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Abstract

Fine-grained Visual Recognition (FGVR) involves distinguishing between visually similar
categories, which is inherently challenging due to subtle inter-class differences and the
need for large, expert-annotated datasets. In domains like medical imaging, such curated
datasets are unavailable due to issues like privacy concerns and high annotation costs. In
such scenarios lacking labeled data, an FGVR model cannot rely on a predefined set of
training labels, and hence has an unconstrained output space for predictions. We refer to
this task as Vocabulary-Free FGVR (VF-FGVR), where a model must predict labels from
an unconstrained output space without prior label information. While recent Multimodal
Large Language Models (MLLMs) show potential for VF-FGVR, querying these models
for each test input is impractical because of high costs and prohibitive inference times. To
address these limitations, we introduce Nearest-Neighbor Label Refinement (NeaR), a novel
approach that fine-tunes a downstream CLIP model using labels generated by an MLLM.
Our approach constructs a weakly supervised dataset from a small, unlabeled training set,
leveraging MLLMs for label generation. NeaR is designed to handle the noise, stochasticity,
and open-endedness inherent in labels generated by MLLMs, and establishes a new benchmark
for efficient VF-FGVR.

1 Introduction

Method Training Inference Cost ($) cACC
Time Time

FineR (Liu et al., 2024a) 10 h 1.12 h 0 57.0
† GPT-4o - 17.5 h ∼ 100 59.2
ZS-CLIP + GPT-4o - 0.03 h 1 54.6
NeaR + GPT-4o (Ours) 1.57 h 0.03 h 1 67.6
‡ LLaMA - 9.12 h 0 48.4
ZS-CLIP + LLaMA - 0.03 h 0 60.5
NeaR + LLaMA (Ours) 1.57 h 0.03 h 0 65.0

Table 1: Performance and cost metrics for different
methods on benchmark FGVR datasets (computed
over 32, 503 images from the test sets). † =
proprietary models, ‡ = open-source models (both
used only for inference). Our method NeaR
achieves a clustering accuracy (cACC described in
§ 4) that exceeds even direct MLLM queries, at a
fraction of cost and time taken.

Fine-Grained Visual Recognition (FGVR) is a task in
computer vision that focuses on distinguishing between
highly similar categories within a broader class (Wei
et al., 2021). This task has gained increased importance
in recent years given the success of foundation models
on coarse-grained classification tasks. Traditional image
classification aims to differentiate between dogs, cats,
and birds, while FGVR aims to distinguish between dif-
ferent subcategories, such as Tennessee Warbler, Yellow-
rumped Warbler and Orange-crowned Warbler among
birds as an example. Fine-grained understanding is
essential for a wide range of applications, including bio-
diversity studies (Liu et al., 2024b; Yang et al., 2020),
medical diagnosis (Ridzuan et al., 2022; Sohoni et al.,
2020), manufacturing (Yang et al., 2022), fashion re-
tail (Cheng et al., 2021), and agriculture (Yang et al.,
2020).

FGVR poses significant challenges due to the subtle differences between categories and the need for large
annotated datasets. Typically, fine-grained classification datasets are annotated by domain experts who
meticulously examine each image and assign a corresponding label. However, when such domain experts
are unavailable, not only is labeled data unavailable, but the underlying fine-grained categories of interest
may also be unknown. We refer to this task as Vocabulary-Free FGVR (VF-FGVR), where the vocabulary
of fine-grained labels is not provided. In this context, pre-trained Multimodal Large Language Models
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(MLLMs), which are trained on vast corpora of image-text data and possess extensive world knowledge,
provide a contemporary solution (Reid et al., 2024). MLLMs excel at zero-shot multimodal tasks such as
Visual Question Answering (VQA). By recasting FGVR as a VQA problem, where we ask the question ‘What
is the best fine-grained class label for this image?’, MLLMs can predict fine-grained labels in a
zero-shot manner without prior training on a specific dataset. The ability of MLLMs to operate in a VF
setting presents a promising approach for domains where curated, labeled datasets are scarce or unavailable.
However, querying such large models for each test input is computationally expensive and time-consuming,
making their usage impractical at scale. As shown in Table 1, performing inference with GPT-4o (Achiam
et al., 2023) on 32, 203 test images from benchmark FGVR datasets takes ≈ 17.5 hours of querying and
incurs a cost of ≈ USD $100.

Hence, especially considering the need for sustainable AI systems, there is an imminent need for an efficient
VF-FGVR system that performs on par with MLLMs on the fine-grained understanding task, while being
efficient in terms of time and computational resources required. We focus on this problem in this work. To this
end, we only consider access to a small unlabeled set of training images belonging to the classes of interest,
with no information regarding the individual class names or even the total number of classes. Such unlabeled
datasets are relatively easy to obtain for many domains – for instance, a collection of unlabeled photos of
exotic birds. We empirically show in § 4 that having about 3 images per class is sufficient to learn an FGVR
system that can perform inference for any number of test samples in the considered experiments. To solve
this VF-FGVR task, we propose to label this training set by querying an MLLM for each image. Such a
noisily labeled training set can be used in different ways – a simple strategy would be to utilize this MLLM
supervision to build a zero-shot classifier over the set of generated labels using a pre-trained CLIP (Radford
et al., 2021) model. Another way would be to naively fine-tune the CLIP model using the generated labels. In
both these approaches, test images can now be classified by the CLIP model without the need for expensive
forward passes through an MLLM. Although such simple methods are efficient in compute and time taken,
they fall short on performance as shown in § 4. This is because MLLM outputs are inherently noisy and
open-ended, so the generated labels do not necessarily provide strong supervision.

To address these limitations, we propose Nearest-Neighbor Label Refinement (NeaR), a method designed
to learn using the noisy labels generated by an MLLM. Our approach first constructs a candidate label set
for each image using the generated labels of other similar images. In line with prior work on learning with
noisy labels (LNL) (Li et al., 2020), we partition the dataset into clean and noisy samples. We then design a
label refinement scheme for both partitions that can effectively combine information from the constructed
candidate set and the generated label. Finally, to address the open-ended nature of MLLM outputs, we
incorporate a label filtering mechanism to truncate the label space. Our method NeaR thus enables us to
handle the inherently noisy and open-ended labels generated by MLLMs, allowing us to effectively fine-tune a
downstream CLIP model. As shown in Table 1, for GPT-4o, our approach can achieve performance exceeding
that of direct inference while incurring only 1/100th of the total inference cost, and requiring a negligible
fraction of inference time.

Our key contributions can be summarized as: (i) Differing from existing works, we study how contemporary
models To the best of our knowledge, this is the first work that uses state-of-the-art MLLMs can be used
to build a cost-efficient vocabulary-free fine-grained visual recognition system, (ii) We propose a pipeline
that can handle noisy and open-ended labels generated by an MLLM. Our proposed method NeaR leverages
similarity information to construct a candidate label set for each image which is used to mitigate the impact
of label noise. We also design a label filtering mechanism to improve classification performance. (iii)
We perform a comprehensive set of experiments showing that NeaR outperforms existing works and the
MLLM-based baselines we introduce for VF-FGVR (detailed in the baselines paragraph of § 4), achieving
this in a cost-efficient way.

2 Related Work

Fine-Grained Visual Recognition. FGVR (Wah et al., 2011; Maji et al., 2013) aims to identify sub
categories of an object, such as various bird species, aircraft type etc. FGVR has been extensively studied in
prior work (Wei et al., 2021). A key limitation of these methods is their reliance on annotated datasets, which
are often unavailable in many important domains like e-commerce and medical data. With advancements in
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Vision-Language Models and MLLMs, the burden of dataset annotation can be alleviated, reducing the need
for extensive human effort.

Foundation Models for VF-FGVR. Recent advancements in MLLMs have led to models demonstrating
strong zero-shot performance across a wide range of multimodal tasks (Li et al., 2023; Achiam et al., 2023;
Reid et al., 2024; Touvron et al., 2023; Liu et al., 2023). These MLLMs can be applied to VF-FGVR by
framing the task as a VQA problem. MLLMs are broadly categorized into two types: (1) Proprietary models,
such as GPT-4o (Achiam et al., 2023) and GeminiPro (Reid et al., 2024), and (2) Open-source models,
including BLIP-v2 (Li et al., 2023), LLaVA-1.5-7B (Liu et al., 2023), LLaMA-3.2-11B (Touvron et al., 2023)
and Qwen2-7B (Wang et al., 2024). Recent works (He et al., 2025; Zhang et al., 2024) examine the zero-shot
fine-grained performance of such MLLMs in the closed-world setting and show that finetuning can help.
Such approaches are not applicable in the VF-FGVR setup where labeled data as well as the label space, is
unavailable. As shown in Table 1, for both types of MLLMs, performing inference for every test point remains
computationally expensive and time-consuming. To address this, recent works have developed more efficient
solutions for VF-FGVR. For instance, (Liu et al., 2024a;c; Conti et al., 2023) propose pipelines that use
cascades of MLLMs. FineR (Liu et al., 2024a) presents a pipeline combining VQA systems, Large Language
Models (LLMs), and a downstream CLIP model, leveraging unsupervised data to build a multimodal classifier
for inference. RAR (Liu et al., 2024c) uses a multimodal retriever with external memory, retrieving and
ranking top-k samples using an LLM. RAC Long et al. (2022) uses retrieval to refine features via a learned
transformer using a labeled memory bank, operating under full supervision. In contrast with RAC, NeaR is
lightweight, backbone-agnostic, and avoids complex memory-based architectures. Furthermore both RAR
and RAC operate under full supervision, making them unsuitable for the VF-FGVR task. CaSED (Conti
et al., 2023) approaches VF-FGVR by accessing an external database to retrieve relevant text for a given
image. Nevertheless, these methods are often complex and do not fully exploit the advancements in MLLMs,
resulting in suboptimal performance. In Appendix§ A8.10 we also compare against pseudo-labeling based
methods DualCoOp Sun et al. (2022) and VLPL Xing et al. (2023).

Prompt Tuning. Prompt-tuning methods add a small number of learnable tokens to the input while
keeping the pretrained parameters unchanged. The tokens are fine-tuned to enhance the performance of
large pre-trained models on specific tasks. Context Optimization (CoOp) (Zhou et al., 2021) was the first to
introduce text-based prompt tuning, replacing manually designed prompts like "a photo of a" with adaptive
soft prompts. We study the impact of our method under other prompt-tuning methods such as VPT (Jia
et al., 2022) and IVLP (Rasheed et al., 2022) in Appendix§ A8.8.

