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Abstract
Recent advancements in data-driven approaches,
such as Neural Operator (NO), have demonstrated
their effectiveness in reducing the solving time of
Partial Differential Equations (PDEs). However,
one major challenge faced by these approaches
is the requirement for a large amount of high-
precision training data, which needs significant
computational costs during the generation pro-
cess. To address this challenge, we propose a
novel PDE dataset generation algorithm, namely
Differential Operator Action in Solution space
(DiffOAS), which speeds up the data generation
process and enhances the precision of the gener-
ated data simultaneously. Specifically, DiffOAS
obtains a few basic PDE solutions and then com-
bines them to get solutions. It applies differential
operators on these solutions, a process we call ’op-
erator action’, to efficiently generate precise PDE
data points. Theoretical analysis shows that the
time complexity of DiffOAS method is one order
lower than the existing generation method. Ex-
perimental results show that DiffOAS accelerates
the generation of large-scale datasets with 10,000
instances by 300 times. Even with just 5% of the
generation time, NO trained on the data generated
by DiffOAS exhibits comparable performance to
that using the existing generation method, which
highlights the efficiency of DiffOAS.

1. Introduction
The Partial Differential Equation (PDE) is a fundamental
mathematical model derived from various scientific areas
including physics, chemistry, biology, engineering and so
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on (Zachmanoglou & Thoe, 1986).
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Figure 1. Above. Generation process of the PDE dataset. 1. Pro-
duce collection of random parameters derived from PDE. 2. Gen-
erate the relevant PDE using these parameters 3. Convert the PDE
into linear equation systems using discretization methods. 4. Solve
linear equations based on input parameters 5. Acquire solutions for
the linear systems and translate them into solutions for the PDEs.
6. Compile the data into a dataset. Below. The generation cost
of DiffOAS and GMRES varies with the dimension of the linear
system. GMRES curves in the graph represent different truncation
errors, where GMRES 10−5 indicates the algorithm’s time cost
with a truncation error of 10−5. In contrast, our DiffOAS main-
tains machine precision of 10−16. It can be observed that DiffOAS
significantly speeds up the data generation process, achieving a
speedup of up to 70, 000 times.

Traditionally, solving PDEs often relies on extensive domain
expertise and computationally intensive methods. To reduce
the solving time for PDEs, recent research has explored
data-driven approaches to predict PDE solutions. One such
approach is the use of Neural Operators (NOs) (Lu et al.,
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2019), which has achieved promising results in accelerating
the solving process (Zhang et al., 2023).

However, the long running time and computation costs of
generating the training datasets pose a great challenge to
the training of NOs. Firstly, real-world applications often
involve various types of PDEs, and the training of NO for
a certain type of PDEs requires a large number of training
instances. For example, when training a Fourier Neural Op-
erator (FNO) (Li et al., 2020) for Darcy flow problems, it is
common to require thousands of PDEs and their correspond-
ing solutions under diverse initial conditions. Secondly,
acquiring the corresponding solution functions of PDEs as
labels for training the NO network poses a further obstacle.
Existing algorithms typically rely on traditional PDE solvers,
such as the finite difference method (FDM) (Strikwerda,
2004) and finite element method (FEM) (LeVeque, 2002).
These algorithms, demonstrated in Figure 1, involve solving
large-scale linear equation systems in the 4-th step Solver,
with a high computational complexity of O(n3), where n
represents the dimension of the linear system. Consequently,
utilizing such algorithms can be time-consuming, with the
computational cost of the Solver module often accounting
for over 95% of the entire data generation process (Hughes,
2012). Thirdly, solving large-scale linear systems often in-
volves the use of iterative methods. However, due to the
presence of termination conditions, these methods inevitably
introduce errors, which can potentially result in a degrada-
tion of the performance of the NO network. Furthermore,
as shown in Figure 1, increasing the accuracy of solving lin-
ear systems leads to increased time costs. Therefore, these
challenges of data generation have significantly hindered
the real-world applications of NOs (Zhang et al., 2023).

To address the aforementioned challenges, we propose a
novel and efficient PDE data generation method, named
Differential Operator Action in Solution space (DiffOAS).
DiffOAS has two key advantages: it accelerates the data
generation process and enhances the precision of the gen-
erated data simultaneously. DiffOAS replaces the process
of solving linear systems in the Solver module in Figure 1
with operator actions. Initially, we generate a set of PDE
solution functions that comply with the actual physical con-
texts, which serve as basis functions for the solution space.
These basis functions are then appropriately combined to
satisfy the PDE conditions and generate solution functions.
The discretized operator and solution functions are used as
inputs in the Solver, where the corresponding differential
operators are applied to calculate the remaining data that
satisfies PDE constraints. DiffOAS utilizes operator ac-
tions to avoid the process of solving linear equation systems,
reducing the computational complexity by one order. As
shown in Figure 1, the DiffOAS method can significantly
accelerate PDE data generation, achieving a speedup of up
to 300 times.

The distinct contributions of our work can be summarized
as follows.

• We introduce a novel PDE dataset generation algo-
rithm that utilizes differential operator actions. This
algorithm generates a set of PDE solution functions
that align with the physical background. By applying
differential operators to combinations of these solution
functions, it can generate large-scale PDE data.

• We have demonstrated in our theoretical analysis that
our proposed algorithm is able to achieve mechanical
precision at a low cost compared to existing generation
methods, ensuring the accuracy of generated data

• We demonstrate that our proposed algorithm signifi-
cantly reduces the computational complexity and data
generation time, which addresses the long-standing
challenge of the data-driven approaches for solving
PDEs. Even with just 5% of the generation time, NO
trained on the data generated by DiffOAS exhibits com-
parable performance to that using existing generation
methods.

2. Related Work
2.1. Data-Efficient and learning-based PDE Algorithms

Data-efficient and learning-based algorithms have signifi-
cantly impacted the realm of PDEs. Major advancements
include the development of NOs such as the Fourier Neural
Operator (FNO) (Li et al., 2020) and the Deep Operator
Network (DeepONet) (Lu et al., 2019), both of which have
considerably advanced the solving of PDEs. These models
harness deep learning to unravel the complexities inherent
in PDE systems, providing efficient alternatives to conven-
tional methods. Additionally, there are also studies explor-
ing the use of neural networks to accelerate the solution of
linear equation systems, thereby speeding up the process of
solving PDEs. The evolution of data-driven solvers, exem-
plified by the data-optimized iterative schemes in studies
such as Hsieh et al. (2019); Yang et al. (2016); Li et al.
(2023); Kaneda et al. (2023), highlights a trend towards
merging machine learning with traditional computational
techniques to enhance algorithmic efficiency.

