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ABSTRACT

In this work, we tackle the challenging problem of denoising hand-object interac-
tions (HOI). Given an erroneous interaction sequence, the objective is to refine the
incorrect hand trajectory to remove interaction artifacts for a perceptually realistic
sequence. This challenge involves intricate interaction noise, including unnatural
hand poses and incorrect hand-object relations, alongside the necessity for robust
generalization to new interactions and diverse noise patterns. We tackle those
challenges through a novel approach, GeneOH Diffusion, incorporating two key
designs: an innovative contact-centric HOI representation named GeneOH and
a new domain-generalizable denoising scheme. The contact-centric representa-
tion GeneOH informatively parameterizes the HOI process, facilitating enhanced
generalization across various HOI scenarios. The new denoising scheme con-
sists of a canonical denoising model trained to project noisy data samples from
a whitened noise space to a clean data manifold and a “denoising via diffusion”
strategy which can handle input trajectories with various noise patterns by first
diffusing them to align with the whitened noise space and cleaning via the canon-
ical denoiser. Extensive experiments on four benchmarks with significant domain
variations demonstrate the superior effectiveness of our method. GeneOH Diffu-
sion also shows promise for various downstream applications.
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Figure 1: Trained only on limited data, GeneOH Diffusion can clean novel noisy interactions with
new objects, hand motions, and unseen noise patterns (Fig. (a)), produces diverse refined trajectories
with discrete manipulation modes (Fig. (b)), and is a practical tool for many applications (Fig. (c)).

1 INTRODUCTION

Interacting with objects is an essential part of our daily lives, and accurately tracking hands during
these interactions has become crucial for various applications, such as gaming, virtual and aug-
mented reality, robotics, and human-machine interaction. Yet, this task is highly complex and ill-
posed due to numerous factors like intricate dynamics involved and hand-object occlusions. Despite
best efforts, existing tracking algorithms often struggle with producing plausible and realistic results.

To better cater to the requirements of downstream tasks, noisy tracking results usually need to be
refined. Given a hand-object interaction (HOI) sequence with errors, the HOI denoising aims to pro-
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duce a natural interaction sequence free of artifacts such as penetrations. In this work, we assume
the object poses are tracked accurately and focus on refining the hand trajectory following (Zhou
et al., 2022; Grady et al., 2021; Zhou et al., 2021b; Zhang et al., 2021). This setting is impor-
tant with many practical demands in applications such as cleaning synthesized motions (Tendulkar
et al., 2023; Huang et al., 2023; Ghosh et al., 2023; Wu et al., 2022), refining motion-retargeted
trajectories (Hecker et al., 2008; Tak & Ko, 2005; Aberman et al., 2019), and virtual object manip-
ulations (Oh et al., 2019; Kato et al., 2000; Shaer et al., 2010). Early approaches relied on manually
designed priors (Dewaele et al., 2004; Hackenberg et al., 2011), which, however, proved inadequate
in handling intricate noise. More recent endeavors have shifted towards learning denoising priors
from data (Zhou et al., 2022; 2021b; Grady et al., 2021), yet the existing designs still fall short of
providing a satisfactory solution.

Leveraging data priors for HOI denoising is challenged by several difficulties. First, the interaction
noise is highly complex, covering unnatural hand poses, erroneous hand-object spatial relations,
and inconsistent hand-object temporal relations. Second, hand movements, hand-object relations,
and the noise pattern may vary dramatically across different HOI tracks. For instance, the noise
pattern exhibited in hand trajectories estimated from videos differs markedly from that resulted from
inaccurate capturing or annotations. A denoising model is often confronted with such out-of-domain
data and is expected to handle them adeptly. However, such a distribution shift poses a substantial
challenge for data-driven models. Lacking an effective solution, prior works always cannot clean
such complex interaction noise or can hardly generalize to unseen erroneous interactions.

We propose GeneOH Diffusion, a powerful denoising method with strong generalizability and prac-
tical applicability (see Figure 1), to tackle the above difficulties. Our method resolves the challenges
around two key ideas: 1) designing an effective HOI representation that can both informatively
parameterize the interaction and facilitate the generalization by encoding and canonicalizing vital
HOI information in a coordinate system induced by the interaction region; 2) learning a canonical
denoiser that projects noisy data from a whitened noise space to the data manifold for domain-
generalizable denoising. A satisfactory representation that parameterizes the high-dimensional HOI
process for denoising should be able to represent the interaction process faithfully, highlight noises,
and align different HOI tracks well to enhance generalization capabilities Therefore, we introduce
GeneOH, Generalized contact-centric Hand-Object spatial and temporal relations. GeneOH en-
codes the interaction informatively, encompassing the hand trajectory, hand-object spatial relations,
and hand-object temporal relations. Furthermore, it adopts a contact-centric perspective and in-
corporates an innovative canonicalization strategy. This approach effectively reduces disparities
between different sequences, promoting generalization across diverse HOI scenarios. To enhance
the denoising model’s generalization ability to novel noise distributions, our second effort centers on
the denoising scheme side. We propose to learn a canonical denoising model that describes the map-
ping from a whitened noise space to the data manifold. The whitened noise space contains noisy data
diffused from clean data in the training dataset via Gaussian noise at various noise scales. With the
canonical denoiser, we then leverage a “denoising via diffusion” strategy to handle input trajectories
with various noise patterns in a domain-generalizable manner. It first aligns the input to the whitened
noise space by diffusing it via Gaussian noise. Subsequently, the diffused sample is cleaned by the
canonical denoising model. To strike a balance between the denoising model’s generalization ca-
pability and the faithfulness of the denoised trajectory, we introduce a hyper-parameter that decides
the scale of noise added during the diffusion process, ensuring the diffused sample remains faithful
to the original input. Furthermore, instead of learning to clean the interaction noise through a single
stage, we devise a progressive denoising strategy where the input is sequentially refined via three
stages, each of which concentrates on cleaning one specific component of GeneOH .

We conduct extensive experiments on three datasets, GRAB (Taheri et al., 2020), a high-quality
MoCap dataset, HOI4D (Liu et al., 2022), a real-world interaction dataset with noise resulting from
inaccurate depth sensing and imprecise vision estimations, and ARCTIC (Fan et al., 2023), a dataset
featuring dynamic motions and changing contacts, showing the remarkable effectiveness and gener-
alizability of our method. When only trained on GRAB, our denoiser can generalize to HOI4D with
novel and difficult noise patterns and ARCTIC with challenging interactions, surpassing prior arts
by a significant margin, as demonstrated by the comprehensive quantitative and qualitative compar-
isons. We will release our code to support future research. In summary, our contributions include:

* An HOI denoising framework with powerful spatial and temporal denoising capability and
unprecedented generalizability to novel HOI scenarios;
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* An HOI representation named GeneOH that can faithfully capture the HOI process, high-
light unnatural artifacts, and align HOI tracks across different objects and interactions;

* An effective and domain-generalizable denoising method that can both generalize across
different noise patterns and clean complex noise through a progressive denoising strategy.

2 RELATED WORKS

Hand-object interaction is an important topic for understanding human behaviors. Prior works to-
wards this direction mainly focus on data collection (Taheri et al., 2020; Hampali et al., 2020; Guzov
etal., 2022; Fan et al., 2023; Kwon et al., 2021), reconstruction (Tiwari et al., 2022; Xie et al., 2022;
Qu et al., 2023; Ye et al., 2023), interaction generation (Wu et al., 2022; Tendulkar et al., 2023;
Zhang & Tang, 2022; Ghosh et al., 2023; Li et al., 2023), and motion refinement (Zhou et al., 2022;
Grady et al., 2021; Zhou et al., 2021b; Nufiez, 2022). The HOI denoising task wishes to remove
unnatural phenomena from HOI sequences with interaction noise. In real application scenarios, a
denoising model would frequently encounter out-of-domain interactions, and is expected to gener-
alize to them. This problem is then related to domain generalization, a general machine learning
topic (Sicilia et al., 2023; Segu et al., 2023; Wang et al., 2023; Zhang et al., 2023; Jiang et al., 2022;
Wang et al., 2022; Blanchard et al., 2011; Muandet et al., 2013; Dou et al., 2019), where a wide
range of solutions have been proposed in the literature. Among them, leveraging domain invariance
to solve the problem is a promising solution. Our work is related to this kind of approach, at a high
level. However, what is the domain invariant information for the HOI denoising task, and how to
encourage the model to leverage such information for denoising remains very tricky. We focus on
designing invariant representations and learning a canonical denoiser for domain-generalizable de-
noising. Moreover, we are also related to intriguing works that wish to leverage data priors to solve
the inverse problem (Song et al., 2023; Mardani et al., 2023; Tumanyan et al., 2023; Meng et al.,
2021; Chung et al., 2022). For our task, we need to answer some fundamental questions regarding
what are generalizable denoising priors, how to learn them from data, and how to leverage the prior
to refine noisy input from different distributions. We’ll illustrate our solution in the method section.

3  HAND-OBJECT INTERACTION DENOISING VIA DENOISING DIFFUSION

Given an erroneous hand-object interaction sequence with K frames (#, O) = {(Hj, O;)}K |, we
assume the object pose trajectory {Ok}f:1 is accurate following (Zhou et al., 2022; 2021b; Grady

et al., 2021; Zhang et al., 2021) and aim at cleaning the noisy hand trajectory {I:Ik}szl. This set-
ting is of considerable importance, given its practical applicability in various domains (Tendulkar
et al., 2023; Ghosh et al., 2023; Li et al., 2023; Wu et al., 2022; Hecker et al., 2008; Oh et al.,
2019; Shaer et al., 2010). The cleaned hand trajectory should be free of unnatural hand poses, in-
correct spatial penetrations, and inconsistent temporal hand-object relations. The hand trajectory
should present visually consistent motions and adequate contact with the object to support manip-
ulation. The problem is ill-posed in nature owing to the difficulties posed by complex interaction
noise and the substantial domain gap across different interactions resulting from new objects, hand
movements, and unseen noise patterns.

We resolve the above difficulties by 1) designing a novel HOI representation that parameterizes
the HOI process faithfully and can both simplify the distribution of complex HOI and foster the
model generalization across different interactions (Section 3.1) and 2) devising an effective de-
noising scheme that can both clean complex noises through a progressive denoising strategy and
generalize across different input noise patterns (Section 3.2).

3.1 GENEOH : GENERALIZED CONTACT-CENTRIC HAND-OBJECT SPATIAL AND TEMPORAL
RELATIONS

Designing an effective and generalizable HOI denoising model requires a serious effort in the repre-
sentation design. It involves striking a balance between expressive modeling of the interaction with
objects and supporting the model’s generalization to new objects and interactions. The ideal HOI
representation should accurately capture the interaction process, highlight any unusual phenomena
like spatial penetrations, and facilitate alignment across diverse interaction sequences.
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We introduce GeneOH to achieve this. It integrates the hand trajectory, hand-object spatial relations,
and hand-object temporal relations to represent the HOI process faithfully. An effective normal-
ization strategy is further introduced to enhance alignment across diverse interactions. The hand
trajectory and the object trajectory are compactly represented as the trajectory of hand keypoints,
denoted as J = {J;}X |, and the interaction region sequence: P = {P;}X | in a contact-aware
manner. We will then detail the design of GeneOH .