Learning with Noisy Labels. (Arpit et al., 2017) demonstrated the memorization effect of deep networks,
showing that models tend to learn clean patterns before fitting noisy labels. To mitigate this, (Han et al., 2018;
Chen et al., 2019) introduce iterative learning methods to filter out noisy samples during training. (Arazo
et al., 2019) proposed a mixture model-based approach to partition datasets into clean and noisy subsets,
leading to more reliable training. Building on these insights, DivideMix (Li et al., 2020), a state-of-the-art
LNL method, combines semi-supervised learning with data partitioning to achieve superior performance on
noisy datasets. JoAPR (Guo & Gu, 2024) is a contemporary approach to fine-tune CLIP on noisy few-shot
data. We compare against JoAPR in Tab 4.

3 Methodology

As shown in Table 1, although MLLMs are capable of performing VF-FGVR, labeling every test image is
expensive and time consuming which limits their practical application. To address these limitations, we
propose Nearest-Neighbor Label Refinement (NeaR), a method designed to leverage MLLMs efficiently for
VF-FGVR. Our approach begins by constructing a candidate label set for each unlabeled training image as
described in § 3.2. Next we partition the data into ‘clean’ and ‘noisy’ samples using a Gaussian Mixture
Model (GMM) and the small-loss rule (Arpit et al., 2017). In § 3.3, we show how to refine labels of noisy
samples by incorporating information from the candidate sets. The final loss function is a simple cross-entropy
loss, where the refined labels serve as the targets. As outlined in § 3.1, using MLLM outputs directly can
result in an excessively large label space, which can hinder performance. To address this, NeaR incorporates a
label filtering mechanism to truncate the label space, which boosts classification performance while improving
efficiency. Once the CLIP model is fine-tuned, it can classify test images without requiring additional
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Figure 1: Overview of our proposed method, NeaR, for Vocabulary-Free Fine-Grained Visual Recognition
(VF-FGVR). In the Training Stage, we start with a few unlabeled images. Step-1: An MLLM generates a
best-estimate fine-grained label (e.g., "Red-headed woodpecker") for each image. Step-2: A candidate label
set is constructed using K-Nearest Neighbors, capturing related fine-grained classes. Step-3: The model is
fine-tuned using a CLIP-based architecture. A GMM is applied to the loss to partition the data into clean
and noisy samples. Based on this split, a label refinement mechanism is used to further update and refine
the labels. The final loss, Lfinal, is then computed, and the model parameters are updated accordingly. In
the Inference Stage, we apply label filtering to limit the label space (Step-4). Our approach handles the
noise and open-ended nature of MLLM-generated labels, significantly reducing inference time and cost while
maintaining performance.

expensive forward passes through an MLLM, significantly improving inference efficiency. Our methodology
NeaR is able to exceed the performance of direct MLLM-based classification at just a fraction of the cost
and compute. An overview of our methodology is presented in Figure 1, and the pseudocode is detailed in
Algorithm§ 1 in the appendix. We begin by discussing the necessary preliminaries.

3.1 Preliminaries

Problem Formalization. We consider a setting where only a small, unlabeled training set of n images
X = {xi}n

i=1, xi ∈ X is available. We assume that this training set has at least m-shot samples for each
class of the unknown ground-truth class name set G. We also study a more realistic scenario where there
is class imbalance in § 4.2 and observe that the performance of NeaR does not degrade. Note that no
further information about G is known, including its cardinality. For each image xi, we obtain a class name
li = L(xi, p) from an MLLM L, where p is a simple text prompt ‘Provide a best fine-grained class
name for this image.’ that guides the MLLM to generate a fine-grained class name for the image. The
generated dataset D = {(xi, li)}n

i=1 consists of n image-label pairs, and the output space of class names is
denoted by C =

⋃n
i=1 li. W.l.o.g. we assume C is lexicographically ordered and we denote the k = |C| labels

by C = {c1, c2, . . . , ck}. Let yi ∈ {0, 1}k, i ∈ [n], denote the one-hot encoding of the text label li for image xi

i.e yj
i = 1 if li = cj and 0 otherwise. Due to the inherent noise and stochastic nature of MLLM generated

labels, it is common to have |C| > |G|. Furthermore, the number of generated labels increases with the size
of the training set and can become prohibitively large, hampering training and reducing efficiency of the
downstream CLIP classifier.

CLIP Classifier: CLIP (Radford et al., 2021) consists of an image encoder I and a text encoder T trained
contrastively on image-text pairs. For VF-FGVR, we first query an MLLM to build a few-shot dataset D with
label space C. CLIP classifies image x as l̂(x) = arg maxl∈C cos(I(x), T (l)). We call this baseline ZS-CLIP.
Note that ZS-CLIP does not leverage the paired supervision in D and thus serves as a simple baseline. CLIP
can benefit from fine-tuning on a small labeled datast. CoOp (Zhou et al., 2021) is a prompt-tuning approach
that adds a small number of learnable tokens θ to the class name. We denote CLIP’s class predictions by
fθ(x) ∈ ∆k, where ∆k denotes the k − 1 simplex. The prompts are trained on the dataset D by minimizing
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cross-entropy loss LCE(θ) = −1
n

n∑
i=1

k∑
j=1

yj
i log(f j

θ (xi)). Naive finetuning using CoOp on a dataset generated

by an MLLM can be susceptible to label noise. Our NeaR method mitigates this issue by refining labels
through nearest-neighbor information. The following sections detail how NeaR constructs candidate sets,
learns with these sets, and filters labels for effective downstream performance.

3.2 NeaR: Candidate Set Construction

The label generated by an MLLM in response to a prompt may vary significantly from the ground truth
class label for each image. We propose to leverage local geometry to mitigate the noise in generated labels.
More formally, we make the manifold assumption, which suggests that similar images should share similar or
identical class labels (Iscen et al., 2022; Li et al., 2022). This is particularly useful when the label li assigned
to image xi by the MLLM is incorrect, which we refer to as a noisy label. By constructing a candidate label
set, we increase the likelihood of including the true label or a semantically closer alternative in the candidate
set rather than relying solely on the potentially incorrect label provided by the MLLM.

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37
MLLM Labels 69.9 78.6 70.9 57.9 84.8
Random CS 72.8 78.9 73.6 61.6 85.9
K-NN CS (ours) 78.0 81.3 75.5 65.8 87.4

Table 2: The table compares the quality of labels gen-
erated by the MLLM (LLaMA), a Random candidate
set (CS) where we pick 2 other labels (for κ = 3) at
random from the set of all MLLM generated labels,
and K-NN CS using sACC. While Random CS mod-
estly increases the likelihood of including the true label
compared to using MLLM labels directly, K-NN CS
significantly outperforms Random CS, generating a
superior candidate set and validating our hypothesis.

Table 2 shows that the semantic similarity between
the best label in the candidate set and the ground
truth is higher than that of the noisy single label for
the training images, supporting our hypothesis. We
use CLIP’s pretrained image encoder I to extract
image features of the entire training set X. For each
image xi, we select the top-κ most similar images
(including xi itself) and gather their corresponding
labels to form the candidate set Si = (li, l1, . . . , lκ−1).
In this work, we choose κ = 3. The resulting dataset
is reconstructed as Ds = {(xi, li, Si)}n

i=1, incorporat-
ing the candidate sets rather than single labels alone.
An alternative way of noise mitigation is to have the
MLLM directly generate a candidate set of ‘top-κ’
labels for each image, instead of just a single label. However this approach does not make use of similarity
information between images, as each candidate set is now generated independently, leading to an excessively
large label space. We empirically demonstrate the effectiveness of our nearest-neighbor based candidate set
generation over other alternatives in Appendix § A8.5.

3.3 NeaR: Learning With a Candidate Set

We treat the candidate sets as a source of supplementary similarity information to be used in conjunction
with the label. As explained below, for a noisy image, where the initial label li is incorrect, we propose
relying on the candidate set Si to mitigate the impact of noise. Conversely, for a clean image, we can
trust and utilize its generated label li. Detecting Noisy Samples. It has been demonstrated in (Arpit
et al., 2017) that models tend to learn clean samples before noisy ones, resulting in lower loss values for
clean samples. Following DivideMix (Li et al., 2020), for every training epoch, we fit a two-component
Gaussian Mixture Model (GMM) over the cross entropy loss values of all training samples {L(xi, li)}n

i=1,
where L(xi, li) = −

∑k
j=1 yj

i log(f j
θ (xi)), yi is the one-hot encoding of li. The component with the smaller

mean value models the clean samples, while the other component models the noisy ones. The posterior
probability wi = PGMM (clean|xi) computed from the fitted GMM is used to model the likelihood that a
sample xi is clean. This GMM is refitted for every training epoch, enabling dynamic estimation of label noise
over time. We now partition the training data into clean Xcl = {xi ∈ X | wi ≥ τ} and noisy Xns = X \ Xcl

sets based on clean probability threshold τ . We use the average clean posterior as an adaptive threshold for
every epoch, i.e τ = 1

n

n∑
i=1

wi. The effect of different thresholding strategies is presented in Appendix § A8.12.

Warm-up. Warm-up strategies are commonly used to speedup convergence and stabilize training. As
demonstrated in (Li et al., 2020), an initial warm-up phase allows the model to learn the clean samples better,
resulting in better separation between the losses of clean and noisy samples. During warm-up, we train
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prompts for a few epochs (10 in our experiments) by minimizing the cross entropy loss over the generated
labels li with one-hot representation yi:

Lwarmup(θ) = −1
n

n∑
i=1

k∑
j=1

yj
i · log(f j

θ (xi))

This warm-up step lays the groundwork for effective training by allowing the model to initially focus on
images labeled correctly by the MLLM.

