
Under review as submission to TMLR

Efficient Vocabulary-Free Fine-Grained Visual Recognition in
the Age of Multimodal LLMs

Anonymous authors
Paper under double-blind review

Abstract

Fine-grained Visual Recognition (FGVR) involves distinguishing between visually similar
categories, which is inherently challenging due to subtle inter-class differences and the
need for large, expert-annotated datasets. In domains like medical imaging, such curated
datasets are unavailable due to issues like privacy concerns and high annotation costs. In
such scenarios lacking labeled data, an FGVR model cannot rely on a predefined set of
training labels, and hence has an unconstrained output space for predictions. We refer to
this task as Vocabulary-Free FGVR (VF-FGVR), where a model must predict labels from
an unconstrained output space without prior label information. While recent Multimodal
Large Language Models (MLLMs) show potential for VF-FGVR, querying these models
for each test input is impractical because of high costs and prohibitive inference times. To
address these limitations, we introduce Nearest-Neighbor Label Refinement (NeaR), a novel
approach that fine-tunes a downstream CLIP model using labels generated by an MLLM.
Our approach constructs a weakly supervised dataset from a small, unlabeled training set,
leveraging MLLMs for label generation. NeaR is designed to handle the noise, stochasticity,
and open-endedness inherent in labels generated by MLLMs, and establishes a new benchmark
for efficient VF-FGVR.

1 Introduction

Method Training Inference Cost ($) cACC
Time Time

FineR (Liu et al., 2024a) 10 h 1.12 h 0 57.0
† GPT-4o - 17.5 h ∼ 100 59.2
ZS-CLIP + GPT-4o - 0.03 h 1 54.6
NeaR + GPT-4o (Ours) 1.57 h 0.03 h 1 67.6
‡ LLaMA - 9.12 h 0 48.4
ZS-CLIP + LLaMA - 0.03 h 0 60.5
NeaR + LLaMA (Ours) 1.57 h 0.03 h 0 65.0

Table 1: Performance and cost metrics for different
methods on benchmark FGVR datasets (computed
over 32, 503 images from the test sets). † =
proprietary models, ‡ = open-source models (both
used only for inference). Our method NeaR
achieves a clustering accuracy (cACC described in
§ 4) that exceeds even direct MLLM queries, at a
fraction of cost and time taken.

Fine-Grained Visual Recognition (FGVR) is a task in
computer vision that focuses on distinguishing between
highly similar categories within a broader class (Wei
et al., 2021). This task has gained increased importance
in recent years given the success of foundation models
on coarse-grained classification tasks. Traditional image
classification aims to differentiate between dogs, cats,
and birds, while FGVR aims to distinguish between dif-
ferent subcategories, such as Tennessee Warbler, Yellow-
rumped Warbler and Orange-crowned Warbler among
birds as an example. Fine-grained understanding is
essential for a wide range of applications, including bio-
diversity studies (Liu et al., 2024b; Yang et al., 2020),
medical diagnosis (Ridzuan et al., 2022; Sohoni et al.,
2020), manufacturing (Yang et al., 2022), fashion re-
tail (Cheng et al., 2021), and agriculture (Yang et al.,
2020).

FGVR poses significant challenges due to the subtle differences between categories and the need for large
annotated datasets. Typically, fine-grained classification datasets are annotated by domain experts who
meticulously examine each image and assign a corresponding label. However, when such domain experts
are unavailable, not only is labeled data unavailable, but the underlying fine-grained categories of interest
may also be unknown. We refer to this task as Vocabulary-Free FGVR (VF-FGVR), where the vocabulary
of fine-grained labels is not provided. In this context, pre-trained Multimodal Large Language Models

1

Under review as submission to TMLR

(MLLMs), which are trained on vast corpora of image-text data and possess extensive world knowledge,
provide a contemporary solution (Reid et al., 2024). MLLMs excel at zero-shot multimodal tasks such as
Visual Question Answering (VQA). By recasting FGVR as a VQA problem, where we ask the question ‘What
is the best fine-grained class label for this image?’, MLLMs can predict fine-grained labels in a
zero-shot manner without prior training on a specific dataset. The ability of MLLMs to operate in a VF
setting presents a promising approach for domains where curated, labeled datasets are scarce or unavailable.
However, querying such large models for each test input is computationally expensive and time-consuming,
making their usage impractical at scale. As shown in Table 1, performing inference with GPT-4o (Achiam
et al., 2023) on 32, 203 test images from benchmark FGVR datasets takes ≈ 17.5 hours of querying and
incurs a cost of ≈ USD $100.

Hence, especially considering the need for sustainable AI systems, there is an imminent need for an efficient
VF-FGVR system that performs on par with MLLMs on the fine-grained understanding task, while being
efficient in terms of time and computational resources required. We focus on this problem in this work. To this
end, we only consider access to a small unlabeled set of training images belonging to the classes of interest,
with no information regarding the individual class names or even the total number of classes. Such unlabeled
datasets are relatively easy to obtain for many domains – for instance, a collection of unlabeled photos of
exotic birds. We empirically show in § 4 that having about 3 images per class is sufficient to learn an FGVR
system that can perform inference for any number of test samples in the considered experiments. To solve
this VF-FGVR task, we propose to label this training set by querying an MLLM for each image. Such a
noisily labeled training set can be used in different ways – a simple strategy would be to utilize this MLLM
supervision to build a zero-shot classifier over the set of generated labels using a pre-trained CLIP (Radford
et al., 2021) model. Another way would be to naively fine-tune the CLIP model using the generated labels. In
both these approaches, test images can now be classified by the CLIP model without the need for expensive
forward passes through an MLLM. Although such simple methods are efficient in compute and time taken,
they fall short on performance as shown in § 4. This is because MLLM outputs are inherently noisy and
open-ended, so the generated labels do not necessarily provide strong supervision.

To address these limitations, we propose Nearest-Neighbor Label Refinement (NeaR), a method designed
to learn using the noisy labels generated by an MLLM. Our approach first constructs a candidate label set
for each image using the generated labels of other similar images. In line with prior work on learning with
noisy labels (LNL) (Li et al., 2020), we partition the dataset into clean and noisy samples. We then design a
label refinement scheme for both partitions that can effectively combine information from the constructed
candidate set and the generated label. Finally, to address the open-ended nature of MLLM outputs, we
incorporate a label filtering mechanism to truncate the label space. Our method NeaR thus enables us to
handle the inherently noisy and open-ended labels generated by MLLMs, allowing us to effectively fine-tune a
downstream CLIP model. As shown in Table 1, for GPT-4o, our approach can achieve performance exceeding
that of direct inference while incurring only 1/100th of the total inference cost, and requiring a negligible
fraction of inference time.

Our key contributions can be summarized as: (i) To the best of our knowledge, this is the first work that uses
state-of-the-art MLLMs to build a cost-efficient vocabulary-free fine-grained visual recognition system, (ii)
We propose a pipeline that can handle noisy and open-ended labels generated by an MLLM. Our proposed
method NeaR leverages similarity information to construct a candidate label set for each image which is used
to mitigate the impact of label noise. We also design a label filtering mechanism to improve classification
performance. (iii) We perform a comprehensive set of experiments showing that NeaR outperforms existing
works and the MLLM-based baselines we introduce for VF-FGVR, achieving this in a cost-efficient way.

2 Related Work

Fine-Grained Visual Recognition. FGVR (Wah et al., 2011; Maji et al., 2013) aims to identify sub
categories of an object, such as various bird species, aircraft type etc. FGVR has been extensively studied in
prior work (Wei et al., 2021). A key limitation of these methods is their reliance on annotated datasets, which
are often unavailable in many important domains like e-commerce and medical data. With advancements in
Vision-Language Models and MLLMs, the burden of dataset annotation can be alleviated, reducing the need
for extensive human effort. Foundation Models for VF-FGVR. Recent advancements in MLLMs have

2

Under review as submission to TMLR

led to models demonstrating strong zero-shot performance across a wide range of multimodal tasks (Li et al.,
2023; Achiam et al., 2023; Reid et al., 2024; Touvron et al., 2023; Liu et al., 2023). These MLLMs can be
applied to VF-FGVR by framing the task as a VQA problem. MLLMs are broadly categorized into two types:
(1) Proprietary models, such as GPT-4o (Achiam et al., 2023) and GeminiPro (Reid et al., 2024), and (2)
Open-source models, including BLIP-v2 (Li et al., 2023), LLaVA-1.5-7B (Liu et al., 2023), LLaMA-3.2-11B
(Touvron et al., 2023) and Qwen2-7B (Wang et al., 2024). Recent works (He et al., 2025; Zhang et al., 2024)
examine the zero-shot fine-grained performance of such MLLMs in the closed-world setting and show that
finetuning can help. Such approaches are not applicable in the VF-FGVR setup where labeled data as well
as the label space, is unavailable. As shown in Table 1, for both types of MLLMs, performing inference
for every test point remains computationally expensive and time-consuming. To address this, recent works
have developed more efficient solutions for VF-FGVR. For instance, (Liu et al., 2024a;c; Conti et al., 2023)
propose pipelines that use cascades of MLLMs. FineR (Liu et al., 2024a) presents a pipeline combining
VQA systems, Large Language Models (LLMs), and a downstream CLIP model, leveraging unsupervised
data to build a multimodal classifier for inference. RAR (Liu et al., 2024c) uses a multimodal retriever with
external memory, retrieving and ranking top-k samples using an LLM. CaSED (Conti et al., 2023) approaches
VF-FGVR by accessing an external database to retrieve relevant text for a given image. Nevertheless, these
methods are often complex and do not fully exploit the advancements in MLLMs, resulting in suboptimal
performance. Prompt Tuning. Prompt-tuning methods add a small number of learnable tokens to the input
while keeping the pretrained parameters unchanged. The tokens are fine-tuned to enhance the performance
of large pre-trained models on specific tasks. Context Optimization (CoOp) (Zhou et al., 2021) was the
first to introduce text-based prompt tuning, replacing manually designed prompts like "a photo of a" with
adaptive soft prompts. We study the impact of our method under other prompt-tuning methods such
as VPT (Jia et al., 2022) and IVLP (Rasheed et al., 2022) in Appendix§ A8.4. Learning with Noisy
Labels. (Arpit et al., 2017) demonstrated the memorization effect of deep networks, showing that models
tend to learn clean patterns before fitting noisy labels. To mitigate this, (Han et al., 2018; Chen et al.,
2019) introduce iterative learning methods to filter out noisy samples during training. (Arazo et al., 2019)
proposed a mixture model-based approach to partition datasets into clean and noisy subsets, leading to more
reliable training. Building on these insights, DivideMix (Li et al., 2020), a state-of-the-art LNL method,
combines semi-supervised learning with data partitioning to achieve superior performance on noisy datasets.
JoAPR (Guo & Gu, 2024) is a contemporary approach to fine-tune CLIP on noisy few-shot data. We compare
against JoAPR in Tab 4.

