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Abstract
The 21st century has already witnessed so many outbreaks with
pandemic potential, including SARS (2002), H1N1 (2009), MERS
(2012), Ebola (2014), Zika virus (2015), and the COVID-19 pandemic
(2019). Using 60 million geotagged Sina Weibo tweets covering over
20 million active accounts, we investigate the collective emotional
dynamics on social media in the most recent global pandemic, i.e.,
COVID-19. This research features two highlights: (1) It focuses
on the Chinese population located in the initial epicenter of the
pandemic. (2) It examines the initial year after the pandemic out-
break, a critical period where emotions were most intense due to
the uncertainty and rapid developments related to the crisis. Us-
ing cross-disciplinary methods, we reveal a positive connection
between online emotional resonance and geographic proximity,
demonstrating a direct mapping between virtual network distances
and physical spatial embedding. We propose a percolation-based
index to measure the nationwide emotional resonance level with
which we illustrate the significant economic impact of the global
health issue. Finally, we identify a leader-follower pattern in emo-
tional resonance fluctuations based on time-lag emotion correla-
tions, revealing that less active regions play a crucial role in leading
and responding to emotional changes. In the face of long COVID
and emerging global health crises, our analysis elucidates how col-
lective emotional resonance evolves, providing potential directions
for online opinion interventions during global shocks.
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1 Introduction
The past five years have survived the long-lasting impacts of one of
the newest global health threats in modern history, COVID-19. This
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pandemic has dramatically altered daily life worldwide, prompt-
ing profound changes in how individuals interact, perceive risk,
and manage emotions [6, 14]. As the virus rapidly spread across
continents, governments implemented stringent measures such as
lockdowns, social distancing mandates, and mask-wearing policies
to mitigate its transmission. These measures not only aimed at
curbing the spread of the virus but also inadvertently reshaped
social norms and interpersonal dynamics, triggering a cascade of
emotional responses among populations globally [3, 50]. Though
human beings have survived the immediate crisis, its effects con-
tinue to be felt globally. Indeed, we are experiencing a so-called
"post-COVID" era [12]. The global health shock caused by COVID-
19 has contributed to the increasing mental health problems rates
that may persist for years to come [7].

Sentiment analysis of social media content has emerged as a
promising tool for mental health monitoring [35]. As individuals
navigate unprecedented challenges and events, they spontaneously
share their emotional experiences with others [26, 34]. Emotional
resonance occurs as individuals resonate with the collective emo-
tional experiences of their communities and the broader global
population [33]. The recent COVID-19 crisis has brought emotional
resonance to a new dimension as many individuals have turned
to virtual platforms such as social media, video calls, and online
forums to connect with others due to the lockdown[29]. Online
social platforms such as Facebook, Twitter, Instagram, and TikTok
have reported spikes in daily active users, content creation, and
interactions since the onset of the pandemic [37, 40]. In this case,
social media platforms have become integral spaces for individuals
to express their thoughts, feelings, and experiences. An increasing
number of studies have underscored the role of social media plat-
forms as virtual support networks, avenues for seeking information,
and outlets for emotional expression and connection in physical
distancing measures [5, 31]. This characteristic, coupled with the
unparalleled access to real-time, large-scale data provided by social
media platforms, renders social media data a valuable resource for
exploring the nuanced interplay between individual emotions, soci-
etal dynamics, and broader contextual factors during global health
crises [28, 43].

Despite the increasing interest in the psychology and mental
health of individuals under external shock, there remains a notable
lack of in-depth investigation into emotional resonance during
the global health crisis. To this end, this paper conducts cross-
disciplinary research on online collective emotional resonance trig-
gered by the most recent global pandemic, COVID-19. Though five
years have passed, this pandemic is the only major global health
crisis with the most extensive and diverse social media dataset
available for analysis [9]. Our research featured two key points:
(1) Focus on the Chinese Population: China was the first country
affected by the virus, making it a critical region for understanding
the initial emotional and social responses to the pandemic [17]. (2)
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Figure 1: The spatial and temporal evolution of the Weibo tweets and corresponding expressed emotion in China. (a) The
spatial distribution of Weibo post density shows that Wuhan (the center of global rhetoric) and Beijing (the capital city of
China) are two of the most active posting cities. (b) The temporal evolution of the pandemic-related tweets number. The red
arrow indicates a tweeting peak concurrent with the Qingmin Festival. (c) The temporal evolution of the spatial distribution of
the average expressed emotion strength throughout the year 2020 indicates apparent spatial and temporal heterogeneity.

Focus on the Initial Year: This timeline recorded the most imme-
diate and raw emotional responses as people faced the uncertain
evolution of the global health crisis.

