its task execution performance.

1 Introduction

Reinforcement learning (RL) has shown great success for various sequential decision-making prob-
lems [25, 12]. However, ensuring that RL agents do not enter undesirable states is difficult due to the
unpredictable nature of supervised policies, the use of non-determinism to encourage exploration
and the long-term consequence of seemingly safe actions. This uncertainty raises serious safety and
security concerns that limit their applicability in critical application fields.

Existing research has proposed various technical approaches to guarantee the safety of RL agents
(i.e., ensuring that an agent never enters into an unsafe state at runtime). These approaches can
be generally categorized into: (a) training-time verification, which integrates the verification into
the training process, thus guaranteeing a safe policy after training [1, 13, 3] and (b) post-training
verification, which performs safety verification on a pre-trained RL policy and provides shielding for
the target policy if the current policy is deemed unsafe [28, 31].

Although effective, these methods introduce rigorous assumptions/constraints to the agent and
the corresponding environment, which significantly limits their applications in real deployments.
Specifically, existing verification techniques require the state-transition function be known and the
agent be deterministic; otherwise verification cannot be performed. These two assumptions, however,
are often not supported in real-world applications. The state-transition function of most RL tasks are
unknown, even in simulation environments such as MuJoCo and OpenAI GYM, and, instead, must
be observed. For complex tasks, effective policies are sometimes non-deterministic [4].
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We propose a novel safety verification method for non-deterministic RL policies executing in an
environment with a possibly unknown state-transition function. Our method builds upon post-training
verification methods. These methods create a program that approximates the agent’s policy. The
safety of the program is verified, and the program is shielded so that the agent is guaranteed to be
safe with respect to a set of safety conditions. If executing an action from the original policy would
violate the safety conditions, an action is instead drawn from the shielded program policy.

We extend this approach with a set of approximation strategies. If a non-deterministic agent is given,
we use a method to transform the original policy into a categorical combination of two or more
deterministic policies. We verify the safety of each deterministic policy and generate the respective
shielding policy and safety conditions using existing solvers. With respect to environments with an
unknown state-transition function, we propose approximating the unknown state-transition function
with a neural network trained on observations of the state-action pairs. Once trained, we use a Taylor
approximation to express the neural network as a polynomial function, which existing solvers can use
for verification. At runtime, we check if the action produced by the non-deterministic agent violates
the safety conditions of the underlying deterministic policy most likely to produce the action and use
the corresponding shielding policy if so. We provide theoretical proof that RAVE guarantees the safety
of the agent under such conditions. We also experiment with three common RL tasks demonstrating
that our approach achieves similar performance as the original non-deterministic agent, but with a
safety guarantee. We name our method as “Realistic sAfety VErification of RL Policies” (RAVE ).

2 Key Techniques

2.1 Overview

RAVE is built upon prior post-training safety verification methods. In such works, the verification
method V takes as input a polynomial state-transition function F and a deterministic policy π. The
verification process outputs a shielding policy πl and the safety condition ( i.e., inductive invariant φ)
under which πl should be executed instead of π. Prior works have demonstrated that augmenting π
with πl and φ guarantees safety in simple and oftentimes unrealistic scenarios. In our implementation,
we build upon the post-training verification method of [31].

We must relax the requirement that the policy be deterministic and the system transitions be known
as such conditions are unlikely to be satisfied in complex, real deployments. First, we propose
decomposing a non-deterministic policy into a probabilistic combination of multiple deterministic
policies. After decomposition, we can reuse prior verification methods to individually safeguard
each deterministic policy with an associated shielding policy. At runtime, we use a modified run-
time shielding strategy to guarantee the safe execution of a non-deterministic policy using the
decomposed deterministic policies and their respective shielding policies. Next, we propose a two-
step approximation method to enable safety verification in environments with unknown state-transition
functions. First, we run the pre-trained neural policy π in the corresponding environment and collect a
set of trajectories T . These trajectories are used to fit a neural network Nθ, parameterized by θ, which
takes as input the state and action at time step t and output the predicted state of the next time step
t+ 1. This neural network can now be used as an approximation to the environment’s unknown state-
transition function Fπ. As existing verification techniques work only for systems with polynomial
state transitions, the neural network cannot be directly used for verification. Thus, we approximate
the trained neural network Nθ with a polynomial function Ñ through Taylor expansion [19]. This
final polynomial approximation can be used with existing verification methods. We do not directly
approximate T with polynomial functions because, compared to DNNs, polynomial functions have a
limited capability in approximating complicated functions and handling high-dimensional inputs [20].