3 Methodology
As shown in Table 1, although MLLMs are capable of performing VF-FGVR, labeling every test image is
expensive and time consuming which limits their practical application. To address these limitations, we
propose Nearest-Neighbor Label Refinement (NeaR), a method designed to leverage MLLMs efficiently for
VF-FGVR. Our approach begins by constructing a candidate label set for each unlabeled training image as
described in § 3.2. Next we partition the data into ‘clean’ and ‘noisy’ samples using a Gaussian Mixture
Model (GMM) and the small-loss rule (Arpit et al., 2017). In § 3.3, we show how to refine labels of noisy
samples by incorporating information from the candidate sets. The final loss function is a simple cross-entropy
loss, where the refined labels serve as the targets. As outlined in § 3.1, using MLLM outputs directly can
result in an excessively large label space, which can hinder performance. To address this, NeaR incorporates a
label filtering mechanism to truncate the label space, which boosts classification performance while improving
efficiency. Once the CLIP model is fine-tuned, it can classify test images without requiring additional
expensive forward passes through an MLLM, significantly improving inference efficiency. Our methodology
NeaR is able to exceed the performance of direct MLLM-based classification at just a fraction of the cost
and compute. An overview of our methodology is presented in Figure 1, and the pseudocode is detailed in
Algorithm§ 1 in the appendix. We begin by discussing the necessary preliminaries.
3.1 Preliminaries
Problem Formalization. We consider a setting where only a small, unlabeled training set of n images
X = {xi}n

i=1, xi ∈ X is available. We assume that this training set has at least m-shot samples for each
class of the unknown ground-truth class name set G. We also study a more realistic scenario where there
is class imbalance in § 4.2 and observe that the performance of NeaR does not degrade. Note that no

3

Under review as submission to TMLR

Figure 1: Overview of our proposed method, NeaR, for Vocabulary-Free Fine-Grained Visual Recognition
(VF-FGVR). In the Training Stage, we start with a few unlabeled images. Step-1: An MLLM generates a
best-estimate fine-grained label (e.g., "Red-headed woodpecker") for each image. Step-2: A candidate label
set is constructed using K-Nearest Neighbors, capturing related fine-grained classes. Step-3: The model is
fine-tuned using a CLIP-based architecture. A GMM is applied to the loss to partition the data into clean
and noisy samples. Based on this split, a label refinement mechanism is used to further update and refine
the labels. The final loss, Lfinal, is then computed, and the model parameters are updated accordingly. In
the Inference Stage, we apply label filtering to limit the label space (Step-4). Our approach handles the
noise and open-ended nature of MLLM-generated labels, significantly reducing inference time and cost while
maintaining performance.
further information about G is known, including its cardinality. For each image xi, we obtain a class name
li = L(xi, p) from an MLLM L, where p is a simple text prompt ‘Provide a best fine-grained class
name for this image.’ that guides the MLLM to generate a fine-grained class name for the image. The
generated dataset D = {(xi, li)}n

i=1 consists of n image-label pairs, and the output space of class names is
denoted by C =

⋃n
i=1 li. W.l.o.g. we assume C is lexicographically ordered and we denote the k = |C| labels

by C = {c1, c2, . . . , ck}. Let yi ∈ {0, 1}k, i ∈ [n], denote the one-hot encoding of the text label li for image xi

i.e yj
i = 1 if li = cj and 0 otherwise. Due to the inherent noise and stochastic nature of MLLM generated

labels, it is common to have |C| > |G|. Furthermore, the number of generated labels increases with the size
of the training set and can become prohibitively large, hampering training and reducing efficiency of the
downstream CLIP classifier.

CLIP Classifier: CLIP (Radford et al., 2021) consists of an image encoder I and a text encoder T trained
contrastively on image-text pairs. For VF-FGVR, we first query an MLLM to build a few-shot dataset D with
label space C. CLIP classifies image x as l̂(x) = arg maxl∈C cos(I(x), T (l)). We call this baseline ZS-CLIP.
Note that ZS-CLIP does not leverage the paired supervision in D and thus serves as a simple baseline. CLIP
can benefit from fine-tuning on a small labeled datast. CoOp (Zhou et al., 2021) is a prompt-tuning approach
that adds a small number of learnable tokens θ to the class name. We denote CLIP’s class predictions by
fθ(x) ∈ ∆k, where ∆k denotes the k − 1 simplex. The prompts are trained on the dataset D by minimizing

cross-entropy loss LCE(θ) = −1
n

n∑
i=1

k∑
j=1

yj
i log(f j

θ (xi)). Naive finetuning using CoOp on a dataset generated

by an MLLM can be susceptible to label noise. Our NeaR method mitigates this issue by refining labels
through nearest-neighbor information. The following sections detail how NeaR constructs candidate sets,
learns with these sets, and filters labels for effective downstream performance.

3.2 NeaR: Candidate Set Construction

The label generated by an MLLM in response to a prompt may vary significantly from the ground truth
class label for each image. We propose to leverage local geometry to mitigate the noise in generated labels.
More formally, we make the manifold assumption, which suggests that similar images should share similar or

4

Under review as submission to TMLR

identical class labels (Iscen et al., 2022; Li et al., 2022). This is particularly useful when the label li assigned
to image xi by the MLLM is incorrect, which we refer to as a noisy label. By constructing a candidate label
set, we increase the likelihood of including the true label or a semantically closer alternative in the candidate
set rather than relying solely on the potentially incorrect label provided by the MLLM.

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37
MLLM Labels 69.9 78.6 70.9 57.9 84.8
Random CS 72.8 78.9 73.6 61.6 85.9
K-NN CS (ours) 78.0 81.3 75.5 65.8 87.4

Table 2: The table compares the quality of labels gen-
erated by the MLLM, Random candidate set (CS),
and K-NN CS using sACC. While Random CS mod-
estly increases the likelihood of including the true label
compared to using MLLM labels directly, K-NN CS
significantly outperforms Random CS, generating a
superior candidate set and validating our hypothesis.

Table 2 shows that the semantic similarity between
the best label in the candidate set and the ground
truth is higher than that of the noisy single label,
supporting our hypothesis. We use CLIP’s pretrained
image encoder I to extract image features of the
entire training set X. For each image xi, we select
the top-κ most similar images (including xi itself)
and gather their corresponding labels to form the
candidate set Si = (li, l1, . . . , lκ−1). In this work, we
choose κ = 3. The resulting dataset is reconstructed
as Ds = {(xi, li, Si)}n

i=1, incorporating the candidate
sets rather than single labels alone. An alternative
way of noise mitigation is to have the MLLM directly generate a candidate set of ‘top-κ’ labels for each image,
instead of just a single label. However this approach does not make use of similarity information between
images, as each candidate set is now generated independently, leading to an excessively large label space. We
empirically demonstrate the effectiveness of our nearest-neighbor based candidate set generation over other
alternatives in Appendix § A8.3.

3.3 NeaR: Learning With a Candidate Set

We treat the candidate sets as a source of supplementary similarity information to be used in conjunction
with the label. As explained below, for a noisy image, where the initial label li is incorrect, we propose
relying on the candidate set Si to mitigate the impact of noise. Conversely, for a clean image, we can
trust and utilize its generated label li. Detecting Noisy Samples. It has been demonstrated in (Arpit
et al., 2017) that models tend to learn clean samples before noisy ones, resulting in lower loss values for
clean samples. Following DivideMix (Li et al., 2020), for every training epoch, we fit a two-component
Gaussian Mixture Model (GMM) over the cross entropy loss values of all training samples {L(xi, li)}n

i=1,
where L(xi, li) = −

∑k
j=1 yj

i log(f j
θ (xi)), yi is the one-hot encoding of li. The component with the smaller

mean value models the clean samples, while the other component models the noisy ones. The posterior
probability wi = PGMM (clean|xi) computed from the fitted GMM is used to model the likelihood that a
sample xi is clean. This GMM is refitted for every training epoch, enabling dynamic estimation of label noise
over time. We now partition the training data into clean Xcl = {xi ∈ X | wi ≥ τ} and noisy Xns = X \ Xcl

sets based on clean probability threshold τ . We use the average clean posterior as an adaptive threshold for
every epoch, i.e τ = 1

n

n∑
i=1

wi. The effect of different thresholding strategies is presented in Appendix § A8.6.