Candidate Set Guided Label Refinement. Following the initial warm-up phase, we make a forward
pass over the entire training set at each training epoch to fit a GMM and partition data into clean and noisy
samples Xcl & Xns as described earlier. We model the confidence of the candidate set Si by a vector qi ∈ Rk

for each image i ∈ [n], initialized as qj
i = 1

|Si| if cj ∈ Si and 0 otherwise. This initialization reflects uniform
confidence over classes belonging to the candidate set, and zero for non-members. A candidate set is derived
from neighboring images and provides a broader view of possibly correct labels. Our approach constructs
refined labels to effectively leverage this additional information. We propose to construct refined labels for
clean and noisy images differently. For an image xi with one-hot label yi and candidate set confidence qi, we
construct a refined label ȳi by performing label-mixup using model predictions fθ as:

ȳi =
{

shrp
(
wi · yi + (1 − wi) · fθ(xi), T

)
, if xi ∈ Xcl

rsc
(
shrp(wi · qi + (1 − wi) · fθ(xi), T ), qi

)
, o/w

where wi is the GMM clean posterior probability, and fθ(xi) denotes the CLIP model class probabilities with
learnable prompts θ. The label-mixup is conditioned on clean posterior probability wi, enabling the model to

rely on the pseudo-label when wi is small. The sharpen function shrp(y, T )i = (yi) 1
T /

k∑
j=1

(yj) 1
T , as defined

in (Berthelot et al., 2019), adjusts a probability distribution y to be more confident using a temperature T .

The rescale function is rsc(y, q)i = (y ⊙ q)i/
k∑

j=1
(y ⊙ q)j , where ⊙ represents the hadamard product, rescales

a probability y with the current confidence estimates of the candidate set q. This ensures that the refined
label has non-zero probabilities only for the candidate labels. For both clean & noisy images, we update
candidate set confidence to be used in the next epoch as qi = rsc(fθ(xi), 1[qi]) where 1[qi] is 1 at non-zero
indices. Prompts are learned by minimizing the cross-entropy loss between the refined labels ȳ and CLIP
model output.

Lfinal(θ) = −1
n

n∑
i=1

k∑
j=1

ȳj
i · log(f j

θ (xi))

Connection to PRODEN. Our loss is similar in spirit to losses designed for Partial Label Learning (PLL),
such as PRODEN (Feng et al., 2020), which allow learning when only candidate labels are present. However
unlike the PLL setting, our candidate sets are constructed for every image using noisy MLLM outputs,
and may not contain the true label. Furthermore, our method uniquely benefits from access to an initial
‘best-estimate’ label li generated by the MLLM, which is not exploited by traditional PLL algorithms. This
best estimate label allows us to differentiate clean samples and helps training convergence by transferring
knowledge from clean to noisy samples through iterative updates of q.

3.4 NeaR: Label Filtering
Although we train on the entire label set C, we observe that many labels are noisy and can be removed from
the inference time label space. Let Fclip = {ci | ∃x ∈ X s.t i = arg max

j∈[k]
f j

θ (x)} be a filtered set of labels

which are predicted by CLIP on the training set. Let Fcand = {ci | s.t i = arg max
j∈[k]

qj
i } be another filtered

set of labels which are predicted using just the candidate sets. We propose to keep only those labels which
belong to both sets. The evaluation time label space is Ctest = Fclip ∩ Fcand and the inference time prediction
of an image x is l̂(x) = arg max

l∈Ctest

sim(I(x), Tθ̂(l)), where θ̂ are the learned prompts. Label filtering is effective

as shown in Table A11.

6



Under review as submission to TMLR

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

CoOp-GT (Upper Bound) 58.1 81.1 65.1 66.6 64.0 79.9 74.6 82.1 88.2 92.5 70.0 80.4
CaSED 25.6 50.1 26.9 41.4 38.0 55.9 67.2 52.3 60.9 63.6 43.7 52.6
FineR 51.1 69.5 49.2 63.5 48.1 64.9 63.8 51.3 72.9 72.4 57.0 64.3
RAR 51.6 69.5 53.2 63.6 50.0 65.2 63.7 53.2 74.1 74.8 58.5 65.3
†GPT-4o 68.8 85.2 37.4 61.5 71.1 80.4 50.5 51.6 68.2 83.5 59.2 72.4
ZS-CLIP-GPT4o 48.8 72.5 42.9 59.5 43.8 69.1 18.2 53.0 68.2 78.7 54.6 66.6
CoOp-GPT-4o 54.4 75.4 51.9 59.8 60.4 72.9 70.4 51.7 83.5 86.3 64.1 69.2
NeaR-GPT4o 55.8 75.6 57.0 60.0 61.6 74.4 80.6 52.1 82.9 84.0 67.6(+3.5%) 69.2
†Gemini Pro 66.1 82.7 35.4 62.8 65.8 81.2 45.3 54.3 71.3 85.7 56.8 73.3
ZS-CLIP-GeminiPro 51.7 74.6 41.6 61.7 58.9 72.6 57.7 49.1 71.7 78.6 56.3 67.3
CoOp-GeminiPro 55.2 75.9 50.2 61.5 62.7 73.8 68.3 51.2 81.6 83.8 63.6 69.2
NeaR-GeminiPro 55.9 76.0 54.9 61.1 64.7 75.4 77.9 53.2 79.4 80.8 66.6(+3%) 69.3(+0.1%)
‡Qwen2-VL-7B-Instruct 53.0 75.3 45.6 63.7 69.7 78.8 84.8 72.7 77.7 85.1 66.2 75.1
ZS-CLIP-Qwen2 41.0 66.0 50.8 60.8 59.3 70.5 66.7 55.2 72.4 77.2 58.0 65.9
CoOp-Qwen2 51.0 72.1 52.1 61.9 62.5 73.4 77.0 65.0 83.4 87.5 65.2 72.0
NeaR-Qwen2 48.9 72.0 55.6 63.2 62.0 73.3 81.4 68.0 84.6 86.8 66.5(+1.3%) 71.7(-0.3%)
‡LLaMA-3.2-11B 41.4 70.6 14.4 61.6 55.0 71.8 66.0 63.6 65.1 82.0 48.4 69.9
ZS-CLIP-LLaMA 48.7 66.3 45.8 60.6 57.4 65.9 74.8 58.4 76.0 78.4 60.5 65.9
CoOp-LLaMA 49.2 68.7 45.5 60.7 58.4 68.4 75.9 59.8 74.4 79.2 60.7 67.4
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0(+4.3%) 69.8(+2.4%)

Table 3: ZS-Zero Shot, † proprietary models used for inference, ‡ open-source models used for inference. Our
results shown here are for κ = 3 and m = 3. The first row is CoOp-GT, where we finetune a CLIP model
using ground-truth labels , serving as an upper bound. The second partition consists of contemporary VF
baselines of which FineR (Liu et al., 2024a) is best performing. We outperform FineR by a large margin,
even when using weaker open-source MLLMs. The next four partitions are for labels generated by various
MLLMs. We compare NeaR against CoOp within each partition, and highlight best numbers in bold. Our
method NeaR outperforms all contemporary baselines, as well as ZS-CLIP and CoOp baselines for a variety
of MLLMs.

4 Experiments and Results
In this section, we comprehensively evaluate the classification performance of NeaR for the VF-FGVR task.
We begin by describing the datasets, metrics and benchmark methods we compare against.

Datasets: We perform experiments on five benchmark fine-grained datasets: CaltechUCSD Bird-200 (Wah
et al., 2011), Stanford Car-196 (Khosla et al., 2011), Stanford Dog-120 (Krause et al., 2013), Flower-
102 (Nilsback & Zisserman, 2008), Oxford-IIIT Pet-37 (Parkhi et al., 2012). Following (Liu et al., 2024a), for
each dataset, NeaR and other baselines only have access to m unlabeled training images per class. Unless
specified otherwise, we assume m = 3. Results for 1 ≤ m ≤ 10 are shown in Figure 2.

Baselines: We compare our method NeaR against four different classes of baseline methods. (i)
Direct Inference on MLLMs. For every test image, we directly query an MLLM for a fine-grained label
using a text prompt such as ‘What is the best fine-grained class name for this image?’. We
evaluate two proprietary MLLMs – GPT-4o (Achiam et al., 2023) and GeminiPro (Reid et al., 2024) and
two strong open-source MLLMs, LLaMA-3.2-11B-Vision-Instruct (Touvron et al., 2023) and Qwen2-VL-
7B-Instruct (Wang et al., 2024). In the Appendix § A8, we show results on two other weaker open-source
MLLMs, BLIP-2 (Li et al., 2023) and LLaVA-1.5 (Liu et al., 2023). (ii) Contemporary VF Baselines. We
consider three contemporary baselines which do not require expert annotations but use foundational models
to perform VF-FGVR – CaSED (Conti et al., 2023), FineR (Liu et al., 2024a) and RAR (Liu et al., 2024c).
(iii) ZS-CLIP with MLLM label space. As described in § 3.1, we can perform zero-shot classification using
pre-trained CLIP over the label space generated by querying various MLLMs on training images. We consider
four variants of ZS-CLIP – ZS-CLIP-GPT4o, ZS-CLIP-GeminiPro, ZS-CLIP-LLaMA, and ZS-CLIP-Qwen2.
(iv) Prompt Tuning Baselines. Following CoOp as described in § 3.1, we directly perform prompt-tuning
using the labels generated by an MLLM. We consider four variants – CoOp-GPT4o, CoOp-GeminiPro,
CoOp-LLaMA, and CoOp-Qwen2.
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Evaluation Metrics: In the VF-FGVR setting, NeaR as well as all other baselines operate in an
unconstrained label space, making accuracy an invalid metric since the predicted labels may never exactly
match the ground-truth labels. Following (Liu et al., 2024a; Conti et al., 2023), we evaluate performance
using two complementary metrics: Clustering Accuracy (cACC) and Semantic Accuracy (sACC). cACC
measures the ability of the model to group similar images together. For M test images with ground-truth

labels y⋆ and predicted labels ŷ, cACC is computed as max
p∈P(Ŷ)

1
M

M∑
i=1

1(y⋆
i = p(ŷi)), where P(Ŷ) is the set of

all permutations of the generated labels. Since cACC disregards the actual label name, it does not measure
if the predictions are semantically correct. Despite this limitation, cACC is a strong evaluation metric
and is widely used in areas such as GCD (Vaze et al., 2022), where the goal is to assess consistency of
predictions rather than exact label semantics. Semantic closeness is captured by sACC, which measures the
cosine similarity between Sentence-BERT (Reimers & Gurevych, 2019) embeddings of the predicted and
ground-truth labels. As observed in (Liu et al., 2024a), sACC is a more forgiving metric than cACC, because
embedding based similarity methods can capture general semantics even for completely distinct labels. We
hence consider cACC as representative of the model’s performance, with sACC acting as a sanity check to
ensure that the predicted labels remain meaningful.