2.2 System Design of RAVE
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Figure 1: RAVE System Design.

Fig. 1 shows the overview of RAVE . Given a
policy π with a set of user-defined initial states
S0 and unsafe states Su, RAVE first identifies
if policy decomposition or state-transition ap-
proximation is required. If so, it uses our pro-
posed approach to generate a set of determinis-
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tic policies π1, . . . , πK and a polynomial state-
transition function. Then, using the verification
strategy of [31], each deterministic policy πk is
processed and an alternative shielding policy πlk
and its corresponding safety condition/inductive
invariant φk are generated. See Appendix B for more technical details.

Runtime Shielding. During runtime, at each time step t, RAVE generates an action using policy
π(st). Then, the K underlying deterministic policies the action was most likely to be sampled is
identified using the following equation:

j = argmink‖π(st)− πk(st)‖2 (1)

Finally, RAVE checks if the action satisfies φj , the inductive invariant of πj . If φj holds, RAVE takes
the action π(st). Otherwise, it takes the action πlj(st).

Theorem 1 (Safety Guarantee of RAVE ). Following the above runtime shielding strategy, the policy
π and the programmatic policies {πl1, ..., πlK} in the environment guarantee that the agent never
falls into any unsafe states, i.e., ∀st, φ1(st) ∨ ... ∨ φK(st) is True.

Table 1: Performance results averaged across 500 trials using a Bernoulli policy. “NA” refers to the
cases where almost all trials failed so step performance was not computed.

Policy
Cartpole Pendulum Carplatoon

Avg. Steps Avg. Runtime (s) Failure Count Avg. Steps Avg. Runtime (s) Failure Count Avg. Steps Avg. Runtime (s) Failure Count
Baseline Policy 1 180.7 0.2 1 178.88 0.17 24 199 0.42 1
Baseline Policy 2 200.0 0.11 471 NA 0.002 500 16.79 0.037 4

Non-Deterministic Policy (P=0.75) 122.2 0.29 2 NA 0.022 499 182.14 0.31 1
RAVE Policy 121.1 0.54 0 185.96 0.67 0 183.92 0.62 0

Non-Deterministic Policy (P=0.5) 129.69 0.34 3 NA 0.009 500 46.41 0.08 2
RAVE Policy 129.43 0.6 0 181.97 0.63 0 42.95 0.14 0

Non-Deterministic Policy (P=0.25) 195.72 0.44 6 NA 0.006 500 19.89 0.03 5
RAVE Policy 197.74 6.13 0 155.72 0.59 0 19.48 0.06 0

Table 2: Performance results averaged across 500 trials using a Gaussian policy.

Policy
Cartpole Pendulum Carplatoon

Avg. Steps Avg. Runtime (s) Failure Count Avg. Steps Avg. Runtime (s) Failure Count Avg. Steps Avg. Runtime (s) Failure Count
Non-Deterministic Policy 115.98 0.14 1 179.46 0.19 27 150.83 0.14 4
RAVE Policy (K=3, mode) 123.48 0.16 0 190.72 0.21 0 160.75 0.169 0
RAVE Policy (K=3, mean) 122.19 0.17 0 190.29 0.21 0 153.1 0.16 0
RAVE Policy (K=5, mean) 122.5 0.16 0 189.57 0.22 0 153.38 0.162 0
RAVE Policy (K=7, mean) 122.13 0.19 0 190.1 0.20 0 153.15 0.164 0

3 Evaluation

In this section, we evaluate RAVE on three widely used safety-critical environments: Cartpole [7],
Pendulum [7], and Carplatoon [23]. For each of these environments, we evaluate RAVE using a
non-deterministic policy both when the state-transition function is known and unknown.

Table 3: Performance results averaged across 500 trials using an unknown state-transition function
and a Bernoulli policy.

