Proceedings of Machine Learning Research vol 284:1-14, 2025 19th Conference on Neurosymbolic Learning and Reasoning

Distilling KGE black boxes into interpretable NeSy models

Rodrigo Castellano Ontiveros RODRIGO.CASTELLANO@QUNISI.COM
University of Siena, Italy

Francesco Giannini FRANCESCO.GIANNINI@QSNS.COM
Scuola Normale Superiore, Pisa, Italy

Michelangelo Diligenti MICHELANGELO.DILIGENTIQUNISI.COM
University of Siena, Italy

Editors: Leilani H. Gilpin, Eleonora Giunchiglia, Pascal Hitzler, and Emile van Krieken

Abstract

Knowledge Graph Embedding (KGE) models have shown remarkable performances in the
knowledge graph completion task, thanks to their ability to capture and represent complex
relational patterns. Indeed, modern KGEs encompass different inductive biases, which
can account for relational patterns like reasoning compositional chains, symmetries, anti-
symmetries, hierarchical patterns, etc. However, KGE models inherently lack interpretabil-
ity, as their generalization capabilities are purely focused on mapping human interpretable
units of information, like constants and predicates, into vector embeddings in a dense la-
tent space, which is completely opaque to a human operator. On the other hand, different
Neural-Symbolic (NeSy) methods have shown competitive results in knowledge completion
tasks, but their focus on achieving high accuracy often leads to sacrificing interpretabil-
ity. Many existing NeSy approaches, while inherently interpretable, resort to blending their
predictions with opaque KGEs to boost performance, ultimately diminishing their explana-
tory power. This paper introduces a novel approach to address this limitation by applying
a post-hoc NeSy method to KGE models. This strategy ensures both high fidelity to KGE
models and the inherent interpretability of NeSy approaches. The proposed framework
defines NeSy reasoners that generate explicit logic proofs using predefined or learned rules,
ensuring transparent and explainable predictions. We evaluate the methodology using both
accuracy and explainability-based metrics, demonstrating the effectiveness of our approach.

1. Introduction

Knowledge Graphs (KGs) are structured representations of factual knowledge in the form of
interconnected triplets (subject, predicate, object), which have become essential for various
real-world AI applications. KGs are inherently incomplete and link prediction is the task of
uncovering missing relationships based on the existing graph structure. Knowledge Graph
Embedding (KGE) models have emerged as powerful tools for link prediction thanks to their
ability to capture complex relational patterns (Wang et al., 2021; Rossi et al., 2021). These
models leverage diverse inductive biases to support different inference patterns, such as
compositional chains, symmetries, anti-symmetries, and hierarchical patterns (Pavlovié¢ and
Sallinger, 2023a,b). For this reason, KGEs are perfectly capable of making logical deductions
via inference patterns based on the information already present in the graph (Abboud et al.,
2020).

However, despite their capabilities, KGE models often suffer from a lack of transparency.
Indeed, their reliance on dense vector embeddings in latent spaces renders their reasoning
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process opaque to human understanding (Lecue, 2020). While some KGEs may implicitly
encode logical properties, like transitivity or symmetry, it remains challenging to discern
whether (and which of) these properties have been used in the prediction process of any
query (Gutierrez Basulto and Schockaert, 2018; Zhang et al., 2019; Pavlovi¢ and Sallinger,
2023a). This opacity hinders trust and limits the adoption of KGE models in critical
applications, where explainability is of prime importance.

To address this challenge, various explainability methods for KGEs have been proposed.
On one hand, symbolic methods based on rule mining techniques, like AMIE+ (Galarraga
et al., 2015), AnyBURL (Meilicke et al., 2019), SAFRAN (Ott et al., 2021) and Genl (Amador-
Dominguez et al., 2023), extract logic rules from KGs, often relying on heuristics and
generating a vast number of potential rules. While these methods offer insights into the
underlying reasoning, they are based on an exhaustive rule mining process, which overcomes
the limitations of lacking a deep reasoning process in the predictions. The large number of
rules may result in niche and non-intuitive rules, which hinders human interpretability.