Generalized contact points. The interaction region  GeneoH
is established based on points sampled from the ob- Conomea ) e et prsston™ Hand-Object
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Figure 2: Three components of GeneOH.

Canonicalized hand trajectories. We include hand trajectories in our representation to effectively
model hand movements. Specifically, we leverage hand keypoints to model the hand, as they offer a
compact and expressive representation. We represent the hand trajectory as the sequence of 21 hand
keypoints, denoted as J = {J € RN» X3},€K:1, where N;, = 21. We further canonicalize the hand
trajectory J using the poses of the generalized contact points to eliminate the influence of object
poses, resulting in the canonicalized hand trajectory in GeneOH : J = {J = (J;, — t;)R} } X .

Generalized contact-centric hand-object spatial relations. We further introduce a hand-object
spatial representation in GeneOH. The representation is based on hand keypoints and general-
ized contact points to inherit their merits. The spatial relation centered at each generalized con-
tact point o, € P} comprises the relative offset from o to each hand keypoint hy € Jy, i.e.,
{h; — ox|hy € J}, the object point normal ny, and the object point position og. These statis-
tics are subsequently canonicalized using the 6D pose of the generalized contact points to encour-
age cross-interaction alignment. Formally, the spatial representation centered at oy, is defined as:
s? = ((o — tx) R, 0, R}, {(hy, — 0x)R} |hy, € Ji}). The spatial relation S is composed of sf at
each generalized contact point: S = {{s?|o, € Px}}~_,. By encoding object normals and hand-
object relative offsets, S can reveal unnatural hand-object spatial relations such as penetrations.

Generalized contact-centric hand-object temporal relations. Considering the limitations of the
above two representations in revealing temporal errors such as incorrect manipulations resulting
from inconsistent hand-object motions, we further introduce hand-object temporal relations to pa-
rameterize the HOI temporal information explicitly. We again take hand keypoints J to represent
hand shape and generalized contact points P for the object shape to take advantage of their good
ability in supporting generalization. The temporal relations encode the relative velocity between
each hand point o, and each hand keypoint hy, at frame k (v = v — v?), the Euclidean distance

between each pair of points (d'® = ||hj, — o||2), and the object velocity v¢ in the representation, as
illustrated in Figure 2. We further introduce two statistics by using the object point normal to canon-

icalize vi‘o, resulting in two normalized statistics: vg‘j_, orthogonal to the object tangent plane, and

v,}f“"l, lying in the object’s tangent plane, and encoding them with hand-object relative distances:

epo = e~k-di® kp|[vEe, |2 and €9 G = e~k-di®

—k-dPe

ko |l qll2- Here, k, kq, and k;, are positive hyper-

parameters, and the term e is negatively related to the distance between the hand and object
points. This canonicalization and encoding strategy aims to encourage the model to learn different
denoising strategies for the two types of relative velocities, enhance cross-interaction generalization
by factoring out object poses, and emphasize the relative movement between very close hand-object
point pairs. The temporal representation 7 is defined by combining the above statistics of each
hand-object point pair across all frames together'

T = {{vR. {dp°, vi° ep9, er° [k € Ji} ok € P}t (1)
It reveals temporal errors by encoding object velocities, hand-object distances and relative velocities.
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Figure 3: The progressive HOI denoosing gradually cleans the input noisy trajectory through three
stages. Each stage concentrates on refining the trajectory by denoising a specific part of GeneOH via
a canonical denoiser through the “denoising via diffusion” strategy.

The GeneOH representation. The overall representation, GeneOH, comprises the above three
components, as defined formally: GeneOH = {7, S, T }. Figure 2 illustrates the design. It faithfully
captures the interaction process, can reveal noise by encoding corresponding statistics, and benefits
the generalization by employing carefully designed canonicalization strategies. Inspecting back into
previous works, TOCH (Zhou et al., 2022) does not explicitly parameterize the hand-object temporal
relations or hand shapes and does not carefully consider the spatial canonicalization to facilitate the
generalization, which limits its denoising capability and may lead to the loss of high-frequency
hand pose details. ManipNet (Zhang et al., 2021) does not encode temporal relations and does not
incorporate contact-centric canonicalization, rendering it inadequate for capturing the interaction
process and less effective for generalization purposes.

3.2 GENEOH DIFFUSION: PROGRESSIVE HOI DENOISING VIA DENOISING DIFFUSION

While GeneOH excels in encoding the interaction process faithfully, highlighting errors to facilitate
denoising, and reducing the disparities among various interaction sequences, designing an effective
denoising model is still challenged by complex interaction noise, even from a distribution unseen
during training. Previous methods typically employ pattern-specific denoising models trained to
map noisy data restricted to certain patterns to the clean data manifold (Zhou et al., 2022; 2021b).
However, these methods are susceptible to overfitting, resulting in conceptually incorrect results
when faced with interactions with unseen noise patterns, as evidenced in our experiments.

To ease the challenge posed by novel in-
teraction noise, we propose a new denois-
Input: forward diffusion function Diffuse(-, ¢), the de- ing paradigm that learns a canonical de-
noising model denoise(-, ¢), input noisy point &, noising model and leverages it for domain-

o dlffus(llon SFEF’; fidiff : generalizable denoising. It describes the map-
utput: denoised data z. ping from noisy data at various noise scales

1: function DENOISE(Z "4, ¢4ifr) . .

from a whitened noise space to the data man-

2 for t from tgir to 1 do . . . .

3 ~t—1 ifold. The whitened noise space is populated
. ~0 with noisy data samples diffused from the clean
4: return
5
6

Algorithm 1 Denoising via Diffusion

#71 ~ denoise(Z’, t)

. & < Diffuse(#, tar) data via a 'diﬁ”usi'on process which gr'adually
- return z < DENOISE(Z, taitr) adds Gaussian noise to the data according to a
variance schedule, a similar flavor to the for-
ward diffusion process in diffusion-based generative models (Song et al., 2020; Ho et al., 2020;
Rombach et al., 2022; Dhariwal & Nichol, 2021). With the canonical denoiser, we then leverage a
“denoising via diffusion” strategy to handle input trajectories with various noise patterns in a gen-
eralizable manner. It first diffuses the input trajectory % via the diffusion process to another sample
Z that resides closer to the whitened noise space. Then the model projects the diffused sample 2
to the data manifold. To balance the generalization ability of the denoising and the fidelity of the
denoised result to the input, the diffused Z needs to be faithful to the input Z. We then introduce
a diffusion timestep ¢4 that decides how many diffusion steps are added. The process is visually
depicted in the right part of Figure 3. Details are outlined in Algorithm 1. We also implement the
denoising model’s function and the training as those of the score functions in diffusion-based gen-
erative models. It is a multi-step stochastic denoiser that eliminates the noise of the input gradually
to zero step-by-step. This way the denoiser can deal with noise at different scales flexibly and can
give multiple solutions for the ill-posed ambiguous denoising problem.

Based on the domain-generalizable denoising strategy, designing a single data-driven model to clean
heterogeneous interaction noise in one stage is still not feasible. The interaction noise contains
various kinds of noise at ununiform scales stemming from different reasons. Thus the corresponding
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noise-to-data mapping is very high dimensional and is very challenging to learn from limited data.
A promising solution to tackle the complexity is taking a progressive approach and learning multiple
specialists, each concentrating on cleaning a specific type of noisy information. However, the multi-
stage formulation brings new difficulties. It necessitates careful consideration of the information to
be cleaned at each stage to prevent the current stage from compromising the naturalness achieved in
previous stages. Fortunately, our design of the GeneOH representation facilitates a solution to this
issue. HOI information can be represented into three relatively homogeneous parts: 7, S, and 7.
Furthermore, their relations ensure the sequential refinement of the hand trajectory by denoising its
J, S, and T representations across three stages can avoid the undermining problem. A formal proof
of this property is provided in the Appendix A.2.

Progressive HOI denoising. We design a three-stage denoising approach (outlined in Figure 3),
each stage dedicated to cleaning one aspect of the representation: J, S, and 7, respectively. In
each stage, a canonical denoising model is learned for the corresponding representation, and the
denoising is carried out using the “denoising via diffusion” strategy. Given the input GeneOH™P" =

{gimeut Sinput_inputy - the first denoising stage, named MotionDiff, denoises the noisy canonical

hand trajectory j input 1o 75%€%1 . One stage-denoised hand trajectory J*“¢1 can be easily computed
by de-canonicalizing [7%*¢°1 using object poses. GeneOH™" can also be updated accordingly into
GeneOH¢1 = { T S‘agel,SS‘agel,’f’“agel}. Then the second stage, named SpatialDiff, denoises
the noisy spatial relation Ssuager o S¥ge2 Two stages-denoised hand trajectory %€ can be trans-
formed from the hand-object relative offsets in S¥*8°2: 759 = Average{(hjy—o)+ox|ox € Py }.
Following this, GeneOH*2¢1 will be updated to GeneOHs@ee2 — { 7stages Sstage, stage;}  Finally

the last stage, named TemporalDiff, denoises Ttages o T2 Since temporal information such
as relative velocities is redundantly encoded in 7, we compute the three stages-denoised hand tra-
jectory J5€%s by optimizing 7°?€°2 so that its induced temporal representation aligns with 752,
And we take 7% as the final denoising output, denoted as 7. Each stage would not undermine
the naturalness achieved after the previous stages, as proved in the Appendix A.2.

Fitting for a hand mesh trajectory. With the denoised trajectory 7 and the object trajectory, a
parameterized hand sequence represented via MANO parameters {ry, tx, Ok, Hk}le are optimized
to fit 7 well. Details are illustrated in the Appendix A.3.

4 EXPERIMENTS

We conduct extensive experiments to demonstrate the effectiveness of our method. We train all
models on the same training dataset and introduce four four test sets with different levels of domain
shift to assess their denoising ability and the generalization ability (see Section 4.2). Moreover,
we demonstrate the ability of our denoising method to produce multiple reasonable solutions for a
single input in Section 4.3. At last, we show various applications that we can support (Section 4.4).
Another series of experiments using a different training set is presented in the Appendix B.1.

4.1 EXPERIMENTAL SETTINGS

Training datasets. All models are trained on the GRAB dataset (Taheri et al., 2020). We follow the
cross-object splitting strategy used in TOCH (Zhou et al., 2022) and train models on the training set.
Our denoising model only requires ground-truth sequences for training. For those where the noisy
counterparts are demanded, we perturb each sequence by adding Gaussian noise on the hand MANO
translation, rotation, and pose parameters with standard deviations set to 0.01, 0.1, 0.5 respectively.