Policy
Cartpole Pendulum Carplatoon

Avg. Steps Avg. Runtime (s) Failure Count Avg. Steps Avg. Runtime (s) Failure Count Avg. Steps Avg. Runtime (s) Failure Count
Non-Deterministic Policy (P=0.75) 122.2 0.29 2 NA 0.022 499 182.14 0.31 1

RAVE Policy (P=0.75) 121.69 0.85 0 186.67 0.13 0 183.51 0.96 0

Non-Deterministic Policy (P=0.5) 129.69 0.34 3 NA 0.009 500 46.41 0.08 2
RAVE Policy 131.75 0.9 0 183.83 0.28 0 42.4 0.17 0

Non-Deterministic Policy (P=0.25) 195.72 0.44 6 NA 0.006 500 19.89 0.03 5
RAVE Policy 168.24 6.01 0 154.98 0.38 0 19.45 0.07 0

Table 4: Performance results averaged across 500 trials using an unknown state-transition function
and a Gaussian policy.

Policy
Cartpole Pendulum Carplatoon

Avg. Steps Avg. Runtime (s) Failure Count Avg. Steps Avg. Runtime (s) Failure Count Avg. Steps Avg. Runtime (s) Failure Count
Non-Deterministic Policy 115.98 0.14 1 179.46 0.19 27 150.83 0.14 4
RAVE Policy (K=3, mode) 115.39 0.14 0 187.72 0.2 0 160.4 0.23 0
RAVE Policy (K=3, mean) 114.17 0.17 0 187.72 0.2 0 160.54 0.19 0
RAVE Policy (K=5, mean) 115.33 0.14 0 187.88 0.24 0 160.46 0.223 0
RAVE Policy (K=7, mean) 114.69 0.14 0 178.5 0.19 0 160.75 0.177 0

3



3.1 Experiment 1: Non-Deterministic Policy with a Known State-Transition Function

Design. To test our runtime shielding method and our policy decomposition strategy, we construct
two non-deterministic policies corresponding to the two types introduced in Section B: (a) a Bernoulli
probabilistic mixture of multiple deterministic policies (N1), and (b) a Gaussian policy (N2).

For the Bernoulli non-deterministic policy, we first train two deterministic baseline policies. Then, we
combine them with a certain probability p, i.e., at each time step, the mixture policy takes an action
given by the baseline policy 1 with the probability p and the baseline policy 2 with the probability
1− p. We vary p = 0.25, 0.5, 0.75 and evaluate the performance of the mixture non-deterministic
policy with and without shielding using RAVE .

For the Gaussian non-deterministic policy, we first train a neural policy with a Gaussian distribution.
Then, using our decomposition method, we split the policy into K = 3, 5, 7 deterministic policies.
Finally, using each set of deterministic policies, we shield the original non-deterministic policy with
RAVE . For K = 3, we report performance using both the mean and mode to represent each region.

Results. Table 2.2 shows the results of the Bernoulli policy. We observe that for most tasks, the
baseline policy 1 is more secure, but requires more steps and has a longer runtime than the baseline
policy 2. We also note that neither policy is completely safe. As such, the combined non-deterministic
policies remain unsafe regardless of the value of p. However, with shielding, the RAVE policies all
safely finish the scenario and report similar performance to the non-deterministic policies with respect
to average steps. Regarding runtime, RAVE is about twice as slow as the non-deterministic policies in
many cases. The runtime overhead of RAVE has two main contributing sources. First, RAVE constantly
checks the safety condition φ, which adds a constant time overhead. Second, when the mixture policy
takes an unsafe action, it will terminate prematurely as an unsafe state was entered. In contrast,
RAVE prevents early terminations by switching to the inefficient, but safe shielding policy πlk, thus
extending episode length. The often unshielded mixture policies have lower runtime (e.g., pendulum)
due to unsafe behavior, whereas the average runtime for RAVE policy is high due constant shielding.
This difference is most evident in the CartPole experiment when p = 0.25.

Table 2.2 shows the performance of the Gaussian policy. We observe that RAVE preserves the
performance of the original policy while ensuring safety. These results confirm the effectiveness of
RAVE ’s runtime shielding and policy decomposition. Note that, the table also shows that RAVE is not
sensitive to the choice of K and mean/mode. This is an important property as users do not need to
exhaustively search for an ideal set of hyper-parameters to obtain a decent performance.

3.2 Experiment 2: Non-Deterministic Policy with an Unknown State-Transition Function

Design. We now measure the performance of RAVE when the state-transition function of each
environment is unknown. For each non-deterministic policy used in Section 3.1, we collect a set of
trajectories and apply our described state-transition approximation strategy to learn an approximated
state-transition function for the task. Then, we use the approximated function during verification
and compare the performance with and without shielding. In these experiments, we use a first-order
Taylor approximation (i.e., I = 1 in Eqn. (6)) .

