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Fluorescence microscopy imaging speed is fundamentally limited by the measurement signal-to-noise ratio (SNR). To
improve image SNR for a given image acquisition rate, computational denoising techniques can be used to suppress
noise. However, common techniques to estimate a denoised image from a single frame either are computationally expen-
sive or rely on simple noise statistical models. These models assume Poisson or Gaussian noise statistics, which are not
appropriate for many fluorescence microscopy applications that contain quantum shot noise and electronic Johnson–
Nyquist noise, therefore a mixture of Poisson and Gaussian noise. In this paper, we show convolutional neural networks
(CNNs) trained on mixed Poisson and Gaussian noise images to overcome the limitations of existing image denoising
methods. The trained CNN is presented as an open-source ImageJ plugin that performs real-time image denoising
(within tens of milliseconds) with superior performance (SNR improvement) compared to conventional fluorescence
microscopy denoising methods. The method is validated on external datasets with out-of-distribution noise, contrast,
structure, and imaging modalities from the training data and consistently achieves high-performance (>8 dB) denoising
in less time than other fluorescence microscopy denoising methods. © 2022 Optica Publishing Group under the terms of the

Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.448287

1. INTRODUCTION

In modern biology, fluorescence microscopy plays a vital role in
functional and structural imaging [1]. However, the imaging speed
of fluorescence microscopy is limited by the inherent noise in the
system [2]. Fluctuations in the photon emission events contribute
to quantum noise/shot noise (from the stream of photons), which
follows Poisson statistics per time period. Additionally, microscope
electronic components contribute Johnson–Nyquist noise (or
thermal noise), which follows a Gaussian distribution per time
period. The combination of both of these contributions leads to
fluorescence microscopy systems containing a mixed Poisson–
Gaussian (MPG) noise. Due to this inherent noise in the system,
the acquired image has a limited signal-to-noise ratio (SNR) that
hinders the underlined ground truth information about the bio-
logical sample. Therefore, a robust denoising approach is required
to address these two distinct noise distributions.

In fluorescence microscopy, the statistics of each noise source
affect images differently. To illustrate these differences, we simulate
the effects of Gaussian noise and Poisson noise individually on a
clean image in Fig. 1. The clean image represents bovine pulmo-
nary artery endothelial (BPAE) cells (Invitrogen FluoCells slide#1
F36924, mitochondria labeled with MitoTracker Red CMXRos,
F-actin labeled with Alexa Fluor 488 phalloidin, nuclei labeled
with DAPI) imaged with a commercial fluorescence microscope
(Nikon A1R-MP laser scanning confocal microscope equipped
with a Nikon Apo LWD 40×, 1.15 NA water immersion objective
and more details are provided in Supplement 1 Note S1) with a
4 mW excitation power and 50 frame averaging to produce a high
SNR image. Gaussian noise and Poisson noise are added to the
clean image (SNR of 25 dB with reference to the clean image)
and shown as “With Gaussian noise,” and “With Poisson noise,”
images. The “Clean image” is obtained by averaging 50 noisy
images in the same field of view (FOV). Here the Gaussian noise
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Fig. 1. Illustration of different types of noise with a BPAE cell sample.
The top row indicates full frame images, and the PSNR of the synthetic
noisy image is 25 dB with reference to clean image (obtained by averaging
50 noisy images in the same FOV). The bottom row shows the selected
region of interest (ROI) as shown in the yellow box of the corresponding
top row images. Full frame and ROI dimensions are 512× 512 and
125× 125, respectively. Scale bar: 20 µm.

is independent of clean image pixel intensity, whereas the Poisson
noise is pixel intensity dependent. We can observe this behavior in
the marked region of interest (ROI) center region, i.e., the smooth
gray area (nuclei region). Hence, Poisson noise and Gaussian
noise affect the clean image differently, which makes MPG noise
denoising a challenging task.

To improve fluorescence microscopy SNR, one can increase the
sample dosage by increasing either the excitation power or pixel
dwell time. However, this method could lead to photobleaching or
photodamage and cannot be used for imaging real-time dynamics
in living animals. Furthermore, lower dosage leads to noisy (with
low SNR) images, thereby posing a challenge for applications such
as cell classification and segmentation [3]. Denoising algorithms
are available to improve image SNR, but either are designed specifi-
cally for Gaussian or Poisson noise (thereby not suitable for other
distribution or MPG noise) or are capable of denoising MPG noise
but require long computation times to achieve relatively small SNR
improvement. Therefore, there is a need for a computationally fast
single-frame denoising method that works for all experimental
noise distributions: Poisson, Gaussian, and MPG.

Reiterating the mathematical notation of different noise dis-
tributions using first and second order moments (or simply mean
and variance) [4], the Gaussian noise distribution is represented
as standard normal distribution ng ∼N (0, b), where the mean
is zero and the variance is b. Similarly, the Poisson noise distri-
bution can be represented as n p ∼N (y i , a y i ), where the true
pixel value (y i ) is the mean and Poisson variance is ayi (conversion
factor or quantum efficiency of a times y i ). Assuming that the
Poisson and Gaussian processes are independent, the MPG noise
distribution is represented as nmixed ∼N (y i , a y i + b), where the
mean is the true pixel value (y i ) and the variance is the addition of
two independent noise variances (a y i + b). Hence, MPG noise
distribution is similar to Poisson noise with an additional Gaussian
noise variance (b).

In addition to the above-described noise statistics, fluorescence
microscopy systems using detector arrays [e.g., charge-coupled
device (CCD) or complementary metal–oxide semiconductor
(CMOS)] can experience a “fixed-pattern noise” due to differences
in detector responsivity and dark current between pixels. Such

noise commonly appears as horizontal or vertical “stripes” in low-
signal regions of an image. The signal variance in the presence of
fixed-pattern noise also follows the form a y i + b, but with a and
b varying at each pixel. Denoising such systems using calibration
or noise statistics is possible [5], but requires prior details on each
specific system. Fixed-pattern noise can also be addressed using a
photon event centroid algorithm [6], flat-field correction method
[7], and automatic correction of CMOS-related noise using cam-
era properties combined with sparse filtering [5], or calibration
by measuring the pixel-specific dark current and gain, then com-
pensating for it via subtraction and division, respectively. In this
paper, we will primarily consider images that do not experience
fixed-pattern noise or have compensated for fixed-pattern noise via
calibration.