Furthermore, machine learning has achieved notable ad-
vancements in improving matrix preconditioning for PDE
solving. (Greenfeld et al., 2019; Luz et al., 2020;
Taghibakhshi et al., 2021) demonstrate the effectiveness
of neural networks in refining multigrid preconditioning
algorithms, thus streamlining the computational process.
(Götz & Anzt, 2018) utilized Convolutional Neural Net-
works (CNNs) for the optimization of block Jacobi precon-
ditioning algorithms, while (Stanaityte, 2020) developed cor-
responding Incomplete Lower-Upper Decomposition (ILU)
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preconditioning algorithms leveraging machine learning in-
sights.

2.2. Data Generation for PDE Algorithms

Training data-driven PDE algorithms requires large offline
paired parametrized PDE datasets. Typically, the generation
of PDE datasets is obtained by solving PDE problems em-
ploying traditional computational mathematics algorithms.
In the field of computational mathematics, the numerical
solution of complex PDEs generally involves converting the
intricate equations into solvable linear systems using vari-
ous discretization methods (Morton & Mayers, 2005), such
as Finite Difference Method (FDM) (Strikwerda, 2004),
Finite Element Method (FEM) (Hughes, 2012; Johnson,
2012), and Finite Volume Method (FVM) (LeVeque, 2002).
These approaches ultimately result in the formation of large
linear equation systems, which are usually solved using iter-
ative methods (Liesen & Strakos, 2013) suited to the matrix
properties (Golub & Van Loan, 2013), such as the Conju-
gate Gradient (CG) algorithm for SPD matrices (Hestenes
et al., 1952), the Minimum Residual (MINRES) Method
for symmetric matrices (Paige & Saunders, 1975), and the
Generalized Minimum Residual (GMRES) Method for non-
symmetric matrices (Saad & Schultz, 1986).

Although these traditional methods are effective, they are
not exclusively designed for dataset generation, and us-
ing them independently for this purpose results in substan-
tial computational costs. This has emerged as a signifi-
cant barrier to the further advancement of data-driven ap-
proaches (Zhang et al., 2023; Hao et al., 2022). In tack-
ling this challenge, research has led to the development
of architectures that preserve symmetries and conservation
laws (Brandstetter et al., 2022; Liu et al., 2023; Wang et al.,
2024), enhancing model generalization and data efficiency.
However, these advancements mainly focus on the optimiza-
tion of the PDE solving algorithms themselves, without
significantly altering data generation methods.

3. Preliminaries
3.1. Discretization for PDEs

Our main focus is the generation of PDE datasets, which
are obtained by solving relevant PDE problems. Due to
the complexity, continuity, and detailed boundary condi-
tions of these PDE problems, discretized numerical methods
such as FDM, FEM, and FVM are typically used to solve
them (Strikwerda, 2004; Hughes, 2012; Johnson, 2012; LeV-
eque, 2002; Cheng & Xu, 2023).

Numerical methods discretize a partial differential equa-
tion problem by mapping it from an infinite-dimensional
function space to a finite-dimensional space, resulting in a
system of linear equations. To illustrate, we consider solv-

ing a two-dimensional inhomogeneous Helmholtz equation
using the FDM, which transforms it into a linear equation
system:

∇2u(x, y) + ku(x, y) = f(x, y), (1)

using a 2 × 2 internal grid (i.e., Nx = Ny = 2 and ∆x =
∆y), the unknowns ui,j can be arranged in row-major order
as follows: u1,1, u1,2, u2,1, u2,2. For central differencing
on a 2 × 2 grid, the vector b will contain the values of
fi,j = f(xi, yj) and the linear equation system Ax = b
can be expressed as:
−4 + k 1 1 0

1 −4 + k 0 1
1 0 −4 + k 1
0 1 1 −4 + k



u1,1

u1,2

u2,1

u2,2

 =


f1,1
f1,2
f2,1
f2,2

 .

By employing various methods to generate function f and
constant k, such as utilizing Gaussian Random Fields (GRF)
or Uniform Random Distribution, we can derive inhomoge-
neous Helmholtz equations characterized by distinct param-
eters.

This represents a relatively simple PDE problem. However,
for realistic physical simulations and more complex bound-
ary conditions, numerically solving PDEs demands more
specialized discretization methods and denser grid divisions.
This results in a substantial increase in the size of the ma-
trices within the linear systems, with matrix dimensions
potentially growing from 103 to 106 or even larger. This
results in significant computational costs during the dataset
generation process.

3.2. Details of the Dataset

To introduce the content of the dataset, we will use a 2D
Darcy Flow problem as an example (Li et al., 2020):

∇ · (a(x, y)∇u(x, y)) = f(x, y) (x, y) ∈ D

u(x, y) = 0 (x, y) ∈ ∂D,

where D = [0, 1]2. The functions a(x, y), f(x, y), and
u(x, y) represent parameter functions, solution functions,
and right-hand side term functions. They are discretized
on a N × N uniform grid Ω = {(i/N, j/N), i, j =
0, 1, · · · , N}. So, the dimension of the matrix A obtained
from the discrete PDE is given by n = N × N . Accord-
ing to the given grid Ω, generate a dataset with features
Fk = (ak(Ω), fk(Ω)) and target Tk = (uk(Ω)), where
k = 1, 2, ..., Nsamples. In existing data generation meth-
ods, the solution function u(x, y) is obtained by solving the
equation using a(x, y) and f(x, y), which can be constants,
generated through GRFs, or other generation methods.
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Figure 2. Overview of the model architecture. The process of
DiffOAS and existing method: Firstly, Transforming a PDE into
a linear equation system. Secondly, (Above) Existing Method
generates f , input its discretized form b into the linear equation
system, and solve x accordingly. (Below) DiffOAS generates u
using basis functions, inputs its discretized form x into the linear
equation system, and calculates b accordingly. Finally organizing
the inputs and outputs of the linear equation system to create a
complete PDE dataset.
4. Method
In this paper, we explore the most prevalent form of PDEs,
namely the steady-state PDEs constrained by boundary con-
ditions (Evans, 2022). These can generally be expressed in
the following form:

L(a(x))u(x) = f(x) x ∈ D

B(b(x))u(x) = g(x) x ∈ ∂D.
(2)

Here, D ⊆ Cn is the PDE’s domain, with ∂D as its bound-
ary, and x ∈ Cn. The operator L, governed by the param-
eter function a(x), is a partial differential operator. The
solution function is u(x), and f(x) represents the source or
forcing function on the right-hand side. The boundary oper-
ator B, controlled by b(x), dictates the equation’s boundary
conditions on ∂D, and g(x) is the corresponding right-hand
side function on ∂D.