Implementation Details: We use CLIP ViT-B/16 (Radford et al., 2021) as the VLM, whose image encoder
we also use to find the κ-nearest neighbors, with κ = 3 by default. The default number of shots is m = 3,
and we use the few-shot training splits provided by FineR. For both the CoOp baseline and our method, we
introduce 16 trainable context vectors. The same set of prompts are optimized during the warmup stage, and
for the subsequent training stage. We use SGD as the optimizer and train for 50 epochs, with 10 warmup
epochs. We use a temperature of 2 in the sharpening function. Our batch size is 32. We use the SGD optimizer
with a learning rate of 0.002, and use both constant learning rate scheduler and cosine annealing scheduler
sequentially. The training hyperparameters are the same for CoOp and NeaR. We sample an equal batch of
clean and noisy samples during every epoch. We run all our experiments on a single Nvidia Tesla V100-32GB
GPU with an Nvidia driver version of 525.85.12. We use PyTorch 2.4.0 and CUDA 12.0. The default value of
number of nearest-neighbors κ is 3, and the number of shots m is 3. We use the few-shot splits provided by
FineR (Liu et al., 2024a). We utilize the publicly available meta-llama/Llama-3.2-11B-Vision-Instruct model
and Qwen/Qwen2-VL-2B-Instruct model from HuggingFace. We observe that instruction tuned MLLMs
generate better labels compared to base models. We perform inference using the HuggingFace transformers
library (Wolf et al., 2019). Unless otherwise specifically stated, we use LLaMA-3.2 as our default MLLM.
4.1 Main Results
In this section we compare NeaR against baselines on five fine-grained datasets. In addition to the considered
baselines, we benchmark against JoAPR (Guo & Gu, 2024), a state-of-the-art noisy label learning method
designed for CLIP, and against PRODEN (Feng et al., 2020), a widely used partial label learning algorithm.

Benchmarking NeaR Against Baseline Methods: We evaluate NeaR against the four categories of
baselines introduced in § 4 – Direct MLLM inference, contemporary VF methods, zero-shot CLIP, and
prompt-tuned CLIP. The results are shown in Table 3, with all numbers reported for 3-shot training images.
The first partition of the table, CoOp-GT, is the performance of fine-tuned CLIP model when provided
with the ground-truth label space, serving as an upper bound. Notably, NeaR-GPT-4o achieves an average
cACC just −0.4% below this upper bound, demonstrating it’s effectiveness. The next partition consists of
contemporary methods that can perform VF-FGVR. Out of these, FineR (Liu et al., 2024a) is conceptually
closest to ours as it uses a combination of an LLM and a VQA system to construct a training-free CLIP
based classifier. We outperform FineR on all datasets by a margin of at least +8% in average cACC, even
when using labels from open-source MLLMs.

Moreover, as shown in Table 1, NeaR is significantly more efficient in terms of computation time. The next
four partitions in Table 3 report results using labels generated by GPT-4o, GeminiPro, LLaMA-3.2 and
Qwen2 respectively. Within each partition, we first present results for direct inference with the MLLM,
followed by ZS-CLIP, CoOp, and finally NeaR. Across all MLLMs, NeaR performs the best on average cACC,
showing gains of at least +3% over the CoOp baseline for GPT-4o, GeminiPro and LLaMA-3.2, and a gain
of +1.3% over CoOp for Qwen2. Furthermore, we observe a large performance gain for the difficult Car-196
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Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

JoAPR-LLaMA 49.2 70.0 42.8 60.6 59.5 70.6 76.7 60.1 73.9 83.3 60.4 68.9
PRODEN 48.3 67.6 45.9 60.6 57.9 67.0 75.2 59.0 75.8 78.5 60.6 66.6
NeaR-LLaMA 51.1 70.2 52.5 60.8 59.2 70.2 78.6 61.7 83.4 86.1 64.9 (+4.3%) 69.8 (+3.2%)

Table 4: Comparison of NeaR with a contemporary noisy label learning method, JoAPR (Guo & Gu, 2024),
for CLIP using LLaMA-generated labels. NeaR outperforms JoAPR with an average improvement of +4.6%
in cACC and +0.9% in sACC. These results indicate that directly applying LNL methods is insufficient to
handle the challenges of noisy MLLM outputs. By incorporating better label refinement using candidate
set, and by performing label filtering, NeaR provides a robust solution to the VF-FGVR problem. We also
compare our method against PRODEN (Feng et al., 2020). We significantly outperform PRODEN on both
cACC and sACC.

dataset, where NeaR-LLaMA shows a gain of +7.1% in cACC over CoOp-LLaMA. These results highlight
that NeaR effectively learns from the imperfect labels generated by MLLMs, leading to robust and efficient
fine-grained classification.
Comparison against PRODEN: Our loss function resembles those used in Partial Label Learning (PLL),
such as PRODEN (Feng et al., 2020), which are designed to handle learning with only candidate sets. To
study the efficacy of traditional PLL approaches, we replace the traditional cross-entropy loss used in CoOp
with PRODEN, and learn prompts using the candidate sets directly. The results are shown in Table 4, where
NeaR outperforms PRODEN by a large margin of 4.3% in cACC and 3.2% in sACC. Unlike in traditional
PLL where candidate sets are assumed to include the correct label, our candidate sets are generated for each
image using noisy MLLM outputs and may not always contain the true label. Also, NeaR uniquely benefits
from an initial "best-estimate" label li from the MLLM, which traditional PLL methods do not exploit. As
described in § 3.3, this best-estimate label is used to find "clean" images which have a higher probability of
being correctly labeled. Knowledge from these clean samples helps resolve the ambiguity in candidate sets,
improving performance.

Comparison against JoAPR (Guo & Gu, 2024), a Contemporary Noisy Label Learning Method
for CLIP: JoAPR is a prompt-tuning method designed to fine-tune CLIP on noisy few-shot data. In
Table 4, we show the results of using JoAPR to learn from noisy LLaMA generated labels. Our method NeaR
outperforms JoAPR by +4.6% in average cACC, and by +0.9% in average sACC. For JoAPR we use the
default configuration suggested in the paper. These gains highlight that generic noisy-label learning methods,
which expect structured noise (such as flips) within a closed label set, do not fully address the challenges
posed by open-ended MLLM outputs. By incorporating similarity information, performing candidate set
guided label refinement, and performing label filtering, NeaR provides a robust solution to the VF-FGVR.

4.2 Ablation Studies

Components Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Avg
W. GMM LM R. Cand. LF cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC
✗ ✓ ✓ ✓ ✓ ✓ 48.81 71.5 49.8 61.9 56.8 71.9 75.4 61.3 79.3 85.4 62.0 70.4
✓ ✗ ✓ ✓ ✗ ✓ 48.50 69.1 48.9 59.7 57.1 69.6 76.9 60.1 81.8 84.1 62.6 68.5
✓ ✓ ✗ ✓ ✓ ✓ 51.30 71.3 48.6 60.7 59.4 71.4 75.9 60.1 79.7 84.0 63.0 69.5
✓ ✓ ✓ ✗ ✓ ✓ 49.10 69.4 50.9 60.6 59.5 71.8 77.1 61.4 77.8 84.1 62.9 69.5
✓ ✓ ✓ ✓ ✗ ✗ 48.00 69.1 48.3 60.2 56.6 71.0 73.9 60.2 80.6 84.4 61.5 69.0
✓ ✓ ✓ ✓ ✓ ✗ 49.17 70.2 50.1 60.1 57.9 70.1 75.6 60.6 81.4 85.9 62.8 69.3
✓ ✓ ✓ ✓ ✗ ✓ 48.50 69.1 48.9 59.7 57.1 69.6 76.9 60.1 81.8 84.1 62.6 68.5
✓ ✓ ✓ ✓ ✓ ✓ 51.03 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.4 86.1 65.0 69.8

Table 5: Full ablation study across five datasets. Columns “W.” (Warm-up), “GMM”, “LM” (Label
Mixup), “R.” (Rescaling), “Cand.” (Candidate set), and “LF” (Label Filtering) indicate whether each module
is enabled (✓) or disabled (✗). The best performance is achieved with all the components.
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We conducted a thorough ablation to evaluate the contribution of each component in our pipeline. We
split the components of "Candidate Set Guided Label Refinement" into label mixup, rescaling, and using
the candidate set guidance. The best performance is observed when all components — including warmup,
GMM-based partitioning, label mixup, rescaling, candidate set guidance, and post-training label filtering,
are used. This configuration yields the highest average cACC (65.0%) and sACC (69.8%), re-confirming the
effectiveness of proposed approach.

Removing the warm-up phase leads to a noticeable drop in performance, as it causes the GMM to produce a
less reliable clean/noisy split. GMM is important because it splits the data into clean and noisily labeled
samples. Without this split, the candidate set guidance is no longer used and only the MLLM generated labels
are used throughout. Label mixup blends the label (one-hot or candidate set) with the model’s prediction,
and acts as a regularizer. Rescaling ensures that the refined label for a noisy sample has non-zero probabilities
only for the candidate set, enabling it to learn from a relevant set of candidate labels. Removal of this leads to
a misleading label signal for the noisy samples. Disabling either candidate set guidance or label filtering leads
to noticeable drops across most datasets. To study the effect of removal of the candidate set guidance, we
refine the labels of the noisy samples as ȳi = shrp(fθ(xi), T ), i.e we only used the sharpened CLIP pseudolabel.
We also remove the candidate set based filtering Fcand, as defined in Sec 3.4. These ablations confirm that
our components which are simple but carefully designed are integral for the performance gains.

Imbalanced Training Data: We study the realistic scenario of class imbalance in the few-shot training
data. We simulate a long-tail distribution where we randomly select a small number of head classes (10
classes for pet-37) which have 4 ≤ m ≤ 10 samples, and the remaining tail classes have m = 3 samples. We
show results in Table 6. We observe that there is no degradation in performance for both CoOp and NeaR.
Infact, we note slightly better cACC and sACC values for NeaR on account of the slight increase in the
training data.

