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ABSTRACT

Machine learning assisted directed evolution often involves experimentally collecting data from a relatively small
number of variants to update a surrogate model, due to experimental limitations of characterisation and sequencing
at high throughput. We propose an alternative approach, involving collecting high-throughput experimental data in
a manner that results in a large number of characterised variants at the cost of reduced information: although the
sequences and the measured fitness values are known, their correspondence is not. In particular we explore applying
this method to the optimisation of a recently discovered phenomenon: magnetically sensitive fluorescent proteins.

1 INTRODUCTION
1.1 HIGH N, LOW N DIRECTED EVOLUTION

Routine optimisation of the properties of proteins, particularly with novel functions such as enzymatic activity, remains a challenging
task. Directed evolution is a powerful experimental method for exploring the sequence search space (Arnold, 2018), however it can be
burdensome to experimentally characterise a large number of variants. Recent approaches to high-throughput methods for cell charac-
terisation promise to overcome this by enabling large-scale characterisation of protein function and selection using a combination of
technologies such as microfluidics (Potvin-Trottier et al., 2018), automation (Chait et al., 2017; Yu et al., 2023) and in-vivo mutage-
nesis (Molina et al., 2022). In parallel, machine learning techniques are being developed that can learn from limited data, and make
informed predictions that guide the experimental search, thus requiring fewer variants to be characterised. Machine learning directed
evolution (MLDE) uses an algorithmic approach to reduce experimental burden by introducing in-silico exploration to the directed evo-
lution loop; typically a continuously updated surrogate model predicts protein function, and an exploration function proposes a relatively
small number of candidates for experimental study (Wu et al., 2019; Freschlin et al., 2022; Wang et al., 2023). While methods to perform
high-throughput in-vitro sequencing are becoming available (Rodriguez-Mateos et al., 2020), here we develop an alternate approach;
asking whether a high-throughput approach that enables large scale phenotype characterisation at the downside of reduced sequencing
to function information can benefit from machine learning assistance.

1.2 MAGNETO-FLUORESCENT PROTEINS

There is still much to learn about the processes nature has evolved that take advantage of the many ways in which biomolecules can
interact with physical processes and forces, such as the sensing of magnetic fields by birds and other species (Mouritsen, 2018). Fur-
thermore, the ability to engineer biomolecular systems to interact with physical processes to sense and actuate biological functions has
already revolutionised microbiology, for example with voltage sensing and fluorescent reporters like GFP (van Dijk et al., 2018; Tsien,
1998). Recently, Hayward et al. reported a magnetic field effect (MFE) response in the fluorescence of widely used fluorescent proteins
including EGFP (Cormack et al., 1996) and mScarlet (Bindels et al., 2017). When these fluorescent proteins are mixed with flavin
molecules, either in-vitro or in-vivo, the fluorescent signal was found to reversibly reduce in the presence of a (∼ 10 mT) magnetic
field. This effect is reminiscent of other flavoprotein systems (Evans et al., 2013; 2015; Déjean et al., 2020), though the mechanism is at
present unknown. In-vivo magneto-responsive proteins could have important consequences in medical biology, for example magneto-
genetic tools or drug delivery mechanisms (c.f. optogenetics which relies on light access, which is impeded by opacityPacker et al.
(2013)), as well as applications in industrially focused synthetic biology as an additional means of applying control to a cellular system.
A more immediate application could be to broaden the library of fluorescent reporters used to probe genetic functions or circuits. At
present, fluorescent reporters of different colours can be used to monitor multiple genetic functions, however the number of signals
which can be distinguished is quickly limited due to signal noise and spectrum overlap. Engineered magneto-fluorescent reporters could
address this in two respects: firstly, modulation of the signal enables the implementation of lock-in amplification, greatly increasing
signal integrity, perhaps allowing fluorescent reporters of significantly overlapping spectra to be separated. Building on this, a library
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of magneto-fluorescent proteins of the same colour but with different dynamical responses could potentially be engineered (with better
understanding of the effect rationally, or through the directed evolution method we propose), expanding the number of signals that can
be multiplexed.