Evaluation datasets. We evaluate our model and baselines on four distinct test sets, namely GRAB
test set with Gaussian noise, GRAB (Beta) test set with noise sampled from a Beta distribution
(B(8,2)), HOI4D dataset (Liu et al., 2022) with real noise patterns resulting from depth sensing
errors and inaccurate pose estimation algorithms, and ARCTIC dataset (Fan et al., 2023) with Gaus-
sian noise but containing challenging bimanual and dynamic interactions with changing contacts.
Noisy trajectories with synthetic noise are created by adding noise sampled from corresponding
distributions to the MANO parameters.

Metrics. We introduce two sets of evaluation metrics. The first set focuses on assessing the model’s
ability to recover GT trajectories from noisy inputs following previous works (Zhou et al., 2022),
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including Mean Per-Joint/Vertex Position Error (MPJPE/MPVPE), measuring the average distance
between the denoised hand joints or vertices and the corresponding GT positions and Contact loU
(C-IoU) assessing the similarity between the contact map induced by denoised trajectory and the GT.
The second set quantifies the quality of denoised results, including Solid Intersection Volume (IV)
and Penetration Depth, measuring penetrations, Proximity Error, evaluating the difference of the
hand-object proximity between the denoised trajectory and the GT, and HO Motion Consistency, as-
sessing the hand-object motion consistency. Detailed calculations are presented in the Appendix C.2.

GRAB (thin geometry) GRAB (Beta) (novel synthetic noise) HOI4D (novel real noise, thin geometry)
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Figure 4: Qualitative comparisons. Please refer to our website and video for animated results.
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Figure 5: Stochastic denoising can produce divserse results with discrete modes.

Baselines. We compare our model with the prior art on the HOI denoising problem, TOCH (Zhou
et al., 2022). A variant named “TOCH (w/ MixStyle)” is further created by combining TOCH with
a general domain generalization method MixStyle (Zhou et al., 2021a). Another variant, “TOCH
(w/ Aug.)”, where TOCH is trained on the training sets of the GRAB and GRAB (Beta), is further
introduced to enhance its robustness towards unseen noise patterns.

Evaluation settings. When evaluating our model, we select the trajectory that is closest to the input
noisy trajectory from 100 randomly sampled denoised trajectories using seeds from 0 to 99. For
deterministic denoising models, we report the performance on a single run. Since our model can
give multiple solutions for a single input, we additionally report the performance of our model in
the form of average with standard deviations in the Appendix on the second metric set measuring
quality.

4.2 HOI DENOISING

We evaluated our model and compared it with previous works on four test sets: GRAB, GRAB
(Beta), HOI4D, and ARCTIC. In the GRAB test set, all objects were unseen during training, re-
sulting in a shift in the interaction distribution. In the GRAB (Beta) test set, the object shapes,
interaction patterns, and noise patterns differ from those in the training set. The HOI4D dataset
includes interaction sequences with novel objects and unobserved interactions, along with real noise
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Table 1: Quantitative evaluations and comparisons to baselines. Bold red numbers for best
values and italic blue values for the second best-performed ones. “GT” stands for “Ground-Truth”.
MPJPE  MPVPE C-loU v Penetration Depth ~ Proximity Error  HO Motion Consistency

Dataset Method

(mm, ) (mm,]) (%, 1) (ecm? ]) (mm, ) (mm, ) (mm?2, ])
GT - - ; 0.50 133 ; 0.51
Input 2316 2278 101 448 525 13.29 881.23
GRAB  1ocH 1238 1214 2331 2.09 217 3.12 2037
TOCH (w/MixStyle) 1336 13.03  23.70 228 2.62 3.0 21.29
TOCH (w/ Aug.) 1223 1189 2271 1.94 2.04 3.16 22.58
Ours 9.28 922 2527 123 1.74 253 0.57
Input 1765 1740 1321 2.19 477 5.83 27.58
ORAB TocH 2410 2290 1632 233 2.77 5.60 25.05
(Bet))  TOCH (w/MixStyle) 2279 21.19 1628  2.01 2.63 4.65 1737
TOCH (w/ Aug.) 1165 1047 2481 152 1.86 3.07 13.09
Ours 9.09 898 2676 119 1.69 274 0.52
Input - - - 226 247 - 46.45
TOCH R f R 4.09 4.46 R 35.93
HOMD  1ocH (w/ MixStyle) ; ; ; 431 496 ; 25.67
TOCH (w/ Aug.) . . . 420 451 . 25.85
Ours ; ; ; 1.99 215 - 9.1
GT ; ; ; 033 0.92 0 0.41
Input 2551 2484 168 2.8 4.89 15.21 931.69
ARCTIC 1oy 1434 1407 2032 1.84 201 431 18.50
TOCH (w/MixStyle) ~ 13.82  13.58 2170 192 2.13 425 18.02
TOCH (w/ Aug.) 1418 1390 2010 175 1.98 5.64 2257
Ours 1157 1109 2349 135 1.93 271 0.92

caused by inaccurate sensing and vision estimations. The ARCTIC dataset contains challenging
bimanual dexterous HOI sequences with dynamic contacts. Table 1 and Figure 4, 5 summarize the
quantitative results and can demonstrate the superiority of our method to recover GT sequences and
produce high-quality results compared to previous baseline methods. We include more results in
the Appendix B.1, our website and video .

Performance on challenging noisy interactions. As shown in Figure 4, the perturbed noisy trajec-
tories exhibit obvious problems such as unnatural hand poses, large and difficult penetrations such
as penetrating the thin mug handle, and unrealistic manipulations caused by incorrect contacts and
inconsistent hand-object motions. Our method can produce visually appealing interaction sequences
from noisy inputs effectively. Besides, we do not have difficulty in handling difficult shapes such as
the mug handle and scissor rings which are very easy to penetrate. However, TOCH cannot perform
well. Its results still exhibit obvious penetrations (the last frame) and hand motions that are insuffi-
cient to manipulate the mug. Furthermore, we are not challenged by difficult and dynamic motions
with changing contacts, as demonstrated by results on the ARCTIC dataset.

Results on noisy interactions with unseen noise patterns. In Figure 4, we demonstrate our
method’s robustness against new noise patterns, including previously unseen synthetic noise and
novel real noise. Our approach effectively cleans such noise, producing visually appealing and
motion-aware results with accurate contacts. In contrast, TOCH fails in these scenarios, as it ex-
hibits obvious penetrations (as seen in the middle example) and results in stiff hand trajectories
without proper contacts to manipulate the object (as seen in the rightmost example).

4.3 STOCHASTIC HOI DENOISING

Figure 5 illustrates our ability to provide multiple plausible denoised results for a single noisy input.
Notably, we observe discrete manipulation modes among these results. For instance, in the leftmost
example of Figure 5, our model generates different hand poses to address the unnatural phenomenon
in the second frame, where two fingers penetrate through the camera. Similarly, in the rightmost
example, our results offer two distinct ways to rotate the scissor for a certain angle.

4.4  APPLICATIONS

Cleaning hand trajectory estimations. As a denoising model, our approach can effectively refine
hand trajectory estimations derived from image sequence observations. Figure 6 provides examples
of applying our model to estimations obtained from ArcticNet-LSTM (Fan et al., 2023).


https://meowuu7.github.io/GeneOH-Diffusion/
https://youtu.be/ySwkFPJVhHY
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Refining noisy retargeted hand motions. In the right part of Figure 6, we showcase the application
of our denoising model in cleaning noisy retargeted hand trajectories. Our model excels at resolving
penetrations present in the sequence resulting from direct retargeting. In contrast, TOCH’s result
still suffers from noticeable penetrations.

Cleaning HOI estimations Cleaning retargeted hand trajectories

E (source mouon and directly retargeted motion) Cleaning retargeted hand lra_]eclones
a ﬁb , \;\‘ v ‘ "2
; "Vfi ‘ /‘\
\\.(:~ " m_ " \\ /
\
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Motlon
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ﬁ
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-
/
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@
(
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Timestamp Timestamp Tlmv..:l amp

Figure 6: Applications on refining noisy hand trajectories estimated from videos (left) and
cleaning retargeted hand trajectories (right).

5 ABLATION STUDY

Generalized contact-centric parameterizations. GeneOH leverages generalized contact points to
normalize the hand-object relations. To assess the effectiveness of this design, We create an ablated
model named “Ours (w/o Canon.)”, which uses points sampled from the entire object surface for pa-
rameterizing. From Table 2, we can observe that our design on parameterizing around the interaction
region can successfully improve the model’s generalization ability towards unseen interactions.

Denoising via diffusion. To further investi- Table 2: Ablation studies on the HOI4D dataset.

gate the impact of the “denoising via diffusion”  metnod Tv'  Penetration Depth ~  HO Motion |

) s . (em?,]) (mm, ) Consistency (mm?, |)
strategy on enhancing the model’s generaliza- 7, 226 YT 1645
tion ability, we ablate it by replacing the denois-  ours (wio Spatiadity ~ 2.94 345 3167
. . Te IDiff 1.72 1.9¢ 4.2
ing model with an autoencoder structure. The — gun (ve pittoen 316 e s
results are summarized in Table 2. Besides, the 332 (w/o Canon.) fgg ;7; {j’jf

comparisons between “Ours (w/o Diffusion)”
and TOCH highlight the superiority of our representation GeneOH as well.

Hand-object spatial and temporal denoising. We propose
a progressive denoising strategy composed of three stages to
clean the complex interaction noise. This multi-stage ap-
proach is crucial, as a single denoising stage would fail to pro-
duce reasonable results in the presence of complex interaction
noise. To validate the effectiveness of the stage-wise denois-
ing, we created two ablated versions: a) “Ours (w/o Tempo-
ralDiff)” by removing the temporal denoising module, and b)
“Ours (w/o SpatialDiff)” by removing both the temporal and
spatial denoising modules. Figure 7 and Table 2 demonstrate
their effectiveness in removing unnatural hand-object penetra- Figure 7: Effectiveness of the Spa-
tions and enforcing consistent hand-object motions. tialDiff and TemporalDiff stages.

Ours (/o
Diff) SpatialDiff.)
Wé
-
%
‘.}\
¢
£

More quantitative and qualitative results for ablation studies are included in the Appendix B.2.

6 CONCLUSION AND LIMITATIONS

In this work, we propose GeneOH Diffusion to tackle the generalizable HOI denoising problem.
We resolve the challenge by 1) designing an informative HOI representation that is friendly for
generalization, and 2) learning a canonical denoising model for domain-generalizable denoising.
Experiments demonstrate our high denoising capability and generalization ability.

Limitations. The main limitation lies in the assumption of accurate object pose trajectories. It may
not hold if the HOI sequences are estimated from in-the-wild videos. Refining object poses and
hand poses at the same time is a valuable and practical research direction.
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Overview. The Appendix provides a list of materials to support the main paper.

* Additional Technical Explanations (Sec. A). We give additional explanations to comple-
ment the main paper.

— The GeneOH representation (Sec. A.1). We discuss more insights into the representa-
tion design, why GeneOH can highlight errors, and how it compares to representations
designed in previous works.