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

FineR 46.2 66.6 48.5 62.9 42.9 61.4 58.5 48.2 63.4 67.0 51.9 61.2
ZS-CLIP-LLaMA 48.9 67.0 46.9 60.3 55.9 64.5 71.4 58.5 75.5 72.2 59.7 64.5
CoOp-LLaMA 47.9 69.9 45.6 60.6 54.2 67.8 74.0 60.2 78.0 74.0 60.0 66.5
NeaR-LLaMA 50.9 69.9 52.6 60.4 60.2 71.2 80.3 63.8 84.6 86.2 65.7 (+5.7%) 70.3 (+3.8%)

Table 6: Performance comparison of NeaR-LLaMA with other baselines under long-tail class distribution.
Both NeaR and CoOp retain performance on imbalanced data compared to balanced sampling. NeaR
outperforms CoOp by +5.7% in cACC.
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Figure 2: Effect of varying m, number of images per class
in training data for labels generated by LLaMA. NeaR (in
purple) outperforms CoOp (blue) for all m ≥ 2 in average
cACC & sACC.

Analysis on Number of Shots m in Train-
ing Data: We explore the effect of the number
of images used per class, as presented in Fig-
ure 2. We consistently use κ = 3 for candidate
set construction across all shots. For m = 1,
our method performs poorly due to excessive
label filtering. However, as the number of shots
increases, our candidate set is more informative
and performance improves markedly. Our pro-
posed method, NeaR, outperforms CoOp for all
m ≥ 2, especially at higher shots where there
are more noisy labels. We also observe that
cACC drops with increasing m due to increase
in the size of the test time label space. Despite
this, NeaR consistently outperforms others at
all m. For example, at m=10, NeaR-LLaMA achieves 61.8 cACC, vs 54.7 (CoOp-LLaMA) and 52.2 (FineR).
NeaR is more robust with increasing m with only a 3.5% drop from m=3 compared to 6% for others.
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Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

RN50
CoOp-LLaMA 13.9 44.1 8.6 46.6 18.2 47.9 15.6 31.7 36.7 54.7 18.6 45.0
NeaR-LLaMA 17.3 50.5 9.8 48.9 19.9 49.9 20.5 36.6 46.1 63.3 22.7 (+4.1%) 49.8 (+4.8%)

RN101
CoOp-LLaMA 17.3 45.5 9.6 47.4 20.8 45.4 17.5 34.7 44.0 55.2 21.8 45.6
NeaR-LLaMA 18.6 49.6 11.4 50.8 22.4 51.8 18.9 36.1 47.0 63.9 23.6 (+1.8%) 50.5 (+4.9%)

ViT-B/16
CoOp-LLaMA 49.2 68.7 45.5 60.7 58.4 68.4 75.9 59.8 74.4 79.2 60.7 67.4
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0 (+4.3%) 69.8 (+2.4%)

ViT-B/32
CoOp-LLaMA 45.0 56.3 39.3 60.5 51.9 66.2 69.8 59.1 72.7 79.8 55.7 66.2
NeaR-LLaMA 48.8 68.4 47.8 60.0 56.4 68.9 75.0 61.3 77.3 82.0 61.1 (+5.4%) 68.1 (+1.9%)

Table 7: Performance comparison of NeaR-LLaMA with CoOp-LLaMA across different CLIP backbones,
including ResNet-50 (RN50), ResNet-101 (RN101), and ViT-B/32. For completeness, results are also provided
for the default backbone, ViT-B/16. NeaR consistently outperforms CoOp-LLaMA, achieving gains of +4.1%
and +4.8% in cACC and sACC for RN50, +1.8% and +4.9% in cACC and sACC for RN101, and +5.4% and
+1.9% in cACC and sACC for ViT-B/32.

4.3 Performance of NeaR on Different CLIP Backbones:

All results in this paper are on the ViT-B/16 CLIP backbone. In this section we compare the performance of
NeaR-LLaMA with CoOp-LLaMA across various other CLIP backbones. In Table 7 we present the results of
NeaR for a ResNet-50 (He et al., 2015), ResNet-101, and a ViT-B/32 vision-encoder based CLIP model.
We use the same configuration for each backbone. NeaR shows consistent improvement, achieving gains of
+4.1%, +1.8%, and +5.4% in average cACC for RN50, RN101 and ViT-B/32 respectively. These results
highlight the effectiveness of our method over a diverse range of CLIP architectures. In §A8.7 we show
additional results on CLIP ViT-L, CLIP ViT-G and for SigLIP.

4.4 Qualitative Results of NeaR.
We visualize a selection of inference images and analyze their predictions for the Flower-102 and Pet-37
datasets in Figure 3. Specifically, we compare the predictions of NeaR with those obtained from directly
querying the MLLM. When comparing sACC, we observe that MLLMs (GPT4/Geminipro/LLaMA) produce
stronger labels (sACC:72.4/73.3/69.9) or predictions than FineR (sACC: 64.3). Therefore, we focus our
comparisons on NeaR against MLLMs. In success cases (e.g., Blackberry Lily, Bee Balm), NeaR predicts
correct labels consistently, while LLaMA produces inconsistent and unrelated labels like Carnation or Coral
Honeysuckle, reflected in lower cACC. In failure cases, NeaR often misclassifies flowers as other species with
similar structures or colors (e.g., Globe Flower → Buttercup, Windflower → Wood Anemone), unlike LLaMA,
which shows greater label spread. For classes that NeaR underperforms, we find they are harder overall, even
for the MLLM. Even when incorrect, NeaR is more consistent (e.g., Windflower → Wood Anemone in most
test images), while LLaMA outputs 7 diverse labels for same set of images. We observe a similar trend for
pets.

5 Conclusion
We addressed the challenge of Vocabulary-Free Fine-Grained Visual Recognition (VF-FGVR) by introducing
NeaR, a method that leverages MLLMs to generate weakly supervised labels for a small set of training images,
to efficiently fine-tune a downstream CLIP model. Our approach constructs a candidate label set for an image
using generated labels of similar images, and performs label refinement for clean and noisy data differently.
NeaR also proposes a label filtering strategy, effectively managing the open-ended and noisy nature of MLLM
outputs. Experiments on 4 MLLMs show that NeaR significantly outperforms direct inference methods while
dramatically reducing computational cost and inference time, setting a new benchmark for efficient and
scalable VF-FGVR.
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Figure 3: Qualitative results showcasing both success and failure cases of Flower-102 dataset (left) and Pet-37
dataset (right). Success refers to instances where NeaR correctly predicts the class label while the MLLM
fails. Failure cases illustrate examples where NeaR produces incorrect predictions.

Impact Statement

Our framework relies on MLLM-generated labels, a dependency that is becoming increasingly feasible with
advancements in MLLM accessibility. We demonstrate strong performance across both proprietary (GPT-4o,
GeminiPro) and open-source (LLaMA-11B, Qwen2-7B) models, showing robustness to MLLMs of varying
capacities. We see this work as a foundation for future research in leveraging MLLMs for fine-grained
recognition, with no direct societal or ethical risks.
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Appendix

Our code will be made publicly available upon acceptance for further research and reproducibility. This
supplementary material contains additional details that we could not include in the main paper due to space
constraints, including the following information:

• Summary of notations and their descriptions in § A6

• The overall NeaR algorithm is presented in § A7

• Further Comments on Efficiency of NeaR in § A8.1.

• Study on Random Data Distribution in § A8.2.

• Further descriptions of datasets used in § A8.3.

• Effect of label filtering on the size of label space in § 3.4

• Analysis on an alternative way to obtain candidate sets is shown in § A8.5

• Choice of Vision Encoder for Candidate Set Construction in § A8.6

• Additional Results on Other Backbones in § A8.7

• Performance across different prompting strategies in shown in § A8.8

• Study on Adapter based Finetuning in § A8.9

• Comparison with Pseudo-labeling based Methods DualCoOp and VLPL in § A8.10

• Impact of varying κ, the number of nearest-neighbors considered is shown in § A8.11

• The effect of choice of threshold τ is studied in § A8.12

• Comparison with clustering-based methods in § A8.13

• Performance across variations in different few-shot splits is shown in § A8.14

• Analysis of retrieved images in § A8.15

• Visualizing noisy samples from GMM in § A8.16

• Discussion on other weaker open-source MLLMs is presented in § A8.17

• Prompts used to generate labels for different MLLMs in § A8.18

A6 Summary of Notations.

We represent elements of a set by a subscript and a vector component by a superscript. For instance
yi ∈ {0, 1}k denotes the one-hot vector encoding of the class label of the i-th image, i ∈ [n], and yj

i is the
j-th component of this encoding. Specifically yj

i = 1 if the i-th image is assigned the j-th label in the label
set C and 0 otherwise. A summary of notations is given in Table A8.
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Notation Description

xi i-th unlabeled training image
X set of n training images {x1, x2, . . . , xn}
m Number of shots of images for each class belonging to an unknown ground-

truth class name set
li = L(xi, p) The class label generated for xi by an MLLM L with a input prompt p

D = {(xi, li)}n
i=1 The dataset generated by an MLLM L consisting of image-class name pairs

C =
⋃n

i=1 li Label space generated by the MLLM
k = |C| The k lexicographically ordered class names C = {c1, c2, . . . , ck}

yi ∈ {0, 1}k One-hot encoding of the label li of xi

I Image encoder of pre-trained CLIP
T Text encoder of pre-trained CLIP
θ Learnable prompt vectors added to the input embeddings of a class name

fθ(x) ∈ ∆k k-dimensional probability vector of the prompted CLIP model’s class predic-

tions for image x, i.e fθ(x)j ≥ 0 and
k∑

j=1
fθ(x)j = 1

Si Candidate set created by gathering MLLM generated labels of nearest-
neighbors of xi

κ Number of nearest-neighbors
Ds = {(xi, li, Si)}n

i=1 Augmented dataset containing the generated label li and constructed candi-
date set Si

Lce(fθ(xi), li) The cross-entropy loss of CLIP model predictions for image i w.r.t yi given
by −

∑k

j=1 yj
i log(fj

θ
(xi)) (also written as L(xi, li))

GMM A two-component Gaussian Mixture Model fit on loss values of all training
samples for every epoch

wi = PGMM (clean|xi) The posterior probability of image belonging to the "clean" component, i.e
component with lower mean

τ ∈ [0, 1] Threshold used to partition data into clean and noisy sets
Xcl, Xns Clean and noisy partitions of the training data based on w≥τ

qi ∈ Rk Confidence of the candidates. We have that qj
i > 0 if cj ∈ Si, qj

i = 0

otherwise, and
k∑

j=1
qj

i = 1

ȳi Refined label for image i constructed based on whether xi is clean or noisy.
For noisy images we rescale the label to have non-zero probabilities only for
the candidate labels

shrp(y, T ) and rsc(y, q) sharpen a distribution y using temperature T ; rescale a distribution y based
on candidate confidence q