1.3 OPTIMISING MAGNETO-FLUORESCENT PROTEINS

To measure the magnetic response of GFP in bacteria we employ a custom widefield microscope (Fig. 1), see Appendix A.1 that will
have an integrated microfluidics device (Potvin-Trottier et al., 2018) (see Fig. 2). Genetically designed cells continuously replicate,
providing a stream of clonal cells that flow in confined channels. By modulating the applied magnetic field, the fluorescence intensity
is quantified following image segmentation into individual cells. Fluorescence is thus recorded over time and integrated over many
identical clones to systematically phenotype variants (e.g. by the contrast in fluorescence, or temporal dynamics of the response). Due
to the miniature scale of the microfluidics, traditional sequencing via collection of individual variants is not possible. However, it is
possible to perform manual selection (i.e. terminate some proportion of lineages using ultra-violet light) and sequence the remaining
variants in a batch. Thus a simple strategy is binary batching: collecting the sequences of the top 20% of variants and their phenotypes,
and similarly (if the original sequence space is known) the sequences and phenotypes of the bottom 80% of variants though within each
batch the sequence-to-function identity is lost.

2 DISCUSSION
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Figure 1: (a) Widefield microscope. (i) Optical system. (ii) Stage inside the incubator. (b) Magnetically modulated fluorescence of E.
Coli expressing the MagnetoGFP proteins. (c) (i) Fourier transform (FT) of a similar fluorescent response (note: not the same data as
(i)). SNR = signal/noise is extracted from the FT by integrating in (signal) and out of (noise) a small frequency band around the magnet
on/off frequency (in this case 0.05 Hz). (ii) where EGFP was expressed, ApbE and FADS were either both induced or neither induced,
demonstrating lack of magnetic response when flavins are not present (ApbE transfers flavin to FlavinTag, FADS synthesises flavin).

2.1 MACHINE LEARNING PIPELINE
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Figure 2: (a) High throughput directed evolution cycle: variants are produced probabilistic, characterised at scale in a microfluidics
device, selected for, sequenced, and the data processed before repeating. (b) (i) Low N approach: rather than using the microfluidics
device, a small number of variants are individually characterised, which is used to update surrogate model and fine-tune the embedding
model. (ii) High N approach: a large number of variants are characterised, but the sequence to function relationship is not known. Only
the surrogate model is updated, e.g. by classification loss on batched fitness classes.

We propose bringing together “low N” approaches to directed evolution (Biswas et al., 2021) in which foundation models encode
general (presumably) biophysical properties of proteins in encodings (Unsal et al., 2022) that are used to train regression or more
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complex surrogate models, with a “high N” approach where 103 − 106 of variants are sequenced, but are batched into two or more
fitness classes. A small scale experiment is initially performed that measures the fitness of ∼ 100 variants. This data is used to train a
surrogate model by conventional means. Subsequently, a reinforcement algorithm such as EvoPlay (Wang et al., 2023) proposes a variant
library for experimental characterisation. Such a library can be produced at scale by designing a mutagenesis library that produces a
distribution of sequences similar to that of the model output (Weinstein et al., 2021). The experimental outcome are classified batches
of sequences and phenotypes. With this data there are a number of methods to refine the surrogate model. Firstly, the loss function
can be formulated as a classification problem: whether the surrogate prediction on the sequences in a given class correctly fall within
the fitness range of that class or not. Secondly, we use the distribution of fitness data within a class, i.e. calculate the loss between the
distribution of measured fitness in a class and the distribution of finesses predicted by the surrogate on the sequences of that class. Such
methods must be approached with care: for example, simply training a model to produce the correct output distribution could result in a
model whose output depends nonsensically on its input. Optimal transportTai et al. (2021) offers a promising solution: formulating the
problem as the optimal way in which to re-distribute the class sequence embeddings such that the surrogate model correctly predicts the
class fitness distribution. For a minimal demonstration of these techniques, see Appendix A.2.
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of proteins with language models. Nature Machine Intelligence, 4(3):227–245, March 2022. ISSN 2522-5839. doi: 10.1038/
s42256-022-00457-9.

4



Published at the GEM workshop, ICLR 2024

Erwin L. van Dijk, Yan Jaszczyszyn, Delphine Naquin, and Claude Thermes. The Third Revolution in Sequencing Technology. Trends
in Genetics, 34(9):666–681, September 2018. ISSN 0168-9525. doi: 10.1016/j.tig.2018.05.008.