To increase the SNR of an image, additional information must
be included to estimate the original, denoised image. If the noise
distribution is known a priori to be Gaussian, simple filtering (by
assuming noise exceeds signal at high spatial frequencies by using
mean, median, bilateral filters) or machine learning (ML)-based
approaches such as non-local means (NLM) [8], block matching
3D filtering (BM3D) [9], K-means singular value decomposition
(K-SVD) [10], expected patch log-likelihood (EPLL) [11], and
weighted nuclear norm minimization (WNNM) [12] can all be
used to leverage knowledge of the noise distribution and to leverage
information from similar features within the same image. If the
noise distribution is known to be Poisson, the above methods can
be used by (1) converting the Poisson noise into Gaussian noise
using a variance stabilization transform (VST) [e.g., generalized
Anscombe transform (GAT [13])], (2) denoising using popular
Gaussian denoising algorithms, or (3) converting the denoised
results back using an inverse VST [13]. Such popular Poisson
denoising methods include Poisson NLM (PNLM) [14], non-local
principle component analysis (NL-PCA) [15], VST + NLM and
VST + BM3D, which apply VST, NLM or BM3D Gaussian
denoising methods, and inverse VST, sequentially, on an image. If
the noise is from a MPG distribution, more complicated methods
are needed to estimate the relative contributions of each process at
each pixel (e.g., Poisson unbiased risk estimate – linear expansion
of thresholds (PURE-LET) [16]).

Overall, all of these image denoising methods have trade-offs
among denoising performance, computation speed, and appli-
cability to a specific noise distribution. In this paper, we show how
a convolutional neural network (CNN) trained on MPG noise can
in fact achieve high-performance denoising, quickly, on images
with Poisson and/or Gaussian noise distributions.

Recently, CNN-based fluorescence microscopy image denois-
ing has demonstrated improved denoising performance and speed
[17]. CNN-based image denoising methods can be classified into
two categories: supervised and self-supervised. Supervised meth-
ods require training the network on a dataset prior to performing
denoising on experimental images and include content-aware
image restoration (CARE) [17], denoising CNNs (DnCNN)
[18], and Noise2Noise [19]. Self-supervised methods train
and perform denoising using the same experimental image and
include Noise2Void (N2V) [20], probabilistic N2V (PN2V)
[21], Noise2Fast [22], and other methods [23,24]. Supervised
CNN training methods typically provide higher performance
than self-supervised methods due to the inclusion of additional
information in target images. In some conditions, self-supervised
denoising methods can yield performance very comparable to
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supervised methods [19]. In this paper, we utilize a supervised
CNN model that is capable of removing MPG noise from a sin-
gle frame nearly in real time (within a few ms). By producing
and utilizing a large, multiple species, and multiple microscope
modality training dataset [25], the trained model outperforms
existing image denoising methods. More importantly, our method
demonstrates superior denoising performance compared to the
existing image denoising approaches including ML-based methods
independent of noise distribution (either Poisson or Gaussian or
MPG noise) presented in most fluorescence microscopy images.

To address the fundamental problem of denoising microscopy
images containing MPG noise sources, we train and evaluate
well-known CNN models on MPG noise microscopy data from
the Fluorescence Microscopy Denoising (FMD) dataset [26] in
Sections 2 and 3. In Section 4, the trained ML model is validated
by evaluating performance in a diverse set of microscopy images,
including the Widefield2SIM(W2S) dataset [27], with out-of-
training-distribution SNR and contrast. The method consistently
produces high-quality denoised images and is packaged as an
ImageJ plugin to reduce the barrier to entry for applying denoising
CNNs to microscopy data.

2. METHODS

As described in Section 1, the fundamental stochastic nature of
MPG noise requires introducing some a priori knowledge to the
denoising process. Analytical approaches use knowledge of the
statistical properties of noise, but are computationally slow and
not well suited for MPG sources. Deep CNNs, however, are data
driven and expressive enough to overcome the complex statistical
nature of MPG noise. To perform denoising using CNNs, a net-
work architecture and training datasets must be chosen. In this
paper, we choose to focus on the Noise2Noise [19] and DnCNN
network [18] architectures for two reasons. First, they have demon-
strated superior performance to other CNN architectures [20].
Second, robust performance in diverse microscopy environments
requires training on large datasets. Supervised training of the
Noise2Noise and DnCNN models can be achieved in reasonable
time (≈4 h for the entire FMD dataset on a single Nvidia 1080-ti
GPU) while training other networks (e.g., N2V) on the dataset
can take a prohibitively long time (≈ 3.50 h for a single image
training on the GPU). N2V is a popular denoising method that is
capable of self-supervised learning, so we will therefore compare
supervised trained model performance to self-supervised N2V
performance in Section 4.A. We chose to train these two mod-
els on our FMD dataset [25,26] that contains 12,000 raw noisy
images from confocal [28], two-photon [29], and widefield [30]
microscopes. The FMD dataset also helps to benchmark various
denoising techniques on the fluorescence images. The creation of
the training and testing datasets from the FMD dataset is explained
in Supplement 1 Note S1.

The first ML model we evaluate is based on a deep CNN with
the Noise2Noise architecture [19] trained to denoise fluorescence
images with MPG noise. The ML model is similar to the originally
published Noise2Noise architecture [19] with the addition of
a nonlinear activation (tanh) layer after the final convolutional
layer [26], adaptive learning (one cycle policy) during the training
phase, and carefully tuned hyper-parameters such as batch size and
learning rate for achieving best fluorescence microscopy image
denoising performance. Here onwards, we call the modified model
“Noise2Noise plugin.”