Warm-up. Warm-up strategies are commonly used to speedup convergence and stabilize training. As
demonstrated in (Li et al., 2020), an initial warm-up phase allows the model to learn the clean samples better,
resulting in better separation between the losses of clean and noisy samples. During warm-up, we train
prompts for a few epochs (10 in our experiments) by minimizing the cross entropy loss over the generated
labels li with one-hot representation yi:

Lwarmup(θ) = −1
n

n∑
i=1

k∑
j=1

yj
i · log(f j

θ (xi))

This warm-up step lays the groundwork for effective training by allowing the model to initially focus on
images labeled correctly by the MLLM. Candidate Set Guided Label Refinement. Following the initial
warm-up phase, we make a forward pass over the entire training set at each training epoch to fit a GMM
and partition data into clean and noisy samples Xcl & Xns as described earlier. We model the confidence
of the candidate set Si by a vector qi ∈ Rk for each image i ∈ [n], initialized as qj

i = 1
|Si| if cj ∈ Si and 0

otherwise. This initialization reflects uniform confidence over classes belonging to the candidate set, and zero
for non-members. A candidate set is derived from neighboring images and provides a broader view of possibly

5

Under review as submission to TMLR

correct labels. Our approach constructs refined labels to effectively leverage this additional information. We
propose to construct refined labels for clean and noisy images differently. For an image xi with one-hot label
yi and candidate set confidence qi, we construct a refined label ȳi as:

ȳi =
{

shrp
(
wi · yi + (1 − wi) · fθ(xi), T

)
, if xi ∈ Xcl

rsc
(
shrp(wi · qi + (1 − wi) · fθ(xi), T), qi

)
, o/w

where wi is the GMM clean posterior probability, and fθ(xi) denotes the CLIP model class probabilities

with learnable prompts θ. The sharpen function shrp(y, T)i = (yi) 1
T /

k∑
j=1

(yj) 1
T , as defined in (Berthelot

et al., 2019), adjusts a probability distribution y to be more confident using a temperature T . The rescale

function rsc(y, q)i = (y ⊙ q)i/
k∑

j=1
(y ⊙ q)j rescales a probability y with the current confidence estimates of

the candidate set q. This ensures that the refined label has non-zero probabilities only for the candidate
labels. For both clean & noisy images, we update candidate set confidence to be used in the next epoch as
qi = rsc(fθ(xi), 1[qi]) where 1[qi] is 1 at non-zero indices. Prompts are learned by minimizing the cross-entropy
loss between the refined labels ȳ and CLIP model output.

Lfinal(θ) = −1
n

n∑
i=1

k∑
j=1

ȳj
i · log(f j

θ (xi))

Connection to PRODEN. Our loss is similar in spirit to losses designed for Partial Label Learning (PLL),
such as PRODEN (Feng et al., 2020), which allow learning when only candidate labels are present. However
unlike the PLL setting, our candidate sets are constructed for every image using noisy MLLM outputs,
and may not contain the true label. Furthermore, our method uniquely benefits from access to an initial
‘best-estimate’ label li generated by the MLLM, which is not exploited by traditional PLL algorithms. This
best estimate label allows us to differentiate clean samples and helps training convergence by transferring
knowledge from clean to noisy samples through iterative updates of q.
3.4 NeaR: Label Filtering
Although we train on the entire label set C, we observe that many labels are noisy and can be removed from
the inference time label space. Let Fclip = {ci | ∃x ∈ X s.t i = arg max

j∈[k]
f j

θ (x)} be a filtered set of labels

which are predicted by CLIP on the training set. Let Fcand = {ci | s.t i = arg max
j∈[k]

qj
i } be another filtered

set of labels which are predicted using just the candidate sets. We propose to keep only those labels which
belong to both sets. The evaluation time label space is Ctest = Fclip ∩ Fcand and the inference time prediction
of an image x is l̂(x) = arg max

l∈Ctest

sim(I(x), Tθ̂(l)), where θ̂ are the learned prompts. Label filtering is effective

as shown in Table A10.

4 Experiments and Results
In this section, we comprehensively evaluate the classification performance of NeaR for the VF-FGVR task.
We begin by describing the datasets, metrics and benchmark methods we compare against.

Datasets: We perform experiments on five benchmark fine-grained datasets: CaltechUCSD Bird-200 (Wah
et al., 2011), Stanford Car-196 (Khosla et al., 2011), Stanford Dog-120 (Krause et al., 2013), Flower-
102 (Nilsback & Zisserman, 2008), Oxford-IIIT Pet-37 (Parkhi et al., 2012). Following (Liu et al., 2024a), for
each dataset, NeaR and other baselines only have access to m unlabeled training images per class. Unless
specified otherwise, we assume m = 3. Results for 1 ≤ m ≤ 10 are shown in Figure 2.

Baselines: We compare our method NeaR against four different classes of baseline methods. (i)
Direct Inference on MLLMs. For every test image, we directly query an MLLM for a fine-grained label
using a text prompt such as ‘What is the best fine-grained class name for this image?’. We
evaluate two proprietary MLLMs – GPT-4o (Achiam et al., 2023) and GeminiPro (Reid et al., 2024) and
two strong open-source MLLMs, LLaMA-3.2-11B-Vision-Instruct (Touvron et al., 2023) and Qwen2-VL-
7B-Instruct (Wang et al., 2024). In the Appendix § A8, we show results on two other weaker open-source

6

Under review as submission to TMLR

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

ZS-CLIP-GT (Upper Bound) 57.2 80.1 64.0 66.5 60.2 77.6 70.8 79.7 87.5 92.0 68.0 79.2
CaSED 25.6 50.1 26.9 41.4 38.0 55.9 67.2 52.3 60.9 63.6 43.7 52.6
FineR 51.1 69.5 49.2 63.5 48.1 64.9 63.8 51.3 72.9 72.4 57.0 64.3
RAR 51.6 69.5 53.2 63.6 50.0 65.2 63.7 53.2 74.1 74.8 58.5 65.3
†GPT-4o 68.8 85.2 37.4 61.5 71.1 80.4 50.5 51.6 68.2 83.5 59.2 72.4
ZS-CLIP-GPT4o 48.8 72.5 42.9 59.5 43.8 69.1 18.2 53.0 68.2 78.7 54.6 66.6
CoOp-GPT-4o 54.4 75.4 51.9 59.8 60.4 72.9 70.4 51.7 83.5 86.3 64.1 69.2
NeaR-GPT4o 55.8 75.6 57.0 60.0 61.6 74.4 80.6 52.1 82.9 84.0 67.6(+3.5%) 69.2
†Gemini Pro 66.1 82.7 35.4 62.8 65.8 81.2 45.3 54.3 71.3 85.7 56.8 73.3
ZS-CLIP-GeminiPro 51.7 74.6 41.6 61.7 58.9 72.6 57.7 49.1 71.7 78.6 56.3 67.3
CoOp-GeminiPro 55.2 75.9 50.2 61.5 62.7 73.8 68.3 51.2 81.6 83.8 63.6 69.2
NeaR-GeminiPro 55.9 76.0 54.9 61.1 64.7 75.4 77.9 53.2 79.4 80.8 66.6(+3%) 69.3(+0.1%)
‡Qwen2-VL-7B-Instruct 53.0 75.3 45.6 63.7 69.7 78.8 84.8 72.7 77.7 85.1 66.2 75.1
ZS-CLIP-Qwen2 41.0 66.0 50.8 60.8 59.3 70.5 66.7 55.2 72.4 77.2 58.0 65.9
CoOp-Qwen2 51.0 72.1 52.1 61.9 62.5 73.4 77.0 65.0 83.4 87.5 65.2 72.0
NeaR-Qwen2 48.9 72.0 55.6 63.2 62.0 73.3 81.4 68.0 84.6 86.8 66.5(+1.3%) 71.7(-0.3%)
‡LLaMA-3.2-11B 41.4 70.6 14.4 61.6 55.0 71.8 66.0 63.6 65.1 82.0 48.4 69.9
ZS-CLIP-LLaMA 48.7 66.3 45.8 60.6 57.4 65.9 74.8 58.4 76.0 78.4 60.5 65.9
CoOp-LLaMA 49.2 68.7 45.5 60.7 58.4 68.4 75.9 59.8 74.4 79.2 60.7 67.4
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0(+4.3%) 69.8(+2.4%)

Table 3: ZS-Zero Shot, † proprietary models used for inference, ‡ open-source models used for inference. Our
results shown here are for κ = 3 and m = 3. The first row is ZS-CLIP performance when the ground-truth
label space is given, serving as an upper bound. The second partition consists of contemporary VF baselines
of which FineR (Liu et al., 2024a) is best performing. We outperform FineR by a large margin, even when
using weaker open-source MLLMs. The next four partitions are for labels generated by various MLLMs. We
compare NeaR against CoOp within each partition, and highlight best numbers in bold. Our method NeaR
outperforms all contemporary baselines, as well as ZS-CLIP and CoOp baselines for a variety of MLLMs.

MLLMs, BLIP-2 (Li et al., 2023) and LLaVA-1.5 (Liu et al., 2023). (ii) Contemporary VF Baselines. We
consider three contemporary baselines which do not require expert annotations but use foundational models
to perform VF-FGVR – CaSED (Conti et al., 2023), FineR (Liu et al., 2024a) and RAR (Liu et al., 2024c).
(iii) ZS-CLIP with MLLM label space. As described in § 3.1, we can perform zero-shot classification using
pre-trained CLIP over the label space generated by querying various MLLMs on training images. We consider
four variants of ZS-CLIP – ZS-CLIP-GPT4o, ZS-CLIP-GeminiPro, ZS-CLIP-LLaMA, and ZS-CLIP-Qwen2.
(iv) Prompt Tuning Baselines. Following CoOp as described in § 3.1, we directly perform prompt-tuning
using the labels generated by an MLLM. We consider four variants – CoOp-GPT4o, CoOp-GeminiPro,
CoOp-LLaMA, and CoOp-Qwen2.