— GeneOH Diffusion (Sec. A.2). We talk more about the whitened noise space, the dif-
fusion process, the multi-step stochastic denoising process, the “denoising via dif-
fusion” strategy, and the progressive denoising, together with a discussion on why
each denoising stage can successfully clean the input without breaking the naturalness
achieved after previous stages.

— Fitting for a hand mesh trajectory (Sec. A.3). We provide details of the fitting process.

* Additional Experimental Results (Sec. B). We include more experimental results in this
section to support the effectiveness of the method, including

— HOI denoising results (Sec. B.1). We include more denoising results on GRAB,
GRAB (Beta), HOI4D, and the ARCTIC dataset, including long sequences with bi-
manual manipulations. Besides, we discuss the results of another series of experi-
ments where the training dataset is changed to the training set of the ARCTIC dataset.

— Ablation studies (Sec. B.2). We provide more quantitative and qualitative results of
the ablation studies.

— Applications (Sec. B.3). We provide more results on the applications that our model
can support.

— Failure cases (Sec. B.4). We discuss the limitations and failure cases of our method.

— Analyzing the distinction between noise in real hand-object interaction trajectories
and artificial noise (Sec. B.5). We discuss the differences between the real noise pat-
terns and the artificial noise.

— User study (Sec. B.6). We additionally include a user study to further assess the quality
of our denoised results.

« Experimental Details (Sec. C). We illustrate details of datasets, metrics, baselines, mod-
els, the training and evaluation settings, and the running time as well as the complexity
analysis.

We include a video and an website to introduce our work. The website and the video contain
animated denoised results. We highly recommend exploring these resources for an intuitive under-
standing of the challenges, the effectiveness of our model, and its superiority over prior approaches.

A ADDITIONAL TECHNICAL EXPLANATIONS

A.1 THE GENEOH REPRESENTATION

More insights of the canonicalization design on 7 are explained as follows.

Canonicalization design on the temporal relations 7. The temporal relations 7 leverages hand-
object relative velocity vlklo at each frame k& of each hand-object point pair (h, 0) to represent the
motion relations. We further canonicalize the relative velocity via object normals by decomposing

v,};c’ into two statistics: VE,OL’ vertical to the object tangent plane and parallel to the object point

normal, and v?"”, lying in the object’s tangent plane. This decomposition enables the model to learn
different denoising strategies for the two types of relative velocities and enhance cross-interaction
generalization by factoring out object poses. However, relying solely on relative velocities is in-
sufficient to reveal motion noise in hand-object interactions. The same relative velocity parallel to
the normal direction can correspond to a clean state when the hand is far from the object, but a
noisy state when they are in contact. To address this, we further encode the distance between each
hand-object pair and their relative velocities into two statistics, {(e',;" ir 62‘7}” )}, using the following
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formulation:
ho
er = e MUk Ve |2 2

ho
ek di kaHv}C‘f"lHQ. 3)

h

i
Here, k, k,, and k; are positive hyperparameters, and the term e~k g inversely related to the
distance between the hand and object points. This formula allows the statistics for very close hand-
object point pairs to be emphasized in the representation.

Why GeneOH can highlight errors? For spatial errors, we mainly consider the geometric pen-
etrations between the hand and the object. The hand-object spatial relations S in GeneOH reveal
penetrations by parameterizing the object normals and hand-object relative offsets. In more detail,
for each hand-object point pair (hy, o), the dot product between the object normal ny, of oy, and
the relative offset hy, — o, indicates the signed distance between the object point and the hand point.
For each hand point hy, its signed distance to the object mesh can be revealed by jointly considering
its signed distance to all generalized contact points. Since the hand point h;, penetrates the object if
and only if its signed distance to the object mesh is negative, the spatial relation parameterization S
can indicate the penetration phenomena.

For temporal errors, we mainly consider inconsistent hand-object motions. There is no unified def-
inition or statement regarding what consistent hand-object motions indicate. Intuitively, the hand
should be able to manipulate the object, where sufficient contact and consistent motions between
very close hand-object point pairs are demanded. For very close hand-object pairs, the sliding mo-
tion on the object surface is permitted but the vertical penetration moving tendency is not allowed.
The above expectations and unnatural situations can be revealed from simple statistics like hand-
object relative velocities and hand-object distances. The distance can tell whether they are close
to each other. The relative velocity can reveal their moving discrepancy. The decomposed rela-
tive velocity lying in the tangent plane and vertical to the tangent plane indicate the surface sliding

tendency and the penetrating tendency respectively. The distance-related weight term e~krdi® can
emphasize hand-object pairs that are very close to each other. Therefore, the temporal relations rep-
resentation 7 leveraged in GeneOH can successfully indicate the temporal naturalness and incorrect
phenomena. Thus learning the distribution of 7 can teach the model what is temporal naturalness
and how to clean the noisy representation.

The GeneOH representation can be applied to parameterize interaction sequences involving rigid
or articulated objects. It carefully integrates both the hand motions and hand-object spatial and tem-
poral relations — more expressive and comprehensive compared to designs in previous works (Zhou
et al., 2022; 2021b; Zhang et al., 2021). Besides, it can highlight spatial and temporal interaction
errors. The above advantages make GeneOH well-suited for the HOI denoising task.

Inspecting back to previous works, TOCH (Zhou et al., 2022) does not explicitly encode hand-
centric poses or hand-object temporal relations and only grounds the hands onto the object without
careful consideration of cross-interaction alignment. ManipNet (Zhang et al., 2021) takes hand-
object distances to represent their relations. But this is not enough to reveal their spatial relations.
Canonicalizations are also not carefully considered in this work.

A.2 GENEOH DIFFUSION

We give a more detailed explanation of the three denoising stages in the following text.

The whitened noise space. This space is constructed by diffusing the training data towards a random
Gaussian noise. A diffusion timestep 1 < tgir < 7T where T is the maximum timestep controls to
what extent the input is diffused to pure Gaussian noise. It is the space modeled by the diffusion
models during training. The diffusion function we adopt in this work is also exactly the same as the
forward diffusion process of diffusion models. To be more specifically, given a data point x, the 4
diffusion would transform to x; by a linear combination of x and a random Gaussian noise n with
the same size to z via the following equation:

Ty =V + V1 —an, 4)

where ay = 1 — B, &y = L _ s, {B:} is the forward process variances. The distribution of x; is
a normal distribution: xy ~ N (v/az, (1 — /@y)I).
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Intuitively, the noise space contains all possible x; across all possible timestep 1 < ¢t < T. xy
with smaller ¢ will be more similar to x. In practice, T is set to 1000, 5, = 0.001, Br = 0.02
with a linear interpolation between them to create the variance sequence {3;}. During training ¢ is
uniformly sampled from the {¢|t € Z,1 < ¢ < T'}.

Training of the denoising model. Denote the multi-step stochastic denoising model leveraged in
our method as denoise(+, t) which takes the noisy sample with the noise scale ¢ as input and denoise
it back to the noise sample with noise scale ¢ — 1. When ¢ = 1, the denoised result lies in the
clean data manifold depicted by the model and is taken as the final denoised result. The denoise(-, t)
leverages a score function ey (-, t) to predict the noise component of the input noise sample Z;. The
score function €y (-, t) contains optimizable network weights 6 and is what we need to learn during
training. €g(-,t) only predicts the noise component fi. After that, a posterior sampling process is
leveraged to sample Z,_; based on Z; and the predicted n via the following equation:

1 (~ 1-— Qg
—— (Tt — ———¢
\/ Ot t vV 1-— Qi o
where z € N(0,1), 07 = B;. Therefore, the denoising model is a multi-step stochastic denoiser

since at each step it only identifies the mean of the posterior distribution and the denoised result
needs to be sampled from the distribution with the predicted mean and the pre-defined variance.

(‘iht)) +O'tZ, (5)

Tt—1 =

The “denoising via diffusion” strategy. The input trajectory with noise Z is diffused to = via
Gaussian noise with the diffusion timestep ¢4 using the following equation:

T = Tpyy = Ttgy = \/ Qe + /1 = Qg (6)
where n € N(0,I) is a random Gaussian noise.

Given the noisy sample Z; with noise scale ¢, the denoising model denoise(-,t) predicts its noise
component via the score function :

N = eg(T,t). @)
Then z; is denoised to Z;_; with noise scale t — 1 by sampling from the posterior distribution

following Eq. 5 with the predicted mean =, — \}%ﬁ and the pre-defined variance o?.

MotionDiff: canonicalized hand trajectory denoising. This denoising stage removes noise from

the canonicalized hand trajectory J7"Put of the input noisy interaction sequence by applying the
diffusion model for one stage-denoised 7?1, following the “denoising via diffusion” strategy.
To do this, the noisy representation 7" is diffused by adding noise for t,, steps, followed by
denoising for ¢, steps using the diffusion model. The resulting one stage-denoised hand trajectory
J*?€1 in the world coordinate space is obtained by de-canonicalizing the denoised canonicalized
hand trajectory %1 using the pose of the generalized contact points (Ry, t;). GeneOH™"* can
also be updated accordingly into GeneQH®4ge1 — { 7stage; Gstage, Jstage; )

SpatialDiff: hand-object spatial denoising. The hand-object spatial denoising module operates on
the noisy hand-object spatial relations S***¢°1 of the one stage-denoised interaction sequence output

by the previous MotionDiff stage. The representation S s diffused by adding noise for
diffusion steps, followed by another ¢ step of denoising. Once we obtain the denoised representation
S22 which includes the hand-object relative offsets {(h; — o)} centered at each generalized
contact point o, we adopt a simple approach to convert it into a two stages-denoised hand sequence.
Specifically, we average the denoised hand offsets from each object point as follows:

J = Average{(h, — o) + ox|ox € Py} (8)
Following this, GeneOH*¢1 will be updated to GeneQH® 98> — { 7stages Gstage, Jstage; )

TemporalDiff: hand-object temporal denoising. We proceed to clean the noisy hand-object tem-
poral relations Ts4ge of the two stages-denoised sequence. The “denoising via diffusion” procedure
is applied to the temporal relations to achieve this. We then add an additional optimization to dis-
till the information contained in the denoised temporal representation to the three stages-denoised
trajectory. The objective is formulated as:

minimize|| f 7 p)_7 (T2, P) — T |, ©)

T stagea
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where P is the sequence of generalized contact points, f(7 p)_,7(:,-) converts the hand trajectory
to the corresponding temporal relations. The distance is calculated on hand-object distances, i.e.,
{dR°}, relative velocity {vI®} and two relative velocity-related statistics ( {e};"u , 62:1} ). We em-
ploy an Adam optimizer to find the optimal hand trajectory. The optimized trajectory is taken as the
final denoised trajectory 7.