A Chinese-based dataset [16] comprises 60 million tweets on
Sina Weibo (the Chinese equivalent of Twitter) from December

1, 2019, to December 31, 2020, is used to navigate the emotional
resonance throughout the first year of the pandemic global spread-
ing. This dataset includes 20 million active users. To concentrate
on the pandemic-related tweets, a keyword screening method in-
volving terms like ‘COVID-19’ and ‘coronavirus’ was employed
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[16]. Figure 1 (a) visualizes the spatial distribution of the number of
related tweets over the year 2020. Regions with big cities (such as
Beijing, Wuhan, and Shanghai) tweet more frequently in response
to the pandemic. Figure 1 (b) presents the temporal evolution of the
number of pandemic-related tweets. Except for peaks at the early
stage of the pandemic breakout, another clear peak in tweeting
activity occurred on April 4th, 2020 (indicated by the red arrow),
coinciding with the traditional Qingming Festival in China, a day
when people honor their ancestors and deceased relatives. The sen-
timent analysis of the tweets is conducted using the state-of-the-art
Sentiment Knowledge Enhanced Pre-training (SKEP) model [38],
which quantifies both positive and negative expressed emotions
of the tweets (see Methods for details). To focus on the strength
of emotion, we take the absolute value of the quantified emotion
score. Figure 1 (c) illustrates the average sentiment score of each
province in China in 2020. These scores are normalized between 0
and 1, with a higher score closer to 1 indicating a relatively strong
expressed emotion (either positive or negative). In comparison, a
lower score suggests a relatively weak emotion.

Utilizing the geotagged social media data and our measures of
expressed emotion, our study investigates the collective emotional
resonance on social media platforms focused on China during the
most recent global health crisis.We first propose the concept of emo-
tional resonance based on the Pearson correlation coefficient and
explore the spatial connection among expressed emotions. Then,
we develop a percolation-based indicator for nationwide resonance
measurement by constructing the emotional resonance network.
To further investigate the temporal dimension of emotional reso-
nance, we introduce a time-lag emotional correlation coefficient and
identify the emerging patterns in emotional resonance fluctuations.

2 RELATEDWORK
In recent years, the study of emotional dynamics using data from
social media has gained increasing attention. The COVID-19 pan-
demic has offered a unique context to explore how collective emo-
tions evolve over time and space, influenced by external shocks and
crises.

Existing studies have investigated emotional expression patterns
using sentiment analysis tools in various contexts. Bollen et al. [4]
pioneered the use of Twitter data to gauge the collective mood
of a population, providing an early framework for analyzing how
emotions spread on social networks. Their study showed that large-
scale societal events, such as financial markets or political changes,
directly affect collective emotions, which can be observed through
social media activity. With the onset of COVID-19, increasing at-
tention has been devoted to understanding the emotional impact
of the pandemic. For instance, Abd-Alrazaq et al. [1] conducted
a large-scale sentiment analysis on Twitter, revealing that pub-
lic sentiment exhibited clear patterns of anxiety and concern as
the pandemic evolved globally. Similarly, Li et al. [23] analyzed
emotional expression on Sina Weibo during the early outbreak of
COVID-19, finding distinct peaks of negative sentiment coinciding
with key events, such as the announcement of lockdowns. Several
surveys have addressed this topic with similar findings [2, 27, 39].
These results emphasize the great importance of exploring public

sentiment via social media text, especially in the context of external
shocks.

In the context of sentiment analysis, there has also been an in-
creasing interest in developing models that capture the dynamics
of emotional contagion—how emotions spread from one individual
to another across social networks. The infectious disease model has
traditionally served as an esteemed method for investigating the
mechanisms underlying emotional contagion [41]. Among their ex-
ploration, various emotional infection models have been proposed
based on SIS, SIR, and their variations, such as the personalized
virtual and physical cyberspace-based emotional contagion model
(PVP-ECM) [15], the stochastic event-based emotional contagion
model (SEEC) [36], and the dynamic multiple negative emotional
susceptible-forwarding-immune model (MNE-SFI) [48], etc. To ac-
curately represent the actual state of nodes within social networks,
researchers began utilizing complex network theory. For example,
Zhu et al. [52] defined the internodal contagion probability based
on the network structure and constructed the SIpInRS model for
netizen emotion contagion. In another study, Wang et al. [42] intro-
duced multilayer networks to study investor sentiment and stock
return connectedness. Meanwhile, Xie et al. [49] and Lu et al. [24]
explored the emotional spreading phenomenon, highlighting how
emotion contagion can be modeled as a phase transition process
like the percolation process.

Based on the results of sentimental analysis and emotion de-
tection, researchers further explore the spatial and temporal prop-
erties of online emotional expressions from different aspects. For
example, Wang et al. [44] studied the global emotional impacts of
the pandemic and proved that COVID-19 outbreaks caused steep
declines in expressed sentiment globally. Jabalameli et al. [18] an-
alyzed COVID-19-related social media data in the U.S., detecting
public opinion and sentiments related to vaccination and mapping
their spatial and temporal distributions. Zhou et al. [51] proposed
a spatial-based pandemic-cognition-sentiment (PCS) conceptual
model and revealed that the pandemic has a depressive effect on
public sentiment in the center of the outbreak. Ding et al. [10]
explored the spatiotemporal distribution patterns of negative emo-
tions in mainland China during different stages of the COVID-19
pandemic and indicated that the pandemic significantly intensified
the clustering effect of negative emotions. These studies highlight
the potential of sentiment analysis to reveal how public emotions
fluctuate across different geographic regions and periods, demon-
strating the significant impact of the pandemic on online emotional
expression.