On the other hand, many Neural-Symbolic (NeSy) methods for KG reasoning, which
explicitly exploit logic formulas, have been proposed in the literature (Zeng et al., 2023;
DeLong et al., 2024). Some models learn logical formulas by using a neural module (Qu
et al.; Cheng et al., 2023), others inject logic formulas as constraints to satisfy into the
learning problem (Guo et al., 2016; Marra et al., 2020), and others inject the logic knowledge
directly into an embedding representation, e.g. of a KGE (Guo et al., 2018; Marra et al.,
2025). Among NeSy models, Relational Concept Bottleneck Models (R-CBMs) (Barbiero
et al., 2024) have been recently designed to provide interpretable predictions in terms of
human-understandable concepts, and to merge the ideas behind Concept-based models (Koh
et al., 2020) with message-passing Graph Neural Networks (Gilmer et al., 2020). Despite
being more interpretable, NeSy methods often focus on accuracy, while still failing to achieve
the state-of-the-art in many KG tasks' and their evaluations primarily neglect the critical
assessment of explanation quality.

In this paper, we take a different perspective to bridge the gap between high performance
and interpretability in link prediction over KGs. In particular, we define a class of fully
interpretable NeSy models within R-CBMs. These methods are used post-hoc, applied on
top of pre-trained KGE models, ensuring both high fidelity to the selected KGE and the
inherent interpretability of NeSy approaches. Our framework employs NeSy reasoners that
generate explicit logic proofs using predefined or learned rules, providing transparent and
explainable predictions. We evaluate the quality of these explanations using both accuracy
and explainability-based metrics.

The paper is organized as follows. Section 2 introduces the background, while the
interpretable NeSy models are introduced in Section 3. Section 4 reports our experimental
analysis and finally Section 5 draws some conclusions and sketches possible future directions.

2. Background

First-Order Logic. We define a function-free First-Order Logic (FOL) language with a
finite set of constants (domain entities) C, variables X (anonymous entities), and predicates

1. See e.g. on FB15k-237 https://paperswithcode.com/sota/link-prediction-on-fb15k-2377metric=
MRR and WN18RR https://paperswithcode.com/sota/link-prediction-on-wn18rr?metric=MRR.
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(relations) P. An atom p(t1,...,t,) consists of a predicate p € P applied to constants and
variables t1,...,t, € CU X if all terms are constants, it is a ground atom. Logic rules use
standard logical connectives {—, A, V,—} and quantifiers {V¥,3}. A formula consisting of a
single implication between a conjunction of atoms (the body) and another atom (the head)
is a definite Horn clause. A logic theory 7 consists of rules r;(X;), meant as universally
quantified over a finite subset of variables X; C X. A substitution 6 replaces variables
in X; with constants from C, yielding a ground rule. Grounding a rule r;(X;) applies all
substitutions, forming a set R; with |R;| = |C|/*|. Grounding 7 produces R, the set of all
ground rules. In the following, in the same spirit of methods like Markov Logic Networks
Richardson and Domingos (2006), we use a Grounded Markov Network (GMN) to represent
R as a graph. Indeed, the graph representation of R can be built by taking a node for each
ground atom, and edges connecting them only if the atoms appear together in some ground
formula.

Knowledge Graph Embeddings. Knowledge Graphs represent knowledge as triples
of entities and relations, forming a graph structure (Wang et al., 2017; Dai et al., 2020).
KGs are inherently incomplete, and Knowledge Graph Embeddings (Wang et al., 2021; Rossi
et al., 2021) are a powerful approach, enabling inference of missing facts by mapping entities
and relations to latent vectors. All KGE methods first reconstruct a fact representation
from the embeddings of the entities and relations, and then compute a score from this
representation via a scoring function. Here are some examples for an atom A = p(a,b),
where we indicate as e, the embedding associated to ¢, being either a constant, predicate,
or atom:

e TransE (Bordes et al., 2013) models relations as translation on the embeddings of the
entities, defining the atom embedding e4 = e, + e, — e}, and its score as 1/(1+ ||eal|).

e DistMult (Yang et al., 2015) computes the dot product among entities and relation
embeddings, defining the atom embedding eq4 = e, - € - €y, being - the Hadamard
product and its score as o(>_;(ea)i), being o the sigmoid function.

e ComplEx (Trouillon et al., 2016) uses the Hermitian dot product over complex em-
beddings to get the atom embedding, and with score Re((eq, €p, €p)).

e RotatE (Sun et al.) models relations as rotations in the complex embedding space of
the entities. The atom representation e4 = e, 0 €, — €, is scored as —||e4]|, being o
the Hadamard product and |p;| = 1.

e EzpressivE (Pavlovi¢ and Sallinger, 2023b) embeds entity pairs as points and relations
as hyper-parallelograms in a high-dimensional space. The score of each triplet is
determined by assessing how well the entity pair embeddings fits within the relation’s
hyper-parallelogram.?