In the Noise2Noise plugin CNN model, the input and target
are both noisy images within the same FOV (which is the case when
the ground truth is absent or its extraction is difficult). This ML
model is beneficial compared to our second ML model, which is
based on the DnCNN architecture [18] that requires ground truth
since getting the clean image (typically acquired with the increased
dosage) is usually difficult, especially when imaging living species.
Figure 2 shows the complete Noise2Noise plugin architecture as
our first ML model. Here we divide the ML architecture into five
blocks. Blocks A to C represent an encoder structure, and blocks C
to E represent a decoder structure. In the encoder, the image feature
size (256× 256) is reduced by selecting only essential features of
the image (with more channels to select different features), and
at block C, the images with feature map size 8× 8 are less noisy
when compared to the noisy input image. In the decoder, this
noise-free image is restored to the original noisy image feature
size (256× 256). In this work, both input and target are noisy
images. At the i th pixel of the input and target images, the noisy
measurements are z1 = y + n1 and z2 = y + n2, where y is the
real value and n1 and n2 are MPG noise values corresponding to
the input and target, respectively. The Noise2Noise plugin model
estimates the real value y instead of the noisy target z2 since n2

is random. The Noise2Noise plugin model can predict the clean
image since training happens on the noisy image pair as input and
target, and this ML model works well as long as the clean image
is the average of noisy target images within a FOV. The other ML
model is based on a deep CNN with the DnCNN architecture
trained to denoise the fluorescence images with MPG noise. The
DnCNN ML model can estimate the residual (only noise) for a
given noisy input image, and the denoised image is obtained by
subtracting the estimated residual from the noisy input image.
Unlike the supervised DnCNN ML model that requires clean
images as the target, the Noise2Noise plugin ML model utilizes the
noisy image as the target. The training and testing of the proposed
ML models are explained in Supplement 1 Note S2.

Interestingly, both the Noise2Noise and DnCNN in literature
use relatively simple U-Net and fully CNNs, respectively, yet
achieve high-quality denoising results. However, more advanced
architectures and methods are commonly required to perform
microscopy image identification and segmentation [31–34].
While the model capacity of simple U-Net and CNNs is reduced
compared to advanced methods, denoising models require train-
ing a model only to discern between the presence and absence
of general common features, while image identification and
segmentation models must be trained to discriminate between
specific high-detail features. We therefore employ simple, yet
high-performance, denoising networks in this study and evaluate
performance on a variety of image samples in Section 4.

While the proposed ML approach is fast and accurate, the
complexity of implementing the ML model is a barrier to entry.
To address this barrier, we integrated our ML models as plugins
to ImageJ, one of the most widely used biomedical image process-
ing packages [35]. Two ImageJ plugins are presented for two
ML models: Noise2Noise plugin and DnCNN plugin. We have
developed our ImageJ plugins based on the ImageJ-tensorflow
library [36]. Here the library provides the minimal set of func-
tions in ImageJ to load the pre-trained ML model weights as a
graph and perform a set of convolutional layer operations on the
input image (loaded by ImageJ), which results in the output of
the trained ML model. To accommodate more image formats, we
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Fig. 2. Noise2Noise plugin architecture we use to train on the FMD dataset. We divide the ML model mainly into two sections, namely, encoder (blocks
A to C: contrast path) and decoder (blocks C to E: expansion path). At every block, input dimensions are provided, and the corresponding layes in each
block are represented in the sub-blocks along with the number of output channels in the convolution provided in bold. Skip connections are useful for
adding features from encoder to decoder, which might be suppressed in the latent space (at C block). Noisy input and denoised output image dimensions are
256× 256.

have extended the ImageJ-tensorflow library to handle 16-bit and
32-bit image data types (in addition to the original 8-bit images)
for both training and inference. The required image pre-processing
(e.g., pixel value normalization) is performed automatically by
the plugin, allowing users to load and process images without
manually pre-processing. Both ML models were trained in Keras
with TensorFlow as the backend. ImageJ plugins simplify apply-
ing denoising CNNs by integrating into biomedical researchers’
existing workflow. Additionally, the plugins support graphical
processing unit (GPU) computing, resulting in a significant speed
increase compared to conventional ImageJ image denoising plug-
ins [17,37,38] that run on a central processing unit (CPU). Also,
recent implementation methods such as the DeepImageJ plugin
[38] and ZeroCost4Microscopy Jupyter python code [39] can be
used with our pre-trained ML model weights (saved in.zip format)
to perform image denoising. The ImageJ plugin design and code
are explained in Supplement 1 Note S5. The following section
describes performance and analysis of the trained denoising ML
models when applied to MPG noise in fluorescence microscopy
images.

3. RESULTS AND DISCUSSION

The Noise2Noise plugin ML model is trained with different initial
learning rates (ILRs). The training and testing loss [mean square
error (MSE)] are provided in Supplement 1 Note S2. We evaluate
the trained ML model performance on test-mix data by selecting
four images in each microscopy modality (48 images), as seen in
Fig. 3.

To quantify image SNR, we evaluate peak SNR (PSNR)
of an image relative to a clean version of the image. PSNR is
the measure of MSE between two images normalized to the
peak value in an image so that MSE between images with dif-
ferent bit depths or signal levels can be compared. PSNR of a
given X with reference to ground truth image Y in the same

FOV is defined as PSNR(X , Y )= 10 log( max(Y )2

MSE(X ,Y ) ), where

MSE(X , Y )= 1
N

∑N
n=1 (X n − Yn)

2 is the average MSE of X and
Y with N pixels. Results show an average PSNR improvement of
8.13 dB in the denoised images compared to the average PSNR of
the raw images (images averaged=1) in the test-mix data.

For deeper understanding along with more detailed analysis on
these results, we perform a simulation that maps the fluorescence
microscopy modality and corresponding noise characteristics
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Fig. 3. Average PSNR of the test-mix dataset, which contains 48
images of the MPG noise samples from different microscopes in the FMD
dataset. Here the error bars indicate one standard error below and above
the average value, respectively.