Stage-wise denoising strategy. Let Z = {(Hj, Oy)} |, € M denote an interaction sequence,
where M is the manifold contains all interaction sequences. Let M 7, M, and M7 represent the
manifolds depicted by the three denoising stages respectively. Let 77, Zs, and Z7 represent one
stage-denoised trajectory, two stages-denoised trajectory, and the three stages-denoised trajectory
respectively. Further, let R%, R, and R4 denote the set of all natural canonicalized hand trajec-
tories, natural hand-object spatial relations, and correct hand-object temporal relations respectively.
Let R 7, Rs, and Ry denote the set of all canonicalized hand trajectories, hand-object spatial re-
lations, and hand-object temporal relations respectively. Denote the function that transforms the
interaction trajectory Z to the canonicalized hand trajectory as f7_, 7, the function that converts T
to the hand-object spatial relations as f7_,s, and the function that transforms Z to the hand-object
temporal relations as fz_. 7.

For all interaction trajectories considered in the work, we make the following assumption:

Assumption For any trajectory I with the first frame free of spatial noise, we can find a natural
trajectory ' with the same first frame, that is T'[1] = Z[1].

The three fully-trained denoising models for 7, S, and 7~ should be able to map the corresponding
input representation to the set of ch, RS, and RS- respectively. Then the relations between the
interaction manifolds depicted by the three denoising stages and the natural data prior modeled by
the three denoising models have the following relations:

* Ze€Mgifandonlyif f7_, 7(Z) € Ry
* 7T € Mg ifandonlyif fz,s(Z) € RE;
* Z € My ifandonly if fz_,7(Z) € RS and the first frame Z[1] is free of spatial noise.

Based on the relations between 7, S, and 7, we can make the following claim:
Claim 1 There existing functions fs_, 7 : Rs — Rz and f1_s : (R1,Zsp) — Rs), so that for

any interaction T with corresponding GeneOH representations GeneOH(Z) = {7, S, T}, we have:
J=fs.7(8)and S = fros(T,Z[1]).

Proof. The canonicalized hand keypoints at each frame k, i.e., Jy. is composed of each canoni-
calized hand keypoint J, = {(hy, — tx)RF|hy € Ji}, which can be derived from the canon-
icalized hand-object spatial relation at the frame k. Specifically, for each oy € Py, we have
(hy, — t)R} = (hy — 0x)R} + (o — t5)R}. The unique canonicalized hand trajectory at the
frame k can be decided from the trajectory converted from each object point oy, € Py. Depending
on the conversion function from such multiple hypotheses of the canonicalized hand trajectory re-
sulting from different oy, there exists a function fs_, 7 : S — R 7 that transforms the hand-object
spatial relations S to the canoncialized hand trajectory J.

Similarly, given the hand-object temporal relations at the frame k(1 < k < K — 1) of the object
point oy, € Py, and the natural hand keypoints at the starting frame 1, i.e., J1, the relative velocity
Sor each hand-object pair (hy, 0y) can be derived from the decoded hand-object relative velocity
v,}c“’, two velocity-related statistics (e};‘ﬂ_, e};m), the hand-object distance d};o. Given the hand-
object relative positions {(h; — 01)|hy € J1}, the hand-object relative positions at each following
frame k + 1(1 < k < K — 1) can be derived iteratively via the hand-object relative velocity
{vPelo, € Pi}: hyyp1 — opr1 = (hg — o) + AtvEe. Therefore, there existing a function
fros : Rt — Rs that can convert the temporal relations T to the hand-object spatial relations
]

Based on this property, we can make the following claim regarding the relations between the three
gradually constructed manifolds:

Claim 2 Assume the first frame of the two stages-denoised trajectory Ts(1] is free of spatial noise,
which almost always holds true, we have M+ C Ms C M 5.
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Proof. ForT € Mg with the GeneOH representation {J ,S, T}, assume T ¢ M ;.

e From1l € Mg, we have S € RS;

* Based on the definition of RS, the set of spatial relations derived from all natural interac-
tions, there exists a natural interaction T' so that f7_,s(T') = S;

* Since I’ is a natural interaction, we have J' = fr_, 7(I') € RS
o Since J = fs7(S) = T, we have J € RE;
* Based on the assumed fully-trained denoising model, we have T € M 7.

The conclusion contradicts with the assumption T ¢ M 7. Thus Ms C M 7 holds true.

ForaT € My with the GeneOH representation {7, S, T } whose first frame is free of spatial noise,
assume T ¢ Ms.

* FromT € My, we have that T € RS;

* Based on the definition of R, the set of temporal relations derived from all natural inter-
actions, and the Assumption 1, there existing a natural interaction T', with the first frame
same 10 L, so that f7_,7(Z') =T;

* Since I’ is a natural interaction, we have S’ = f1_,s(T') € RS,
e Since S = fros(T,I[1]) = fros(T,T'[1]) = S’, we have S € RE;
* Based on the assumed fully-trained denoising model, we have T € M.

The conclusion contradicts with the assumption T ¢ Ms. Thus M1 C Mg holds true. B

The stage-wise GeneOH Diffusion functions as the following steps to clean the input interaction
ZeM:

* Given the input interaction Z, the denoising model for J maps J to another J! € R‘Ci
There existing an interaction Z' s.t. J' = f7_, 7(Z'), which is also exactly the same as

the trajectory derived from 7! and the object trajectory {O k}kK:l. Therefore, after the first
denoising stage, we have 7' € M 7

* Given S*, the denoising model for S maps S* to §? € R%. There existing an interaction
72 s.t. 8? = fr_,s(Z?). Therefore, after the second denoising stage, we have Z2? € M.

* After that, the denoising model for 7 maps 72 = f7_,7(Z%) to T2 € RS- After that, the
interaction Z° constructed as the following steps:

— Construct S from 72 and Z2[1] via 8% = fr_s(73,Z2[1));

— Construct 73 from 83 via 73 = fs_, 7(S3);

— Construct Z2 from J3 and the object trajectory {Oy }5_;.
Since T2 = fr_,7(Z%) € RS and Z3[1] = Z?[1] is free of spatial noise, we have 7% €
M.

Therefore, the three denoising stages gradually map the input noisy interaction to a progressively
smaller manifold contained in the previous large manifold. Formally we have

GeneOH Diffusion(-) : M — M 7 = Ms — M. (10)
A.3  FITTING FOR AN HOI TRAJECTORY
Once the interaction sequence has been denoised, we proceed to fit a sequence of hand
MANO (Romero et al., 2022) parameters to obtain final hand meshes. The objective is optimiz-

ing a series of MANO parameters {r, ti, Bk, 0% } i, so that they fit the denoised trajectory J well.
Notice the hand trajectory J consists of a sequence of hand keypoints so we also need to derive
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Table 3: HOI4D Dataset. Per-category statistics of the HOI4D dataset used in our experiments,
including number of sequences and the index of the start frame.

Laptop Pliers Scissors \ Bottle Bowl Chair Mug ToyCar Kettle

#Seq. 155 187 93 214 217 167 249 257 58
Starting Frame 120 150 50 0 0 0 0 0 0

keypoints from MANO parameters to allow the above optimization. Luckily this process is differen-
tiable and we use J"¢“°" ({ry, ti, Bk, Ok }_, ) to denote it. We can therefore optimize the following
reconstruction loss for the MANO hands

Lyrecon = Hj - jrecon({rkatkaﬁkaak}gzl)”» (11)

where the distance function is a simple mean squared error (MSE) between the hand keypoints
at each frame. To regularize the hand parameters {fy, )} and enforce temporal smoothness, we
introduce an additional regularization loss defined as

1 K 1 K-1
Lrey = 72 3Bkl + 16cl2) + 5 3 [ohss = el (12
k=1 k=1

The overall optimization objective is formalized as
minimize{rk7tk7ﬁk79k}]§:1 (Erecon + ‘C'Teg)7 (13)

and we employ an Adam optimizer to solve the fitting problem.

B ADDITIONAL EXPERIMENTAL RESULTS

We present additional experimental results to further support the denoising effectiveness and the
strong generalization ability of our method.

B.1 HOI DENOISING

For the first set of evaluation metrics, Table 4 presents more evaluations on our method, ablated
versions, and the comparisons to the baseline models than the table in the main text. For the sec-
ond set of evaluation metrics, Table 5 summarizes more results and comparisons. For stochastic
denoising methods, including “Ours”, “Ours w/o Canon.”, “Ours w/o SpatialDiff”’, and “Ours w/o
TemporalDiff”, we report the mean and the standard deviation of results obtained from three inde-
pendent runs with the random seed set to 11, 22, and 77 respectively. Such statistics offer a more
comprehensive view of the average results quality produced by those methods. Please notice that
the evaluation method is different from the one present in the main text, where the result closest to
the input trajectory among 100 independent runs is chosen to report evaluation metrics.

More results on the GRAB test set — novel interactions with new objects. Figure 8 shows quali-
tative evaluations on the GRAB test set to compare the generalization ability of different denoising
models towards novel interactions with unseen objects.

More results on the GRAB (Beta) test set — novel interactions with new objects and unseen
synthetic noise patterns. Figure 9 shows qualitative evaluations on the GRAB (Beta) test set to
compare the generalization ability of different denoising models towards unseen objects, unobserved
interactions, and novel synthetic noise.

More results on the HOI4D dataset — novel interactions with new objects and unseen real
noise patterns. Figure 10 shows qualitative evaluations on the HOI4D test set to compare the
generalization ability of different denoising models towards unseen objects, unobserved interactions,
and novel real noise.

Wired hand trajectory produced by TOCH (w/ MixStyle). Through our experiments with TOCH
on interaction sequences with new noise patterns unseen during training, we frequently observe
strange hand trajectories from its results with stiff hand poses, unsmooth trajectories, and large
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Table 4: Quantitative evaluations and comparisons. Performance comparisons of our method,
baselines, and ablated versions on different test sets using the first set of evaluation metrics. Bold
red numbers for best values and italic blue values for the second best-performed ones.

MPJPE MPVPE C-IoU
(mm, ) (mm,]) (%, 1)

Dataset Method

Input 23.16 22.78 1.01

TOCH 12.38 12.14 23.31
TOCH (w/ MixStyle) 13.36 13.03 23.70

GRAB TOCH (w/ Aug.) 12.23 11.89 22.71
Ours (w/o SpatialDiff) 7.83 7.67 26.09
Ours (w/o TemporalDiff) 8.27 8.13 26.55
Ours (w/o Diffusion) 8.52 8.38 26.44
Ours (w/o Canon.) 10.15 10.07 24.92

Ours 9.28 9.22 25.27

Input 17.65 17.40 13.21
GRAB TOCH 24.10 22.90 16.32
Bet TOCH (w/ MixStyle) 22.79 21.19 16.28
(Beta)  TOCH (w/ Aug.) 11.65 1047  24.81
Ours (w/o Diffusion) 12.16 11.75 22.96
Ours (w/o Canon.) 10.89 10.61 24.68
Ours 9.09 8.98 26.76

Input 25.51 24.84 1.68
ARCTIC 1oy 1434 1407 2032
TOCH (w/ MixStyle) 13.82 13.58 21.70
TOCH (w/ Aug.) 14.18 13.90 20.10
Ours 11.57 11.09 23.49

penetrations as shown in Figure 9 and 4. Such phenomena cannot be mitigated by augmenting it
with general domain generalization techniques. Figure 12 demonstrates that the improved version,
TOCH with MixStyle, also yields similar unnatural results. This suggests that the novel noise distri-
bution presents a challenging obstacle for the denoising model to generalize to new noisy interaction
sequences. In contrast, our method does not have such difficulty in handling the shifted noise distri-
bution.