In existing algorithms, the dataset generation process began
with the random generation of other parameters for PDEs,
followed by employing traditional PDE solvers to determine
the corresponding solution functions u(x). This approach
necessitated the Solver module in Figure 1 to solve large
linear systems of equations involving substantial matrices,
as mentioned in the Preliminaries 3.1. As mentioned in Fig-
ure 1, existing method requires a substantial amount of time
and often becomes a bottleneck in the dataset generation
process.

As shown in Figure 2, unlike traditional methods, DiffOAS
method initiates by generating solution functions u(x). Sub-

sequently, these functions are subjected to operator actions
to derive other PDE parameters, such as f(x), thereby fa-
cilitating dataset creation. Both methods generate data that
adhere to their respective PDE constraints. However, our al-
gorithm circumvents the significant computational expense
and termination error associated with solving large matrix
linear systems. This strategy substantially reduces computa-
tional overhead and enhances precision.

DiffOAS method comprises two primary steps:

1. Solution Functions Generation: This phase involves the
low-cost generation of solution functions that comply with
PDE conditions.

2. Operator Action: In this stage, operators are applied to
the generated solution functions to obtain data that satisfies
PDE constraints.

4.1. Solution Functions Generation

DiffOAS method specifically generates a series of basis
functions either through a designated distribution that sat-
isfies actual physical contexts (typically choosing between
10 to 50, taking Nbasis as an example). This paper utilizes
existing method to generate these basis functions. These
basis functions form the foundational elements in the so-
lution space for that particular physical distribution. We
randomly weight and normalize these basis functions using
Gaussian distribution. Additionally, we introduce a noise
element ϵ that maintains the boundary conditions unaltered
(further details are provided in the Appendix B.2), resulting
in a novel solution function unew(x).

unew =

Nbasis∑
i=1

αiui + ϵ αi =
µi∑Nbasis

j=1 µj

µi ∼ N(0, 1) i = 1, 2, ..., Nbasis.

This method of weighting ensures that the newly formu-
lated solution function unew(x) complies with the boundary
conditions of the PDE, while also preserving its physical
relevance. The incorporation of noise serves to enhance
the complexity and applicability of the generated dataset.
Through this methodology, we are capable of producing a
myriad of physically meaningful solution functions at mini-
mal expense, utilizing a set of basis functions that align with
a physical distribution.

4.2. Operator Action

The operator L is a functional mapping within a Sobolev
space associated with PDEs. This mapping transforms func-
tions to functions as detailed below:

L : U → F
: u 7→ f,

(3)
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where U and F represent the Sobolev spaces for the solution
functions and the right-hand side functions of the PDE,
respectively. Here, u is a solution function in space U , and
f is the corresponding right-hand side function in space F
for the PDE problem (2) (Evans, 2022).

Specifically, as mentioned in the Preliminaries 3.1 regarding
the Helmholtz equation (1), the Sobolev function spaces are
defined as U = F = W1,2([0, 1]2) = H1([0, 1]2), where
the norm for H1([0, 1]2) is given by

∥f∥H1 =

(∫
[0,1]2

|f |2 + |∇f |2
) 1

2

. (4)

The operator corresponding to the Equation (1) is L =
∇2 + k, and Lu = (∇2 + k)u(x) represents the action of
the operator L on the solution function u(x).

In numerical computations, when applying an operator to
a function, we utilize discretization methods for PDEs as
discussed in the Preliminaries 3.1. This process essentially
projects the PDE from an infinite-dimensional Sobolev func-
tion space to a finite-dimensional linear space. It represents
the differential operator L as a linear transformation A, and
functions are expressed in vector form: solutions u as vector
x, and the right-hand side functions f as vector b. Thus, the
PDE problem is transformed into a linear equation system:

Lu = f → Ax = b. (5)

In this context, the existing method used for dataset gener-
ation translates into solving large linear equation systems
by finding x using A and b. However, in our method, the
operator action is converted into multiplying matrix A by
vector x to obtain b.

For the same problem, the computation required for a single
matrix-vector multiplication is significantly less than that
for solving the corresponding system of linear equations,
and it does not introduce additional errors from the solving
process. Therefore, our algorithm offers greater speed and
higher precision.

5. Theoretical Analysis
5.1. Computational Complexity Analysis

5.1.1. EXISTING METHOD

Solving the corresponding linear systems constitutes the
primary computational expense in numerical PDE solv-
ing (Hughes, 2012). Consequently, the computational cost
of generating data points using the existing algorithm can
be estimated by the cost of solving these linear systems.
The GMRES, an iterative algorithm based on the Krylov
subspace (Liesen & Strakos, 2013; Qin & Xu, 2023), is
commonly used for large, sparse, and nonsymmetric lin-
ear systems. Iteratively constructing the Krylov space, this

method projects the linear equation system of a large matrix
onto a smaller subspace, effectively reducing computational
complexity. The specific pseudocode is provided in Ap-
pendix A.

The most computationally intensive components are the
matrix-vector multiplication and the orthogonalization pro-
cess. Assuming that the matrix dimension is n and the
current iteration number is denoted by j = 1, 2, · · · ,m
with a total of m iterations, where m represents the final
dimension of the Krylov subspace.