Table 1. Estimation of Noise Parameters (a and b)
Using the FMD Dataset

a

Modality Sample Estimated a Estimated b

CLSM BPAE (Nuclei) 1.76× 10−2
−2.06× 10−4

CLSM BPAE (F-actin) 1.48× 10−2
−0.65× 10−4

CLSM BPAE (Mito) 2.01× 10−2
−1.43× 10−4

CLSM Zebrafish 9.11× 10−2
−2.62× 10−4

CLSM Mouse Brain 1.99× 10−2
−0.68× 10−4

TPEF BPAE (Nuclei) 3.41× 10−2
−7.01× 10−4

TPEF BPAE (F-actin) 2.66× 10−2
−0.88× 10−4

TPEF BPAE (Mito) 4.15× 10−2
−2.10× 10−4

TPEF Mouse Brain 3.36× 10−2
−5.67× 10−4

WF BPAE (Nuclei) 7.88× 10−4 2.03× 10−4

WF BPAE (F-actin) 19.15× 10−4 2.36× 10−4

WF BPAE (Mito) 9.59× 10−4 2.53× 10−4

aThe estimated a and b are average values of raw noisy images from 20
different FOVs (50 images within each FOV). CLSM, confocal laser scan-
ning microscopy; TPEF, two-photon excitation microscopy; WF, widefield
microscopy.

of the acquired image by estimating the noise variance parame-
ters (a and b) using the algorithm provided in [40] on the FMD
dataset. The results are tabulated in Table 1.

From Table 1, the estimated Gaussian noise variance (b) for
the confocal and two-photon microscope is negative, which is

https://doi.org/10.6084/m9.figshare.19137665
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due to an offset in the noisy image. More details can be found in
[40] Section II (A). For these cases, we set the estimated Gaussian
variance to zero. From Table 1, we also observe that the estimated
Poisson noise variance (a ) in confocal and two-photon micros-
copy dominates the Gaussian noise variance (a � b). In the case
of widefield microscopy, both noise parameters exist (a , b > 0),
which indicates the mixture of Poisson–Gaussian noise. Also,
the Gaussian variance (b) is in the range of ∼2e−4, whereas the
Poisson variance (a ) varies depending on the signal intensity. This
behavior is observed in the widefield microscope, where the a value
of BPAE (F-actin) is much larger when compared to the a value of
BPAE (mitochondria) and BPAE (nuclei). The estimation of these
noise parameters, i.e., the Poisson variance (a ) and the Gaussian
variance (b), shows a clear map between different noises in each
microscope modality. Hence, we broadly divide the microscopy
modalities into two categories: first, confocal and two-photon
microscopy with Poisson-dominated noise; second, widefield
microscopy with MPG noise. For each class of noise type, we show
the trained model performance on a single noisy image and the
statistics on the complete test-mix dataset.

In this work, we first select a single test image with Poisson-
dominated noise, which is captured by a confocal microscope,
and another test image with MPG noise, which is captured by a
widefield microscope. Here these images are considered as specific
images that do not reflect the complete test dataset.

Figure 4 illustrates a zebrafish embryo image with Poisson-
dominated noise [EGFP labeled Tg (sox10:megfp) zebrafish at
two days post fertilization] captured with a commercial confocal
microscope (more details are provided in Supplement 1 Note S1).
Similarly, Fig. 5 shows an image of a BPAE cell (slide #1, F36924
containing nuclei, F-actin, and mitochondria) with MPG noise
captured by a commercial widefield microscope. In these figures,
the target intensity images were generated by taking the average of
50 noisy images in the same FOV. We observe that our ML-based
Noise2Noise plugin denoising method reduces both Poisson-
dominated and MPG noise significantly by providing a PSNR
improvement of 10.16 dB and 10.5 dB in zebrafish and BPAE cells,
respectively.

To quantitatively evaluate whether the denoised images contain
similar image features as the clean image, we calculate the structural
similarity index measure (SSIM) between the two. The SSIM
compares luminance, brightness, and contrast values as a function
of position [41]. SSIM measures the similarity between two images
on a scale of zero to one, with one being perfect fidelity. In addition,
SSIM can be correlated to the PSNR, and more details are provided
in [42]. From the images in Fig. 5, the denoised images appear
visually similar to the respective target images, and with denoised
images, SSIM values of zebrafish and BPAE samples are 0.84 and
0.83, respectively.

Second, the PSNR distribution of the raw images from the
test-mix data and the corresponding denoising results using our
ML models are provided in Fig. 6. Figure 6 shows the trained
Noise2Noise plugin ML model (with an ILR of 5e-4) image
denoising performance with complete statistics on the test-mix
dataset raw images (48) from our FMD dataset. Also, for image
denoising, we train another ML model (requires a clean target),
which is a DnCNN ML model that can estimate the residual (only
noise) for a given noisy input image. Here the denoised image
is obtained by subtracting the estimated residual from the noisy
input data. Figure 6 also shows complete statistics on the test-mix
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Fig. 4. Image denoising results using the Noise2Noise plugin on a
fixed zebrafish embryo [EGFP labeled Tg(sox10:megfp) zebrafish at two
days post fertilization] captured with confocal microscopy [pixel dwell
time of 2 µs and pixel width of 300 nm, with 10% of power and PMT
gain of 140 (model number: Hamamatsu, PMT R10699); excitation and
emission wavelengths are 488 nm and 509 nm, respectively]. The top
row indicates the full-frame (of size 512× 512) of noisy input, denoised
output, and target, and the bottom row indicates the region of interest
(ROI: marked in the yellow square of size 100× 100) from the respective
top row images.
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Fig. 5. Image denoising results using the Noise2Noise plugin on
the BPAE cell [labeled with MitoTracker Red CMXRos (mitochon-
dria), Alexa Fluor 488 phalloidin (F-actin), and DAPI (nuclei) with
excitation/emission wavelengths of 561/599, 488/512, and 405/461,
respectively; Invitrogen FluoCells prepared slide#1: F36924] captured
with widefield microscopy [exposure time of 200 ms, frame rate of 5 Hz,
high definition color camera and controller (DS-Fi1 and DS-U2) with
CCD gain of 46 and pixel width of 170 nm]. The top row indicates the
full-frame (of size 512× 512) of noisy input, denoised output, and target,
and the bottom row indicates the region of interest (ROI: marked in the
yellow square of size 100× 100) from the respective top row images. We
imaged three times for the same FOV, each time with a different filter
block (DAPI for nuclei, FITC for F-actin, TRITC for mitochondria), to
acquire the multi-channel (color) fluorescence image of the cells.