KGE models have demonstrated a remarkable ability to implicitly capture various logical
inference patterns within their embedding representations (Pavlovié and Sallinger, 2023a;

2. For the complete definition of the scoring function, we refer the interested reader to Equation (3) of the
original paper Pavlovi¢ and Sallinger (2023b).
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Table 1: Logical Rule Support by Different KGEs (cf. Pavlovié¢ and Sallinger (2023a)).

Logical Rule ExprE  RotatE TransE  DistMult ComplEx
Symmetry: p1(X,Y) — p1(Y, X) v v X v v
Anti-symmetry: p1(X,Y) = —p1(Y, X) v v v X v
Inversion: p1(X,Y) <> p2(Y, X) v v v X v
Compositional definition: p1(X,Y) A p2(Y, Z) + p3(X, Z) v v v X X
General compositional: p1(X,Y) Ap2(Y, Z) — p3(X, Z) v X X X X
Hierarchy: p1(X,Y) — p2(X,Y) v X X v v
Intersection: p1(X,Y)Ap2(X,Y)—p3(X,Y) v v v X X
Mutual exclusion: p1(X,Y) <> —p2(X,Y) v v v v v

Abboud et al., 2020). However, as shown in Table 1, a comparison of different KGE mod-
els reveals varying degrees of success in explicitly capturing prominent logical inference
patterns. It is clear that the inductive biases of modern KGEs have the potential to ap-
proximate complex logical inference patterns, even if with no direct insights into the specific
nature of the inference being performed.

Relational Concept Bottleneck Models. Relational Concept Bottleneck Models (R-
CBMs) (Barbiero et al., 2024) have been recently proposed as a novel family of methods that
combine Graph Neural Networks (GNNs) (Wu et al., 2020) and concept-based XAI (Koh
et al., 2020) on relational data. Assume we are given a logic theory 7T of definite Horn
clause, with R being the set of all ground rules. Then, for each ground atom A = p(a,b),
the R-CBMs’ pipeline can be summarized in three steps: (i) initial atom encoding and
prediction, (ii) message-passing on the GMN associated to R, (iii) aggregations.
(i) A is encoded as h°(A) = g,(eq, ep) € R, with initial prediction y°(A4) = s(h°(A)),
being g, and s the embedding and scoring functions, respectively, of some KGE, and
H the embedding size.

For T' > 0 steps, with 0 < ¢ < T, the step (ii) is repeated for each ground rule r € R having
A as head atom, where we use the symbol NV,.(A) to refer to the set of ground atoms that
are in the body of r.

(ii) Message-passing updates embeddings and predictions:

PL(A) = gy (P2(A), [HHB)] pens o)
Y(A) = iy (572 (A), [PLB), 4 (B)] pens )
being w(,), fi(r) rule-type dependent functions.

(iii) Aggregation among ground rules is performed by using an aggregator operator @, like
e.g. the max or the sum:
R(A) = T r € R(A)RL(A)
y'(A) = @reR(A) yr(A)
The final embedding h(A) = h”7(A) and prediction y(A) =y’ (A) for each atom A is
obtained when t =T
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3. Models

The interpretability of standard R-CBMs is limited by complex aggregators of rule-specific
predictions, y%(A), for atom A, and the black-box nature of latent representations, hf, used
in calculating y.(A). To address this, we propose a new class of R-CBMs that emulate
logical reasoning, enabling human-understandable explanations. Our approach factorizes
the computation into a rule generation or weighting phase, potentially leveraging latent
features, and an interpretable rule execution phase, where the rule is symbolically executed.

We propose different models, which can be used as surrogate models to distill the output
of a KGE, providing different trade-offs between expressivity and interpretability.