The complexity of each iteration is primarily determined
by O(n2) for the matrix-vector product and O(j × n) for
the orthogonalization process. In the worst case scenario
where m approaches n, the total complexity over m iter-
ations can be approximated as O(m × n2) for the matrix-
vector products and O(m2 × n) for the orthogonalization.
The overall computational cost can be approximated by
O(m× n2 +m2 × n). Furthermore, in practical scenarios,
the computational complexity is influenced by the matrix’s
sparsity and the algorithm’s implementation specifics.

Assuming the dataset contains N data points, the compu-
tational cost of generating the dataset using the existing
method can be approximated as O(m × n2 × N +m2 ×
n×N).

5.1.2. DIFFOAS METHOD

According to the introduction in Method 4, the DiffOAS
method is divided into two steps: solution functions gener-
ation and operator action. In numerical computations, as
explained in Preliminaries 3.1, we use discretization meth-
ods to represent PDE operators as matrices and implement
operator actions by multiplying these discretized matrices
with vectors corresponding to the solution functions.

In the process of generating the solution function, we utilize
existing method to generate basis functions and construct the
solution function space based on these functions. Since the
computational cost of generating the solution function space
from the basis functions is negligible, our focus will be
solely on discussing the time complexity of generating the
basis functions. Let l denote the number of basis functions,
which is typically much smaller than the dataset size N
(with l typically chosen to be between 10 and 50). The time
complexity of this step can be expressed as O(m×n2 × l+
m2 × n× l).

The operator action step is a single matrix-vector multipli-
cation operation. The time complexity for dense matrices is
O(n2). In particular, the time complexity can be influenced
by the sparsity of the matrix. If the dataset contains N
data points, the computational cost of generating the dataset
using our method is approximately O(n2 ×N).

5



Accelerating PDE Data Generation via Differential Operator Action in Solution Space

Therefore, the overall computational complexity of our algo-
rithm can be expressed as O(n2 ×N +m×n2 × l+m2 ×
n× l). By comparing the computational complexities of the
existing method and our method, since l is a constant value
and considerably smaller than N . m is mathematically of
the same order as n (typically ranging between n/20 to n/5
in experiments). Consequently, our method theoretically
provides a speedup of approximately O(m) ≈ O(n), which
corresponds to an increase in speed by one order, where m
and n are of the same order.

5.2. Error Analysis

In constructing datasets for physical problems, errors pri-
marily arise from three sources: 1. Physical Modeling Error,
which refers to the discrepancy between the PDE and the
actual physical processes; 2. Discretization Error, which
occurs due to the chosen numerical PDE methods and grid
densities; 3. Data Generation Error, which is associated
with the errors in generating solution functions that satisfy
the grid constraints. In our analysis, we focus on the third
type of error, assuming the accuracy of the PDE and fixed
discretization methods.

Inaccuracies in solving linear systems are the main source
of error in data generation using existing algorithms. For
Krylov subspace algorithms, such as GMRES, to solve
large sparse nonsymmetric linear systems, the magnitude
of hj+1,j from the matrix Hj (generated during the Krylov
subspace iteration) serves as a termination criterion for the
iterations.

The GMRES algorithm is used to solve linear systems of the
form Ax = b by minimizing the residual norm ∥Ax− b∥.
This is achieved through the construction of a Krylov sub-
space and the utilization of the Arnoldi process to generate
an orthogonal basis for the subspace.

During the j-th iteration of the Arnoldi process, a Hessen-
berg matrix Hj and an orthogonal matrix Vj+1 are gen-
erated, satisfying the equation AVj = Vj+1Hj . In this
context, Vj contains the basis vectors of the Krylov sub-
space, and the augmented Hessenberg matrix Hj includes
an additional row hj+1,j .

The residual of the j-th iteration’s approximate solution
xj , denoted as rj = b − Axj , can be expressed as rj =
Vj+1(βe1 −Hj ỹ). Here, β = ∥r0∥ represents the norm
of the initial residual, and e1 denotes the first unit vector in
the standard basis of the corresponding space. The vector
ỹ an augmented version of y, is obtained by appending an
additional zero element to the solution vector y, which is
determined by the central minimization problem in GMRES.

The norm of the residual ∥rj∥ can be expressed as ∥rj∥ =
∥βe1 − Hj ỹ∥. By applying the triangle inequality, an

estimation can be derived

∥rj∥ ≤ ∥βe1 −Hjy∥+ ∥hj+1,jyjej+1∥. (6)

Given that ∥βe1 −Hjy∥ is minimized through the iterative
process, the major component of the residual arises from
∥hj+1,jyjej+1∥, which aids in the approximation

∥rj∥ ≤ |hj+1,j |∥yj∥. (7)

The magnitude of hj+1,j in GMRES algorithm serves as
an indicator for estimating the upper bound of the error in
rj . A smaller value of hj+1,j typically indicates a reduced
residual, suggesting a close approximation of xj to the
actual solution.

The computational cost of solving linear systems is directly
influenced by the predefined error. We utilize the upper
bound equation for error, Equation (7) to establish a require-
ment for the magnitude of hj+1,j , continuing iterations
when it is substantial and terminating them if it falls below
a threshold. The precision requirement for the dataset varies
depending on the inherent accuracy of the data-driven algo-
rithm. For example, in algorithms like FNO, where the final
error typically ranges from 10−2 to 10−4, the relative error
in the data should ideally be around 10−7 to 10−10 or lower
to maintain the significance of training process.

In our method, the operator is actioned to the generated so-
lution functions, essentially performing matrix-vector multi-
plication. The precision of this operation is governed by the
machine epsilon of floating-point arithmetic in computers,
typically, the error is around 10−16 to 10−17, or even lower.
Achieving this high level of precision is nearly impossible
with existing method.

To demonstrate how larger data errors can impact model
training, we conducted additional experiments detailed in
Appendix C.2, where we trained models using datasets with
varying error levels.

6. Experiment
In this chapter, we compare our proposed data gen-
eration method with existing data generation meth-
ods. Our code is available at https://github.com/
hs-dong/DiffOAS.

6.1. Experimental Setup

Our analysis examines three main performance indicators,
which are crucial for evaluating the effectiveness of data
generation methods:

• Accuracy of the data.

• Time cost of generating data.
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• Errors obtained from training on neural operator mod-
els.