data using the DnCNN architecture ML model with the same
ILR of 5e-4. The ML model with Noise2Noise plugin architecture
has a better PSNR when compared to the ML model trained with
the DnCNN architecture. Hence, the Noise2Noise plugin model
demonstrates superior denoising performance compared to the
other ML model, and it does not require the clean target image
during the training phase. From the raw data distribution, it is

https://doi.org/10.6084/m9.figshare.19137665
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Fig. 6. Test-mix dataset (containing 48 images of MPG noise samples
from different microscopes in the FMD dataset) raw images PSNR box-
plot to compare Noise2Noise plugin and DnCNN plugin ML models’
image denoising performances at a fixed initial learning rate (ILR: 5e-4).
Box-plot contains min, max, 25th, and 75th percentile values. Here the
square box indicates the mean value. A scattered plot (left to box plot)
indicates the true PSNR values used for the statistics.

evident that there exist two distinct groups of data corresponding
to Poisson-dominated noise and MPG noise. The average PSNR
of the raw images (including Poisson-dominated noise and MPG
noise images) and the corresponding denoised images are 27.22 dB
and 35.40 dB, respectively. From Fig. 3, the PSNR improvement
using the Noise2Noise plugin method is comparable to that of
an average PSNR of eight noisy raw images in the same FOV
(with PSNR of 36.02 dB), thereby reducing the acquisition time
approximately by eight fold.

Finally, we compare the performance of our ML-based image
denoising methods with the existing image denoising methods.
This PSNR improvement is more substantial than existing image
denoising methods such as PURE-LET, VST+NLM, and VST+
BM3D, as shown in Fig. 7. Figure 7 shows the existing denoising
methods performed on images presented with either Poisson or
Gaussian noise. In contrast, our ML-based image denoising meth-
ods enable superior denoising performance regardless of the noise
distribution or microscopy modality. The PURE-LET, VST +
NLM, and VST+ BM3D image denoising methods perform well
only for the images with Poisson-dominated noise, while the NLM
and BM3D image denoising methods perform well only for images
with Gaussian noise. In contrast, the ML-based image denoising
methods (Noise2Noise plugin and DnCNN plugin) perform well
for images with both Poisson-dominated noise and MPG noise.

Our Noise2Noise plugin ML model image denoising method
shows significant improvements over existing methods and can
provide better results for most fluorescence microscopy image
following MPG noise distribution. To increase the impact and
integrate it into existing workflows, we package our method as an
ImageJ plugin, a popular image analysis tool used by biologists.
Our developed ImageJ plugin has two advantages. First, the plugin
can perform image denoising independent of microscopy modality
since the ML model was trained with MPG noise images with
superior performance compared to existing methods. Second,
the plugin can denoise in “real time” (e.g., with an image size of
256× 256 in 80 ms using GPU) for fluorescence microscopy
images with MPG noise. Our plugin denoising time also scales
accordingly if the noisy image dimensions are different. More
details about the ImageJ image denoising plugin are provided
in Supplement 1 Note S5. In addition, Supplement 1 Note S3
shows a qualitative and quantitative comparison of the existing
image denoising ImageJ plugins (existing and our ML-based image

Fig. 7. PSNR improvement (denoised image PSNR, raw image
PSNR) using different image denoising methods on the raw data with
Poisson and MPG noise statistics independently. Here PURE_LET, VST
+NLM, VST+ BM3D, NLM, and BM3D are existing image methods,
and DnCNN plugin and Noise2Noise plugin are our demonstrated
supervised trained CNN methods. Blue and orange statistics indicate the
box plot results of the PSNR improvement for the Poisson-dominated and
MPG noises, respectively. Supervised CNN-based methods outperform
compared to existing image methods independent of noise characteristics.

denoising methods) available with the trained Noise2Noise plugin
ML model on a test image from the FMD dataset. The image
denoising time (for an image of 256× 256) using our Noise2Noise
plugin on a CPU (Intel Xeon E5-2680 CPU) and on a GPU
(Nvidia GeForce GTX 1080 Ti) are 960 ms and 80 ms, respec-
tively. Therefore, the image denoising speed is faster by 12-fold
when using GPU compared to CPU. Overall, the ImageJ plugin
can be used to denoise fluorescence images that are obtained with
low laser power or at a fast acquisition rate. The source code for
image denoising including ML model training and testing in Keras
and creation of our ImageJ plugin are provided in [43].

4. MODEL VALIDATION

Model validation outside of the training FMD dataset images
and noise distributions is crucial to demonstrate the method’s
reliability and utility. In the following subsections we validate the
Noise2Noise plugin performance on (A) the W2S fluorescence
microscopy dataset to compare performance to other analytic and
ML-based image denoising methods outside of the FMD training
dataset; (B) theW2S dataset to evaluate performance on samples
outside of the training dataset the PSNR distribution (out-of-
distribution noise) and on a flavin-based auto fluorescent bacteria
sample images to evaluate performance outside of the training
dataset contrast distribution (out-of-distribution contrast); and
(C) the 3D deep residual channel attention network (3D RCAN)
dataset to evaluate performance on samples outside of the training
dataset structures (out-of-distribution structures). In Section
4.D we list steps to validate the performance on application-
specific fluorescence microscopy samples, and in 4.E we discuss
the risk and limitations of applying the trained CNN model to
higher-dimensional data.