Results. Before presenting the policy performance, we first describe the accuracy of our approxi-
mated state-transition functions. Specifically, we compute the average l2-norm difference between the
parameters in the approximated and actual transition functions. The results are as follows: CartPole-
0.002, Pendulum-0.001, Carplatoon-0.02. These numbers suggest that our approximation strategy
produces accurate approximations when the state-transition function is unknown. Table 3 and Table 4
show the verification results of the Bernoulli and Gaussian policies. As before, RAVE is able to ensure
the safety of each non-deterministic policy and maintain the similar task performance with respect to
average steps. There is a slightly higher runtime overhead. These results align with our theoretical
analysis and validate RAVE ’ effectiveness.

4 Conclusion

Reinforcement learning is widely used for sequential decision making problems, but the safety of RL
agents needs to be guaranteed. Existing verification techniques are limited in scope as they can only
verify the safety of deterministic agents operating in an environment with known state transitions.
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This paper introduces RAVE , a safety verification technique for non-deterministic RL policies trained
in environments with unknown state transitions. RAVE integrates two novel approximation strategies
with the state-of-the-art verification technique. We demonstrate, both theoretically and empirically,
that RAVE guarantees the runtime safety of a pre-trained agent while preserving the performance.
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A Background

A.1 Deep Reinforcement Learning (DRL)

DRL concerns the sequential decision-making problems, where the environment is usually modeled
as a Markov Decision Process (MDP) [17].

Definition 1 (Markov Decision Process). A Markov Decision Process (MDP) is comprised of a 4-
tuple (S,A,R, F ), in which S represents the state space,A denotes the action space,R : S×A → R
is the reward function, and F : S ×A → S refers to the state-transition function.

The goal of training a DRL agent is to learn a neural policy πθ(a|s) that maximizes its expected total
reward collected from a sequence of actions generated by that policy. Existing research has developed
two main categories of training algorithms: deep Q-learning (e.g., DDQN [27]) and policy-gradient
methods (e.g., DDPG [18]). Please refer to [24] for further technical details.

A.2 Safety Verification of a RL Policy

In addition to training an agent to maximize its expected rewards, the agent is also encouraged to
avoid reaching certain undesirable states. While reward penalties can be used to discourage such
actions, they do not guarantee an undesirable state will never be reached. Thus, many works have
developed methods to provide formal safety guarantees with respect to an agent’s behavior [1, 14, 13,
3, 28, 31, 6, 5, 30]. First, let us formally define safety:

Definition 2 (Safety of a DRL Policy). Given a MDP with the state space S , a set of user defined
initial states S0, a set of user-defined unsafe states Su, if we can start from any state s ∈ S0 and
never reach a state s ∈ Su after following any possible sequence of actions generated from policy π,
then we define policy π as safe.

With this definition of safety, let us now focus on the state-of-the-art safety verification method
by [31], which verifies the safety of a pre-trained deterministic RL policy with a known transition
function. Their proposed method is broken into three steps: Program Learning, Program Verification,
and Runtime Shielding. At a high level, they first perform a programmatic approximation of the
neural policy. Then, they verify the safety of the program and generate an additional shielding policy
along with a set of safety conditions. Finally, at runtime, the original neural policy is augmented
with the shielding policy, which only executes if the neural policy’s action would violate the safety
conditions of the shielding policy. We focus on this particular work as RAVE uses the same underlying
verification strategy, but proposes techniques to allow for the verification of non-deterministic RL
policies with unknown state-transition functions.

Program Learning. Given a deterministic neural policy π, program learning synthesizes a linear
program πl(s) ::= return θls, to mimic π where s ∈ S is a state and θl is an imitation learning
parameter [15]. θl is learned by solving the following objective function:

θl = argmax d(π, πl, T ) ,

d(π, πl, T ) =
∑
T∈T

∑
t∈T

{
−‖π(st)− πl(st)‖2 st /∈ Su
−MAX st ∈ Su ,

(2)

where T is a set of trajectories collected by running π in the corresponding environment. This
objective function penalizes action differences of π and πl at the safe states.

Program Verification. By combining the linear program πl defined above with the system’s
state-transition function F , we define a state-transition function Fπl

, such that st+1 = Fπl
(st) =

F (st, πl(st)).