In our experiments, we focus on testing two widely rec-
ognized and widely used neural operator models, which
are the most prominent and common models in data-driven
algorithms for PDE:

• FNO (Fourier Neural Operator) (Li et al., 2020)

• DeepONet (Deep Operator Network) (Lu et al., 2019)

We tested three different types of PDE problems that have
important applications in science and engineering ( detailed
descriptions are listed in the Appendix B:

• Darcy Flow Problem (Li et al., 2020)

• Scalar Wave Equation in Electromagnetism (Zhang
et al., 2022)

• Solute Diffusion in Porous Media (Mauri, 1991)

Baselines. The main time expense of existing data gen-
eration methods is solving a system of linear equations
composed of large sparse nonsymmetric matrices (Hughes,
2012). We use an existing data generation method based
on the GMRES algorithm as the solution and baseline for
our study, utilizing scipy 1.11.4 (Virtanen et al., 2020). For
detailed GMRES algorithmic information, please refer to
Appendix A.

For constructing the FNO and DeepONet models, we em-
ployed 100 instances of test data generated using GM-
RES methods, The detailed settings are presented in Ap-
pendix B.1. The data generation process was performed on
Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz, while the
model training took place on a GeForce RTX 3090 GPU
with 24GB of memory.

6.2. Training Result

The main experimental results for all datasets and models
are shown in Table 1. More details and hyperparameters can
be found in Appendix B. Based on these results, we have
the following observations.

Firstly, DiffOAS method consistently demonstrates remark-
able acceleration compared to GMRES methods across
datasets of all sizes, particularly in the case of Darcy Flow
where the acceleration ratio can reach approximately 30
times. Furthermore, the time required for DiffOAS to gener-
ate different numbers of training instances remains relatively
constant. The time required for our method to generate data
can be divided into two parts: generating basis functions
and applying operators. The time to generate basis functions

depends on the number of basis functions and is indepen-
dent of the number of training instances generated. The time
to apply operators is directly proportional to the number of
training instances generated. Therefore, the experimental
results indicate that the generation of basis functions con-
stitutes the main portion of the data generation time for our
method. This implies that the DiffOAS method can generate
a large amount of training data at a low cost, demonstrating
the efficiency of our approach.

Secondly, in different PDE problems and with different neu-
ral operators, the dataset generated by DiffOAS method
exhibits better performance compared to GMRES methods
on DeepONet. By increasing the training set size, the error
can reach the same order of magnitude on FNO. This indi-
cates that our method, while accelerating data generation by
30 times, can achieve comparable performance to the data
generated by existing method. Regarding the phenomenon
of slightly higher errors in some problems compared to exist-
ing method, it could be attributed to the fact that the test set
is obtained through numerical solutions of linear equations,
which inherently have larger errors. In contrast, our method
generates datasets with machine precision. Therefore, the
larger errors in the predictions of models trained on our
datasets on the test set could be attributed to errors in the
test set itself and discrepancies between the test set and the
exact solution.

To further illustrate the reasonableness of our method, we
provide more detailed experiments in Appendix C.

6.3. Data Generation Time And Accuracy

The high generation speed and accuracy are the main ad-
vantages of our method. We tested the data generation time
for generating 10,000 data points at different accuracies in
seconds. The results are shown in Table 2. Further experi-
mental details can be found in Appendix B.3.

The experimental results show that compared to the GM-
RES method, the DiffOAS method achieves a speedup of
approximately 300 times in terms of the total time, while
the time for operator actions can be accelerated by up to
approximately 70, 000 times for a matrix size of 62, 500.
Since the generation of basis functions in our method does
not depend on the training data size, as we generate suf-
ficiently large data, the speedup ratio will approach the
acceleration ratio of the operator action part, as predicted by
the theoretical analysis in Section 5.1. In other words, the
DiffOAS method reduces the time for generating the dataset
by one order, significantly enhancing the efficiency of data
generation.

In the process of solving linear systems using the GMRES
algorithm, as the accuracy requirement increases, the so-
lution time significantly increases. When the accuracy of
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Table 1. Compare the data generation time and training results on different models between our DiffOAS method and GMRES methods.
The first column lists the method used to generate the dataset and the number of training instances. The first row represents the
corresponding PDE problem and the corresponding length of the matrix sides. Bolding indicates that our algorithm outperforms existing
method.

DATASET
DARCY FLOW 10000 WAVE 22500 DIFFUSION 62500

TIME(s) FNO DEEPONET TIME(s) FNO DEEPONET TIME(s) FNO DEEPONET

GMRES 1000 2.99E2 4.56E-3 6.82E-2 3.27E3 4.05E-4 6.12E-2 1.99E4 4.29E-3 7.70E-2

DIFFOAS 1000 8.97E0 2.15E-2 6.82E-2 1.60E2 1.71E-3 4.57E-2 5.99E2 1.76E-2 6.40E-2

DIFFOAS 5000 9.20E0 6.86E-3 5.58E-2 1.60E2 7.25E-4 4.74E-2 6.01E2 5.66E-3 5.80E-2

DIFFOAS 10000 9.49E0 4.26E-3 5.62E-2 1.60E2 6.52E-4 4.72E-2 6.03E2 4.79E-3 6.04E-2

Table 2. Compare the data generation time of our DiffOAS algo-
rithm and GMRES with various accuracies, where the error of the
DiffOAS algorithm is the machine precision 1E − 16. ’TIME1’
and ’TIME2’ represent the total time and operator action time for
data generation, respectively. The remaining parameters in the
second row indicate the errors of the GMRES algorithm. ’SIZE’
indicates the matrix size of the PDE problem.

SIZE
DIFFOAS GMRES

TIME1 TIME2 1E-1 1E-3 1E-5 1E-7

2500 9.732E-1 2.687E-1 4.530E1 1.394E2 2.349E2 3.265E2
10000 9.582E0 5.931E-1 5.750E2 1.790E3 2.996E3 4.350E3
16900 8.192E1 8.066E-1 5.933E3 1.771E4 2.704E4 4.066E4
22500 1.236E2 1.004E0 7.994E3 2.305E4 4.086E4 5.251E4
32400 1.983E2 1.462E0 1.466E4 4.216E4 6.561E4 9.384E4
40000 3.051E2 1.943E0 2.371E4 5.739E4 1.010E5 1.285E5
62500 5.971E2 3.815E0 4.052E4 1.186E5 1.977E5 2.722E5

the GMRES algorithm is improved from 1E− 5 to 1E−7,
the time increases by approximately 50%. In contrast, our
DiffOAS method achieves a precision of 1E−16. This indi-
cates that improving the accuracy of the GMRES algorithm
comes with expensive computational costs, while our algo-
rithm guarantees data accuracy at machine precision through
operator actions. Therefore, the data generated by the Dif-
fOAS algorithm has much higher precision compared to the
data generated by existing method.