3 Methods
3.1 Data processing
The dataset used in this paper is described in [16]. The dataset is
processed by applying a predefined list of topic-related keywords
to filter out tweets related to the targeted event. We utilize each
province and municipality’s latitude and longitude coordinates,
dividing them into 34 grid points for clustering operations. Data
points falling within each province’s coordinates range are consid-
ered representative of that province. After matching and filtering
geographic coordinates, we have a dataset comprising 2.55 million
posts and 0.755 million related users.



Conference’17, July 2017, Washington, DC, USA Anonymous Author(s)

The Sentiment Knowledge Enhanced Pre-training (SKEP) model,
an emotion-enhanced pre-training algorithm developed by Baidu
Research, is employed for calculating the sentiment score of the
tweets. If a statement is positive, the model assigns it a positive
emotion score; if it is negative, it assigns a negative emotion score.
Using the language model described above, we obtain monthly
average expressed emotion values for 34 provinces and municipali-
ties in China. Each province and municipality generates multiple
emotional values daily. We convert negative emotional values to
their absolute values to gauge overall emotional resona. Next, we
calculate each province’s average daily emotional value by aver-
aging these values. The average accuracy of the SKEP model for
Weibo-based emotion prediction is approximately 86% (the accuracy
is obtained by averaging the model accuracy over three datasets,
which can be found in Appendix Table 1).

3.2 Emotional resonance coefficient
The expressed emotions in response to the pandemic show obvious
spatial heterogeneity, as shown in Figure 1 (c). To explore this
spatial distribution property, we develop the emotional resonance
coefficient (ERC) to measure the degree of emotional resonance
between different regions. ERC is defined as the Pearson correlation
coefficient of the average sentiment score between two provinces
𝑥 and 𝑦, 𝑅𝑝𝑥𝑦 , as formulated by Eq. (1),

𝑅
𝑝
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∑𝑇
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2
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(1)
where𝑇 is the number of days each month over which the monthly
emotional resonance coefficient is calculated. 𝑥𝑡 and 𝑦𝑡 are the
expressed emotion scores of the two provinces on the 𝑡-th day,
respectively. The ERC ranges from -1 to 1, where a positive value
indicates a strong positive correlation between the expressed emo-
tion of the two provinces, and a negative ERC signifies a negative
correlation.

In our analysis, we focus exclusively on positive ERC values.
Negative ERC values are excluded as they hold minimal relevance
to emotional resonance, which, according to its definition, tends to
describe positive correlations and interactions of expressed emo-
tion.

3.3 Country-wide emotional resonance index
Percolation theory provides a natural but powerful description of
spreading dynamics on networks. Recent years have witnessed
emerging results in adopting the percolation theory in the analysis
of social networks [46, 47]. Here, based on the proposed concept
of emotional resonance, we construct the emotional resonance
network (ERN) and apply percolation-based analysis to measure
the country-wide emotional resonance level.

The network consists of 34 province nodes, with links between
each pair of nodesweighted by the Emotional Resonance Coefficient
(ERC) of the province pair. Figure 2 (a) illustrates the emotional
resonance network for February 2020, which is a fully connected
network. An initial observation reveals that users located in themid-
dle and southeastern regions of China, which encompass relatively

developed cities, exhibit stronger positive emotional resonance with
each other. In contrast, those in the northwestern regions present
weaker emotional resonance. For better illustration, we present
a less dense network consisting of 50 randomly selected links. A
similar observation can be drawn from Figure 2 (b).

(a)

(b)

Figure 2: (a) The complete emotional resonance network
(ERN) for February 2020. (b) A less dense network with ran-
domly selected links for better illustration.

Then, the country-wide emotional resonance is modeled by a
link percolation process. For each correlation link in the network,
a tunable percolation parameter q is defined to determine the state
of the link. The state of each correlation link 𝑒𝑖 𝑗 with the emotional
resonance coefficient 𝑅𝑝𝑥𝑦 will be classed into two cases: active state
for 𝑅𝑝𝑥𝑦 ≥ q and inactive state for 𝑅𝑝𝑥𝑦 < q, i.e.