Program verification involves learning an inductive invariant φ, such that: 1) φ is disjoint with all
unsafe states Su, 2) φ includes all initial states S0, and 3) all possible state transitions expressed
by Fπl

is encapsulated in φ. Formally, φ ::= E(s) ≤ 0 defines an inductive invariant where
E(s) : Rn → R is a polynomial function that satisfies the following conditions:

∀s ∈ Su E(s) > 0 , ∀s ∈ S0 E(s) ≤ 0 ,

∀(s, s′) ∈ Fπl
E(s′)− E(s) ≤ 0 .

(3)

As both Fπl
and E are polynomial functions, an SMT solver [10] can be used to find such an E that

satisfies the conditions in Eqn. (3). In cases where the SMT solver cannot find a feasible solution,

7



[31] developed a Counterexample-guided Inductive Synthesis algorithm (See their work for more
details).

Runtime Shielding. Runtime shielding uses the synthesized program πl and learned inductive
invariant φ to guarantee the safety of the neural policy at runtime. As the neural policy is likely to
have better performance, at each time step t, we first generate an action from the neural policy π(st)
and predict the next state st+1 resulting from the generated action. If the predicted next state st+1

satisfies the inductive invariant (i.e., E(st+1) ≤ 0 ), then we take the action. Otherwise, we generate
an action from the synthesized program πl as its safety has been verified. In essence, πl acts as a
backup policy whenever the safety of the neural policy’s action cannot be confirmed.

B More Technical details

First, we describe our policy decomposition approach that transforms a non-deterministic policy
into a set of known deterministic policies. Next, we describe our state-transition approximation
approach that produces a polynomial approximation of an unknown state-transition function using a
series of observations. In both cases, our proposed approach results in transforming the system into a
form that enables the reuse of existing verification techniques.

Policy Decomposition. Given a non-deterministic policy π, we consider two common structures:

• N1: π is a combination of K known deterministic policies. At runtime, first, one of
the constituent deterministic policies π1, . . . , πK is selected according to a categorical
distribution. Then, π returns the action generated by the selected deterministic policy.

• N2: π is a probability distributions in which values from the distribution can be directly
mapped to an action in a continuous action space. At runtime, an action is drawn from the
probability distribution.

N1 is often used as a mixture policy that combines different policy types, such as a neural policy and
a rule-based policy, thus leveraging their complementary strengths [2]. As N1 is a combination of K
known deterministic policies, we can directly decompose π in its constituent policies π1, . . . , πK and
perform verification on each decomposed policy.

N2 draws an action directly from a probability distribution, such as a Gaussian distribution. For
example, the rotation degree of the steering wheel can be randomly chosen from a Gaussian policy
trained by the PPO algorithm [16]. To decompose N2, we propose dividing a continuous non-
deterministic policy (e.g., Gaussian or more generally exponential family distributions) into several
regions and representing each region with a fixed sample. In doing so, the policy is approximated
as probabilistic combination of a set of fixed samples, which can be though of as a combination of
deterministic policies (i.e., an N1 policy structure) and be verified as such. In the following, we use
the Gaussian distribution to illustrate our technical approach. Given a Gaussian policy π with mean
µ and variance σ2, we divide its probability density function into K bins of equal area. Thus, if
we draw a sample from π, it will be equally likely to belong to any of the bins. Then, we select a
sample from each bin to represent the bin’s region, denoted as µ1, ..., µK . With these representative
samples, the original Gaussian distribution can be approximated as a categorical distribution across
the representative samples µ1, ..., µK with a equal probability 1

K to be selected. As part of the
decomposition process, we must ensure that the mean and variance of the categorical distribution
matches with that of the original policy π, i.e., the following equations hold:∑

k

µk
1

K
= µ ,

∑
k

(µk − µ)2
1

K
= σ2 . (4)

To make sure µk reflects the statistical significance of the k−th bin, we use either the mean or the
mode of the first K − 1 bins as µ1, ..., µK−1, and compute µK based on Eqn. (4).

Note that, in the real-world, there is another type of non-deterministic policies that use N2-type
policies as the part of the constituent policies in N1 to encourage both exploratory and exploita-
tion (e.g., the ε-greedy approach [29]). Our method can also be used with such cases as policy
decomposition can be recursively performed for each N2-type sub-policy.