We analyzed the relationship between acceleration ratio and
matrix size in Table 3. By performing linear regression
in the least squares sense on the largest five matrix sizes,
we found that Pearson’s r reached 0.927 on the GMRES
algorithm with an accuracy of 1E− 7. This indicates that
the partial acceleration ratio due to the operator action in
our algorithm is of the same order as N, implying a one
order acceleration in our algorithm, consistent with the time
Computational Complexity Analysis 5.1.

Our method tackles a common scenario: solving systems of
linear equations involving large, sparse, non-symmetric ma-
trices. The GMRES algorithm is the mainstream approach

Table 3. For each precision of the GMRES algorithm, a linear
regression is performed on the ratio of the matrix size and the
acceleration achieved by the DiffOAS method operator. The slope
represents the slope of the fitted line, and Pearson’s r is the Pearson
correlation coefficient, where a value closer to 1 indicates a more
reliable fit.

ACCURACY SLOPE PEARSON R

1E-1 0.079 0.715
1E-3 0.206 0.890
1E-5 0.380 0.867
1E-7 0.473 0.927

Table 4. Experimental results comparing datasets generated using
different basis functions.

BASIS FNO DEEPONET

DIFFOAS 4.260% 5.629%
GRF 31.44% 88.08%
FOURIER 93.56% 96.98%
CHEBYSHEV 63.11% 68.23%

for addressing such problems. However, for certain types
of equations, specifically when the system is symmetric
positive definite, numerical algorithms like MINRES and
Conjugate Gradient should also be considered for baseline
comparisons. Consequently, we have included comparative
experiments with these baselines in Appendix C.1.

6.4. Ablation Result

Finally, we conducted an ablation study to demonstrate
the significant impact of the solution function generation
method in our DiffOAS method on the quality of the dataset.
In Table 4, we tested datasets generated using GRF, Fourier
basis, and truncated Chebyshev functions as the basis func-
tions. For specific details about the design of the basis
functions, please refer to Appendix B.4.
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Experimental results show that the training results of the
data sets corresponding to the solution functions generated
by other methods are quite poor on the FNO and DeepONet
models. Even the best training results on FNO and Deep-
ONet have errors of more than 30% and 60%, respectively.
This shows that these data sets have little training value.
Therefore, the solution function introduced in the DiffOAS
method that conforms to the real physical distribution is
necessary as a basis function and is crucial to ensuring the
generation of high-quality datasets that can make accurate
predictions.

7. Limitation and Conclusions
Limitation While our approach has shown promise in
speeding up PDE dataset generation, there are areas for fur-
ther exploration: 1. Our accelerated algorithm is designed
for general PDE problems with asymmetric coefficient ma-
trices, but it doesn’t specifically target particular types of
PDE problems. 2. While generating basis functions, we can
enhance dataset quality by choosing specific functions from
the generated set using optimization techniques.

Conclusions In this article, we introduce the DiffOAS algo-
rithm. To our knowledge, this is the first PDE dataset gener-
ation method that does not require solving linear equations.
Specifically, the algorithm consists of two parts: solution
function generation and operator action. By generating so-
lution functions using basis functions, we ensure that the
generated data conforms to physical distributions. The op-
erator action significantly accelerates the data generation
process while maintaining mechanical precision in our gen-
erated data. The DiffOAS method ensures both speed and
accuracy, alleviating a significant obstacle to the develop-
ment of neural networks.
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A. Specific pseudocode of GMRES
The following computational procedure is adapted from (Golub & Van Loan, 2013)

Algorithm 1 Generalized Minimal Residual Method (GMRES)
Input: A ∈ Rn×n, b ∈ Rn,x0 is the initial vector, tolerance ϵ > 0, maximum iterations m
Output: Approximate solution x

1: r0 = b−Ax0

2: β = ∥r0∥2
3: v1 = r0/β
4: for j = 1 to m do
5: wj = Avj

6: for i = 1 to j do
7: hi,j = (wj ,vi)
8: wj = wj − hi,jvi

9: end for
10: hj+1,j = ∥wj∥2
11: if hj+1,j = 0 then
12: break
13: end if
14: vj+1 = wj/hj+1,j

15: Form or update the Hessenberg matrix Hj

16: Solve the least squares problem: miny∈Rj ∥βe1 −Hjy∥2
17: Update the solution: xj = x0 + Vjy
18: if ∥rj∥2 < ϵ then
19: break
20: end if
21: end for
22: x = xj

B. Specific Experimental Details
B.1. Model set

FNO: We employ 4 FNO layers with learning rate 0.001, batch size 20, epochs 500, modes 12, and width 32.

DeepONet: We utilize branch layers: [50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50] and trunk layers: [50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50], with the activation function set to tanh. The learning rate is 0.001, batch size is 20, and the training
process is performed for 500 epochs.

B.2. Data

B.2.1. DARCY FLOW

In this research, we delve into two-dimensional Darcy flows, which are governed by the equation (Li et al., 2020; Rahman
et al., 2022; Kovachki et al., 2021; Lu et al., 2022):

−∇ · (K(x, y)∇h(x, y)) = f(x, y), (8)

where K represents the permeability of the medium, h denotes the hydraulic pressure, and f is a source term that varies,
being either a constant or a function dependent on spatial variables.

For our experimental setup, the permeability field K(x, y) and the source term f(x, y) are generated by the Gaussian
Random Field (GRF) methodology, with a time constant τ = 7 and a decay exponent α = 2.5.

In DiffOAS method, In the DiffOAS method, we use 30 solution functions obtained by solving as basis functions.