A. Denoising Performance on the W2S Dataset

To validate the trained Noise2Noise plugin ML model on images
that differ from the FMD dataset, we evaluate denoising plugin

https://doi.org/10.6084/m9.figshare.19137665
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Table 2. Average PSNR Improvement (1PSNR =

denoised image PSNR, input image PSNR) and
Single-Frame Processing Computation Time (Intel Xeon
E5-2680 CPU and Nvidia GeForce GTX 1080 Ti GPU) of
Noise2Noise Plugin, VST + BM3D, BM3D, and
Noise2Void Image Denoising Methods When Applied to
360 Widefield Fluorescence Microscopy Images in the
W2S Dataset

a

Method Training
1PSNR

(dB)
Time/Frame (s)

CPU/GPU

Noise2Noise plugin
(this work)

Supervised,
FMD

8.25 3.07/0.08

VST+BM3D Self-supervised 4.37 5.67/None
BM3D Self-supervised 4.74 4.65/None
Noise2Void
(fast settings)

Self-supervised 4.6 (0.7)
a

15600/400

Noise2Void
(default settings)

Self-supervised 4.8 (0.7)
a

478800/12000

aEstimated mean (and standard error of the mean) from 10 random noisy
images from the W2S dataset.

performance on 360 widefield fluorescence microscopy images
of varying PSNRs from the W2S dataset [27]. We also investi-
gate whether the FMD trained ML plugin model applied to the
W2S dataset introduces performance degradation or artifacts
compared to three of the best performing self-supervised (no exter-
nal training) ML methods: N2V [20], VST + BM3D [13], and
BM3D [9].

The average PSNR improvement and computation time for the
different methods applied to the W2S dataset is given in Table 2.
For the Noise2Noise plugin, the trained ImageJ plugin presented
here was used; for the VST+ BM3D method (in sequential steps:
apply VST transform [13], use the BM3D method [9], and apply
inverse VST transformation [13]) for image denoising and the
BM3D method [9], MATLAB code was used, and for the N2V
method, an ImageJ plugin was used [44] with two sets of train-
ing parameters to explore performance versus computation time
trade-offs (“fast” with 10 epochs and 200 steps, “default” with 300
epochs and 200 steps). In summary, the supervised Noise2Noise
plugin trained on the FMD dataset yields higher PSNR improve-
ments compared to self-supervised ML methods. Additionally, the
Noise2Noise plugin method requires only convolutions to per-
form denoising inference, while self-supervised requires re-training
(or self-training) on every image. The resulting denoising com-
putation time is therefore significantly shorter for the pre-trained
Noise2Noise plugin when computed using either a CPU (Intel
Xeon E5-2680 CPU) or GPU (Nvidia GeForce GTX 1080 Ti).
While the Noise2Noise plugin, VST+BM3D, and BM3D image
denoising methods were performed on the entire dataset to find
the mean PSNR improvement over the entire W2S dataset, the
N2V method requires a long training time per image, and therefore
estimates of the mean improvement (and standard error of the
estimate) are presented.

A qualitative comparison of denoising performance is given in
Fig. 8 for a representative image from the W2S dataset. Here the
target image is an average of 400 noisy images in the same FOV and
is provided by the W2S dataset. Additional examples are available
in Supplement 1 Note S4 for single-channel and multi-channel
test images from the W2S dataset. From these examples, the images
qualitatively exhibit lower noise and faithfully represent the target
image.

(a) (b) (c) (d)
Noisy image Noise2Void (default) Noise2Noise plugin Target image
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Fig. 8. Comparison of the ML-based image denoising plugins in
ImageJ. (a) Noisy image, (b) denoised by Noise2Void ImageJ plu-
gin (default training), (c) denoised by the Noise2Noise plugin, and
(d) ground truth image of a test mage from the W2S dataset. The top
row indicates the full frame (of size 512× 512), and the bottom row
indicates the region of interest (ROI: marked in the yellow square of size
120× 120) from the respective top row images. Scale bar: 10 µm.

B. Out-of-Distribution Noise and Contrast

ML models are optimized for inference data distributions that
are similar to the training data distribution. The FMD training
dataset comprises images with PSNRs in the range of 22–40 dB
with contrast ratios [defined as (Imax − Imin)/(Imax + Imin)] of
approximately 0.94. To evaluate model performance outside of the
training dataset distribution, we validate the trained Noise2Noise
plugin on images of varying PSNRs and contrasts in this section.

The FMD training dataset includes MPG noise from the
FMD dataset with PSNRs in the range of 22–40 dB; therefore,
the model is expected to perform best when input images with
similar noise levels and input images with lower PSNRs outside
of the training dataset range can expect lower levels of improve-
ment or artifacts [45]. The trained Noise2Noise plugin model
presented here, however, is designed to properly denoise images
with out-of-distribution noise using “bias-free” (i.e., no bias term)
in the convolutional layers [45]. By not including a bias term in
the convolutional layers or batch-norm regularization layers, the
Noise2Noise plugin provides PSNR improvements when applied
to low-SNR images. In this section, we evaluate denoising per-
formance on the W2S dataset for images with out-of-distribution
PSNR.

To validate that the bias-free Noise2Noise plugin model can
appropriately denoise low-PSNR out-of-distribution images, we
evaluated denoising performance on such data using the method
described in [45]: Gaussian noise is synthetically added to images
from the W2S dataset to yield images with PSNRs in the range
of 5–40 dB, and denoising performance can thereby evaluated
as a function of input PSNR. Results are shown in Fig. 9 (dark
blue symbols and line), with significant PSNR improvements
(>9.6 dB) for the W2S test data outside of the trained PSNR dis-
tribution (<22 dB). For images with the trained noise distribution
range (input PSNRs of 22–40 dB, light blue shading), the average
PSNR improvement is ≈7.06 dB. PSNR improvement decreases
as the input PSNR value increases within the trained noise distri-
bution, and this behavior is consistent with the results shown in
Fig. 3.

To validate denoising plugin performance for images with
out-of-distribution contrast, we evaluate denoising per-
formance for low-contrast images [for illustration, defined as
(Imax − Imin)/(Imax + Imin)]. This metric defines contrast in the
range of zero to one, where one is ideal high contrast. The FMD

https://doi.org/10.6084/m9.figshare.19137665
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Fig. 9. PSNR improvement using the Noise2Noise plugin on test data
with acquired PSNR (blue) and contrast (orange) that are out of distri-
bution relative to the PSNR and contrast of the FMD training dataset.
Out-of-distribution low-PSNR images were obtained by adding synthetic
noise to the W2S dataset. Out-of-distribution contrast images are taken
from the M. xanthus autofluorescence dataset and averaged (one, two,
four, eight, 16, and 32 frames with the same FOV) to obtain images with
varying PSNR.