𝑒𝑖 𝑗 =

{
1, if 𝑅𝑝𝑥𝑦 ≥ 𝑞,

0, if 𝑅𝑝𝑥𝑦 < 𝑞.
(2)

We remove all links with inactive states and calculate the con-
nected clusters in the rest of the network. A connected cluster
indicates that nodes (provinces) within it are inter-correlated with
a relatively higher emotional resonance level larger than q. We
then tune q from 0 to 1 with an interval Δ q=0.001, representing



Spatial-temporal Analysis of Collective Emotional Resonance During Global Health Crisis Conference’17, July 2017, Washington, DC, USA

Xinjiang

Tibet

Qinghai

Ningxia

Sichuan
Chongqing

Guizhou
Yunnan

Guangxi

Hainan

Guangzhou

Hong Kong
Macao

Taiwan
Fujian

Hunan

Hubei
Jiangxi

Shanghai
Zhejiang

JiangsuAnhui

Henan
Shangdong

Hebei
Tianjin

Beijing

Shanxi

Heilongjiang

Jilin

LiaoningInner Mongolia

Gansu

Shaanxi

(a)

Xinjiang

Tibet

Qinghai
Ningxia

Gansu

Inner Mongolia
Beijing

Tianjin

Jilin

Liaoning

Hebei
Shangdong

Shanxi

HenanShaanxi

Sichuan
Chongqing

Hainan

Hong Kong
Macao

Taiwan
FujianGuizhou

Yunnan

Guangxi
Guangzhou

Hubei

Hunan Jiangxi

Anhui Jiangsu
Shanghai

Zhejiang

Heilongjiang

(b)

Figure 3: The disintegration of an emotional resonance net-
work. The emotional resonance network (a) keeps globally
connected when q=0.66, and (b) decomposes when q=0.76.

an increasing filter of the emotional resonance level. With the in-
creasing q, a higher proportion of links is removed. This leads to
a decrease in the size of the giant component of the network, 𝐺 .
According to the percolation theory [22], the second-largest compo-
nent, 𝑆𝐺 , increases and reaches its maximum at a critical parameter
𝑞𝑐 , signifying the network undergoes a phase transition from global
connectivity to disintegration. Figure 3 (a) and (b) show an example
of the network before and after the decomposition. The thresh-
old, 𝑞𝑐 , is obtained by identifying this critical transition. Here, we
redefine 𝑞𝑐 as an indicator to measure the level of country-wide
emotional resonance, i.e., the emotional resonance index (ERI).

3.4 Time-delayed cross-correlation
To explore the fluctuations of emotional resonance with time, we
define the time-delayed cross-correlation [11] of emotional reso-
nance. The fluctuation of emotional resonance 𝑇𝑖 (𝑡) is obtained by
subtracting the original expressed emotion scores of province i by

its mean value over each month. For each pair of provinces i and j,
the time-delayed cross-correlation between the time series (𝑇𝑖 and
𝑇𝑗 ) of each month is calculated by,

𝐶
(𝑡 )
𝑖 𝑗

(𝜏) =
〈
𝑇𝑖 (𝑡)𝑇𝑗 (𝑡 − 𝜏)

〉
− ⟨𝑇𝑖 (𝑡)⟩

〈
𝑇𝑗 (𝑡 − 𝜏)

〉
𝜎𝑇𝑖 (𝑡 )𝜎𝑇𝑗 (𝑡−𝜏 )

, (3)

where 𝜎𝑇𝑖 (𝑡 ) is the standard deviation of𝑇𝑖 (𝑡), 𝜏 ∈ [−𝜏𝑚𝑎𝑥 , 𝜏𝑚𝑎𝑥 ] is
the time lag, with 𝜏𝑚𝑎𝑥 = 6 days (one-week interval), t is the starting
date of the time series. ⟨·⟩ is the average operator. We locate the
largest absolute value of𝐶 (𝑡 )

𝑖 𝑗
(𝜏) and denote the corresponding time

lag as 𝜏 (𝑡 )
𝑐,𝑖 𝑗

.
Scientific studies on collective behavior have confirmed the

fundamental rules of "following" and "attraction" within group
movements[32]. Here, we incorporate these rules into our study of
collective emotional resonance. The positive sign of 𝜏 (𝑡 )

𝑐,𝑖 𝑗
indicates

that the emotional resonance fluctuation of j lags behind i (i.e., i
leads j), while a negative sign of 𝜏 (𝑡 )

𝑐,𝑖 𝑗
signifies i follows the fluctua-

tion of j. We define the strength of this leader-follower relationship
by calculating the normalized time-delayed cross-correlation, 𝑆 (𝑡 )

𝑖 𝑗
,

𝑆
(𝑡 )
𝑖 𝑗

=

𝐶
(𝑡 )
𝑖 𝑗

(𝜏 (𝑡 )
𝑐,𝑖 𝑗

) −
〈
𝐶
(𝑡 )
𝑖 𝑗

(𝜏)
〉

𝜎
𝐶

(𝑡 )
𝑖 𝑗

(𝜏 )
. (4)

Ideally, the larger the value 𝑆 (𝑡 )
𝑖 𝑗

is, the stronger the leader-follower
relationship between i and j.

Then, we construct a complete network based on 𝑆
(𝑡 )
𝑖 𝑗

. The net-
work consists of 34 province nodes, where the direction of the link
is determined by the sign of 𝜏 (𝑡 )

𝑐,𝑖 𝑗
, and the weight on the link is 𝑆 (𝑡 )

𝑖 𝑗
.