12



Accelerating PDE Data Generation via Differential Operator Action in Solution Space

B.2.2. SCALAR WAVE EQUATION IN ELECTROMAGNETISM

In this research, we delve into a two-dimensional Helmholtz equation in electromagnetism, expressed as (Zhang et al.,
2022):

∆Φ(x, y) + k2(x, y)Φ(x, y) = S(x, y), (9)

where Φ(x, y) is the electromagnetic scalar potential and k(x, y) the spatially varying wavenumber. S(x, y) is the source
term representing electromagnetic wave origins.

This equation is fundamental in modeling electromagnetic wave propagation and interaction in various media. For our
experimental setup, k2(x, y) and the source term S(x, y) are generated by the Gaussian Random Field (GRF) methodology,
specifically as GRF (τ = 3, α = 2)/10.

In DiffOAS method, In the DiffOAS method, we use 50 solution functions obtained by solving as basis functions.

B.2.3. SOLUTE DIFFUSION IN POROUS MEDIA

We investigate the process of solute diffusion in a two-dimensional porous medium, described by the following equa-
tion (Perkins & Johnston, 1963; Mauri, 1991):

∇ · (k(x, y)∇C(x, y)) + q(x, y)C(x, y) = f(x, y), (10)

where C(x, y) symbolizes the solute concentration, k(x, y) signifies the diffusion coefficient varying spatially, and
q(x, y)C(x, y) represents the influence of internal or external sources/sinks. The function f(x, y) acts as an additional
source or sink, pinpointing regions of solute addition or removal.

This equation is key for modeling solute movement in heterogeneous porous media. For our experimental setup, the diffusion
coefficient k(x, y) is generated by 10∗GRF (τ = 3, α = 2), f(x, y) is generated by GRF (τ = 3, α = 2) and the influence
of internal or external sources/sinks q(x, y) is generated by uniform distribution U [0, 1].

In DiffOAS method, In the DiffOAS method, we use 50 solution functions obtained by solving as basis functions.

B.2.4. NOISE

We multiply the GRF function by a matrix that decays towards the edges, and then multiply it by a parameter related to the
norm of the solution function to generate noise.

B.3. Time test

In this experiment, we compare the time required to generate 10,000 data points for Darcy flow problems. The parameters
used for dataset generation are consistent with Appendix B.2. The basis functions for the DiffOAS method are generated
using the GMRES algorithm with an accuracy of 1E− 5, resulting in a total of 30 basis functions.

B.4. Ablation

In the ablation experiment, we consider the training results of 10,000 training instances generated using several different
basis functions on the Darcy flow problem. The basis functions are:

• GRF: The function generated by the GRF (τ = 7, α = 2.5) using 30 solution functions as basis functions.

• Fourier: The function generated by periodic sine wave function on the two-dimensional plane using 100 solution
functions as basis functions.

• Chebyshev: The function generated by truncated Chebyshev function using 100 solution functions as basis functions.

C. Additional Experiments
C.1. Time comparison Experiments

We conducted comparative experiments involving the SKR algorithm, MINRES, and Conjugate Gradient algorithms (Wang
et al., 2024; Paige & Saunders, 1975; Hestenes et al., 1952). MINRES and Conjugate Gradient algorithms are often applied
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to specific matrix types; for instance, the Conjugate Gradient method is tailored for symmetric positive-definite matrices. To
maintain consistency in presenting results, we focused on scenarios involving symmetric positive-definite matrices:

Table 5. Considering the Darcy flow problem, appropriate boundary conditions are selected to ensure that the corresponding linear
equation system is symmetric positive-definite. Each corresponding matrix has a size of 62500, and the table records the time taken by
different algorithms to generate 1000 training data sets. The DiffOAS method’s time denotes the duration for generating training data after
obtaining basis functions.

METHOD TIME(S)
DIFFOAS 3.893E-1

SKR 1.283E3
GMRES 1.974E4
MINRES 1.149E2

CONJUGATE GRADIENT 1.426E3

The experimental results show that the DiffOAS algorithm significantly outperforms other numerical algorithms in terms of
computational time required for data generation. MINRES and Conjugate Gradient, optimized for specific matrix types,
are faster than GMRES. Due to the large condition number of the matrices corresponding to the equations, MINRES
demonstrates faster speeds than Conjugate Gradient. The SKR algorithm surpasses GMRES by optimizing the solution for
multiple related linear equation systems. However, since it’s not optimized for the symmetry of matrices, its speed still
lags behind MINRES. Even though our method is not tailored for specific matrix types, it still generates data faster than
numerically optimized algorithms (MINRES and Conjugate Gradient) designed for specific matrix types.

It is worth noting that our method can also be combined with the SKR algorithm or other numerical algorithms. Our method
mainly consists of two parts: basis function generation and training data generation after obtaining the basis functions.
Through the following experiments, it can be observed that the time cost of generating data with the DiffOAS algorithm
after obtaining basis functions is much lower than that of all existing methods, including the SKR algorithm. Therefore,
the basis function generation becomes the primary time cost of DiffOAS. The SKR algorithm significantly improves the
efficiency of generating basis functions. Due to the SKR algorithm’s ability to significantly enhance the efficiency of basis
function generation, its integration also leads to notable performance improvement in our method.

C.2. Error Experiments

We evaluated models trained with datasets of varying accuracies generated by the GMRES algorithm to demonstrate the
impact of low-precision data on model training.

The experimental results indicate that when there are significant data accuracy errors, the errors noticeably impact the
performance of the model. This suggests that obtaining high-accuracy data has a significant impact on the quality of the
dataset.

Table 6. For the Darcy flow problem with a matrix dimension of 10,000, FNO was used as the testing model. The training outcomes of
models trained on datasets generated by the GMRES algorithm, featuring truncation errors of 10−1, 10−2, and 10−5, were evaluated.

TRAIN NUMBER TOL=1E-1 TOL=1E-2 TOL=1E-5
100 1.25E-1 4.54E-2 4.41E-2
500 1.20E-1 1.14E-2 6.87E-3

1000 1.20E-1 1.04E-2 4.56E-3
5000 1.20E-1 9.60E-3 1.69E-3

10000 1.20E-1 9.43E-3 1.15E-3
20000 1.20E-1 9.85E-3 1.01E-3
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C.3. Saturated Data

To demonstrate that our method achieves better training performance and faster generation speed compared to existing
methods when the data volume reaches saturation, we use the DeepONet model as an example and consider the Darcy
flow problem, where each corresponding matrix has a size of 10000. We use DeepONet as the testing model, with model
parameters consistent with those in Appendix B.1.