dataset and W2S datasets are both high-contrast datasets with aver-
age contrast measures of 0.94 and 0.95, respectively. To evaluate
denoising performance for low-contrast fluorescence microscopy
images, we prepared an experimental dataset of 600 images (time
lapse data) of Myxococcus xanthus bacteria auto-fluorescence using
widefield microscopy. This sample and imaging method were
chosen to produce experimental results with low average contrast
(0.52), far outside of the training distribution. Sample preparation
and microscope configuration are described in [46,47]: unlabeled
bacteria are illuminated with a 458 nm laser to excite flavins in
the bacteria, resulting in autofluorescence. The microscope is
configured as widefield epi-fluorescence microscopy using a single
dichroic mirror as both excitation and emission filters, resulting in
the excitation light leakage and/or backscattering being detected
by the imaging EM-CCD. The resulting contrast is therefore
relatively low due to the low emission intensity from unlabeled
autofluorescence and the weak background suppression from using
a single excitation blocking filter. A representative result is shown
in Figs. 10(a)–10(c), depicting the out-of-distribution noisy M.
xanthus image, denoised using the Noise2Noise plugin ML model,
and target images, respectively. The target image is defined as the
average of 600 noisy images in the same FOV. In this example,
applying the Noise2Noise plugin on a single noisy frame from this
dataset increases PSNR from 23.72 dB to 33.78 dB.

Denoising plugin performance for these low-contrast images
can be evaluated as a function of input image PSNR by aver-
aging sequential frames prior to running the denoising plugin.
The resulting denoising improvement is given in Fig. 9 (orange
symbols). The Noise2Noise plugin achieves high-performance
denoising on single-frame, low-PSNR microscopy images even
when the contrast is far out of distribution. While both low-
contrast and high-contrast images show decreased denoising
performance as input PSNR increases (Figs. 3 and 9), denoising
improvement decreases at a faster rate for low-contrast images. This
defines the out-of-distribution limit for the trained Noise2Noise
plugin CNN: exceedingly low-contrast yet high-PSNR input
images may have artifacts introduced into to the image.
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PSNR: 23.72 dB PSNR: 33.78 dB

Fig. 10. Noise2Noise plugin denoising on M. xanthus autofluo-
rescence images captured using a widefield fluorescence microscope.
(a) Input noisy image, (b) image denoised using the Noise2Noise plugin,
and (c) target image are represented by columns. The full-frame FOV
is 512× 512 pixels; the selected ROI (yellow box) is 150× 150 pixels.
Excitation wavelength 458 nm; emission wavelength 500–580 nm;
sample excitation power 0.1 mW; integration time 100 ms; pixel size
150 nm.

Fig. 11. PSNR distribution of noisy and denoised images taken from
the out-of-distribution samples from the 3D RCAN dataset [33]. Gray
and blue statistics indicate the box plot results of the input and denoised
PSNR, respectively. I, input; D, denoised.

In summary, the Noise2Noise plugin demonstrates high-
performance denoising on out-of-distribution low-PSNR and
low-contrast ratio images taken from datasets external to the train-
ing dataset. By using bias-free convolutional layers, denoising on
low-PSNR images is enabled. The trained CNN performs well on
low-PSNR and low-contrast images outside of the dataset; how-
ever, the CNN introduces artifacts that degrade images in the
M. xanthus dataset when contrast is low (<0.6) and PSNR
&36 dB. However, such high-PSNR images would likely not be
candidates for denoising, and therefore applying the Noise2Noise
plugin is reasonable for practical experimental fluorescence
microscopy PSNR and contrast. The Noise2Noise plugin shows
exceptional performance (>8 dB) for single-frame, low-PSNR
images (<25 dB) with typical experimental contrast (at least
>0.5).
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C. Out-of-Distribution Structures

While the ML model was trained on the FMD dataset (containing
fluorescent-labeled BPAE cells and intravital genetically encoded
fluorescent mouse brain and zebrafish samples), the previous sec-
tion demonstrated that the model can perform accurate denoising
on out-of-distribution M. xanthus structures (cellular features
that do not appear in the training set images). To further evalu-
ate performance on out-of-distribution structure, the denoising
plugin performance was evaluated on the 3D RCAN dataset
[33], consisting of fixed U2OS cells (cultivated from the human
osteosarcoma bone tissue) transfected with mEmerald-Tomm20
labeling the outer mitochondrial membrane. The organelles are
fluorescence stained with Alexa Fluor 488 Phalloidin (actin);
ERmoxGFP (endoplasmic reticulum, ER); GalT-GFP (golgi);
LAMP1-mApple (lysosomes); and Mouse-α-Tubulin primary
antibody, Donkey-α-Mouse Biotin secondary antibody, and Alexa
Fluor 488 Streptavidin (microtubules). In addition to a variety
of out-of-distribution structures, the images were acquired using
an out-of-distribution imaging modality: “instant structured
illumination microscopy” (iSIM) [48]. These structures are chosen
due to the diversity of features across length scales and are used
for validation in other ML models [5]. Hence, the 3D RCAN
dataset samples were chosen to represent the out-of-distribution
structures. To evaluate plugin performance with varying SNRs
in the RCAN dataset, synthetic Gaussian noise was added to the
high-SNR images in the dataset.

Next, the Noise2Noise plugin is applied to the noisy images,
and the quantitative improvements in PSNR and SSIM are
computed. To account for differing image intensities (dynamic
range of pixels values) from the acquired low-SNR and high-
SNR samples, normalization is required before calculating the
quantitative results. Images are percentile normalized using the
method described in [17], and normalized images are denoted
as X̂ =Norm(X , percentile-low, percentile-high), where X is
the noisy image, second argument “percentile-low” indicates the
lowest value of X [calculated as percentile(X , percentile-low)]
and third argument “percentile-high” indicates the highest value
of X [calculated as percentile(X , percentile-high)]. For noisy
low-SNR/denoised images, percentile-low and percentile-high
are set to one and 99, respectively. Similarly, for target (high-SNR)
images, percentile-low and percentile-high are set to 0.1 and 99.9,
respectively.