Evaluation Metrics: In the VF-FGVR setting, NeaR as well as all other baselines operate in an
unconstrained label space, making accuracy an invalid metric since the predicted labels may never exactly
match the ground-truth labels. Following (Liu et al., 2024a; Conti et al., 2023), we evaluate performance
using two complementary metrics: Clustering Accuracy (cACC) and Semantic Accuracy (sACC). cACC
measures the ability of the model to group similar images together. For M test images with ground-truth

labels y⋆ and predicted labels ŷ, cACC is computed as max
p∈P(Ŷ)

1
M

M∑
i=1

1(y⋆
i = p(ŷi)), where P(Ŷ) is the set of

all permutations of the generated labels. Since cACC disregards the actual label name, it does not measure
if the predictions are semantically correct. Despite this limitation, cACC is a strong evaluation metric
and is widely used in areas such as GCD (Vaze et al., 2022), where the goal is to assess consistency of
predictions rather than exact label semantics. Semantic closeness is captured by sACC, which measures the
cosine similarity between Sentence-BERT (Reimers & Gurevych, 2019) embeddings of the predicted and
ground-truth labels. As observed in (Liu et al., 2024a), sACC is a more forgiving metric than cACC, because
embedding based similarity methods can capture general semantics even for completely distinct labels. We
hence consider cACC as representative of the model’s performance, with sACC acting as a sanity check to

7

Under review as submission to TMLR

ensure that the predicted labels remain meaningful.

Implementation Details: We use CLIP ViT-B/16 (Radford et al., 2021) as the VLM, whose image encoder
we also use to find the κ-nearest neighbors, with κ = 3 by default. The default number of shots is m = 3,
and we use the few-shot training splits provided by FineR. For both the CoOp baseline and our method, we
introduce 16 trainable context vectors. We use SGD as the optimizer and train for 50 epochs, with 10 warmup
epochs. We use a temperature of 2 in the sharpening function. Our batch size is 32. We use the SGD optimizer
with a learning rate of 0.002, and use both constant learning rate scheduler and cosine annealing scheduler
sequentially. The training hyperparameters are the same for CoOp and NeaR. We sample an equal batch of
clean and noisy samples during every epoch. We run all our experiments on a single Nvidia Tesla V100-32GB
GPU with an Nvidia driver version of 525.85.12. We use PyTorch 2.4.0 and CUDA 12.0. The default value of
number of nearest-neighbors κ is 3, and the number of shots m is 3. We use the few-shot splits provided by
FineR (Liu et al., 2024a). We utilize the publicly available meta-llama/Llama-3.2-11B-Vision-Instruct model
and Qwen/Qwen2-VL-2B-Instruct model from HuggingFace. We observe that instruction tuned MLLMs
generate better labels compared to base models. We perform inference using the HuggingFace transformers
library (Wolf et al., 2019)

4.1 Main Results

In this section we compare NeaR against baselines on five fine-grained datasets. In addition to the considered
baselines, we benchmark against JoAPR (Guo & Gu, 2024), a state-of-the-art noisy label learning method
designed for CLIP, and against PRODEN (Feng et al., 2020), a widely used partial label learning algorithm.

Benchmarking NeaR Against Baseline Methods: We evaluate NeaR against the four categories of
baselines introduced in § 4 – Direct MLLM inference, contemporary VF methods, zero-shot CLIP, and
prompt-tuned CLIP. The results are shown in Table 3, with all numbers reported for 3-shot training images.
The first partition of the table, ZS-CLIP-GT, is the performance of pre-trained CLIP when provided with the
ground-truth label space, serving as an upper bound. Notably, NeaR-GPT-4o achieves an average cACC just
−0.4% below this upper bound, demonstrating it’s effectiveness. The next partition consists of contemporary
methods that can perform VF-FGVR. Out of these, FineR (Liu et al., 2024a) is conceptually closest to ours
as it uses a combination of an LLM and a VQA system to construct a training-free CLIP based classifier. We
outperform FineR on all datasets by a margin of at least +8% in average cACC, even when using labels from
open-source MLLMs.

Moreover, as shown in Table 1, NeaR is significantly more efficient in terms of computation time. The next
four partitions in Table 3 report results using labels generated by GPT-4o, GeminiPro, LLaMA-3.2 and
Qwen2 respectively. Within each partition, we first present results for direct inference with the MLLM,
followed by ZS-CLIP, CoOp, and finally NeaR. Across all MLLMs, NeaR performs the best on average cACC,
showing gains of at least +3% over the CoOp baseline for GPT-4o, GeminiPro and LLaMA-3.2, and a gain
of +1.3% over CoOp for Qwen2. Furthermore, we observe a large performance gain for the difficult Car-196
dataset, where NeaR-LLaMA shows a gain of +7.1% in cACC over CoOp-LLaMA. These results highlight
that NeaR effectively learns from the imperfect labels generated by MLLMs, leading to robust and efficient
fine-grained classification.
Comparison against PRODEN: Our loss function resembles those used in Partial Label Learning (PLL),
such as PRODEN (Feng et al., 2020), which are designed to handle learning with only candidate sets. To
study the efficacy of traditional PLL approaches, we replace the traditional cross-entropy loss used in CoOp
with PRODEN, and learn prompts using the candidate sets directly. The results are shown in Table 4, where
NeaR outperforms PRODEN by a large margin of 4.3% in cACC and 3.2% in sACC. Unlike in traditional
PLL where candidate sets are assumed to include the correct label, our candidate sets are generated for each
image using noisy MLLM outputs and may not always contain the true label. Also, NeaR uniquely benefits
from an initial "best-estimate" label li from the MLLM, which traditional PLL methods do not exploit. As
described in § 3.3, this best-estimate label is used to find "clean" images which have a higher probability of
being correctly labeled. Knowledge from these clean samples helps resolve the ambiguity in candidate sets,
improving performance.

8

Under review as submission to TMLR

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

JoAPR-LLaMA 49.2 70.0 42.8 60.6 59.5 70.6 76.7 60.1 73.9 83.3 60.4 68.9
PRODEN 48.3 67.6 45.9 60.6 57.9 67.0 75.2 59.0 75.8 78.5 60.6 66.6
NeaR-LLaMA 51.1 70.2 52.5 60.8 59.2 70.2 78.6 61.7 83.4 86.1 64.9 (+4.3%) 69.8 (+3.2%)

Table 4: Comparison of NeaR with a contemporary noisy label learning method, JoAPR (Guo & Gu, 2024),
for CLIP using LLaMA-generated labels. NeaR outperforms JoAPR with an average improvement of +4.6%
in cACC and +0.9% in sACC. These results indicate that directly applying LNL methods is insufficient to
handle the challenges of noisy MLLM outputs. By incorporating better label refinement using candidate
set, and by performing label filtering, NeaR provides a robust solution to the VF-FGVR problem. We also
compare our method against PRODEN (Feng et al., 2020). We significantly outperform PRODEN on both
cACC and sACC.

Comparison against JoAPR (Guo & Gu, 2024), a Contemporary Noisy Label Learning Method
for CLIP: JoAPR is a prompt-tuning method designed to fine-tune CLIP on noisy few-shot data. In
Table 4, we show the results of using JoAPR to learn from noisy LLaMA generated labels. Our method NeaR
outperforms JoAPR by +4.6% in average cACC, and by +0.9% in average sACC. For JoAPR we use the
default configuration suggested in the paper. These gains highlight that generic noisy-label learning methods,
which expect structured noise (such as flips) within a closed label set, do not fully address the challenges
posed by open-ended MLLM outputs. By incorporating similarity information, performing candidate set
guided label refinement, and performing label filtering, NeaR provides a robust solution to the VF-FGVR.

4.2 Ablation Studies

Warmup GMM Candidate set Label filtering cACC sACC
✓ ✓ ✗ ✗ 73.9 60.2
✓ ✓ ✓ ✗ 75.6 60.6
✓ ✓ ✗ ✓ 76.9 60.1
✓ ✓ ✓ ✓ 78.6 61.7

Table 5: Ablation study of NeaR demonstrating the
effectiveness of our novel components candidate set and
label filtering. We report the ablations on Flowers-102
dataset.

In this section we study the impact of each module
of NeaR. NeaR leverages common techniques from
existing literature on learning with noisy labels.
As described in § 3.3, we have a warm-up phase
followed by a partition step where we fit a GMM
on loss values to partition the data into clean and
noisy samples. These two steps are common to
many methods that attempt to learn with noisy
labels (Arazo et al., 2019; Li et al., 2020; Guo & Gu,
2024), and are not unique to our method. We now study the impact of our novel additions – candidate set
guided label refinement, and label filtering. The results of this study are shown in Table 5.
Impact of Candidate Set. The candidate label set for an image is used to refine labels of noisy samples.
As described in § 3.3, it is also used to aid in label filtering. To study the effect of removal of the candidate
set, we refine the labels of the noisy samples as ȳi = shrp(fθ(xi), T), i.e we only used the sharpened CLIP
pseudolabel. We also remove the candidate set based filtering Fcand, as defined in § 3.3. Row 3 of Table 5
gives the result of removal of the candidate set. We observe a drop of −1.6% in cACC of the flowers-102
dataset, compared to our NeaR result in Row 4 where all components are present.
Impact of label filtering. The results of Rows 1 & 2 of Table 5 indicate the importance of performing label
filtering. The results in Row 1 act as a simple LNL baseline to our method. We observe a drop of −4.6%
cACC and −1% sACC for the flowers dataset, from our method in Row 4. This ablation clearly indicates
that our components are crucial to learn from noisy MLLM labels. The result of Row 2 studies the impact of
removing label filtering in isolation. We observe a drop of −2.9% cACC compared to our method NeaR in
Row 4. These ablations confirm that candidate-set guided label refinement and label filtering are integral.