State-transition Approximation. Given an unknown state-transition function, we perform a two-
step approximation process to obtain a polynomial state-transition function. The first step is to train a
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neural networkNθ to mimic the unknown state-transition function. We collect a dataset ofM trajecto-
ries T by running the original policy π in the environment. A trajectory T ∈ T consists of a sequence
of the state and selected action at each time step, i.e., {s0, a0, s1, a1, ..., s|T |−1, a|T |−1, s|T |}. The
neural network is trained on T using the following objective function:

argminθ
1

M

∑
T∈T

1

|T |
∑
t∈T
‖st+1 −Nθ([st, at])‖22 , (5)

where [st, at] is the concatenation of st and at. Eqn. (5) updates θ to minimize the mean squared
error between the true next state st+1 and the prediction given by Nθ. Once trained, the second step
of the approximation process is to transform the neural network Nθ into a polynomial function Ñ
using a I-th order Taylor approximation:

Ñ(x) =

I∑
i=0

N
(i)
θ ([st, at])

i!
(x− [st, at])

i , (6)

We use the Taylor approximation because of its flexibility. By varying I , we can increase/decrease
approximation accuracy at the cost of complexity. As Ñ is a polynomial function, it can be used
during verification to approximate the unknown state-transition function.

Proof of Theorem 1 At any initial state s0 ∈ S0, we know φ1(s0) ∧ ... ∧ φK(s0) is True by
definition. Now, at some arbitrary time t, let us assume φ1(st) ∨ ... ∨ φK(st) is True. Since
φ1(st) ∨ ... ∨ φK(st) is True, we know that for some value k, φk(st) is also true. According to
Eqn. (3), we have Ek(st+1) − Ek(st) ≤ 0 and as we know Ek(st) ≤ 0, it must also be True that
Ek(st+1) ≤ 0. This means that φ1(st+1) is True. Since φ1(st+1) ∨ ... ∨ φK(st+1) holds for t+ 1,
we can conclude that ∀t ∈ R+, φ1(st) ∨ ... ∨ φK(st) is True. �

C Experimental Setup

CartPole. This environment has a pole standing on top of a cart. The RL agent can move the cart
horizontally along a frictionless track to keep the pole upright. The system is in an unsafe state if the
angle of the pole is more than 30 degrees from being vertical or the cart moves more than 0.3 meters
from the origin.

Pendulum. This environment contains a pendulum, starting at a random position and rotating
around the circle center. The RL agent swings the pendulum to keep the pendulum upright. The
system is in an unsafe state if the pendulum’s angle is more than 23 degree from being upright.

Carplatoon. This environment models a real-world scenario where 4 cars form a platoon on a road
and drive along the same direction. The RL agent can modify the horizontal and vertical speed of
each car The system is in an unsafe state if the relative distance between two cars is less than a certain
number [23].

In the above three environments, an episode directly terminate if it enters any unsafe state; otherwise,
it will terminate when the agent’s reward reaches a pre-defined value or if the max episode length is
reached.

Evaluation Metrics. We evaluate RAVE on three aspects – task performance, efficiency, and safety.
Task performance is measured by the average number of steps per episode required to complete the
task, i.e., the number of steps needed for a good termination (Avg. Steps). A smaller number means
the agent could finish the task quicker, indicating better performance. Efficiency is measured by the
average run time before termination of each episode (Avg. Runtime (s)). The safety is measured by
the number of episodes in which the agent entered an unsafe state (Failure Count).

Implementation and Configuration. We implement RAVE in Python by using the code package
of [31]. All experiments were conducted on a MacBook Pro laptop with 8 CPU cores. The laptop
was not equipped with any GPU.

9



D Discussion

Computational Efficiency. The state-transition approximation process introduces additional
computational overhead during verification as it involves training a DNN and conducting a Taylor
approximation. If the environment involves a higher-order approximation such as a second-order
approximation, which requires computing the Hessian matrix, the overhead costs are likely to
significantly increase. In such cases, we could consider leveraging more efficient computation
methods to reduce the runtime overhead of RAVE (e.g., [21] to compute the Hessian matrix).

Generalization to Other Environments. In Section 2, we noted that our method can be applied
to MDPs (single-player DRL tasks) with arbitrary unknown state transitions. The key challenge is
how to effectively compute higher-order derivatives for inputs to a neural network. As part of future
work, we will investigate if there are methods in the optimization/numerical computing community
that can be used to enable a higher-order polynomial approximation. Going beyond single-player
tasks, we will also explore how to generalize our method to multi-player environments. We plan to
follow the idea of a recent work [11] and explore whether we can transform an original multi-player
environment into a single-player environment for the target player (agent) and then apply our method
to safeguard that agent in the transformed environment.