3.1. Interpretable R-CBMs

In this class of models the latent representations are used only to weight the effect of each
rule, but the rule is executed symbolically in order to preserve interpretability. The message
passing takes the following form:

RY(A) = wu (htil(A), [htil(B)]BeNr(AJ (1)
Gate Semantic Rule Execution
—_—~
yr(A) = A (h'(A)) -tnorm <[yt71(B)]B€N’r(A)> 2)
y'(4) = nax yr(4) (3)

where the h,y are initialized using the KGE embeddings and outputs, respectively: y°(a) =
kge_out(a), h°(a)) = kge_emb(a) and there are t, with 0 < ¢ < T, reasoning hops by applying
the rules in R. The idea of the proposed architecture is to structure the computation
into a stage where a (non-interpretable) latent representation is computed by Equation 1.
Equation 2 is used to symbolically execute the rules by performing forward chaining using
the semantics of the selected tnorm, and the output is weighted by the gate in Equation
2. The selection of the form of the weighting function A,(-) defines different models, as
detailed in the following paragraphs.

The use of maximum aggregation in Equation 3 can be seen as a soft-version of the Pro-
log semantics where a conclusion is true iff there is at least one supporting premise. Like in
Prolog, the selection of the maximum aggregation is fundamental to preserve interpretabil-
ity, because the computation of the prediction 3!(«) can be unambiguously traced back
from the head node « to the supporting body nodes, and this process can be recursively re-
peated providing a proof tree which can be provided as an explanation. In the experimental
section, we show different examples of proof trees extracted using this methodology.

Gated R-CBMs.  This method restricts the rule weight to be a single per-rule train-
able scalar \.(hi(A)) = X This resulting model will be referred to as Gated R-CBM
(G-RCBM) and in the experimental section, we show different examples of proof trees ex-
tracted using this methodology. A Gated R-CBM has connections with other models in the
literature, like Deep Logic Models (DLM) (Marra et al., 2019), which assign a weight to
each rule, trained to maximize the log-likelihood of the training assignments, or Knowledge
Enhanced Neural Networks (KENN) (Daniele and Serafini, 2019), which extend Semantic
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Based Regularization (Diligenti et al., 2017) and Logic Tensor Networks (Badreddine et al.,
2022) with a per-rule weight. These methods were originally limited to unary predicates
and to one-hop reasoning for KENNs, fundamental limitations that we overcome in our
formulation.

Contextual R-CBMs (C-RCBM) If the rule relevance is determined based on the
latent representation of a head atom, the model gains in expressiveness as it can de-
cide that a rule contextually applies for a head atom but not another. A C-RCBM
parametrizes the rule weighting by means of a neural network with a sigmoidal output
such that \.(h'(A4)) = nn,(h'(A)). This model has connections with other models like
Neural Markov Logic Networks (NMLN) (Marra and Kuzelka, 2021). However, whereas an
NMLN defines a full probability distribution over the space of assignments, the proposed
R-CBMs directly compute the Maximum A-Posteriori (MAP) assignment given the training
labels. This allows the method to scale to much larger relational domains.

3.2. Interpretable Deep Concept Reasoners (I-DCR)

DCR (Barbiero et al., 2023) is a concept-based model, which learns a formula for each head
atom, given a set of candidate body atoms, then computes the output by using a tnorm:

yh(A) = tnorm([@«(ho(B),ytfl(B))]BeN,.(A))
y'(A) = ngé)yﬁ(fl)

where the y, are initialized using y°(a) = kge_out(a), and @, : RE+1 — [0, 1] represents
a logic formula processing the embedding representation and prediction of each atom in
each rule 7, to get a learned Horn Clause. In the original formulation, DCR was defined
for a single step of propagation, however, we extend DCR to multiple iterations ¢, with
0 <t < T, to enable multi-hop reasoning and restrict it to a max aggregation operator to
merge the information from different rules. The resulting architecture, called I-DCR, can
take advantage of latent representations to discover the rules to apply in a given context,
unlike G-RCBMs and C-RCBMs which assume the rules to be predefined. I-DCR also
preserves full human interpretability, as the generated rules are executed symbolically. The
use of tnorms to perform the logic reasoning step allows an end-to-end optimization of the
kge layer.

Training. The different proposed models are trained to regress the values of teacher kge
model using Mean Squared Error loss:

Lw) =5 Y (yulq) — kge-out(hg,rq,ty))?
7€EQUQ

where Q = [¢1 = (h1,71,t1),q1 = (h2,72,t2),...] is a set of query triples and Q is the
negative sample of query corruptions like in standard kge training and y,,(q) is the output
of the student model with parameters w.
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4. Experimental Results

The main goal of the experiments is to compare the distilled NeSy models, namely I-DCR,
G-RCBM, and C-RCBM, against different KGE models. We use as teachers ComplEx,
RotatE and DistMult.