Imbalanced Training Data: We study the realistic scenario of class imbalance in the few-shot training
data. We simulate a long-tail distribution where we randomly select a small number of head classes (10
classes for pet-37) which have 4 ≤ m ≤ 10 samples, and the remaining tail classes have m = 3 samples. We
show results in Table 6. We observe that there is no degradation in performance for both CoOp and NeaR.
Infact, we note slightly better cACC and sACC values for NeaR on account of the slight increase in the
training data.

9

Under review as submission to TMLR

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

FineR 46.2 66.6 48.5 62.9 42.9 61.4 58.5 48.2 63.4 67.0 51.9 61.2
ZS-CLIP-LLaMA 48.9 67.0 46.9 60.3 55.9 64.5 71.4 58.5 75.5 72.2 59.7 64.5
CoOp-LLaMA 47.9 69.9 45.6 60.6 54.2 67.8 74.0 60.2 78.0 74.0 60.0 66.5
NeaR-LLaMA 50.9 69.9 52.6 60.4 60.2 71.2 80.3 63.8 84.6 86.2 65.7 (+5.7%) 70.3 (+3.8%)

Table 6: Performance comparison of NeaR-LLaMA with other baselines under long-tail class distribution.
Both NeaR and CoOp retain performance on imbalanced data compared to balanced sampling. NeaR
outperforms CoOp by +5.7% in cACC.

1 2 3 4 5 6 7 8 9 10
of Shots

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Av
er

ag
e

cA
C

C
 (%

)
1 2 3 4 5 6 7 8 9 10

of Shots

60.0

62.0

64.0

66.0

68.0

70.0

Av
er

ag
e

sA
C

C
 (%

)

FineR ZS-CLIP-LLaMA CoOp-LLaMA NeaR-LLaMA

Figure 2: Effect of varying m, number of images per class
in training data for labels generated by LLaMA. NeaR (in
purple) outperforms CoOp (blue) for all m ≥ 2 in average
cACC & sACC.

Analysis on Number of Shots m in Train-
ing Data: We explore the effect of the number
of images used per class, as presented in Fig-
ure 2. We consistently use κ = 3 for candidate
set construction across all shots. For m = 1,
our method performs poorly due to excessive
label filtering. However, as the number of shots
increases, our candidate set is more informative
and performance improves markedly. Our pro-
posed method, NeaR, outperforms CoOp for all
m ≥ 2, especially at higher shots where there
are more noisy labels. We also observe that
cACC drops with increasing m due to increase
in the size of the test time label space.

4.3 Performance of NeaR on Different CLIP Backbones:

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

RN50
CoOp-LLaMA 13.9 44.1 8.6 46.6 18.2 47.9 15.6 31.7 36.7 54.7 18.6 45.0
NeaR-LLaMA 17.3 50.5 9.8 48.9 19.9 49.9 20.5 36.6 46.1 63.3 22.7 (+4.1%) 49.8 (+4.8%)

RN101
CoOp-LLaMA 17.3 45.5 9.6 47.4 20.8 45.4 17.5 34.7 44.0 55.2 21.8 45.6
NeaR-LLaMA 18.6 49.6 11.4 50.8 22.4 51.8 18.9 36.1 47.0 63.9 23.6 (+1.8%) 50.5 (+4.9%)

ViT-B/16
CoOp-LLaMA 49.2 68.7 45.5 60.7 58.4 68.4 75.9 59.8 74.4 79.2 60.7 67.4
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0 (+4.3%) 69.8 (+2.4%)

ViT-B/32
CoOp-LLaMA 45.0 56.3 39.3 60.5 51.9 66.2 69.8 59.1 72.7 79.8 55.7 66.2
NeaR-LLaMA 48.8 68.4 47.8 60.0 56.4 68.9 75.0 61.3 77.3 82.0 61.1 (+5.4%) 68.1 (+1.9%)

Table 7: Performance comparison of NeaR-LLaMA with CoOp-LLaMA across different CLIP backbones,
including ResNet-50 (RN50), ResNet-101 (RN101), and ViT-B/32. For completeness, results are also provided
for the default backbone, ViT-B/16. NeaR consistently outperforms CoOp-LLaMA, achieving gains of +4.1%
and +4.8% in cACC and sACC for RN50, +1.8% and +4.9% in cACC and sACC for RN101, and +5.4% and
+1.9% in cACC and sACC for ViT-B/32.

All results in this paper are on the ViT-B/16 CLIP backbone. In this section we compare the performance
of NeaR-LLaMA with CoOp-LLaMA across various other CLIP backbones. In Table 7 we present the
results of NeaR for a ResNet-50 (He et al., 2015), ResNet-101, and a ViT-B/32 vision-encoder based
CLIP model. We use the same configuration for each backbone. NeaR shows consistent improve-
ment, achieving gains of +4.1%, +1.8%, and +5.4% in average cACC for RN50, RN101 and ViT-B/32
respectively. These results highlight the effectiveness of our method over a diverse range of CLIP architectures.

10

Under review as submission to TMLR

Figure 3: Qualitative results showcasing both success and failure cases of Flower-102 dataset (left) and Pet-37
dataset (right). Success refers to instances where NeaR correctly predicts the class label while the MLLM
fails. Failure cases illustrate examples where NeaR produces incorrect predictions.

4.4 Qualitative Results of NeaR.
We visualize a selection of inference images and analyze their predictions for the Flower-102 and Pet-37 datasets
in Figure 3. Specifically, we compare the predictions of NeaR with those obtained from directly querying the
MLLM. In success cases (e.g., Blackberry Lily, Bee Balm), NeaR predicts correct labels consistently, while
LLaMA produces inconsistent and unrelated labels like Carnation or Coral Honeysuckle, reflected in lower
cACC. In failure cases, NeaR often misclassifies flowers as other species with similar structures or colors
(e.g., Globe Flower → Buttercup, Windflower → Wood Anemone), unlike LLaMA, which shows greater label
spread. For classes that NeaR underperforms, we find they are harder overall, even for the MLLM. Even
when incorrect, NeaR is more consistent (e.g., Windflower → Wood Anemone in most test images), while
LLaMA outputs 7 diverse labels for same set of images. We observe a similar trend for pets.

5 Conclusion
We addressed the challenge of Vocabulary-Free Fine-Grained Visual Recognition (VF-FGVR) by introducing
NeaR, a method that leverages MLLMs to generate weakly supervised labels for a small set of training images,
to efficiently fine-tune a downstream CLIP model. Our approach constructs a candidate label set for an image
using generated labels of similar images, and performs label refinement for clean and noisy data differently.
NeaR also proposes a label filtering strategy, effectively managing the open-ended and noisy nature of MLLM
outputs. Experiments on 4 MLLMs show that NeaR significantly outperforms direct inference methods while
dramatically reducing computational cost and inference time, setting a new benchmark for efficient and
scalable VF-FGVR.

Impact Statement

Our framework relies on MLLM-generated labels, a dependency that is becoming increasingly feasible with
advancements in MLLM accessibility. We demonstrate strong performance across both proprietary (GPT-4o,
GeminiPro) and open-source (LLaMA-11B, Qwen2-7B) models, showing robustness to MLLMs of varying
capacities. We see this work as a foundation for future research in leveraging MLLMs for fine-grained
recognition, with no direct societal or ethical risks.

11

Under review as submission to TMLR

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm: A
comprehensive survey and performance evaluation. Electronics, 2020.

Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and Kevin Mcguinness. Unsupervised label noise
modeling and loss correction. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 312–321. PMLR, 09–15 Jun 2019.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal,
Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer look
at memorization in deep networks. In International Conference on Machine Learning, 2017.

David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nicolas Papernot, Avital Oliver, and Colin Raffel.
Mixmatch: A holistic approach to semi-supervised learning. ArXiv, abs/1905.02249, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised
learning of visual features by contrasting cluster assignments. ArXiv, abs/2006.09882, 2020. URL
https://api.semanticscholar.org/CorpusID:219721240.

Pengfei Chen, Ben Ben Liao, Guangyong Chen, and Shengyu Zhang. Understanding and utilizing deep neural
networks trained with noisy labels. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1062–1070. PMLR, 09–15 Jun 2019.

Wen-Huang Cheng, Sijie Song, Chieh-Yun Chen, Shintami Chusnul Hidayati, and Jiaying Liu. Fashion meets
computer vision: A survey. ACM Computing Surveys, 54(4), 2021. doi: 10.1145/3447239.

Alessandro Conti, Enrico Fini, Massimiliano Mancini, Paolo Rota, Yiming Wang, and Elisa Ricci. Vocabulary-
free image classification. Advances in Neural Information Processing Systems, 36:30662–30680, 2023.

Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Provably
consistent partial-label learning. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Yuncheng Guo and Xiaodong Gu. Joapr: Cleaning the lens of prompt learning for vision-language models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 28695–28705,
2024.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Wai-Hung Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In Neural
Information Processing Systems, 2018. URL https://api.semanticscholar.org/CorpusID:52065462.

K. Han, Yandong Li, Sagar Vaze, Jie Li, and Xuhui Jia. What’s in a name? beyond class indices for image
recognition. ArXiv, abs/2304.02364, 2023.