Lfinal(θ) The cross entropy loss between model predictions fθ(x) and refined labels ȳ
Ctest Inference label space post filtering

Table A8: List of notations used in our paper, and their descriptions.
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Algorithm 1 NeaR algorithm: Training
Require: m-shot training images X = {xi}n

i=1; MLLM L; input prompt p; number of nearest neighbors κ; CLIP model
predictions fθ with learnable text prompts θ; num_epochs; warm_epochs; learning-rates η, ηwarm; Temperature T

Ensure: Trained parameters θ̂
Step-1: Labeling training images with an MLLM

1: D ← {}
/* Label each image x by prompting MLLM L with prompt p */

2: for i = 1, 2, . . . , n do
3: D ← D ∪ {(xi, li := L(xi, p))}
4: end for
5: C :=

⋃n

i=1 li
6: k := |C|

/* WLOG we consider C := {c1, c2, . . . , ck} where k := |C| to be lexicographically ordered. Let yi be the one-hot encoding of
label li */

7: yi ∈ {0, 1}k and yj
i := 1 if cj = li and 0 o/w

Step-2: Candidate Set Construction
8: Ds ← {}

/* Augment each image xi with a candidate set Si composed of labels of κ-nearest neighbors */
9: for (xi, li) in D do

10: Si ← knn_labels(xi, κ)
11: Ds ← Ds ∪ {(xi, li, Si)}
12: end for

/* We initialize candidate confidence for all images qi uniformly */
13: qi ∈ Rk and qj

i := 1
|Si| if cj ∈ Si and 0 o/w

Function Partition_data(D, fθ, τ):
14: L := {L(fθ(xi), li)}n

i=1
15: µc, σc, µn, σn ← fit_GMM(L)
16: W := {w1, w2, . . . , wn} where wi = PGMM (clean|xi)
17: Xcl := {xi ∈ X | wi ≥ τ}
18: Xns := X \Xcl

return Xcl, Xns, W
Step-3: Fine-tune prompts θ of a CLIP model

19: for t = 1, 2, . . . , num_epochs do
/* During warmup, the prompts are tuned on the cross-entropy loss Lce using MLLM generated labels in D */

20: if t ≤ warm_epochs then
21: θt ← θt−1 − ηwarm∇Lce(D, fθt−1 )
22: else

/* Every epoch post warm-up, we partition the entire data into clean and noisy sets by fitting a GMM on cross-entropy loss
L */

23: Xcl, Xns, W ←Partition_data(D, fθt−1 , τ)
24: ȳi := shrp

(
wi · yi + (1− wi) · fθt−1 (xi), T

)
, if xi ∈ Xcl

:= rsc
(

shrp(wi · qi + (1− wi) · fθt−1 (xi), T ), qi

)
, o/w

/* We update candidate confidence (for both clean and noisy samples) to be used in the next epoch. 1[qi] is 1 at non-zero
indices and 0 o/w */

25: qi ← rsc(fθt−1 (xi), 1[qi])

26: Lfinal(θt−1) := −1
n

n∑
i=1

k∑
j=1

ȳj
i · log(fj

θt−1
(xi))

27: θt ← θt−1 − η∇Lfinal(θt−1)
28: end if
29: end for
30: Return: θ̂ = θnumepochs
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A7 NeaR Algorithm

We present the training algorithm of NeaR in Algorithm 1. We present the three steps of our method NeaR as
shown in Figure 1. In lines L1-L7 we generate possibly noisy labels from an MLLM. In lines L8-L12, we then
generate a candidate set from κ nearest-neighbors of each image. In lines L19-L27 we train prompt vectors θ
by minimizing the cross-entropy loss between CLIP predictions and the refined labels. The label refinement
in L24 effectively disambiguates the best label from the generated candidates. As training progresses, our

estimate of the candidate labels qi gets better. The sharpening function is shrp(y, T )i = (yi) 1
T /

k∑
j=1

(yj) 1
T and

the rescale function is defined as rsc(y, q)i = (y ⊙ q)i/
k∑

j=1
(y ⊙ q)j .

A8 Additional Results

In this section we start with descriptions of the datasets in A8.3 used followed by additional results. i) Effect
of label filtering on the size of label space in § 3.4. ii) Analysis on an alternative way to obtain candidate sets
is shown in § A8.5. iii) Performance across different prompting strategies in shown in § A8.8. iv) Impact
of varying κ, the number of nearest-neighbors considered is shown in § A8.11. v) The effect of choice of
threshold τ is studied in § A8.12. vi) Comparison with clustering-based methods in § A8.13. vii) Performance
across variations in different few-shot splits is shown in § A8.14. viii) Analysis of retrieved images in § A8.15.
ix) Discussion on other weaker open-source MLLMs is presented in § A8.17. x) Prompts used to generate
labels for different MLLMs in § A8.18.

A8.1 Further Comments on Efficiency of NeaR

Table 1 comprehensively covers the different MLLM types and all baselines we designed. For instance, we
report inference time, cost, and cACC for GPT-4o, which closely reflects performance for Gemini Pro as
well. Similarly, results for LLaMA are representative of Qwen. For ZS-CLIP-MLLM, CoOp-MLLM, and
NeaR-MLLM, inference time and cost remain the same, with only a slight overhead in training time. We
also note that the cost estimates presented were for GPT-4o in late 2024, and current API costs may be
cheaper as inference becomes more scalable. We acknowledge that our cost estimate ( $100 for 32k images)
could be improved by leveraging batched inference APIs, which can indeed reduce the cost by up to 5× and
ensure timely completion. Our original estimate was based on standard per-image API usage (e.g. GPT-4 or
Gemini Pro), which many users adopt by default due to ease of integration. However, we agree that using
optimized batch pipelines is a more efficient option, potentially reducing the cost to approximately $20 for
32k images. Even by using optimized batched pipeline, our method always requires lesser costs.

A8.2 Random Data Distribution

In this section we evaluate the performance of NeaR under extremely random data sampling as shown in
Figure A4. The results across all five datasets is shown in Table A9. Our method outperforms CoOp-LLaMA
by 8.3% in cACC and 1.4% in sACC, demonstrating its robustness to data imbalance.

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

CoOp-LLaMA 42.1 52.8 42.0 56.7 42.1 54.0 60.3 43.6 54.1 56.3 48.1 52.7
Ours-LLaMA 43.0 52.0 47.8 55.3 55.8 55.7 73.5 52.0 61.9 55.7 56.4 54.1

Table A9: Evaluation of NeaR under randomly sampled data distributions across five datasets. NeaR
surpasses CoOp-LLaMA by 8.3% in cACC and 1.4% in sACC, highlighting its robustness to data imbalance.
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Figure A4: Random data sampling with m ranging from 1 to 10 across five datasets.

A8.3 Description of Datasets Used.

We show results on 5 datasets with fine-grained labels – Bird-200, Car-196, Dog-120, Flower-102, Pet-37. In
Table A10, we show the number of images used for training and the size of the test set.

Bird-200 Car-196 Dog-120 Flower-102 Pet-37
Train Set m × 200 m × 196 m × 120 m × 102 m × 37
Test Set 5794 8041 8550 6149 3669

Table A10: Train and test set sizes of the datasets used in this paper. The number of shots is denoted by m,
with m = 3 used as the default in our experiments unless otherwise specified.

A8.4 Effect of Label Filtering on the Size of Label Space.

As described in § 4.2, label filtering is crucial to obtain good VF-FGVR performance. In Table A11, we
present the number of classes in the final classification label spaces that each method operates in. The first
row indicates the size of the ground-truth label space. We observe that our label filtering mechanism is
essential to combat the open-endedness of MLLM labels.

Method Average
Bird-200 Car-196 Dog-120 Flower-102 Pet-37

Ground Truths 200 196 120 102 37
MLLM Labels 412 562 169 183 63
FineR 202 286 97 112 44
NeaR-LLaMA 239 305 129 119 45

Table A11: Label filtering is effective in reducing the size of MLLM generated label to manageable levels.

A8.5 Analysis on Alternative Ways to Construct Candidate Sets

The labels generated by MLLMs can be noisy. To address this, we propose to construct a candidate set for
each image by grouping class labels from the κ nearest-neighbors of the image. In this section we study an
alternative approach to candidate set generation, where we query the MLLM itself to generate a set of κ
labels directly for each image. We present the results of this approach in Table A12, showing performance
across three MLLMs: GPT-4o, GeminiPro, and LLaMA. The purpose of this experiment is to demonstrate
the effectiveness of candidate set construction via KNN. For the Car-196 dataset, the generated candidate
labels were highly diverse—resulting in a union of approximately 1200 unique labels across all images which
leads to OOM issues during text feature computation. As a workaround for the Car-196 dataset alone, we
limited the candidate sets to the top-2 labels per image and add those results to Table A12.
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Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

NeaR-GPT-4o-Direct 53.1 74.2 46.0 54.1 61.0 71.9 77.0 55.4 83.1 82.7 64.0 67.6
NeaR-GPT-4o 55.8 75.6 57.0 60.0 61.6 74.4 80.6 52.1 82.9 84.0 67.6 69.2
NeaR-GeminiPro-Direct 52.7 73.8 43.8 52.2 70.5 58.3 73.9 46.9 81.3 81.7 64.4 62.5
NeaR-GeminiPro 55.9 76.0 54.9 61.1 64.7 75.4 77.9 53.2 79.4 80.8 66.6 69.3
NeaR-LLaMA-Direct 43.8 68.2 44.7 56.0 56.4 70.6 70.9 57.7 83.2 87.5 59.8 68.0
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0 (+5.2%) 69.8 (+1.8%)

Table A12: Evaluation of NeaR-MLLM under different candidate set generation methods. We compare
our κ-nn-based candidate set against directly querying the MLLM for a candidate set, referred to as NeaR-
MLLM-Direct. For the Car-196 dataset, both GPT-4o and GeminiPro encounter Out-of-Memory (OOM)
errors due to the larger label space. For NeaR-LLaMA, our κ-nn-based approach outperforms the direct
approach by an average margin of +5.8% in cACC while being more computationally efficient.