4.1. Datasets.

The study utilizes three datasets to evaluate reasoning capabilities. Countries (Bouchard
et al., 2015) tests geographical inference across varying complexities (S1, S2, S3) by pre-
dicting country locations based on regional and neighborhood relationships. Family (Cheng
et al., 2023) is designed to model transitive and hierarchical familial structures. WN18RR
(Dettmers et al., 2018) is a WordNet-derived dataset specifically curated to address inverse
relation leakage in knowledge graphs. A concise summary of the key statistics for each
dataset is provided in Table 2.

Table 2: Detailed statistics of the datasets employed in our experiments.

Dataset #Entities #Relations #Facts Avg. Degree #Rules
Countries S1 272 3 1,110 4.28 1
Countries S2 272 4 1,062 4.35 2
Countries S3 272 4 978 4.35 3
Family 3007 12 19,845 6.47 48
WN18RR 40,559 11 86,835 2.14 28

Rules. The Countries Dataset defines the rules R1 : LocIn(X,W) A LocIn(W,Z) —
LocIn(X,Z), R2: NeighOf(X,Y)ALocIn(Y,Z) — LocIn(X,Z), R3: NeighOf(X,Y)A
NeighOf(Y,K) A LocIn(K,Z) — LocIn(X, Z), where LocIn(X,Y) indicates that entity
X is located within entity Y, and NeighOf(X,Y) indicates that entity X is a neighbor of
entity Y. Task S1 can be solved exactly with rule R1 by using information from subconti-
nents, Task S2 incorporates R1 and R2, it needs to use neighbor relationships to be solved,
and Task S3 uses all three rules (e.g. NeighO f(spain, france) A NeighO f(france,italy) N
LocIn(italy, europe) — LocIn(spain, europe)).

For the Family and WNI18RR datasets, where explicit rule sets are not predefined,
we applied the AMIE (Association Rule Mining for Incomplete knowledge graphs) system
(Galarraga et al., 2015). We selected a small set of top-ranking rules extracted by AMIE
based on their confidence scores. The number of extracted rules for each dataset is summa-
rized in Table 2.

4.2. Evaluation Metrics

To assess model performance, we employ three key evaluation metrics: Coherence, Mean
Reciprocal Rank (MRR), and Hits@N.

Coherence plays a crucial role in knowledge distillation by evaluating the agreement
between two models. It measures the proportion of queries where both models produce the
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same top-ranked prediction:

1
Coherence = Ql Z I(top prediction,,,qe;, = top prediction,;qe, ), (4)
9€Q

where I(-) is an indicator function determining whether the top predictions from both
models match. Higher coherence indicates that the student model successfully mimics the
teacher model in knowledge distillation.

Mean Reciprocal Rank (MRR) quantifies the ranking quality by averaging the
reciprocal rank of the first correct answer across all queries: MRR = ﬁ > 4€Q ﬁ7 where
@ represents the set of queries, and rank, denotes the position of the first correct answer.

Hits@N measures the fraction of queries for which at least one correct answer is among
the top-IN predictions: Hits@QN = ﬁ >_qeq I (correct answer in top-N), where I(-) is an
indicator function that returns 1 if the condition is met and 0 otherwise.

4.3. Results

We evaluate our distillation framework on four benchmarks: Countries S2, Countries S3,
Family, and WN18RR. Table 3 reports the Mean Reciprocal Rank (MRR) and Hits@1,
3, 10 for the base Knowledge Graph Embedding (KGE) models (i.e., ComplEx, RotatE,
and DistMult) alongside the distilled Neural-Symbolic (NeSy) models (denoted as I-DCR,
G-RCBM, and C-RCBM). ? Please note that the reported KGE results are for the teacher
models (embedding_size=100, num_train_corruptions=2), and not the best possible results
obtainable for that KGE with hyperparameter tuning.