Yi Wang, Hui Tang, Lichao Huang, Lulu Pan, Lixiang Yang, Huanming Yang, Feng Mu, and Meng Yang. Self-play reinforce-
ment learning guides protein engineering. Nature Machine Intelligence, 5(8):845–860, July 2023. ISSN 2522-5839. doi:
10.1038/s42256-023-00691-9.

Eli N. Weinstein, Alan N. Amin, Will Grathwohl, Daniel Kassler, Jean Disset, and Debora S. Marks. Optimal Design of Stochastic DNA
Synthesis Protocols based on Generative Sequence Models. Preprint, Synthetic Biology, October 2021.

Zachary Wu, S. B. Jennifer Kan, Russell D. Lewis, Bruce J. Wittmann, and Frances H. Arnold. Machine learning-assisted directed
protein evolution with combinatorial libraries. Proceedings of the National Academy of Sciences, 116(18):8852–8858, April 2019.
doi: 10.1073/pnas.1901979116.

Tianhao Yu, Aashutosh Girish Boob, Nilmani Singh, Yufeng Su, and Huimin Zhao. In vitro continuous protein evolution empowered by
machine learning and automation. Cell Systems, 14(8):633–644, August 2023. ISSN 2405-4712. doi: 10.1016/j.cels.2023.04.006.

A APPENDIX
A.1 MICROSCOPE

We use a custom widefield microscope developed on the ASI RAMM platform (see Fig. 1). The system has a 0.5× 0.5 mm2 FOV using
a Kinetix sCMOS camera and Nikon 40x/0.95 NA objective. The imaging setup is contained within a temperature controlled incubator.
Initial experiments have been performed with cells immobilised on an Agar pad, high-throughput experiments will be performed using
a microfluidics device that confines unique variants to channels. The magnetic field is applied using an electromagnet connected to a
computer controlled current-set power supply. LED illumination for fluorescence imaging is performed using the ASI Tiger system with
a 450nm LED at ∼ 1 W/cm2. Cells can be selectively illuminated by selecting switching pixels on and off using the Texas Instruments
DLP660 4K digital micromirror device (DMD)- in future this will be used to perform selection.

A.2 LEARNING WITH CLASSIFICATION AND OPTIMAL TRANSPORT

Here we demonstrate a simple proof of principal using classification and optimal transport on a reduced dataset to learn to fit a trivial
function y = x2. Training points are chosen by uniformly sampling x values (xtrain). A small multilayer-perceptron with the number
of parameters in each layer being [12, 8, 4, 1] is trained using mean-squared error (MSE) loss on the interval x ∈ X1 = [0, 1]. As
seen in Fig. 3(a), in this region the model fits the target perfectly, but understandably fails to generalise. A second model is trained by
alternatively updating with MSE loss on region X1 as before, and also on the region x ∈ X2 = [1, 2]: the data available in X2 is now
only a binary classification: 1 if the data point is in the top 20% of values in X2 and −1 otherwise (x-values are sampled randomly
to generate the training set). This improves the model, but also introduces an anomalous shape to the prediction function. Finally, the
model is alternately trained with MSE loss on X1, classification loss on X2, and also Sinkhorn divergencePeyré & Cuturi (2020) on X2,
where the xtrain points have been shuffled relative to the ytrain to ensure the model does not have access to the direct correspondence
between xtrain and ytrain. This appears to further improve the model, leading to better fitting in the region X2 and better generalisation
nearby. In Fig. 3(b), it can be seen that the inclusion of optimal transport derived loss indeed leads to the output distribution being shifted
towards that of the target distribution.

(b)(a)

Figure 3: fθ is the predictive model parameterised by θ. (a) Target function and model predictions after training on region X1 with MSE
loss, or X1 with MSE loss and X2 with classification (hinge loss) and optimal transport (OT) using Sinkhorn divergence. (b) Histogram
of y values sampled on uniformly chosen x ∈ X2, for the target function and models. Note the data has been balanced, i.e. points are
uniformly removed from the lower 80% such that there are the same number of training points as in the upper 20%.
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