Table 3 provides a summary of average PSNR and SSIM
improvements after denoising on the 3D RCAN dataset [33].
Average PSNR improvements for each class of structures range
from 3.83 dB to 6.39 dB, and each of the 207 images of the dataset
yields a positive increase in PSNR (1PSNR> 0) and SSIM
(1SSIM> 0).

Figure 11 shows the Noise2Noise plugin performance in terms
of PSNR distribution of noisy (gray color) and denoised (blue
color) samples from the 3D RCAN dataset. From Table 3, our
Noise2Noise plugin shows better image denoising performance
on the out-of-distribution structures commonly arising in bio-
medical imaging. Qualitative results on the 3D RAN dataset,
additional out-of-distribution datasets (such as fluorescence
microscopy samples of BPAE cells, membrane samples [49]), and
a fixed-pattern noise dataset captured using out-of-distribution
modality total internal reflection fluorescence (TIRF) and lattice
light-sheet microscopy (LLSM) microscope systems [5] are shown

Table 3. Average PSNR Improvement (1PSNR =

denoised image PSNR, input image PSNR) and Average
SSIM Improvement (1SSIM = denoised image SSIM,
input image SSIM) of the Noise2Noise Plugin When
Applied to Out-of-distribution Samples of Fluorescence
Microscopy Images from the 3D RCAN Dataset

a

Sample
Num.

Samples
1PSNR

(dB) 1SSIM

Actin 21 6.39 (2.10) 0.59 (0.06)
ER 24 4.91 (1.35) 0.32 (0.09)
Golgi 34 3.83 (0.84) 0.21 (0.05)
Lysosome 35 4.99 (1.84) 0.33 (0.09)
Matrix Protein Mitochondria 36 6.10 (2.20) 0.33 (0.16)
Microtubule 32 4.38 (2.01) 0.39 (0.11)
Tomm20 Mitochondria 25 5.35 (0.79) 0.33 (0.06)

aPopulation standard deviations of improvements are given in parentheses.

in Supplement 1 Note S4 and in our GitHub repository under the
Model validation folder [50].

D. Application Specific Model Validation

The use of pre-trained neural network models bears the risk of
introducing artifacts, especially when applied to images that differ
from the training dataset. While this paper evaluates Noise2Noise
plugin performance on some out-of-distribution contrast, SNR,
structure, and imaging modality datasets, applying the plugin
generally to untested data requires users to examine performance.
The following steps can be applied to evaluate performance on
new data sources, samples, or microscopy modalities. Application-
specific validation follows three steps: image acquisition, applying
denoising through the ML plugin, and performance verification.

First, obtain several single-channel low-SNR frames of the same
fluorescence microscopy image FOV (i.e., at least greater than
10 2D sections at low excitation power or fast data acquisition
rates). In addition to each individual frame, an estimate of the clean
image is to be obtained either by acquiring the same FOV under
long-term exposure or averaging all the acquired low-SNR frames
together. To obtain the average, the collection of individual frames
can be combined in Fiji/ImageJ as a “Stack,” then averaged using
the Stack menu commands. Alternatively, a high SNR estimate
can be obtained by performing averaging on the individual frames
using a variety of software tools (e.g., Python, MATLAB). The
output representing the clean image is then saved to a disk.

Second, load individual frames into Fiji/ImageJ and apply the
Noise2Noise plugin. The installation of the Noise2Noise plugin
and other details are provided in Supplement 1 Note S5 and the
GitHub repository [50]. Save the output denoised image files to a
disk.

Third, evaluate denoising performance by comparing the
output of the denoising plugin to the estimated clean image. To
evaluate performance qualitatively, first load both images simul-
taneously into Fiji/ImageJ while ensuring that both images are
displayed with the same “Brightness/Contrast” scale (e.g., in the
menu Image→ Adjust→ Brightness/Contrast . . .). Next, com-
pare the structure of specific features of interest between the two
images and examine the background (i.e., low-intensity) regions
of the image for apparent artifacts. Quantitative verification can
be performed by computing and comparing the PSNR and SSIM
metrics of denoised images with respect to clean images. PSNR
and SSIM for the raw images compared to the clean image and
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the plugin output compared to the clean image can be calcu-
lated using ImageJ plugins [51,52]. The PSNR and SSIM of the
output of the denoising plugin are expected to achieve at least
≈3−8 dB improvement in PSNR and a positive increase in SSIM
compared to raw noisy images. Additional examples and detailed
explanations of Noise2Noise plugin are provided in [50].

E. Out-of-Distribution Data Dimensionality

Modern microscopy techniques commonly acquire data in four
or more dimensions (three spatial, one temporal, and possibly
more channels) and represent the data as 2D sections per channel
at discrete acquisition times. It is therefore important to consider
the model in the context of data with dimensionality outside of
distribution from the training dataset. To address this, the model
was trained on 2D sections of 3D spatial data of one to three
channels, captured at specific times during dynamic intravital
processes (e.g., blood flow and respiration). The noise of each
individual channel can be described as MPG noise, and therefore,
it is appropriate to apply the method to 2D sections of higher-
dimension data using the MPG denoising method. Since the
trained Noise2Noise plugin model performs denoising solely using
information from a single 2D plane of the 3D sample, potential
further performance improvements could be achieved by devel-
oping and training models using complete high-dimension data
(e.g., the entire 3D stack in time [53]). Such an approach relies on
significant computational improvements and would effectively
amplify signals correlated in 3D space and time, leading to even
improved denoising performance.

5. CONCLUSION

In this paper, we have presented an open-source software tool for
fluorescence microscopy image denoising in real time (within tens
of milliseconds) to denoise MPG noise. The new image denoising
technique using the trained ML models (Noise2Noise plugin and
DnCNN plugin) allows imaging eight times faster than the funda-
mental speed limit of fluorescence microscopy while maintaining
the same PSNR. The system was trained using the experimentally
obtained FMD dataset to develop a neural network that effec-
tively removes MPG noise presented in widefield, confocal, and
two-photon fluorescence microscopy images across a variety of cell
types. We have shown here that the proposed Noise2Noise plugin
ML model demonstrates larger PSNR improvements compared to
the existing image denoising methods, performs denoising faster,
and has been validated on a wide variety of images with varying
SNRs, contrasts, structures, and imaging modalities.
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