A8.6 Choice of Vision Encoder for Candidate Set Construction

In this section we study how alternative choices of image embeddings for selecting top-κ nearest neighbors
affect the performance of NeaR. We use the DINO Caron et al. (2021) and MAE He et al. (2021) encoders
solely for the nearest neighbor candidate set construction step, while retaining our default ViT-B/16 CLIP
backbone for prompt tuning. The results for Llama-3.2, presented in Table A13, show that our method
continues to achieve competitive performance even when the k-NN step is based on features from other
backbones.

Image Encoder Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

DINO 50.3 70.5 50.6 61.8 60.4 72.6 79.7 60.8 82.4 88.3 64.7 70.8
MAE 48.6 70.1 50.9 61.5 59.9 72.2 76.6 59.8 84.8 88.6 64.2 70.4
CLIP ViT-B/16 51.03 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.4 86.1 65.0 69.8

Table A13: Evaluation of NeaR-LLaMA when different image encoders are used to perform nearest neighbor
selection during candidate set construction. The default CLIP ViT-B/16 backbone is retained for the rest of
the pipeline. We observe that performance remains invariant to the choice of image embeddings chosen to
construct the candidate sets.

A8.7 Additional Results on Other Backbones

We present results using CLIP ViT-L, CLIP ViT-G and SigLIP ViT-B/16 backbones in Table A14 below.
We observe performance gains of 5.5% in cACC and 3.2% in sACC with ViT-L, and gains of 6.9% in
cACC and 2.9% in sACC with ViT-G over the default CLIP ViT-B/16 backbone. Our method outperforms
CoOp-LLaMA by 3.2% for ViT-L and by 4.6% for ViT-G, demonstrating its effectiveness across stronger
backbone architectures. We also experiment with the SigLIP ViT-B/16 backbone which has a different
pretraining objective compared to CLIP. Our results indicate that our method does not transfer effectively to
SigLIP. We conjecture that our method fails because our final objective resembles the InfoNCE objective
used by CLIP, and is different from the Sigmoidal loss employed by SigLIP. However, we are competitive
with the CoOp baseline in avg cACC.

A8.8 Different Prompting Strategies.

We analyze the impact of our proposed approach using various prompting strategies, as presented in Table A15.
We consider three distinct prompting methods involving fine-tuning across different modalities: (1) For
text-only prompting, we use CoOp (Zhou et al., 2021); (2) For image-only prompting, we employ VPT (Jia
et al., 2022); and (3) For both text and image prompting, we adopt hierarchical prompts introduced at different
text and image layers (Rasheed et al., 2022) as the backbone. Our method demonstrates strong performance
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Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

ViT-L
CoOp-LLaMA 55.8 73.4 51.1 63.0 65.1 74.3 81.7 63.3 83.2 87.6 67.3 72.3
NeaR-LLaMA 54.5 73.1 62.5 62.3 67.9 74.6 82.4 64.7 84.9 87.3 70.5 72.4

ViT-G
CoOp-LLaMA 56.2 74.0 51.2 63.1 64.7 73.8 82.2 63.1 82.4 87.5 67.3 72.3
NeaR-LLaMA 59.0 74.9 63.0 61.7 66.2 74.2 87.5 64.9 83.7 85.0 71.9 72.1

SigLIP
CoOp-LLaMA 36.8 64.1 61.9 62.8 58.5 70.2 71.1 57.2 75.6 80.0 60.8 66.9
NeaR-LLaMA 34.0 63.0 71.5 62.9 57.7 70.2 70.9 56.7 72.9 78.6 61.4 66.3

Table A14: Performance comparison of NeaR-LLaMA versus CoOp-LLaMA under two vision backbones (ViT-
L, ViT-G) and a different pretraining strategy (SigLIP) across five datasets. NeaR consistently outperforms
the baseline for CLIP models.

across all prompting strategies, achieving cACC improvements of 4.2%, 1.9%, and 4.1%, respectively. This
clearly demonstrates the effectiveness of our method across different fine-tuning methods.

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

Text Prompting
CoOp-LLaMA 49.2 68.7 45.5 60.7 58.4 68.4 75.9 59.8 74.4 79.2 60.7 67.4
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0 (+4.3%) 69.8 (+2.4%)

Visual Prompting
VPT-LLaMA 48.9 69.5 45.3 61.3 60.3 70.2 78.1 61.7 73.2 82.2 61.1 69.0
NeaR-VPT-LLaMA 50.2 68.5 45.5 60.1 59.4 71.4 78.3 61.3 81.1 84.3 62.9 (+1.8%) 69.1 (+0.1%)

Multimodal Prompting
IVLP-LLaMA 48.9 69.5 45.3 61.3 60.3 70.2 78.1 61.7 73.2 82.2 61.1 69.0
NeaR-IVLP-LLaMA 50.8 70.1 52.5 61.0 58.6 69.9 80.3 62.1 83.7 86.4 65.2 (+4.1%) 69.9 (+0.9%)

Table A15: Evaluation of NeaR under different prompting strategies. In addition to text-based prompting, as
shown in Table 3, we present results on Visual Prompting method VPT (Jia et al., 2022) and Multimodal
Prompting method IVLP (Rasheed et al., 2022). We outperform the baselines by +1.8% and +4.1% in cACC
respectively.

A8.9 Study on Adapter based Finetuning

In this section we follow CLIP-Adapter Gao et al. (2021) to finetune linear adapters added on top of both
frozen CLIP image and text encoders, as an alternative to prompt-tuning. We begin by noting that prompt
learning is more efficient in terms of parameter count. In our setup, we use 16 prompt tokens for a total of
16 ∗ 512 learnable parameters, whereas a fully-connected linear layer has 512 ∗ K parameters where K is the
number of labels/classes (eg. number of GPT-4o generated labels is K=300 for Bird-200). The label filtering
step § 3.4 in our formulation results in a variable label space during test time, and thus we cannot directly
train a linear probe with a fixed number of classes. The table below shows cACC results for α = 0.8 (from
Gao et al. (2021)) for GPT-4o generated labels. The first row simply shows the naive implementation of the
CLIP Adapter Gao et al. (2021) on the labels. For the next two rows, we observe that NeaR_Adapter-GPT4o
outperforms the adapter baseline (59.98% vs 48.75% average cACC), but still falls short of the performance
achieved by prompt-based NeaR-GPT4o (59.98% vs 67.6% average cACC). This suggests that adapter based
tuning is unsuitable for the VF-FGVR setting, potentially due to its reduced robustness to open-vocabulary
label noise. This is consistent with findings from Wu et al. (2023) which shows that prompt tuning is more
robust to label noise compared to linear classifiers.
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Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

Adapter-GPT4o 39.2 63.9 40.4 56.4 40.0 61.1 57.7 42.9 66.2 75.8 48.7 60.0
NeaR-Adapter-GPT4o 50.2 73.9 48.0 59.2 54.7 69.7 70.2 49.3 76.6 82.3 59.9 66.9
NeaR-GPT4o (ours) 55.8 75.6 57.0 60.0 61.6 74.4 80.6 52.1 82.9 84.0 67.6 69.2

Table A16: Comparison of prompt-based NeaR-GPT4o (ours) with adapter based variant NeaR-Adapter-
GPT4o and standard adapter finetuning.

A8.10 Comparison with Pseudo-labeling based Methods DualCoOp and VLPL

In this section we compare NeaR against two pseudo-labeling based methods DualCoOp & VLPL. DualCoOp
operates in a multi-label setting, where each image can belong to multiple classes, and the goal is to maximize
activation across all true labels. On the other hand, in NeaR we operate in a problem setting where each
image comes with a noisy label and we tend to find the best possible semantic label using the proposed
pipeline. VLPL operates in a single-positive multi-label setting, where only one ground-truth label is provided
per image, but the model is expected to predict multiple relevant labels. It leverages VLMs to generate
pseudo-labels that enrich the supervision signal during training. In contrast, NeaR operates in a noisy
single-label setting, where each image is associated with a possibility of semantically incorrect label from
an MLLM. Rather than expanding to multiple labels, NeaR focuses on identifying the most semantically
accurate label. We already cite and compare with CaSED in our main table. As requested, for completeness
sake, we ran the DualCoOp and VLPL for our problem setting. The results are shown in Table A17 for
LLaMA generated labels. As anticipated, given their fundamentally different objectives, both DualCoOp and
VLPL underperform compared to NeaR.

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

DualCoOp 35.6 31.7 20.8 45.2 41.9 45.5 6.3 27.8 18.5 48.6 24.6 39.7
VLPL 35.2 36.2 23.4 49.87 37.6 38.4 5.2 34.1 30.2 46.1 26.3 40.9
CaSED 25.6 50.1 26.9 41.4 38.0 55.9 67.2 52.3 60.9 63.6 43.7 52.6
NeaR-LLaMA 51.03 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.4 86.1 65.0 69.8

Table A17: Comparison against pseudo-labeling based methods for labels generated by LLaMA3.2.

A8.11 Impact of Varying No. of Nearest-Neighbors κ

We leverage similarity information to build a candidate set for each image by augmenting its label with
the labels of its κ nearest-neighbors. In this section we study the effect of varying κ from 1 to 9 on the
performance of NeaR-LLaMA. We perform this experiment for 9-shot data from the Flowers-102 dataset, to
ensure that higher values of κ give meaningful results. The results in Figure A5 show that NeaR performs
well across a large range of κ values, and justifies our choice of κ = 3. Note that setting κ = 1 is not the
same as CoOp-LLaMA, but is the result of NeaR with qi = yi. The results also highlight two competing
factors that influence the performance of NeaR as κ varies:

• Improved Label Quality with Larger Candidate Sets – A larger candidate set is more likely to involve
a semantically closer label. This is reflected in the upward trend of cACC from κ = 1 to κ = 3.

• Increased Noise with Larger Candidate Sets – For higher values of κ, while the likelihood of including
better labels in the candidate set increases, it is offset by the addition of irrelevant labels. A noisier
candidate set makes it harder for the algorithm to disambiguate the best label in the candidate set.
This leads to a plateau or even slight decrease in cACC for κ > 3.
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Figure A5: Effect of varying κ (1 to 9) on the performance of NeaR-LLaMA for the 9-shot Flowers-102
dataset. The results show an upward trend in cACC as κ increases from 1 to 3, reflecting an increased
likelihood of semantically closer labels. However, for κ ≥ 3, the performance plateaus or slightly decreases
due to a noisier candidate set, validating our choice of κ = 3.