On Countries S2, the KGEs already achieve very high performance (MRRs above 0.97
for ComplEx and RotatE). Notably, the I-DCR, G-RCBM, and C-RCBM variants preserve
these results. For countries S3, the baseline KGEs show a wider range of performance (with
ComplEx at 0.866, RotatE at 0.956, and DistMult at 0.764). Here, the distillation process
via [-DCR notably boosts the weaker DistMult baseline, while the G-RCBM and C-RCBM
methods achieve high MRRs (up to 0.979) that are comparable to or better than their KGE
counterparts. These results indicate that our framework can harmonize and, in some cases,
enhance the relational reasoning capabilities of diverse KGEs. This could happen due to
effects of, e.g., regularization or overparameterization of the teacher.

The Family dataset highlights an interesting effect of distillation. While the original
KGE:s yield heterogeneous performance (with ComplEx reaching 0.787 versus around 0.600
for RotatE and DistMult), the distilled models converge to nearly identical performance
(around 0.764 MRR for all variants). This suggests that the distillation process may regu-
larize the learned representations, leading to a more uniform behavior across different un-
derlying embeddings, which can be beneficial for interpretability and downstream symbolic
reasoning. On WN18RR, the baseline KGEs achieve similar performance (MRRs around
0.38), and the distillation process preserves these figures. All distilled models—across the
different methods—remain close to the original performance. This consistency confirms
that our approach does not compromise predictive accuracy on more challenging datasets,
while still potentially offering the additional benefits of symbolic reasoning.

3. The code will be publicly available after paper acceptanceis available at https://github.com/
rodrigo-castellano/KGE-Distillation
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Table 3: MRR and Hits for the datasets Countries S2 and S3, Family and WN18RR for the
different NeSy models and KGEs they are distilled from.

Model MRR H@1 H@3 H@lO‘ Model MRR H@Q1 H@3 H@10| Model MRR H@Q1 H@3 HQI0
Countries S2
ComplEx 0.979 0.954 0.996 1.0 RotatE  0.992 0.988 0.992 1.0 | DistMult 0.764 0.764 0.764 1.0
I-DCR  0.989 0.979 0.988 1.0 I-DCR  0.982 0.979 0.996 1.0 I-DCR  0.983 0.967 0.996 1.0
G-RCBM 0.972 0.954 0.992 1.0 |G-RCBM 0.979 0.962 0.992 1.0 [G-RCBM 0.976 0.954 0.996 1.0
C-RCBM 0.986 0.975 0.992 1.0 |C-RCBM 0.982 0.962 0.992 1.0 |C-RCBM 0.981 0.971 0.992 1.0
Countries S3
ComplEx 0.866 0.808 0.879 1.0| RotatE 0.956 0.921 0.992 1.0 | DistMult 0.764 0.764 0.764 1.0
I-DCR  0.913 0.875 0.983 1.0| I-DCR 0.910 0.854 0.971 1.0| I-DCR 0.917 0.875 0.975 1.0
G-RCBM 0.953 0.908 1.0 1.0|G-RCBM 0.979 0.958 1.0 1.0/ G-RCBM 0.962 0.925 1.0 1.0
C-RCBM 0.958 0.917 1.0 1.0|C-RCBM 0.979 0.958 1.0 1.0|C-RCBM 0.972 0946 1.0 1.0
Family
ComplEx 0.787 0.653 0.916 0.951| RotatE 0.601 0.385 0.775 0.971| DistMult 0.609 0.438 0.735 0.912
I-DCR  0.764 0.764 0.764 0.764| I-DCR 0.764 0.764 0.764 0.764| I-DCR 0.765 0.764 0.764 0.764
G-RCBM 0.764 0.764 0.764 0.764 | G-RCBM 0.764 0.764 0.764 0.764 | G-RCBM 0.765 0.764 0.764 0.764
C-RCBM 0.764 0.764 0.764 0.764 | C-RCBM 0.765 0.764 0.764 0.764 | C-RCBM 0.765 0.764 0.764 0.764
WNI18RR
ComplEx 0.384 0.376 0.387 0.397| RotatE 0.417 0.338 0.458 0.561 | DistMult 0.382 0.370 0.388 0.399
I-DCR  0.380 0.366 0.389 0.404| I-DCR 0.381 0.366 0.392 0.406 | I-DCR 0.380 0.366 0.390 0.405
G-RCBM 0.380 0.366 0.389 0.404 | G-RCBM 0.381 0.366 0.392 0.406 | G-RCBM 0.381 0.368 0.390 0.405
C-RCBM 0.387 0.375 0.396 0.407 | C-RCBM 0.383 0.369 0.394 0.407 | C-RCBM 0.380 0.367 0.390 0.405

Table 4: Coherence for the student NeSy models with the teacher models.