Table 7. The first column lists the method used to generate the dataset and the number of training instances.
TIME ERROR

GMRES 500 1.50E2 7.85E-2
GMRES 1000 2.99E2 6.82E-2
GMRES 5000 1.47E3 7.08E-2

GMRES 10000 3.01E3 6.94E-2
DIFFOAS 500 8.94E0 8.62E-2

DIFFOAS 1000 8.97E0 6.82E-2
DIFFOAS 5000 9.20E0 5.58E-2

DIFFOAS 10000 9.49E0 5.62E-2

The experimental results indicate that for this problem, the upper bound ’h’ for the dataset size in our DiffOAS method does
not exceed 10000, while for the existing methods using GMRES, the upper bound ’h’ for the dataset size is around 1000. At
this point, we observe that the training performance of the datasets generated by our method surpasses that of the existing
methods, and the time required to generate the datasets using our method is significantly lower than that of the existing
methods.

C.4. Additional Experiments on FNO

To demonstrate that our method does not compromise the performance of the FNO model, we have supplemented the
results of the Solute Diffusion in Porous Media (Diffusion) problem on the FNO model, along with the corresponding data
generation time:

Table 8. The first column lists the method used to generate the dataset and the number of training instances.
DIFFUSION 62500 TIME FNO

GMRES 1000 1.99E4 4.29E-3
DIFFOAS 1000 5.99E2 1.76E-2
DIFFOAS 5000 6.01E2 5.66E-3

DIFFOAS 10000 6.03E2 4.79E-3
DIFFOAS 15000 6.05E2 3.47E-3
DIFFOAS 20000 6.07E2 3.39E-3

The experimental results indicate that increasing the dataset size generated by our method leads to better performance
compared to datasets generated by existing methods. Despite the larger volume of data we generated, the time required for
data generation using our method remains significantly lower than that of existing methods.

C.5. Training Time

We have provided additional information on the training time, dataset generation speed, and training results for the Solute
Diffusion in Porous Media (Diffusion) on the FNO model to demonstrate that our method accelerates the entire process of
training neural operators.

The experimental results show that the total time for data generation and model training on the DiffOAS 20000 dataset is
still lower than the data generation time for GMRES 1000. Additionally, we observed that by the 300th epoch of training on
DiffOAS 20000, the model’s error reaches 4.00E-3, which outperforms the results obtained by training GMRES for 500
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Table 9. Each model was trained for 500 epochs. Additionally, we have provided the training result on the DiffOAS 20000 dataset for 300
epochs in the last row.

DIFFUSION 62500 GENERATE TIME (S) TRAINING TIME(S) FNO
GMRES 1000 1.99E4 7.42E2 4.29E-3

DIFFOAS 15000 6.05E2 1.08E4 3.47E-3
DIFFOAS 20000 6.07E2 1.45E4 3.39E-3

DIFFOAS 20000(300 EPOCH) 6.07E2 8.73E3 4.00E-3

epochs. At this point, the training time for the model is only 8.73E3 seconds. This indicates that our method effectively
improves the efficiency of the entire model training process.

C.6. Relative Residual

To illustrate that the error in the generated data has a minor impact on the training results of the model, we compared the
error in our generated data with the error obtained from training the neural network.

Error in the neural network: From the experimental results in Section 6.2, it is observed that the error obtained by the
trained neural network does not fall below10−4. The error is measured using the mean squared error (MSE) loss, defined
as Loss = ||xNO−xtest||

||xtest|| , where xNO is the result obtained by the neural network and xtest is the result obtained by the
GMRES algorithm.

Error in GMRES: In the experiments, the error used in the data generated by the GMRES algorithm is 10−5, measured
using the relative residual, defined as error = ||Axtest−b||

||xtest|| , where xtest is the result obtained by the GMRES algorithm.

Considering the difficulty in obtaining analytical solutions, when comparing the errors of the neural network and the GMRES
algorithm, we consider their relative residuals. We conducted experiments to retest the relative residuals of the results
obtained by the neural network and the corresponding matrix norms:

Table 10. The truncation error of GMRES and the relative residuals of the model training results for the Darcy flow problem, Scalar Wave
Equation in Electromagnetism, and Solute Diffusion in Porous Media.

RELATIVE RESIDUAL

GMRES <1.00E-5
DARCY FLOW 10000 5.08E0
WAVE 22500 7.31E0
DIFFUSION 62500 5.75E0

The experiments demonstrate that the relative residual of the neural network in this paper is significantly higher than the
relative residual obtained by the GMRES algorithm. Therefore, the error generated by GMRES algorithm in our experiment
has a minor impact on model training.

C.7. Basis Function

To show that our method can cover distribution biases by generating a large volume of data, we compared the minimum
distance between each R.H.S. function in the test set and all R.H.S. functions in the training set for the Darcy flow problem.
Denote the test dataset matrix as A and the training dataset matrix as B, with the distance calculated as ||A−B||1/||A||1.
The table records the average of all minimum distances for R.H.S. functions in the test set. We compare the datasets from
Section 6.2, and several datasets with different basis functions from the ablation experiments in Section 6.4. ”GMRES 1000”
represents the dataset from existing methods, adhering to the real R.H.S. distribution.

The experimental results indicate that compared to datasets generated by other basis functions, our method produces training
datasets with R.H.S. functions that closely resemble those in the test set. Moreover, increasing the volume of data reduces
this distance, indicating that the basis functions employed by our method align well with the physical meaning. The
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Table 11. The first column represents the datasets, and the second column shows the average of all minimum distances corresponding to
the R.H.S. functions

DATASET DARCY FLOW

GMRES 1000 1.12E-1
DIFFOAS 1000 3.20E-1
DIFFOAS 5000 2.95E-1
DIFFOAS 10000 2.90E-1
GRF 2.91E2
FOURIER 1.95E3
CHEBYSHEV 2.02E2

comparable results achieved by our method and datasets obtained by existing methods suggest that our method can cover the
R.H.S. distribution of the test set through the generation of large datasets.
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