Results of TOCH and TOCH (w/ Aug.) on the HOI4D dataset. Figure 11 compares the results
of TOCH (w/ Aug.) with our method. In the example of opening a scissor, TOCH produces very
strange “flying hands” trajectories, for which please refer to our video for an intuitive understanding.
Though the results produced by the improved version do not exhibit the “flying hands™ artifacts, it
is still very strange, stiff, suffering from very unnatural hand poses, and cannot perform correct
manipulations. The results of TOCH and TOCH (w/ Aug.) on the ToyCar example are very similar
since our experiments indeed get very similar results from such two models in this case. They both
are troubled by strange hand shapes and very unnatural trajectories.

More results on the ARCTIC dataset — novel interactions with new objects involving dynamic
object motions and changing contacts. Figure 13 shows qualitative evaluations on the ARCTIC
test set to test the ability of our denoising model to clean noisy and dynamic interactions with
changing contacts.

Besides, we include samples of our results on longer sequences with bimanual manipulations in
Figure 14.

Multi-state denoising v.s. one-stage denoising. We leverage a multi-stage denoising strategy in this
work to tackle the challenge posed by complex interaction noise. In Section A.2, we demonstrate the
stage-wise denoising strategy gradually projects the input trajectory from the manifold containing
unnatural interactions, to the manifold of trajectories with natural hand motions, to the manifold
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Table 5: Quantitative evaluations and comparisons. Performance comparisons of our method,
baselines, and ablated versions on different test sets using the second set of evaluation metrics. Bold
red numbers for best values and italic blue values for the second best-performed ones. “GT” stands
for “Ground-Truth”.

v Penetration Depth ~ Proximity Error HO Motion Consistency
Dataset  Method (em®, ) (mm, }) (mm, |) (mm?, ])
GT 0.50 1.33 0 0.51
Input 4.48 5.25 13.29 881.23
TOCH 2.09 2.17 3.12 20.37
GRAB TOCH (w/ MixStyle) 2.28 2.62 3.10 21.29
TOCH (w/ Aug.) 1.94 2.04 3.16 22.58
Ours (w/o SpatialDiff) 2.154+0.02 2.294+0.03 6.71+1.09 12.164+0.67
Ours (w/o TemporalDiff)  0.86+0.02 1.54+0.02 3.93+0.31 9.364+0.68
Ours (w/o Diffusion) 1.07 1.70 2.63 10.05
Ours (w/o Canon.) 1.574+0.02 1.83+0.03 2.91+0.28 1.30+0.03
Ours 1.22+0.01 1.72+0.01 2.4440.18 0.414+0.01
GT 0.50 1.33 0 0.51
Input 2.19 4.77 5.83 27.58
GRAB TOCH 2.33 2.77 5.60 25.05
(Beta) TOCH (w/ MixStyle) 2.01 2.63 4.65 17.37
TOCH (w/ Aug.) 1.52 1.86 3.07 13.09
Ours (w/o Diffusion) 1.98 2.06 3.00 11.99
Ours (w/o Canon.) 1.7940.02 1.734+0.03 3.1940.15 1.284+0.03
Ours 1.18+0.00 1.69+0.01 2.78+0.14 0.5440.00
Input 2.26 2.47 - 46.45
TOCH 4.09 4.46 - 35.93
HOID TOCH (w/ MixStyle) 431 4.96 - 25.67
TOCH (w/ Aug.) 4.20 4.51 - 25.85
Ours (w/o Diffusion) 3.16 3.83 - 18.65
Ours (w/o Canon.) 2.37+0.02 3.57+0.03 - 12.80+0.79
Ours 1.99+0.02 2.144+0.02 - 9.754+0.88
GT 0.33 0.92 0 0.41
ARCTIC Input 2.28 4.89 15.21 931.69
TOCH 1.84 2.01 431 18.50
TOCH (w/ MixStyle) 1.92 2.13 4.25 18.02
TOCH (w/ Aug.) 1.75 1.98 5.64 22.57
Ours 1.35 + 0.01 1.91 + 0.02 2.69 +£0.11 0.85 + 0.00

Table 6: Quantitative evaluations of the model trained on the ARCTIC training set. Bold red

numbers for best values. “GT” stands for “Ground-Truth”.

Dataset Method MPJPE  MPVPE C-loU v Penetration Depth ~ Proximity Error  HO Motion Consistency
atase etho (mm, ) (mm, ) (%, 1) (em®, ) (mm, 1) (mm, |) (mm?, |)
GT - - - 0.50 1.33 - 0.51
GRAR  lmput 23.16 2278 1.01 4.48 5.25 13.29 881.23
Ours (GRAB) 9.28 922 2527 123 1.74 2.53 0.57
Ours (ARCTIC)  11.47 1129 2479 1.48 1.80 2.60 0.55
Input - - - 226 2.47 - 46.45
HOMD (/s (GRAB) ; ; ; 1.99 215 ; 9.81
Ours (ARCTIC) - - - 1.54 1.96 - 9.33
GT - - - 0.33 0.92 0 0.41
ARCTIC  InPut 25.51 2484  1.68 2.28 4.89 1521 931.69
Ours (GRAB) 11.57 11.09  23.49 1.35 1.93 2.71 0.92
Ours (ARCTIC) ~ 10.34 1007 2508 121 1.64 2.62 1.10

with correct spatial relations, and to the manifold of trajectories with consistent temporal relations.
One may question whether it is possible to use the last projection step only to project the input to
the natural interaction manifold in a single step. Our experimental observations show the difficulty
of removing such complex noise in one single stage. An effective mapping to clean such complex

noise is very hard to learn for neural networks.
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View 1 View 2 View 3

Noisy ) . Noisy
Ours Tnput TOCH Ours Input

TOCH

Nois; Noi
Y TOCH Ours o1y
Input Input

Ours

TOCH

Figure 8: Evaluation and comparisons on the GRAB test set. Input and denoised results are
shown from three views via four keyframes in the time-increasing order. Please refer to our website

and video for animated results.

Generalize from ARCTIC to other datasets. To further evaluate the generalization ability of our
method, we conduct a new series of experiments where we train the model on the ARCTIC dataset
(see the Section C for data splitting and other settings) and evaluate on GRAB, HOI4D, and ARCTIC
(test split). Table 6 contains its performance. We can observe that though our model trained on the
GRAB can generalize to ARCTIC with good performance, the reduced domain gap when using
ARCTIC as the training set can really improve the performance. For instance, Figure 15 shows that
the model trained on the ARCTIC training set can perform obviously better on examples where the
model trained on GRAB would struggle (please see Section B.4 for the discussion on failure case).
For the sequence where the hand needs to open wide to hold the microwave, the model trained on
GRAB cannot clean the noisy very effectively, producing results with obvious penetrations and the
unnatural hand trajectory with instantaneous shaking. However, the model trained on the ARCTIC
dataset can eliminate such noise and produce a much natural trajectory. Besides, training on this
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View 1 View 2 View 3

TOCH Ours Noisy TOCH Ours Noisy
Input Input

Noisy
Input

Ours

TOCH

Figure 9: Evaluation and comparisons on the GRAB (Beta) test set. Please refer to our website
and video for animated results.

dataset can benefit the model’s performance on the HOI4D dataset with articulated objects and
articulated motions.

B.2 ABLATION STUDIES

This section includes more ablation study results to complement the selected results in the main
text. Table 4 and 5 present a more comprehensive quantitative evaluation of ablated models and the
comparisons to the full model.

Generalized contact-centric parameterizations. Apart from the results present in Table 4 and 5,
Figure 16 gives and visual example where the ablated version without such contact-centric design
cannot generalize well to the manipulation sequence with large object movements. We can still
observe obvious penetrations from all three frames present here.

Denoising capability on recovering ground-truth and modeling high-frequency pose details.
Together with the ability to model various solutions, the stochastic denoising process also empowers
the model to explore a broad space that is more likely to encompass samples close to the ground-
truth sequences. Figure 17 shows that ours is more faithful to the ground-truth sequence than the
result of TOCH, regarding both recovered hand poses and the contact information.

Besides, taking advantage of the power of our HOI representation GeneOH and the novel denoising
scheme, we are able to model high-frequency shape details in the results. However, TOCH’s results
would exhibit flat hand poses frequently. This may result from its high-dimensional representations
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View 1 View 2 View 3

Noisy TOCH Ours Noisy TOCH Ours Noisy TOCH Ours Noisy
Input Input Input Input
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Figure 10: Evaluation on the HOI4D dataset. Please refer to our website and video for animated

results.
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View 1 View 2 View 3

TOCH our Noisy
(w/ Aug.) urs Input

TOCH

Figure 11: Comparisons on the HOI4D dataset. We compare our method with the baseline TOCH
and its improved version TOCH (w/ Aug.).

AR,
Liteentd

Figure 12: Weird artifacts produced by TOCH (w/ MixStyle). (First line:) Ours result. (Second
line:) The result of TOCH (w/ MixStyle). The noisy input is perturbed by noise sampled from a
Beta distribution, different from that used in training.

TOCH

and the limited ability of the denoising strategy, which models the deterministic, one-step noise-to-
data mapping relation.

B.3 APPLICATIONS

This section presents more applications of the denoising model.

Refining noisy grasps produced by the generation network. In addition to refining noisy interac-
tion sequences, our method can serve as an effective post-processing tool to refine implausible static
grasps produced by the generation network as shown in Figure 6. Examples shown here are grasps
taken from interaction results produced by (Wu et al., 2022).
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Noisy
Input

Ours

Noisy
Input

Noisy
Input Ours Input Ours

Noisy

Input Ours

Noisy

Ours

Timestamp
Evaluation on the ARCTIC dataset. The model cleans noisy right hand trajectory
shown in both the noisy input and the denoised trajectory are GT shapes. Please

Figure 13:
here.
refer to our website and video for animated results.

Noisy
Input

Denoised

Noisy
Input

Denoised

Figure 14: Evaluation on long interaction sequences with bimanual manipulations. The model
cleans both the noisy right hand trajectory and the noisy left hand trajectory here. Please refer to

our website and video for animated results.
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Trained on
O O O O
Trained on
ARCTIC
Hold a microwave
Figure 15: Comparisons between the model trained on ARCTIC and the one trained on

GRAB. The model trained on ARCTIC training set can generalize to the corresponding test se-
quences more easily thanks to the reduced domain gap.

Ours
(w/o Canon.)

Ours

Figure 16: Effectiveness of the generalized contact-centric parameterization. (First line:) Re-
sults of Ours (w/o Canon.). (Second line:) Results of our full model.

Apart from the denoising ability, the denoised data with high-quality interaction sequences and
static grasps can further aid a variety of downstream tasks. Here we take the grasp synthesis and the
manipulation synthesis task as an example.