Coherence

ComplEx RotatE DistMult

Model S2 S3  Family WN1sRR| Model S2 S3  Family WN1sRR| Model S2 S3  Family WN18RR

I-DCR 0.954 0.796 0.654  0.367 I-DCR 0.979 0.908 0.385 0.374 I-DCR 0.941 0.808 0.438 0.365
G-RCBM 0.946 0.800 0.654 0.364 |G-RCBM 0.975 0.904 0.385 0.373 |G-RCBM 0.946 0.808 0.438  0.362
C-RCBM 0.934 0.796 0.654 0.369 |C-RCBM 0.975 0.912 0.385 0.377 |C-RCBM 0.930 0.804 0.438 0.364

Overall, these experiments demonstrate that our distillation framework is effective in
transferring relational knowledge from high-performing KGEs to NeSy models.

Coherence results. Table 4 reports the coherence of the distilled NeSy models with
respect to the ComplEx, RotatE, and DistMult teachers on four datasets. For Countries S2,
I-DCR, G-RCBM, and C-RCBM achieve high coherence scores — 0.954, 0.946, and 0.934
respectively for ComplEx — indicating a strong alignment with the relational structure
captured by ComplEx. A similar trend is observed on Countries S3, where I-DCR, G-
RCBM, and C-RCBM maintain coherence scores around 0.796, 0.800, and 0.796.

On the Family dataset, all models exhibit nearly identical coherence for the same teacher,
implying that the distillation process leads to a uniform alignment with the teacher in this
domain. For WN18RR, coherence scores are uniformly lower (ranging from 0.364 to 0.377),
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husband(1352,1220). husband(1438,1196).
fathcr(1352,125)/4). }n(1254,1220). fathcr(1438,M/40). daug\htcr(1440,1196).
brother(1254,1é3). s>1(1353,1220). nie(:e(1440,(95) si$(1195,1196)
daughter(1258,286)
sister(1258,{56). so>(1256,286) daughter(1258,286).
sister(1263.,286)/nephew(1éSG,lQﬁmhew(HSG,l?ﬁQ) sister(1258,1{6). 5(1256,286).
brother(1‘269,1263) nephew(1256,1{63). S®(1263,286).
sistcr(l%?,@) br@r(l%?),l%‘?) brothcr(1269/,1267).
N N

brother(1266,1267)  brother(1269,1266) brother(1269,1266).  brother(1266,1267).

LocatedIn(United States, Americas).

NeighOf(Canada, United States). LocatedIn(Canada, Americas).

LocatedIn(Canada, North America). LocatedIn(North America, Americas).

LocatedIn(Ghana, Africa).

_— \ T

NeighOf(Ghana, Ivory Coast).  NeighOf(Ivory Coast, Mali). LocatedIn(Mali, Africa).

NeighOf(Mali, Senegal).  NeighOf(Senegal, Gambia).  LocatedIn(Gambia, Africa).

Figure 1: Examples of local explanations as proof trees obtained for the Family and Coun-
tries datasets (root nodes are test queries).

due to some atoms missing grounded rules in the NeSy methods. Therefore, coherence
would have been higher by selecting a larger rule set.

Explanations. By tracing back the predictions, the extracted explanations represent
the deep logical reasoning performed by the models. Rather than producing simple linear
chains, the system constructs proof trees of varying depths by utilizing first-order logic
formulas. In practice, building a proof tree from a set of straightforward rules proves to
be both clearer and more accessible than forming extended flat rules. Figure 1 illustrates
several explanation instances for the Countries and Family dataset, presented as proof trees.
These examples highlight how sequential reasoning steps arrive at a final conclusion.

5. Conclusions and future work

We have presented a methodology that effectively bridges the gap between the high per-
formance of KGEs and the need for interpretable reasoning in link prediction tasks. By
distilling the knowledge captured by KGEs into a neural-symbolic framework, we generate
detailed logical proofs, offering a level of explanation far beyond the capabilities of the
original black-box models. Future research will explore the refinement of this distillation
process to handle more complex knowledge graphs and rule structures.
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