Our proposed approach constructs candidate sets from single labels assigned to each image, while the direct
candidate set method generates a set of labels for each image. A notable drawback of the direct approach is
the increase in size of the final label space, which may become prohibitively large as each image contributes
to κ − 1 new labels in the worst case. The direct method thus incurs a larger memory footprint and requires
longer training times due to the larger label space. For both GPT-4o and GeminiPro, the direct approach
termed NeaR-MLLM-Direct encounters an out-of-memory (OOM) error on the Car-196 dataset. Furthermore,
for LLaMA, our κ-nn based approach outperforms the direct approach by a substantial margin, achieving a
+5.8% higher cACC, while being more efficient.

To generalize this idea, we conduct an experiment where m is randomly sampled between 1 and 10 as shown
below, and we ablate over different values of k ranging from 1 to 9. We find that the cACC remains relatively
stable across this range, with only minor variations. This indicates that our method is not particularly
sensitive to the choice of k, which can be selected flexibly. In our implementation, we use k=3 as a practical
default.

Method (k-nearest) cACC sACC
k = 1 69.8 50.1
k = 2 72.3 51.7
k = 3 73.5 52.0
k = 4 74.7 53.9
k = 5 74.0 53.1
k = 6 74.3 53.6
k = 7 73.6 53.8
k = 8 71.5 52.6
k = 9 70.9 52.0

Table A18: Effect of the candidate-set size (k) on
NeaR performance for Flower-102.

Figure A6: Random sampling of images from m = 1
to m = 10 for Flower-102 dataset.

A8.12 Effect of Choice of Threshold τ

To address the noisy nature of MLLM generated labels, our method NeaR separates samples into clean and
noisy sets using a threshold τ based on clean posterior probability wi of a GMM fitted on loss values. Instead
of using a fixed threshold, we make τ adaptive by setting it to the mean posterior probability, τ = 1

n

n∑
i=1

wi,
allowing dynamic estimation of label noise at every training epoch. We study the effects of using a fixed
threshold of τ = 0.5 for NeaR-LLaMA, NeaR-GPT-4o, NeaR-GeminiPro and NeaR-Qwen2 in Table A19.
We observe that for NeaR-GeminiPro and NeaR-Qwen2, we have a performance gain of +1.3% and +1.1%
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in average cACC, while a relatively lower performance gain of +0.2% in NeaR-LLaMA and NeaR-GPT-4o.
These results show that our adaptive thresholding performs better than a static threshold across a variety of
MLLM choices, thus eliminating the need for tuning the hyperparameter τ .

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

NeaR-LLaMA (τ=0.5) 51.7 70.5 53.3 60.5 59.0 68.6 78.1 61.7 82.2 85.9 64.8 69.5
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0 (+0.2%) 69.8 (+0.3%)
NeaR-GPT-4o (τ=0.5) 54.7 74.5 57.9 59.7 62.1 74.6 79.6 52.1 83.0 83.8 67.4 68.9
NeaR-GPT-4o 55.8 75.6 57.0 60.0 61.6 74.4 80.6 52.1 82.9 84.0 67.6 (+0.2%) 69.2 (+0.3%)
NeaR-GeminiPro (τ=0.5) 52.8 73.5 53.7 61.1 64.8 75.2 77.6 53.3 77.7 81.0 65.3 68.8
NeaR-GeminiPro 55.9 76.0 54.9 61.1 64.7 75.4 77.9 53.2 79.4 80.8 66.6 (+1.3%) 69.3 (+0.5%)
NeaR-Qwen2 (τ=0.5) 34.3 65.0 57.0 64.0 55.2 71.3 74.0 61.4 74.1 76.4 58.9 67.6
NeaR-Qwen2 35.5 65.6 58.0 64.0 56.6 71.7 75.8 62.5 73.8 76.4 60.0 (+1.1%) 68.0 (+0.4%)

Table A19: Evaluation of our dynamic threshold τ across different MLLMs compared to a static threshold
τ = 0.5. The use of a dynamic threshold shows consistent improvements across all MLLMs, with gains in
NeaR-GeminiPro and NeaR-Qwen2, achieving increases of 1.6% and 1.1% in average cACC, respectively, and
a minor gain of 0.2% in other cases. These results support the design choice to avoid the hyperparameter τ ,
which can vary slightly across MLLMs.

A8.13 Comparison with clustering based methods.

We compare against three clustering baselines discussed in FineR (Liu et al., 2024a): (i) K-Means (Ahmed
et al., 2020) clustering on CLIP features, (ii) Sinkhorn-based parametric clustering (Caron et al., 2020)
using CLIP and DINO features, and (iii) SCD (Han et al., 2023), which performs non-parametric clustering
followed by CLIP-based narrowing of a large vocabulary consisting of 119k WordNet nouns and 11k bird
names from Wikipedia. Results are reported in Table A20. We observe that NeaR outperforms classical
clustering methods by a large margin. Despite having the knowledge of the number of classes, the resulting
cACC of K-Means algorithm is only 36.7%, showing that knowledge of class count alone does not yield high
performance. The fact that alternative clustering variants built on different feature extractors achieve only
marginal improvements further confirms that our performance gains come from the method design itself –
not from any prior knowledge of the class count.

Method Avg. (cACC)
K-Means 36.7
CLIP-Sinkhorn 21.6
DINO-Sinkhorn 19.1
SCD 52.2
FineR 57.0
NeaR (Ours) 67.6

Table A20: Comparison of average clustering accuracy (cACC) across methods.

A8.14 Performance across variations in different few-shot splits

We have conducted extensive experiments across three random seeds to evaluate the robustness and consistency
of our approach as shown in Figure A7. Specifically, for each seed, we sampled a unique set of m images
per class, ensuring diversity in the training data distribution across different runs. The results consistently
demonstrate that NeaR outperforms the baseline approaches across various independent samplings, with
minimum variance across datasets, indicating its stability and generalizability. This robustness across different
random seeds highlights the effectiveness of our approach in handling variations in training data selection,
further strengthening its practical applicability in real-world scenarios.

10



Under review as submission to TMLR

Bird-200
Car-198

Dog-120
Flower-102

Pet-37
45

50

55

60

65

70

75

80

85

cA
C

C
 (%

)

ZS-CLIP-LLaMA
CoOp-LLaMA
NeaR-LLaMA

Bird-200
Car-198

Dog-120
Flower-102

Pet-37

55

60

65

70

75

80

sA
C

C
 (%

)

ZS-CLIP-LLaMA
CoOp-LLaMA
NeaR-LLaMA

Figure A7: We report cACC and sACC under the effect of random sampling of training images across five
datasets. The plot demonstrates minimal variance across datasets, highlighting the robustness of NeaR to
variations in data selection.

A8.15 Analysis of retrieved images.

We perform qualitative analysis on the top three retrieved images (κ = 3) for the Flower-102 and Bird-200
datasets in Figure A8 and A9. In the results, each row shows a reference image on the left, followed by its
two nearest neighbors obtained using CLIP ViT-B/16 features. We show cases with both successful and
unsuccessful neighbors. Successful neighbors are the ones which help in forming desired candidate set by
including the ground-truth label. Unsuccessful candidate sets are the ones with no ground-truths.

Figure A8: Qualitative results showcasing successful and unsuccessful neighbors in Flower-102 dataset.

A8.16 Visualizing noisy samples from GMM

The qualitative results for visualizing noisy samples are shown in Figure A10. The figure displays several
training examples the GMM marked as noisy immediately after warm-up. For each such image, we provide
the ground-truth label, the model prediction (after the warm-up step), and the final post-training prediction.
It can be clearly seen that the predictions post training have become much more semantically inclined and
better than the initial predictions. We however cannot directly draw any comparison between the train set
predictions and the test set predictions due to the label filtering step post training (the label space changes
during inference). To make a fair comparison, we also study the scenario where we compare the test sample
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Figure A9: Qualitative results showcasing successful and unsuccessful neighbors in Bird-200 dataset.

Figure A10: Qualitative results of training samples classified as noisy by the GMM just after warmup and
after full training.

predictions of our model with the no-GMM ablation in Figure A11. We observe that the predictions of
no-GMM ablation are more noisy.

A8.17 Results on Other Open-Source MLLMs

In order to study the impact of NeaR on other open-source MLLMs, we query two weaker open-source
MLLMs, LLaVA-1.5 (Liu et al., 2023)and BLIP2 (Li et al., 2023), to generate labels for our datasets. In the
context of addressing the VF-FGVR problem, we observe that these models produce generic labels that lack
fine-grained detail. For instance, in the Bird-200 dataset, images from various fine-grained classes such as
American Goldfinch, Tropical Kingbird, Blue-headed Vireo, Yellow-throated Vireo, Blue-winged Warbler,
Canada Warbler, Cape-May Warbler, and Palm Warbler were all labeled simply as ‘Bird’ by LLaVA. This
lack of specificity results in a low cACC of 9.8% for CoOp-LLaVA and 4.7% for NeaR-LLaVA. This trend is
also observed with BLIP2. The inability of these MLLMs to generate diverse fine-grained labels makes them
a poor choice to solve the VF-FGVR task.
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Figure A11: Qualitative comparison of test image predictions between ours (with GMM) and no GMM
ablation (w/o GMM).

A8.18 Prompts used to generate labels from MLLMs.

In Table A21, we describe the prompts used to obtain the labels for both proprietary and open-source MLLMs.
We give different prompts for different datasets. As part of future work, we would like to explore if different
prompting strategies can give better labels.

MLLM Prompt Structure
“You are a multimodal AI trained to provide the best

GPT-4o, GeminiPro fine-grained class label for a given <dataset> image.
Provide the best fine-grained class label for the given
<dataset> image. Do not return anything else.”, <img>

“Give me a fine-grained label for this <dataset>.
LLaMA, Qwen For example, <samplelabel>.

Just print the label and nothing else.”, <img>

Table A21: A summary of prompts used for querying MLLM models used in this paper. In these prompts,
dataset ∈ {bird, car, dog, flower, pet}. img refers to the image being queried for fine-grained class label.
Samplelabel for bird is Black Throated Sunbird, samplelabel for car is 2012 BMW M3 coupe, etc. We
observe that open-source models like LLaMA require extra supervision in terms of sample labels for better
performance.
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