Grasp synthesis. We select four objects and their corresponding grasping poses from the GRAB test
set to train the synthesis network. Then we use the network to generate grasps for unseen objects.
The results shown in Figure 18 are natural and contact-aware. In contrast, the generated grasps are
not plausible as shown in the leftmost part of Figure 18.

Manipulation synthesis. We further examine the quality of the denoised interaction data via the
manipulation synthesis task. Based on the representations and the network architecture proposed
in a recent manipulation synthesis work', we train a manipulation synthesis network using our de-
noised data. The network then takes a new object sequence as input to generate the corresponding
manipulation sequence. As shown in Figure 19, the quality of our data is well suited for a learning-
based synthesis model. It can generate diverse, high-quality manipulation sequences for an unseen
object trajectory.

The above two applications indicate the potential value of our denoising model in aiding high-quality
interaction dataset creation.

B.4 FAILURE CASES

Figure 20 summarizes the failure cases. Our method may sometimes be unable to perform very well
in the following situations: 1) When the hand needs to open wide to hold the object, the canoni-
calized hand trajectories and the hand-object spatial relations canonicalized around the interaction
region may be extremely novel to the denoising model. The model then cannot fully clean penetra-
tions from the observations. 2) When the noisy input contains very strange hand motions such as
the sudden detachment and grasping presented in Figure 20, the model can remove such artifact but
still cannot clean the trajectory perfectly, leaving us remaining penetrations shown in the denoised
result. 3) When the hand is opening an unseen object with extremely thin geometry, we may still
observe subtle penetrations from the results.

"https://github.com/cams-hoi/CAMS
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Ground-Truth TOCH Ours (Sample 1) Ours (Sample 2)

Figure 17: Comparisons between our model and TOCH on the ability to recover ground-truth
interactions. We can explore a wide space that encompasses the sample with hand poses (high-
lighted in ) and contacts (in ) close to the ground truth. We can model
high-frequency poses. However, TOCH’s result contains plain poses and cannot recover bending
fingers exhibited in the ground-truth shape.

Results of the Network

Camera Toothpaste Laptop
Trained on Nosiy Data

Figure 18: Grasp synthesis. Synthesized grasps for unseen objects.

B.5 ANALYZING THE DISTINCTION BETWEEN NOISE IN REAL HAND-OBJECT
INTERACTION TRAJECTORIES AND ARTIFICIAL NOISE

From the visualization and animated results shown on the website and the video, the distinctions
between the noise exhibited in real noisy hand-object interaction trajectories (e.g., hand trajectories
from the noisy HOI4D dataset and hand trajectories estimated from interaction videos) and the
artificial noise could be summarized as follows:

* The trajectories in HOI4D always present unnatural hand poses, jittering motions, missing
contacts, and large penetrations;

* Retargeed hand motions always suffer from large penetrations;

* The hand trajectories estimated from HOI videos are usually with penetrations and missing
contacts;

* A common feature is that real noisy hand trajectories always present time-consistent arti-
facts. However, noisy trajectories with artificial noise added independently onto each frame
usually present time-varying penetrations and unnatural poses.

Besides, as summarized in Table 1, the differences between different kinds of noise patterns can be
revealed by comparing various metrics calculated on their input noisy trajectories, including metrics
to reveal penetrations (IV, penetration depth), hand-object proximity (C-IoU, Proximity Error), and
motion consistency.

Further analysis. We further visualize the difference (0 — 69') between noisy hand mano pose
parameters (é) and the GT values (69%) obtained from the trajectories estimated from videos (the
noisy input of the application on cleaning hand trajectory estimations, Sec. 4.4), the difference
between the mano pose parameters with artificial Gaussian noise (6™) and the GT values, and the
differences between the parameters with artificial noise drawn from the Beta distribution (0P). By
projecting them into the 2-dimensional plane using the PCA algorithm (implemented in the scikit-
learn package), we visualize their positions from 256 examples in Figure 21. As we can see, the
real noise pattern is very different from artificial noise. In this case, the noise of the hand trajectory
estimated from videos further exhibits instance-specific patterns.
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Sample 1

Sample 2

Sample 3

Timestamp

Figure 19: Manipulation synthesis. Synthesized manipulation sequences for the unseen laptop
object. Frames shown here from left to right are in a time-increasing order.

Denoised
Open wide to hold the unseen large object (ARCTIC)
Noisy
Input
Denoised
Extremely unnatural and strange hand-object temporal relations (HOI4D)
Denoised

Unseen object with very thin geometry (ARCTIC)

Figure 20: Failure cases caused by the unseen and large object, very strange hand-object temporal
relations, and unseen object with extremely thin geometry.

B.6 USER STUDY

To better access and compare the quality of our denoised results to those of the baseline model, we
conducted a toy user study. We set up a website containing our denoised results and TOCH’s results
on 18 noisy trajectories in a randomly permutated order. Twenty people who are not familiar with
the task or even have no background in CS are asked to rate each clip a score from 1 to 5, indicat-
ing their preferences. Specifically, “1” indicates a significant difference between the hand motion
demonstrated in the video and the human behavior, with obvious physical unrealistic phenomena
such as penetrations and motion inconsistency; “3” represents the demonstrated motion is plausible
and similar to the human behavior, but still suffer from physical artifacts; “5” means a high-quality
motion which is plausible with no flaws and is human-like. “2” means the quality is better than “1”
but worse than “3”. Similarly, “4” means the result is better than “3” but worse than “5”.

For each clip, we calculate the average score achieved by our method and TOCH. The average and
medium scores across all clips are summarized in Table 7. Ours is much better than the baseline
model.
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®  Real Estimation
® n~Normal(0,0.5)
® n-Beta(8,2)*03

404

20 1

Figure 21: Visualization on the differences between the mano pose parameters of hand trajectories
estimated from videos and the GT values, the difference between the mano pose parameters with

artificial Gaussian noise (é“) and the GT values, and the differences between the parameters with

artificial noise drawn from the Beta distribution (6®). The analysis is conducted on 256 trajectories.
For each trajectory, the difference vectors across all frames are concatenated together and flattened
to a single vector.

Table 7: User study.
GeneOH Diffusion TOCH

Average Score 3.96 1.98
Medium Score 4.00 1.55

C EXPERIMENTAL DETAILS

C.1 DATASETS

GRAB training set. This is the training set used in all experiments presented in the main text. We
follow the cross-object splitting strategy used in (Zhou et al., 2022) to split the GRAB (Taheri et al.,
2020) dataset. The training split, containing 1308 manipulation sequences, is used to construct the
training dataset. We also filter out frames where the hand wrist is more than 15 cm away from the
object. For each training sequence, we slice it into clips with 60 frames to construct the training set.
Sequences with a length of less than 60 are not included for training or testing. For models where
noisy sequences are required during training, we create the noisy sequence from the clean sequence
by adding Gaussian noise to the MANO parameters. Specifically, the Gaussian noise is added to the
hand MANO translation, rotation, and pose parameters, with standard deviations of 0.01, 0.1, and
0.5, respectively.

ARCTIC training dataset. It is the training set of all models in the experiments where we wish
to generalize the model trained on ARCTIC to other datasets. Based on the publicly available
sequences from the subject with the index “s01”, “s02”, “s04”, “s05”, “s06”, “s07”, “s08”, “s09”,
“s10”, we take the manipulation sequences from “s01” for evaluation and those of other subjects for
training. For each sequence, we slice it into small clips with a window size equal to 60 and the step
size set to 60. We filter out clips where the maximum distance from the wrist to the nearest object
point is larger than 15cm. The number of all training clips is 2524. Only the right hand trajectory is
used for training.

The following text contains more details about the four distinct test sets for evaluation, namely
GRAB, GRAB (Beta), HOI4D, and ARCTIC.

GRAB (Taheri et al., 2020). The test split of the GRAB dataset, containing 246 manipulation se-
quences, is used to construct the test set. For each test sequence, we slice it into clips with 60 frames
using the step size 30. For each test sequence, the noisy sequence is also created by adding Gaus-
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sian noise to the MANO parameters. The Gaussian noise is added to the hand MANO translation,
rotation, and pose parameters, with standard deviations of 0.01, 0.1, and 0.5, respectively.

GRAB (Beta). The GRAB (Beta) test set is constructed from manipulation sequences from the
GRAB test split. For each sequence, the noisy sequence is created by adding noise from the Beta
distribution (B(8,2)) to the MANO parameters. Specifically, we randomly sample noise from the
Beta distribution (B(8, 2)). Then the sampled noise was by 0.01, 0.05, 0.3 to get noise vectors added
to the translation, rotation, and hand pose parameters respectively.

HOI4D (Liu et al., 2022). For the HOI4D dataset, we select interaction sequences with humans ma-
nipulating objects from 3 articulated categories, including Laptop, Scissors, and Pliers, and 6 rigid
datasets, namely Chair, Bottle, Bowl, Kettle, Mug, and ToyCar, for test. The number of instances
included in each category is detailed in Table 3. For each sequence, we specify the starting frame
and take the clip with the length of 60 frames starting from it as the test clip. The starting frame set
for each category is listed in Table 3.

ARCTIC (Fan et al., 2023). The ARCTIC test set for evaluation takes the right hand only since
we observe that dexterous manipulation such as articulated manipulations is always conducted by
the right hand. For instance, as shown in the example in Figure 4, the left hand holds the capsule
machine with no contact change during the manipulation while the right hand first touches the lid,
then touches the base, and then opens and close the lid. However, we can refine the left hand motions
as well, as demonstrated in the second sequence of the “refining estimation from video” example
shown in Figure 1. The manipulation sequences from “s01”, 34 in total, are taken for evaluation. For
each test sequence, the quantitative results are evaluated from clips with the window size 60 sliced
from each sequence using the step size 30. The filtering strategy similar to that used for constructing
the training dataset is applied to the test clips as well. The default length of the clips used in the
qualitative evaluation is 90, which is the composed result of two adjacent clips with a window
size of 60. The noisy sequence is obtained by adding Gaussian noise to the right hand MANO
parameters. Specifically, the Gaussian noise is added to the hand MANO translation, rotation, and
pose parameters, with standard deviations of 0.01, 0.05, and 0.3, respectively.

Since the ARCTIC’s object template meshes do not provide vertex normals, which are demanded
both in our method and some baseline models, we use the “compute_vertex_normals” function im-
plemented in Open3D (Zhou et al., 2018) for computing the vertex normals.

C.2 METRICS

We include two sets of evaluation metrics. The first set follows the evaluation protocol of previ-
ous works (Zhou et al., 2022) and focuses on assessing the model’s capability to recover the GT
trajectories from noisy observations, as detailed in the following.

Mean Per-Joint Position Error (MPJPE). It calculates the average Euclidean distance between
the denoised 3D hand joints and the corresponding ground-truth joints.

Mean Per-Vertex Position Error (MPVPE). It measures the average Euclidean distance between
the denoised 3D hand vertices and the corresponding ground-truth vertices.