Hulingxiao He, Geng Li, Zijun Geng, Jinglin Xu, and Yuxin Peng. Analyzing and boosting the power of
fine-grained visual recognition for multi-modal large language models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=p3NKpom1VL.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015. URL
https://api.semanticscholar.org/CorpusID:206594692.

12

https://api.semanticscholar.org/CorpusID:219721240
https://api.semanticscholar.org/CorpusID:52065462
https://openreview.net/forum?id=p3NKpom1VL
https://api.semanticscholar.org/CorpusID:206594692

Under review as submission to TMLR

Ahmet Iscen, Jack Valmadre, Anurag Arnab, and Cordelia Schmid. Learning with neighbor consistency
for noisy labels. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4662–4671, 2022.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge J. Belongie, Bharath Hariharan, and
Ser Nam Lim. Visual prompt tuning. ArXiv, abs/2203.12119, 2022.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-grained
image categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual categorization
(FGVC), volume 2, 2011.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops, pp.
554–561, 2013.

Jichang Li, Guanbin Li, Feng Liu, and Yizhou Yu. Neighborhood collective estimation for noisy label
identification and correction. ArXiv, abs/2208.03207, 2022.

Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix: Learning with noisy labels as semi-supervised
learning. In International Conference on Learning Representations, 2020.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. In International conference on machine learning,
pp. 19730–19742. PMLR, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning.
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 26286–26296,
2023.

Mingxuan Liu, Subhankar Roy, Wenjing Li, Zhun Zhong, Nicu Sebe, and Elisa Ricci. Democratizing
fine-grained visual recognition with large language models. In The Twelfth International Conference on
Learning Representations, 2024a.

Yu Liu, Yaqi Cai, Qi Jia, Binglin Qiu, Weimin Wang, and Nan Pu. Novel class discovery for ultra-fine-grained
visual categorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 17679–17688, 2024b.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Wei Li, Pan Zhang, Xiaoyi Dong, Yuanjun Xiong, Dahua Lin, and
Jiaqi Wang. Rar: Retrieving and ranking augmented mllms for visual recognition. arXiv preprint
arXiv:2403.13805, 2024c.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. ArXiv, abs/1306.5151, 2013.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes.
In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp. 722–729. IEEE, 2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012 IEEE
conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In International Conference on Machine Learning, 2021.

Hanoona Abdul Rasheed, Muhammad Uzair Khattak, Muhammad Maaz, Salman H. Khan, and Fahad Shahbaz
Khan. Fine-tuned clip models are efficient video learners. 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6545–6554, 2022.

13

Under review as submission to TMLR

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac,
Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

Muhammad Ridzuan, Ameera Bawazir, Ivo Gollini Navarrete, Ibrahim Almakky, and Mohammad Yaqub.
Self-supervision and multi-task learning: Challenges in fine-grained covid-19 multi-class classification from
chest x-rays. In Annual Conference on Medical Image Understanding and Analysis, pp. 234–250. Springer,
2022.

Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass left behind:
Fine-grained robustness in coarse-grained classification problems. In Advances in Neural Information
Processing Systems, volume 33, pp. 19339–19352, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. ArXiv,
abs/2302.13971, 2023.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery. In IEEE
Conference on Computer Vision and Pattern Recognition, 2022.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. Caltech ucsd bird dataset. Technical Report
CNS-TR-2011-001, California Institute of Technology, 2011.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Xiu-Shen Wei, Yi-Zhe Song, Oisin Mac Aodha, Jianxin Wu, Yuxin Peng, Jinhui Tang, Jian Yang, and Serge
Belongie. Fine-grained image analysis with deep learning: A survey. IEEE transactions on pattern analysis
and machine intelligence, 44:8927–8948, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-
the-art natural language processing. CoRR, abs/1910.03771, 2019.

Guofeng Yang, Yong He, Yong Yang, and Beibei Xu. Fine-grained image classification for crop disease based
on attention mechanism. Frontiers in Plant Science, 11:600854, 2020.

Jing Yang, Jian Duan, Tianxiang Li, Cheng Hu, Jianqiang Liang, and Tielin Shi. Tool wear monitoring in
milling based on fine-grained image classification of machined surface images. Sensors, 22(21), 2022. doi:
10.3390/s22218416.

Yuhui Zhang, Alyssa Unell, Xiaohan Wang, Dhruba Ghosh, Yuchang Su, Ludwig Schmidt, and Serena
Yeung-Levy. Why are visually-grounded language models bad at image classification? In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=MwmmBg1VYg.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language
models. International Journal of Computer Vision, 130:2337 – 2348, 2021.

14

https://openreview.net/forum?id=MwmmBg1VYg
https://openreview.net/forum?id=MwmmBg1VYg

Under review as submission to TMLR

Appendix

Our code will be made publicly available upon acceptance for further research and reproducibility. This
supplementary material contains additional details that we could not include in the main paper due to space
constraints, including the following information:

• Summary of notations and their descriptions in § A6

• The overall NeaR algorithm is presented in § A7

• Further descriptions of datasets used in § A8.1.

• Effect of label filtering on the size of label space in § A8.2

• Analysis on an alternative way to obtain candidate sets is shown in § A8.3

• Performance across different prompting strategies in shown in § A8.4

• Impact of varying κ, the number of nearest-neighbors considered is shown in § A8.5

• The effect of choice of threshold τ is studied in § A8.6

• Comparison with clustering-based methods in § A8.7

• Performance across variations in different few-shot splits is shown in § A8.8

• Analysis of retrieved images in § A8.9

• Discussion on other weaker open-source MLLMs is presented in § A8.10

• Prompts used to generate labels for different MLLMs in § A8.11

A6 Summary of Notations.

We represent elements of a set by a subscript and a vector component by a superscript. For instance
yi ∈ {0, 1}k denotes the one-hot vector encoding of the class label of the i-th image, i ∈ [n], and yj

i is the
j-th component of this encoding. Specifically yj

i = 1 if the i-th image is assigned the j-th label in the label
set C and 0 otherwise. A summary of notations is given in Table A8.

A7 NeaR Algorithm

We present the training algorithm of NeaR in Algorithm 1. We present the three steps of our method NeaR as
shown in Figure 1. In lines L1-L7 we generate possibly noisy labels from an MLLM. In lines L8-L12, we then
generate a candidate set from κ nearest-neighbors of each image. In lines L19-L27 we train prompt vectors θ
by minimizing the cross-entropy loss between CLIP predictions and the refined labels. The label refinement
in L24 effectively disambiguates the best label from the generated candidates. As training progresses, our

estimate of the candidate labels qi gets better. The sharpening function is shrp(y, T)i = (yi) 1
T /

k∑
j=1

(yj) 1
T and

the rescale function is defined as rsc(y, q)i = (y ⊙ q)i/
k∑

j=1
(y ⊙ q)j .

1

Under review as submission to TMLR

Notation Description

xi i-th unlabeled training image
X set of n training images {x1, x2, . . . , xn}
m Number of shots of images for each class belonging to an unknown ground-

truth class name set
li = L(xi, p) The class label generated for xi by an MLLM L with a input prompt p

D = {(xi, li)}n
i=1 The dataset generated by an MLLM L consisting of image-class name pairs

C =
⋃n

i=1 li Label space generated by the MLLM
k = |C| The k lexicographically ordered class names C = {c1, c2, . . . , ck}

yi ∈ {0, 1}k One-hot encoding of the label li of xi

I Image encoder of pre-trained CLIP
T Text encoder of pre-trained CLIP
θ Learnable prompt vectors added to the input embeddings of a class name

fθ(x) ∈ ∆k k-dimensional probability vector of the prompted CLIP model’s class predic-

tions for image x, i.e fθ(x)j ≥ 0 and
k∑

j=1
fθ(x)j = 1

Si Candidate set created by gathering MLLM generated labels of nearest-
neighbors of xi

κ Number of nearest-neighbors
Ds = {(xi, li, Si)}n

i=1 Augmented dataset containing the generated label li and constructed candi-
date set Si

Lce(fθ(xi), li) The cross-entropy loss of CLIP model predictions for image i w.r.t yi given
by −

∑k

j=1 yj
i log(fj

θ
(xi)) (also written as L(xi, li))

GMM A two-component Gaussian Mixture Model fit on loss values of all training
samples for every epoch

wi = PGMM (clean|xi) The posterior probability of image belonging to the "clean" component, i.e
component with lower mean

τ ∈ [0, 1] Threshold used to partition data into clean and noisy sets
Xcl, Xns Clean and noisy partitions of the training data based on w≥τ

qi ∈ Rk Confidence of the candidates. We have that qj
i > 0 if cj ∈ Si, qj

i = 0

otherwise, and
k∑

j=1
qj

i = 1

ȳi Refined label for image i constructed based on whether xi is clean or noisy.
For noisy images we rescale the label to have non-zero probabilities only for
the candidate labels

shrp(y, T) and rsc(y, q) sharpen a distribution y using temperature T ; rescale a distribution y based
on candidate confidence q

Lfinal(θ) The cross entropy loss between model predictions fθ(x) and refined labels ȳ
Ctest Inference label space post filtering

Table A8: List of notations used in our paper, and their descriptions.