Limitations and Future Works. First, our current state-transition approximation gives one approx-
imated function for a given environment, but it could be finer-grained. Specifically, we could divide
the initial states into subsets and conduct an approximation for each subset. This would enable a more
accurate approximation of the original state-transition function and generalize our method to more
complicated systems. In the future, we will explore how to conduct such a piece-wise approximation
effectively and extend our runtime shielding strategy to utilize the programs obtained from each
approximated state-transition function. Second, our method cannot handle non-deterministic policies
with a categorical distribution due to the limitations of existing constraint solvers. As future work, we
plan to design a policy decomposition strategy for such policies so that the decomposed policies can
be used with existing constraint solvers. Finally, we designed RAVE as a way to expand the application
areas of post-training verification techniques. We are exploring how to adapt our approach to also
improve training-phase verification techniques.

E Related Works

There are two main setups to guarantee the safety of DRL policies – learn a verified safe policy during
training or perform post-training safety verification and enforcement.

Training Phase Safety Verification. These works incorporate safety as part of the training process.
One method uses a two step approach. First, a programmatic policy is learned. Then, its safety
is verified using program verification (automated reasoning) techniques (e.g., constrained solvers)
during training [1, 14, 13, 3]. For example, Abhinav et al. first trains an oracle DNN policy [1].
To enable safety verification with existing techniques, they then transform the DNN policy into a
programmatic policy using imitation learning and output this programmatic policy as the final policy.
Later works improved the performance of this approach by using more advanced learning methods
[14, 13, 3]. However, as this approach relies on existing program verification tools (constrained
solvers), its use has been restricted to a small set of environments.

An alternative method for training phase safety verification is to embed the safety guarantee as part
of the optimization objective. Specifically, this method models the safety condition as additional
constraints for the policy training objective function (i.e., maximizing Q or V function). In doing
so, safe policies can be learned by simply solving this modified constrained optimization problem
(e.g., via Seldonian algorithm [8]). While novel, this method can only be used in environments where
the safety conditions can be formulated as optimization constraints. Compared to these works, our
proposed approach seeks to guarantee the safety of a pre-trained policy, rather than incorporate safety
as part of the training process.

Post-training Safety Verification. These works verify and enforce the safety of a pre-trained RL
policies [28, 31, 6, 5, 30]. First, the pre-trained policy is approximated with a programmatic policy
and then the programmatic policy is verified. One example is the work by Zhu et al. [31]. Their
work can be broken down into three steps: approximation, verification, and runtime shielding. First,
they use imitation learning to mimic the outputs of the pre-trained policy network. Then, they model

10



the safety conditions as inductive invariants and input the conditions along with the approximated
policy into a constrained solver (e.g., Z3 [10]). The solver outputs a set of environment constraints
representing the states in which the approximated policy is guaranteed to be safe. In other words, if the
current state is within the solver’s output constraints, then actions originating from the programmatic
approximation will never result in reaching an unsafe state. Thus, the programmatic approximation
becomes a shielding policy. At runtime, actions are obtained first from the pre-trained policy and are
checked for safety. If the action results in a state outside of states supported by the shielding policy,
the system instead obtains an action from the shielding policy due to its safety guarantees. Otherwise,
the action from the pre-trained policy is taken as it is more efficient.

Existing post-training verification techniques require the state-transition function of the environment
to be known as this is a required input for the solvers. The solvers also require that the environment
be linear or polynomial and that the pre-trained policy be deterministic. If any of the above are false,
then existing solvers are unable to verify the programmatic approximation and generate the shielding
policy. Our work builds upon an existing verification technique by proposing a set of strategies that
allow us to transform unknown state-transition functions and non-deterministic policies into a form
that can be utilized by existing solvers.

Other Safety Verification-related Techniques. In addition to the two main approaches discussed
above, there are some other related methods for ensuring the safety of RL algorithms. For example,
recent research [26, 22, 8] designed techniques to improve the efficacy, efficiency, and stability of a
typical safe learning method – Seldonian algorithm. Some other research efforts have been made to
provide safety guarantees for non-DRL tasks (e.g., Tabular MDPs [9]) or explore the transferability
of safety guarantee. Due to the task and setup differences, we do not consider these works in this
paper.
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