The weighted indegree and outdegree of each node is defined as,

𝑂𝐷
(𝑡 )
𝑖

=
∑︁

𝑗∈𝑁,𝑗≠𝑖
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> 0), (5)
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𝑆
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𝑖 𝑗

(𝜏 (𝑡 )
𝑐,𝑖 𝑗

< 0), (6)

where N is 34. Here, larger weighted outdegree values reflect a
stronger leader effect of the node, while larger indegree indicates a
stronger follower effect in terms of emotional resonance fluctuation.

4 Results
4.1 The spatial dimension of emotional

resonance
We examine ERC values across China’s 34 provincial administrative
regions. The monthly ERC value of each province pair is shown in
Figure 4 (a). A quantified spatial heterogeneity of emotional reso-
nance in response to the pandemic can be observed, with certain
regions exhibiting stronger correlations in expressed emotions than
others, e.g., Hubei and Sichuan in January. Notably, January displays
the strongest (red) emotional resonance among all periods, likely
due to it being the first month following the outbreak of the pan-
demic. As a pivotal period marked by the initial shock and upheaval
caused by the pandemic’s emergence, individuals and communities
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may have experienced heightened emotional responses and shared
sentiments.

This spatial heterogeneity prompts further investigation into
the underlying factors shaping the emotional resonance dynamics
across different geographic areas. To this end, we explore the ERC
as a function of physical distance d between each pair of provinces,
revealing a negative linear correlation between the two parameters,
i.e.,

𝐸𝑅𝐶 = −𝑘 × 𝑑 + 𝛽, (7)
where 𝑘 is the fitting slope obtained by the least squares fitting
method [13]. The physical distance d between province pairs is
determined by calculating the Euclidean distances between their
geographic centers. We also find that, despite temporal variations
of the ERC value between each province pair, the slope 𝑘 tends to
be stable (𝑘 = 0.05±0.00579) for all observed months. These high-
quality negative correlations found here in different province pairs
and different periods highly suggest that the emotional resonance
defined here may reflect an intrinsic property of online expressed
emotion independent of the geographic cultures that change from
province to province.

This result indicates that populations in regions with closer
physical proximity tend to exhibit stronger emotional resonance on
social media, while those farther apart display weaker correlations
in expressed emotions. Considering the relatively low population
migrations between regions due to the lockdown measure [25],
our results suggest a consistent mapping between virtual network
distance and physical distance during the pandemic. In other words,
social interactions and emotional connections maintained through
virtual platforms have mirrored geographical proximity despite
restrictions on physical mobility. With limited data, we reveal that
the correlation is not statistically significant for December 2019
(see Appendix Figure 7). This potentially suggests that this global
health crisis not only impacts public health but also alters patterns
of social emotion dynamics.

4.2 Percolation-based analysis of emotional
resonance

By determining the percolation threshold 𝑞𝑐 of each emotional
resonance network, we can identify the critical point at which the
emotional resonance phenomenon becomes widespread and perva-
sive throughout the whole network (country), i.e., the emotional
resonance index (ERI). As shown in Figure 5 (a), a clear phase tran-
sition point can be identified by tracking the 𝑆𝐺 of the network for
each month.

Given the relatively small scale of the network and the use of
real-world Weibo data for weight calculation, the phase transitions
observed here are not as sharp as those typically seen in a first-order
phase transition. We also observe multiple 𝑆𝐺 peaks in August and
November. For simplicity, we select the first peak of 𝑆𝐺 for all
months when identifying the critical point. Figure 5 (b) presents
the monthly ERIs. Consistent with our previous finding, January
persists in an overall higher emotional resonance level with 𝑞𝑐 =
0.97. As indicated by dash lines in the figure, three local peaks of
the ERI can be observed. Indeed, the emotional resonance level
is event-boosted. Besides January, the relatively higher emotional
resonance level in April can be attributed to the Qingming Festival.

April 4th was assigned as a national mourning day to honor the
victims of the pandemic. Given the increasing number of deaths
during the pandemic, this festival particularly triggered emotional
resonance among the population. The peak in December reflects
people’s surging emotions as they welcomed the new year with
mixed feelings, encompassing both hope and anxiety under the
ongoing pandemic.

As a reflection of human mental status, emotional resonance
represents one of the primary channels through which people inter-
act with and understand the external environment. The difference
in emotional performance between developed and less developed
cities stimulates us to examine the depth of reason that drives the
way people share their expressed emotions via social networks.
Several studies have indicated a potential correlation between pub-
lic sentiment and the economic environment [8, 45]. To validate
this hypothesis in the context of emotional resonance, we collect
economic data from the National Bureau of Statistics of China
(https://data.stats.gov.cn/index.htm). We investigate the correlation
between the monthly ERI and the Total Retail Sales of Consumer
Goods (TRSCG), which is the main indicator for the general eco-
nomic environment. As indicated in Figure 5 (b), we found that ERI
is negatively correlated with the month-on-month growth rate of
TRSCGwith a Pearson correlation coefficient−0.69323 (𝑝 = 0.01243,
which is statistically significant at 𝑝 < 0.05).