2

Under review as submission to TMLR

Algorithm 1 NeaR algorithm: Training
Require: m-shot training images X = {xi}n

i=1; MLLM L; input prompt p; number of nearest neighbors κ; CLIP model
predictions fθ with learnable text prompts θ; num_epochs; warm_epochs; learning-rates η, ηwarm; Temperature T

Ensure: Trained parameters θ̂
Step-1: Labeling training images with an MLLM

1: D ← {}
/* Label each image x by prompting MLLM L with prompt p */

2: for i = 1, 2, . . . , n do
3: D ← D ∪ {(xi, li := L(xi, p))}
4: end for
5: C :=

⋃n

i=1 li
6: k := |C|

/* WLOG we consider C := {c1, c2, . . . , ck} where k := |C| to be lexicographically ordered. Let yi be the one-hot encoding of
label li */

7: yi ∈ {0, 1}k and yj
i := 1 if cj = li and 0 o/w

Step-2: Candidate Set Construction
8: Ds ← {}

/* Augment each image xi with a candidate set Si composed of labels of κ-nearest neighbors */
9: for (xi, li) in D do

10: Si ← knn_labels(xi, κ)
11: Ds ← Ds ∪ {(xi, li, Si)}
12: end for

/* We initialize candidate confidence for all images qi uniformly */
13: qi ∈ Rk and qj

i := 1
|Si| if cj ∈ Si and 0 o/w

Function Partition_data(D, fθ, τ):
14: L := {L(fθ(xi), li)}n

i=1
15: µc, σc, µn, σn ← fit_GMM(L)
16: W := {w1, w2, . . . , wn} where wi = PGMM (clean|xi)
17: Xcl := {xi ∈ X | wi ≥ τ}
18: Xns := X \Xcl

return Xcl, Xns, W
Step-3: Fine-tune prompts θ of a CLIP model

19: for t = 1, 2, . . . , num_epochs do
/* During warmup, the prompts are tuned on the cross-entropy loss Lce using MLLM generated labels in D */

20: if t ≤ warm_epochs then
21: θt ← θt−1 − ηwarm∇Lce(D, fθt−1)
22: else

/* Every epoch post warm-up, we partition the entire data into clean and noisy sets by fitting a GMM on cross-entropy loss
L */

23: Xcl, Xns, W ←Partition_data(D, fθt−1 , τ)
24: ȳi := shrp

(
wi · yi + (1− wi) · fθt−1 (xi), T

)
, if xi ∈ Xcl

:= rsc
(

shrp(wi · qi + (1− wi) · fθt−1 (xi), T), qi

)
, o/w

/* We update candidate confidence (for both clean and noisy samples) to be used in the next epoch. 1[qi] is 1 at non-zero
indices and 0 o/w */

25: qi ← rsc(fθt−1 (xi), 1[qi])

26: Lfinal(θt−1) := −1
n

n∑
i=1

k∑
j=1

ȳj
i · log(fj

θt−1
(xi))

27: θt ← θt−1 − η∇Lfinal(θt−1)
28: end if
29: end for
30: Return: θ̂ = θnumepochs

3

Under review as submission to TMLR

A8 Additional Results

In this section we start with descriptions of the datasets in A8.1 used followed by additional results. i) Effect
of label filtering on the size of label space in § A8.2. ii) Analysis on an alternative way to obtain candidate
sets is shown in § A8.3. iii) Performance across different prompting strategies in shown in § A8.4. iv) Impact
of varying κ, the number of nearest-neighbors considered is shown in § A8.5. v) The effect of choice of
threshold τ is studied in § A8.6. vi) Comparison with clustering-based methods in § A8.7. vii) Performance
across variations in different few-shot splits is shown in § A8.8. viii) Analysis of retrieved images in § A8.9.
ix) Discussion on other weaker open-source MLLMs is presented in § A8.10. x) Prompts used to generate
labels for different MLLMs in § A8.11.

A8.1 Description of Datasets Used.

We show results on 5 datasets with fine-grained labels – Bird-200, Car-196, Dog-120, Flower-102, Pet-37. In
Table A9, we show the number of images used for training and the size of the test set.

Bird-200 Car-196 Dog-120 Flower-102 Pet-37
Train Set m × 200 m × 196 m × 120 m × 102 m × 37
Test Set 5794 8041 8550 6149 3669

Table A9: Train and test set sizes of the datasets used in this paper. The number of shots is denoted by m,
with m = 3 used as the default in our experiments unless otherwise specified.

A8.2 Effect of Label Filtering on the Size of Label Space.

As described in § 4.2, label filtering is crucial to obtain good VF-FGVR performance. In Table A10, we
present the number of classes in the final classification label spaces that each method operates in. The first
row indicates the size of the ground-truth label space. We observe that our label filtering mechanism is
essential to combat the open-endedness of MLLM labels.

Method Average
Bird-200 Car-196 Dog-120 Flower-102 Pet-37

Ground Truths 200 196 120 102 37
MLLM Labels 412 562 169 183 63
FineR 202 286 97 112 44
NeaR-LLaMA 239 305 129 119 45

Table A10: Label filtering is effective in reducing the size of MLLM generated label to manageable levels.

A8.3 Analysis on Alternative Ways to Construct Candidate Sets

The labels generated by MLLMs can be noisy. To address this, we propose to construct a candidate set for
each image by grouping class labels from the κ nearest-neighbors of the image. In this section we study an
alternative approach to candidate set generation, where we query the MLLM itself to generate a set of κ
labels directly for each image. We present the results of this approach in Table A11, showing performance
across three MLLMs: GPT-4o, GeminiPro, and LLaMA.

A8.4 Different Prompting Strategies.

We analyze the impact of our proposed approach using various prompting strategies, as presented in Table A12.
We consider three distinct prompting methods involving fine-tuning across different modalities: (1) For
text-only prompting, we use CoOp (Zhou et al., 2021); (2) For image-only prompting, we employ VPT (Jia
et al., 2022); and (3) For both text and image prompting, we adopt hierarchical prompts introduced at different
text and image layers (Rasheed et al., 2022) as the backbone. Our method demonstrates strong performance

4

Under review as submission to TMLR

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

NeaR-GPT-4o-Direct 53.1 74.2 OOM OOM 61.0 71.9 77.0 55.4 83.1 82.7 - -
NeaR-GPT-4o 55.8 75.6 57.0 60.0 61.6 74.4 80.6 52.1 82.9 84.0 67.6 69.2
NeaR-GeminiPro-Direct 52.7 73.8 OOM OOM 70.5 58.3 73.9 46.9 81.3 81.7 - -
NeaR-GeminiPro 55.9 76.0 54.9 61.1 64.7 75.4 77.9 53.2 79.4 80.8 66.6 69.3
NeaR-LLaMA-Direct 43.8 68.2 44.7 56.0 56.4 70.6 70.9 57.7 83.2 87.5 59.8 68.0
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0 (+5.2%) 69.8 (+1.8%)

Table A11: Evaluation of NeaR-MLLM under different candidate set generation methods. We compare
our κ-nn-based candidate set against directly querying the MLLM for a candidate set, referred to as NeaR-
MLLM-Direct. For the Car-196 dataset, both GPT-4o and GeminiPro encounter Out-of-Memory (OOM)
errors due to the larger label space. For NeaR-LLaMA, our κ-nn-based approach outperforms the direct
approach by an average margin of +5.8% in cACC while being more computationally efficient.

across all prompting strategies, achieving cACC improvements of 4.2%, 1.9%, and 4.1%, respectively. This
clearly demonstrates the effectiveness of our method across different fine-tuning methods.

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

Text Prompting
CoOp-LLaMA 49.2 68.7 45.5 60.7 58.4 68.4 75.9 59.8 74.4 79.2 60.7 67.4
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0 (+4.3%) 69.8 (+2.4%)

Visual Prompting
VPT-LLaMA 48.9 69.5 45.3 61.3 60.3 70.2 78.1 61.7 73.2 82.2 61.1 69.0
NeaR-VPT-LLaMA 50.2 68.5 45.5 60.1 59.4 71.4 78.3 61.3 81.1 84.3 62.9 (+1.8%) 69.1 (+0.1%)

Multimodal Prompting
IVLP-LLaMA 48.9 69.5 45.3 61.3 60.3 70.2 78.1 61.7 73.2 82.2 61.1 69.0
NeaR-IVLP-LLaMA 50.8 70.1 52.5 61.0 58.6 69.9 80.3 62.1 83.7 86.4 65.2 (+4.1%) 69.9 (+0.9%)

Table A12: Evaluation of NeaR under different prompting strategies. In addition to text-based prompting, as
shown in Table 3, we present results on Visual Prompting method VPT (Jia et al., 2022) and Multimodal
Prompting method IVLP (Rasheed et al., 2022). We outperform the baselines by +1.8% and +4.1% in cACC
respectively.

A8.5 Impact of Varying No. of Nearest-Neighbors κ

We leverage similarity information to build a candidate set for each image by augmenting its label with
the labels of its κ nearest-neighbors. In this section we study the effect of varying κ from 1 to 9 on the
performance of NeaR-LLaMA. We perform this experiment for 9-shot data from the Flowers-102 dataset, to
ensure that higher values of κ give meaningful results. The results in Figure A4 show that NeaR performs
well across a large range of κ values, and justifies our choice of κ = 3. Note that setting κ = 1 is not the
same as CoOp-LLaMA, but is the result of NeaR with qi = yi. The results also highlight two competing
factors that influence the performance of NeaR as κ varies:

• Improved Label Quality with Larger Candidate Sets – A larger candidate set is more likely to involve
a semantically closer label. This is reflected in the upward trend of cACC from κ = 1 to κ = 3.

• Increased Noise with Larger Candidate Sets – For higher values of κ, while the likelihood of including
better labels in the candidate set increases, it is offset by the addition of irrelevant labels. A noisier
candidate set makes it harder for the algorithm to disambiguate the best label in the candidate set.
This leads to a plateau or even slight decrease in cACC for κ > 3.