Contact IoU (C-IoU). This metric assesses the similarity between the refined contact map and the
ground-truth contact map. The binary contact maps are obtained by thresholding the correspon-
dence distance within +2mm. For our method, which does not rely on correspondences introduced
in (Zhou et al., 2022), we utilize the computing process provided by (Zhou et al., 2022) to compute
the correspondences.

To measure whether the denoised trajectory exhibits natural hand-object spatial relations and con-
sistent hand-object motions, we introduce the second set of evaluation metrics.

Solid Intersection Volume (IV). We evaluate this metric following (Zhou et al., 2022). It quantifies
hand-object inter-penetrations. By voxelizing the hand mesh and the object mesh, we calculate the
volume of their intersected region as the intersection volume.

Per-Vertex Maximum Penetration Depth (Penetration Depth). For each frame, we calculate the
maximum penetration depth of each hand vertex into the object. We then average these values across
all frames to obtain the per-vertex maximum penetration depth.

31



Published as a conference paper at ICLR 2024

Proximity Error. The metric is only evaluated on datasets with ground-truth references, including
GRAB, GRAB (Beta), and ARCTIC. For each vertex of the denoised hand mesh, we compute the
difference between its minimum distance to the object points and the corresponding ground-truth
vertex’s minimum distance to the object points. The proximity error is obtained by averaging these
differences over all vertices. The overall metric is obtained by averaging the per-frame metric over
all frames. Specifically, let d}cl,min denote the minimum distance from the hand keypoint h;, at
the frame & to objects points. Formally, it is defined as d?,min = min{d?® = ||hy — oy|2|hy €

Ji,0r € Pi}. Let d},;‘,m . Tepresents the quantity of the keypoint h from the denoised trajectory, and

represents the quantity of the keypoint h from the ground-truth trajectory. Then the overall

metric is calculated as Proximity error = mean{{Hd};? - d}gmw-"||2|h;c eJpH1I<Ek<K}.

,min

Hand-Object Motion Consistency (HO Motion Consistency). This metric assesses the consis-
tency between the hand and object motions. For each frame where the object is not static, we
identify the nearest hand-object point pair (hy,0;) = argmin{dp°|(h, € Jx, 0, € Py)}. We use
the expression [e~190IPx=0kll2 Ah; — Aoy |3 to quantify the level of inconsistency between the
hand and object motions. Here, Ahy and Aoy, represent the displacements of the hand point and
the object point between adjacent frames, respectively. We obtain the overall metric by averaging
the metric over all frames.

C.3 BASELINES

We give a more detailed explanation of the compared baselines as follows to complement the brief
introduction in the main text.

TOCH. We compare our model with the prior art on the HOI denoising problem, TOCH (Zhou
et al., 2022). TOCH utilizes an autoencoder structure and learns to map noisy trajectories to their
corresponding clean trajectories. By projecting input noisy trajectories onto the clean data manifold,
it can accomplish the denoising task. We utilize the official code provided by the authors for training
and evaluation.

TOCH (w/ MixStyle). Further, to improve TOCH’s generalization ability towards new interactions,
we augment it with a general domain generalization method MixStyle (Zhou et al., 2021a), resulting
in a variant named “TOCH (w/ MixStyle)”.

TOCH (w/ Aug.). Another variant, “TOCH (w/ Aug.)”, where TOCH is trained on the training sets
of the GRAB and GRAB (Beta) datasets, is further introduced to enhance its robustness towards
unseen noise patterns.

C.4 MODELS

Denoising models used in our method. We realize the denoising model’s function and the training
as those of the score functions in diffusion-based generative models. We adapt the implementation
of Human Motion Diffusion (Tevet et al., 2022) to implement our three denoising models for each
part of the representation’. Instead of training the denoising function to predict the start data point
X from the noisy data x; as implemented in (Tevet et al., 2022), we predict the noise (x; — xg). We
also follow its default training protocol.

We mainly adopt MLPs and Transformers as the basic backbones of the denoising model. The
detailed structure depends on the type of the corresponding statistics and the dimensions. The code
in the Supplementary Materials provides all those details. So we spare the effort to list them in
detail here.

When leveraging the denoising model to clean the input via the “denoising via diffusion” strategy,
the diffusion steps is set to 400 for MotionDiff, 200 for SpatialDiff, and 100 for TemporalDiff
empirically.

Ours (w/o Diffusion). In this ablated version, we design a denoising autoencoder for cleaning
the spatial and temporal representations. For each representation 7, S, T, we leverage an autoen-
coder for denoising. After that, we get the final hand meshes by fitting the MANO parameters

Zhttps://guytevet.github.io/mdm-page
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{rk, tx, Bk, Ox } to reconstruct the denoised representations. Assuming the reconstructed hand tra-
jectory as J"¢¢°", the reconstructed hand-object spatial relative positions as S"¢“°", and the tempo-
ral representations as 7 7¢“°", the reconstruction loss is formulated as follows:

Lree  — /\1||j _ k7reconH2 + /\2HS _ SmconH + /\3”7—_ TTeCO”H’ (14)

recon

where A1, Ao, A3 are coefficients for the reconstruction losses. We set A1, Ay, A3 = 1. in our ex-
periments. The distance function between the spatial representations is calculated on the relative
positions between each point pair. The distance between the temporal representations is calculated
on hand-object distances, i.e., {d?°}, and two relative velocity-related statistics ( {e}® 9 en: ho 1,

Together with the regularization loss

K-
Lreg =7 Z 1Bkl2 + 116x12) Z 1641 = Onll2, (15)
k=1

the total optimization target is formulated as follows,
minimize{rk’tk’ﬁk #ek}kK:1 (E, egon + Ereg)’ (16)
and we employ an Adam optimizer to solve the problem.

TOCH (w/ MixStyle). We use the official code provided to implement the MixStyle layer. We
add a MixStyle layer between every two encoder layers of the TOCH model (Zhou et al., 2022).
Configurations of MixStyle are kept the same as the default setting.

TOCH (w/ Aug.). The model is trained on paired noisy-clean data pair from the GRAB training
set. We perturb each training sequence with two types of noise, that is the noise from a Gaussian
distribution, and the noise from a Beta B(8, 2) distribution. The noise scale for the Gaussian for the
translation, rotation, and hand poses are 0.01, 0.1, and 0.5 respectively. The scale of the Beta noise
added on the translation, rotation, and hand poses are 0.01, 0.05, and 0.3.

Grasp synthesis network. We adapt the WholeGrasp-VAE network proposed in (Wu et al.,
2022) to a HandGrasp-VAE network?. Instead of using whole-body markers, we use hand anchor
points (Yang et al., 2021), composed of 32 points from the hand palm in total. To identify contact
maps for both hand anchors and object points, we set a distance threshold, i.e., 2 mm, and mark the
status of points with the minimum distance to the hand/object as contact. During training, we do not
add the ground contact loss since the whole body is not considered in our hand-grasping setting. To
train the network, we further split the GRAB test set into a subset containing binoculars, wineglass,
fryingpan, and mug for training. Then we use the network to synthesize grasps for unseen objects.
We select 100 grasps for each object to construct the training dataset.

Manipulation synthesis network. We utilize the denoised manipulation trajectories for the Laptop
category to train the manipulation synthesis network. The training data consists of 100 manipulation
sequences.

C.5 TRAINING AND EVALUATION

The denoising model for 7. The denoising model for the canonicalized hand trajectory J is trained
on canonicalized hand trajectories {7} of all interaction sequences in the training set. We apply
per-instance normalization operation to those points at each frame for centralization and scaling
purposes. Specifically, we utilize the mean and the standard deviation statistics calculated for all
points across all frames. In more detail, we first concatenate all keypoints over all frames to form
the concatenated keypoints Jomcet:

Jconcat = Concat{Jy, dim = 0}5_, | (17)

where Ji. € RV2 %3 for each frame k. Then, the average and the standard deviation is calculated on
Jconcat Vla

1) = Average(Jconcar, dim = 0) (18)
I = Std(Jeoncar, dim = 0). (19)

3https://github.com/JiahaoPlus/SAGA
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The (uj , ot ) are utilized to normalize J. at each frame k, i.e.,

(20)

oJ

The denoising model for S. Similarly, the denoising model for hand-object spatial relations S
is trained using representations {S} from all interaction sequences in the training set. We apply
per-instance normalization to the canonicalized hand-object relative positions {(hj, —ox)RL}. The
normalization is conducted in a per-instance per-object point way. For each object point o in the
generalized contact points P, we calculate the average and standard deviation of {{hj, — oy }} over
all frames k. We first concatenate the relative positions over all frames and all hand keypoints for
the concatenated spatial relations, denoted as

SO near = Concat{{hy — o}, },dim = 0}~_,. Q21

concat

Then, the average and the standard deviation is calculated on s, via

pe = Average(sgoncat’ dim = O) (22)
0 = Std(sScar, dim = 0). (23)
Such statistics (u°, o) are utilized to normalize the relative positions {{h; — oy }}, i.e.,
h _ _ o
(hy, — oy, « W_ (24)
o

The denoising model for 7. When training the denoising model for the hand-object temporal
relations 7, we first train an autoencoder, composed of an encode(-) function and a decode(-)
function for 7. It takes the 7 as input and decode the hand-object distances {d1°} and the
relative velocity-related quantities {62,(17 e’,‘;_‘n}. Then, the denoising model is trained on the en-

coded latent {encode(7)}. This approach avoids the need for designing normalization strate-
gies for the temporal representations. We adopt a PointNet structure block with a positional en-
coder followed by a transformer encoder module for encoding the temporal relation representa-
tions. Given the input temporal representation T € REXNox69  the PointNet encoder block
passes it through four PointNet blocks each with three encoding layers with latent dimension
(32,32,32), (64,64,64), (128, 128,128), (256, 256, 256) respectively. The transformer encoder
module is with parameters “num_heads” as 4, feedforward latent dimension as 1024, dropout rate 0,
and the latent dimension 256. The decoder contains fully connected layers for decoding each kind
of statistics d}:", ei",’k, eh‘fl’c individually.

Train-time rotation augmentation. For the canonicalized hand trajectory representation .7, the
train-time random rotation augmentation applies a single random rotation matrix to the whole canon-
icalized hand trajectories. The same random rotation matrix, denoted as R,,q, is added to the hand-
object spatial representation S as well. It is used to transform the canonicalized object position,
normal, and the hand-object offset vector:

$¢Rma = ((0x — t1)RY Runa, ng R Rina, {(hy, — 03 )RE Ryna by, € I3 }). (25)

Similarly, the same random rotation matrix R4 is used to transform the object velocity vector from
v} in the temporal representation 7 to v Rng.

C.6 COMPLEXITY AND RUNNING TIME DISCUSSION
Denote the number of hand keypoints as | 7|, the number of generalized contact points |P|, the

complexity, the average inference time, and the number of forward diffusion steps for each denoising
stage during inference are summarized in Table 8.
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Table 8: Complexity and running time during the inference time.

MotionDiff  SpatialDiff TemporalDiff

Average inference time (s) 0.52 16.61 7.04
Complexity o(Jgl) o(rilgl)  o(PIIT)
#Forword diffusion steps 400 200 100

35