We check the correlation between ERI and other economic in-
dicators (see Appendix Table 2), and all results indicate a negative
relationship. Our analysis suggests that the pandemic greatly im-
pacted both expressed emotions and economic conditions, and these
two affected factors are interrelated. It is possible to monitor col-
lective emotional resonance levels as an indicator of the country’s
economic health during global health shocks. We also compare the
proposed percolation-based index ERI with the average sentiment
score (see Appendix Figure 8 and Table 3). The monthly average
sentiment scores are almost identical with slight variation (0.85 ±
0.02), making them of limited significance for the heterogeneous
study of emotion evolution.

Moreover, the network at percolation criticality has a very dilute
structure and behaves as the “backbone” of the original network,
which can be applied to identify bottlenecks as those observed in
traffic networks [21]. In the case of an emotional resonance net-
work, the bottlenecks are key pathways through which emotional
resonance can spread. We identify the bottlenecks by comparing
the remaining network just below and immediately above the per-
colation threshold. Figure 9 in the Appendix illustrates the removed
links (in red) at 𝑞𝑐 , showing that they can disintegrate the giant
cluster and result in a maximal second-largest cluster. For example,
the resonance between Henan and Shanxi is the critical pathway
in January, and Shanxi ranks the highest frequency of connecting
bottleneck links throughout the year. This suggests that Shanxi
plays a pivotal role in stimulating emotional resonance, acting as a
crucial bridge within the network during this period.

4.3 The temporal dimension of emotional
resonance

Based on the definition of time-delayed cross-correlation, Figure 6
(a) illustrates the distribution of high-degree centrality nodes within
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Figure 4: The spatial dimension of emotional resonance. (a) Heatmaps of the emotional resonance coefficients (ERC) between
provinces through the year 2020. The horizontal (from top to bottom) and vertical (from left to right) axes are labeled with
the following provinces in order: Hubei, Jiangxi, Hunan, Henan, Jiangsu, Zhejiang, Fujian, Shaanxi, Shanghai, Shandong,
Chongqing, Shanxi, Guangdong, Sichuan, Tianjin, Guangxi, Beijing, Ningxia, Gansu, Hainan, InnerMongolia, Yunnan, Liaoning,
Qinghai, Jilin, Heilongjiang, Xinjiang, Macao, Hong Kong, and Taiwan. (b) ERC as a function of physical distance d between
each pair of provinces.

active tweeting regions (blue) and inactive regions (red). Our results
reveal that these strong leaders and followers are primarily con-
centrated in inactive regions rather than active ones. Here, larger
weighted outdegree values reflect a stronger leader effect of the
node, while larger indegree indicates a stronger follower effect in
terms of emotional resonance fluctuation. This indicates that lead-
ership and followership in emotional resonance fluctuations do not
necessarily depend on high levels of social media engagement and
that inactive regions tend to play a dual role in influencing and
reflecting online emotional responses to global health shock events.

The reveal of this dual-role characteristic of inactive regions on
the social platform is of great importance. These regions not only
serve as strong influencers in initiating significant emotional trends
but also act as followers, responding sensitively to changes originat-
ing from other areas. In other words, the seemingly unimportant
nodes, often found in regions with less social media engagement,
have a significant impact on emotional transmission on social net-
works. By intervening in the emotional resonance of these key

nodes, we can mitigate their emotional effects on social networks.
Therefore, understanding influential nodes in inactive areas can
help develop effective strategies for disseminating public opinion
or crisis management.

5 Discussion
Our analysis focuses on the collective emotional resonance un-
der the most recent global health crisis, highlighting several key
findings associated with how collectively expressed emotion prop-
agates through social media platforms during the first year of the
pandemic. Leveraging large-scale social media data and advanced
sentiment analysis tools, we introduce a novel definition of emo-
tional resonance in response to this unprecedented global health
crisis. Despite occurring on virtual platforms, our findings reveal
that emotional resonance diminishes with physical distance, extend-
ing previous research on the influence of geographic distance on
online social interactions [20]. By applying percolation theory and



Conference’17, July 2017, Washington, DC, USA Anonymous Author(s)