Our proposed approach constructs candidate sets from single labels assigned to each image, while the direct
candidate set method generates a set of labels for each image. A notable drawback of the direct approach is
the increase in size of the final label space, which may become prohibitively large as each image contributes

5

Under review as submission to TMLR

1 2 3 4 5 6 7 8 9
k

65

70

75

A
cc

ur
ac

y
(%

)

Flowers-102

cACC
sACC

Figure A4: Effect of varying κ (1 to 9) on the performance of NeaR-LLaMA for the 9-shot Flowers-102
dataset. The results show an upward trend in cACC as κ increases from 1 to 3, reflecting an increased
likelihood of semantically closer labels. However, for κ ≥ 3, the performance plateaus or slightly decreases
due to a noisier candidate set, validating our choice of κ = 3.

to κ − 1 new labels in the worst case. The direct method thus incurs a larger memory footprint and requires
longer training times due to the larger label space. For both GPT-4o and GeminiPro, the direct approach
termed NeaR-MLLM-Direct encounters an out-of-memory (OOM) error on the Car-196 dataset. Furthermore,
for LLaMA, our κ-nn based approach outperforms the direct approach by a substantial margin, achieving a
+5.8% higher cACC, while being more efficient.

A8.6 Effect of Choice of Threshold τ

To address the noisy nature of MLLM generated labels, our method NeaR separates samples into clean and
noisy sets using a threshold τ based on clean posterior probability wi of a GMM fitted on loss values. Instead
of using a fixed threshold, we make τ adaptive by setting it to the mean posterior probability, τ = 1

n

n∑
i=1

wi,
allowing dynamic estimation of label noise at every training epoch. We study the effects of using a fixed
threshold of τ = 0.5 for NeaR-LLaMA, NeaR-GPT-4o, NeaR-GeminiPro and NeaR-Qwen2 in Table A13.
We observe that for NeaR-GeminiPro and NeaR-Qwen2, we have a performance gain of +1.3% and +1.1%
in average cACC, while a relatively lower performance gain of +0.2% in NeaR-LLaMA and NeaR-GPT-4o.
These results show that our adaptive thresholding performs better than a static threshold across a variety of
MLLM choices, thus eliminating the need for tuning the hyperparameter τ .

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

NeaR-LLaMA (τ=0.5) 51.7 70.5 53.3 60.5 59.0 68.6 78.1 61.7 82.2 85.9 64.8 69.5
NeaR-LLaMA 51.0 70.2 52.6 60.9 59.2 70.2 78.6 61.7 83.5 86.2 65.0 (+0.2%) 69.8 (+0.3%)
NeaR-GPT-4o (τ=0.5) 54.7 74.5 57.9 59.7 62.1 74.6 79.6 52.1 83.0 83.8 67.4 68.9
NeaR-GPT-4o 55.8 75.6 57.0 60.0 61.6 74.4 80.6 52.1 82.9 84.0 67.6 (+0.2%) 69.2 (+0.3%)
NeaR-GeminiPro (τ=0.5) 52.8 73.5 53.7 61.1 64.8 75.2 77.6 53.3 77.7 81.0 65.3 68.8
NeaR-GeminiPro 55.9 76.0 54.9 61.1 64.7 75.4 77.9 53.2 79.4 80.8 66.6 (+1.3%) 69.3 (+0.5%)
NeaR-Qwen2 (τ=0.5) 34.3 65.0 57.0 64.0 55.2 71.3 74.0 61.4 74.1 76.4 58.9 67.6
NeaR-Qwen2 35.5 65.6 58.0 64.0 56.6 71.7 75.8 62.5 73.8 76.4 60.0 (+1.1%) 68.0 (+0.4%)

Table A13: Evaluation of our dynamic threshold τ across different MLLMs compared to a static threshold
τ = 0.5. The use of a dynamic threshold shows consistent improvements across all MLLMs, with gains in
NeaR-GeminiPro and NeaR-Qwen2, achieving increases of 1.6% and 1.1% in average cACC, respectively, and
a minor gain of 0.2% in other cases. These results support the design choice to avoid the hyperparameter τ ,
which can vary slightly across MLLMs.

6

Under review as submission to TMLR

Bird-200
Car-198

Dog-120
Flower-102

Pet-37
45

50

55

60

65

70

75

80

85

cA
C

C
 (%

)

ZS-CLIP-LLaMA
CoOp-LLaMA
NeaR-LLaMA

Bird-200
Car-198

Dog-120
Flower-102

Pet-37

55

60

65

70

75

80

sA
C

C
 (%

)

ZS-CLIP-LLaMA
CoOp-LLaMA
NeaR-LLaMA

Figure A5: We report cACC and sACC under the effect of random sampling of training images across five
datasets. The plot demonstrates minimal variance across datasets, highlighting the robustness of NeaR to
variations in data selection.

A8.7 Comparison with clustering based methods.

We compare against three clustering baselines discussed in FineR (Liu et al., 2024a): (i) K-Means (Ahmed
et al., 2020) clustering on CLIP features, (ii) Sinkhorn-based parametric clustering (Caron et al., 2020)
using CLIP and DINO features, and (iii) SCD (Han et al., 2023), which performs non-parametric clustering
followed by CLIP-based narrowing of a large vocabulary consisting of 119k WordNet nouns and 11k bird
names from Wikipedia. Results are reported in Table A14. We observe that NeaR outperforms classical
clustering methods by a large margin.

Method Avg. (cACC)
K-Means 36.7
CLIP-Sinkhorn 21.6
DINO-Sinkhorn 19.1
SCD 52.2
FineR 57.0
NeaR (Ours) 67.6

Table A14: Comparison of average clustering accuracy (cACC) across methods.

A8.8 Performance across variations in different few-shot splits

We have conducted extensive experiments across three random seeds to evaluate the robustness and consistency
of our approach as shown in Figure A5. Specifically, for each seed, we sampled a unique set of m images
per class, ensuring diversity in the training data distribution across different runs. The results consistently
demonstrate that NeaR outperforms the baseline approaches across various independent samplings, with
minimum variance across datasets, indicating its stability and generalizability. This robustness across different
random seeds highlights the effectiveness of our approach in handling variations in training data selection,
further strengthening its practical applicability in real-world scenarios.

A8.9 Analysis of retrieved images.

We perform qualitative analysis on the top three retrieved images (κ = 3) for the Flower-102 and Bird-200
datasets in Figure A6 and A7. In the results, each row shows a reference image on the left, followed by its
two nearest neighbors obtained using CLIP ViT-B/16 features. We show cases with both successful and

7

Under review as submission to TMLR

unsuccessful neighbors. Successful neighbors are the ones which help in forming desired candidate set by
including the ground-truth label. Unsuccessful candidate sets are the ones with no ground-truths.

Figure A6: Qualitative results showcasing successful and unsuccessful neighbors in Flower-102 dataset.

Figure A7: Qualitative results showcasing successful and unsuccessful neighbors in Bird-200 dataset.

A8.10 Results on Other Open-Source MLLMs

In order to study the impact of NeaR on other open-source MLLMs, we query two weaker open-source
MLLMs, LLaVA-1.5 (Liu et al., 2023)and BLIP2 (Li et al., 2023), to generate labels for our datasets. In the
context of addressing the VF-FGVR problem, we observe that these models produce generic labels that lack
fine-grained detail. For instance, in the Bird-200 dataset, images from various fine-grained classes such as
American Goldfinch, Tropical Kingbird, Blue-headed Vireo, Yellow-throated Vireo, Blue-winged Warbler,
Canada Warbler, Cape-May Warbler, and Palm Warbler were all labeled simply as ‘Bird’ by LLaVA. This
lack of specificity results in a low cACC of 9.8% for CoOp-LLaVA and 4.7% for NeaR-LLaVA. This trend is
also observed with BLIP2. The inability of these MLLMs to generate diverse fine-grained labels makes them
a poor choice to solve the VF-FGVR task.

8

Under review as submission to TMLR

A8.11 Prompts used to generate labels from MLLMs.

In Table A15, we describe the prompts used to obtain the labels for both proprietary and open-source MLLMs.
We give different prompts for different datasets. As part of future work, we would like to explore if different
prompting strategies can give better labels.

MLLM Prompt Structure
“You are a multimodal AI trained to provide the best

GPT-4o, GeminiPro fine-grained class label for a given <dataset> image.
Provide the best fine-grained class label for the given
<dataset> image. Do not return anything else.”,

“Give me a fine-grained label for this <dataset>.
LLaMA, Qwen For example, <samplelabel>.

Just print the label and nothing else.”,

Table A15: A summary of prompts used for querying MLLM models used in this paper. In these prompts,
dataset ∈ {bird, car, dog, flower, pet}. img refers to the image being queried for fine-grained class label.
Samplelabel for bird is Black Throated Sunbird, samplelabel for car is 2012 BMW M3 coupe, etc. We
observe that open-source models like LLaMA require extra supervision in terms of sample labels for better
performance.

9

	Introduction
	Related Work
	Methodology
	Preliminaries
	NeaR: Candidate Set Construction
	NeaR: Learning With a Candidate Set
	NeaR: Label Filtering

	Experiments and Results
	Main Results
	Ablation Studies
	Performance of NeaR on Different CLIP Backbones:
	Qualitative Results of NeaR.

	Conclusion
	Summary of Notations.
	NeaR Algorithm
	Additional Results
	Description of Datasets Used.
	Effect of Label Filtering on the Size of Label Space.
	Analysis on Alternative Ways to Construct Candidate Sets
	Different Prompting Strategies.
	Impact of Varying No. of Nearest-Neighbors
	Effect of Choice of Threshold
	Comparison with clustering based methods.
	Performance across variations in different few-shot splits
	Analysis of retrieved images.
	Results on Other Open-Source MLLMs
	Prompts used to generate labels from MLLMs.