05
1 01 52 02 53 03 5

 G
�S G

q c   :  0 . 9 7G

 G
�S G

q c   :  0 . 7 6

2 0 2 0 - 0 1

0
2
4
6

05
1 01 52 02 53 03 5

0
2
4
6

2 0 2 0 - 0 2

05
1 01 52 02 53 03 5 2 0 2 0 - 0 3

 G
�S G

q c   :  0 . 5 5

0
2
4
6
8

 SG

05
1 01 52 02 53 03 5

G

2 0 2 0 - 0 4

 G
�S G

q c   :  0 . 7 6

0
2
4

05
1 01 52 02 53 03 5 2 0 2 0 - 0 5

 G
�S G

q c   :  0 . 5 2

 G
�S G

q c   :  0 . 5 0

0
2
4
6

05
1 01 52 02 53 03 5 2 0 2 0 - 0 6

02
46
81 0

 SG

05
1 01 52 02 53 03 5

G

2 0 2 0 - 0 7

 G
�S G

q c   :  0 . 4 7

 G
�S G

0
2
4
6

05
1 01 52 02 53 03 5

q c   :  
0 . 3 3
0 . 4 0
0 . 4 9

2 0 2 0 - 0 8

0
2
4

05
1 01 52 02 53 03 5 2 0 2 0 - 0 9

 G
�S G

q c   :  0 . 5 0

 G
�S G

q c   :  0 . 7 3

0
2
4
6

 SG

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
05

1 01 52 02 53 03 5

q

G

2 0 2 0 - 1 0

0
2
4

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
05

1 01 52 02 53 03 5
q c  :  0 . 5 3 / 0 . 6 4

q

2 0 2 0 - 1 1
 G
�S G G

�S G
q c   :  0 . 5 4

0
2
4
6

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
05

1 01 52 02 53 03 5

q

2 0 2 0 - 1 2

0
2
4

 SG

(a) (b)

Figure 5: Identification of the monthly emotional resonance index (ERI). (a) The phase transition points correspond to the
maximal 𝑆𝐺 values. (b) The monthly ERI was found to be negatively related to economic indicators.
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Figure 6: Analysis of temporal dimension of emotional resonance based on time-delayed cross-correlation. (a) The distribution
of high-degree centrality nodes (top 10) in active tweeting regions and inactive tweeting regions. The temporal shifting of
nodes with the highest (b) outdegree and (c) indegree through the year.

network analysis, we quantify the country-wide emotional reso-
nance level and reveal the negative relationship between emotional
resonance level and economic environment.

Our temporal analysis further captures the unique patterns of
emotional resonance fluctuations across different regions and time
periods. Based on the time-delayed cross-correlation, we reveal the
dual-role characteristics of inactive tweeting regions. Our findings
challenge conventional assumptions about the dominance of more
active users [19, 30], which redefines the importance of users on
social networks. In other words, more attention should be given
to the ‘edge users’ when investigating the emotion propagation
process since the social media engagement level alone does not
fully account for their influence.

In summary, our study contributes methodologically by inte-
grating sentiment analysis, spatial-temporal modeling, and perco-
lation theory to study collective emotions comprehensively. In this
post-pandemic era, our results provide a valuable framework for
analyzing how collective emotional resonance propagates across
social media platforms during such crises and its application to
influential user identification, public opinion intervention, etc.

Although COVID-19 has passed, it will not be the last global pan-
demic we will face. Future research can enhance this framework by
incorporating factors such as user demographics, media influence,
and offline social interactions to deepen the understanding of emo-
tional resonance. A larger-scale analysis of emotional resonance
across global countries would also be of significant interest when
data becomes available.
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A Appendix
A.1 Accuracy of the SEKP model
SKEP is designed for sentiment analysis to automatically identify
and extract subjective information from text, including tendencies,
positions, evaluations, and opinions. The Baidu research team fur-
ther validated the effectiveness of the SKEP sentiment pre-training
model across three typical sentiment analysis tasks: sentence-level
sentiment classification, aspect-level sentiment classification, and
opinion role labeling, using a total of 14 datasets in both Chinese
and English. The experiments showed that initializing with the gen-
eral pre-training model ERNIE (internal version), SKEP achieved an
average improvement of about 1.2% over ERNIE and approximately
2% improvement over the previous state-of-the-art (SOTA). To as-
sess the accuracy of the SKEP model in social media text emotion
classification, we conducted additional validation using three social
text datasets of different sizes.

The dataset contains time-stamped Weibo posts during the pan-
demic, with 2,000 labeled entries. Labels are 0 for neutral, 1 for pos-
itive, and 2 for negative (https://aistudio.baidu.com/datasetdetail/
120950). Since the SKEP model is binary classification, we removed
the neutral emotions from the dataset. After removal, the dataset
still contains 1,189 entries. The accuracy is 82%.

The train_label.csv and train.csv datasets are sourced from the
pandemic sentiment analysis of netizens’ emotions (Pandemic Senti-
ment Analysis - PaddlePaddle AI Studio https://aistudio.baidu.com/
aistudio/datasetdetail/24278/0). The train.csv file contains 100,000
data entries categorized as -1 (negative), 0 (neutral), and 1 (posi-
tive). The train_label.csv file contains 900,000 data entries with the
same categories. During testing, we removed neutral entries and

identified binary classification results for negative and positive sen-
timents. The accuracy is shown in Table 1. After removing neutral
emotions, train.csv contains 42,294 Weibo posts, and train_label.csv
contains 366,813 Weibo posts.

It can be seen that the pre-trained SKEP model has high accuracy.
These datasets, like the ones used in our paper, contain posts from
Weibo users during the COVID-19 pandemic. We found that the
SKEP model performs better with larger datasets. The excellent
performance on these annotated datasets demonstrates that the
SKEP model is also effective for our dataset.

Table 1: Accuracy of SKEP

Model Dataset
Train.csv Train_label.csv label2000.json

SKEP_ernie_1.0_large_ch 82% 85.9% 91.2%

A.2 Emotional resonance coefficient in
December 2019
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Figure 7: Emotional resonance coefficient (ERC) as a function
of physical distance d between each pair of provinces in De-
cember 2019. The correlation is not statistically significant.

A.3 Comparison between ERI and other
economic indicators

The correlation between ERI and other economic indicators is
shown in Table 2, and all results indicate a negative relationship.
Here are the explanations of each indicator:

Percentages and Money Supply (M0, M1, M2) quantify money
circulation at different levels. The concepts of money and quasi-
money (M2) supply are important metrics in macroeconomics for
measuring the total amount of currency in circulation within a
country or region over a specific period (typically a month). M1: The
most liquid forms of money, including all cash and demand deposits
used for transactions. M0 refers to the currency in circulation.

https://doi.org/10.1038/s41562-022-01312-y
https://doi.org/10.1038/s41562-022-01312-y
https://doi.org/10.1057/s41599-021-00798-7
https://aistudio.baidu.com/datasetdetail/120950
https://aistudio.baidu.com/datasetdetail/120950
https://aistudio.baidu.com/aistudio/datasetdetail/24278/0
https://aistudio.baidu.com/aistudio/datasetdetail/24278/0
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Gold reserves refer to the gold held by a country’s monetary
authority, used to balance international payments, maintain or
influence exchange rate levels, and serve as a financial asset.

Credit loans: When a borrowing enterprise obtains a loan from
a bank for the first time, it’s termed as a new loan. If the loan is
repaid on time upon maturity and the enterprise applies for another
loan afterward, this is also considered a new loan. However, if the
enterprise fails to repay the loan on time and the bank agrees for
the enterprise to borrow a second loan to repay the first, this is
termed as "borrowing new to repay old." The year-on-year growth
rate of loans is used here.

Chinese currency deposits in both RMB and foreign currencies:
RMB is the domestic currency, while currencies from other coun-
tries are considered foreign currencies. The cumulative amount
of these currencies deposited in domestic financial institutions is
collectively referred to as Chinese currency deposits in both RMB
and foreign currencies, used for comparative purposes.

Foreign Exchange Loans are loans issued by banks to enterprises
using foreign currency as the unit of account. There are broad and
narrow definitions of foreign exchange loans. Narrowly defined,
foreign exchange loans refer specifically to loans issued by Chinese
banks using foreign exchange funds absorbed from domestic en-
terprises and individuals, and lent to domestic enterprises. These
loans are compared using cumulative amounts.

All data can be obtained from the National Bureau of Statistics
(https://www.stats.gov.cn/) and FinanceData (https://data.eastmoney.
com/).

Table 2: Correlation analysis between ERI and economic in-
dicators

Variable Pearson Correlation p-value

TRSCG -0.69323 0.01243
M2 -0.68374 0.01422
M1 -0.70388 0.01063
M0 -0.49435 0.10231

Gold reserves -0.65690 0.02030
New stock investors -0.58399 0.04618

Domestic and foreign currency deposits in China -0.63460 0.02665
Foreign exchange loan data in China -0.71586 0.00884

Credit loans -0.70513 0.01043

Note: Pearson correlation coefficient, p-value < 0.05, is
marked in bold.

A.4 Comparison ERI and the average sentiment
scores

Observing Table 3 and Figure 8, we find that the Pearson correlation
between the monthly average sentiment scores and most economic
indicators shows no statistically significant results. This is because
the monthly average sentiment scores are almost identical with
little variation, making them of limited significance for the study.
To capture the phenomenon of collective emotional evolution, us-
ing the average sentiment value alone is insufficient, as the values
show little variation and lack meaningful measurement. Therefore,
we use the Emotional Resonance Index (ERI) to measure emotional

resonance. This method allows us to assess it from a global perspec-
tive and better illustrate the phenomenon of emotional resonance,
making it more valuable than using average sentiment values.

Figure 8: Comparison between monthly ERI and average
sentiment scores (denoted as ASV in the plot).

Table 3: Correlation analysis between average sentiment
scores and economic indicators.

Variable Pearson Correlation p-value

TRSCG 0.52388 0.08042
M2 0.37748 0.22640
M1 0.06309 0.84557
M0 0.59657 0.04060

Gold reserves 0.11387 0.72456
New stock investors 0.26913 0.39763

Domestic and foreign currency deposits in China -0.09116 0.77812
Foreign exchange loan data in China 0.01219 0.97002

Credit loans 0.29600 0.35023

Note: Pearson correlation coefficient, p-value < 0.05, is
marked in bold.

A.5 Identification of bottlenecks in the
percolation process

The identification of bottleneck edges in the emotional resonance
network for each month is illustrated in Figure 9. By comparing
the network structure before and after the percolation threshold,
the bottleneck links that are important to country-wide emotional
resonance spread are colored in red.

https://www.stats.gov.cn/
https://data.eastmoney.com/
https://data.eastmoney.com/
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Figure 9: Visualizing the identification of bottlenecks in emotional resonance spreading. The bottlenecks are colored with red.
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