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Abstract

Multi-class unsupervised anomaly detection aims
to create a unified model for identifying anomalies
in objects from multiple classes when only normal
data is available. In such a challenging setting,
widely used reconstruction-based networks persis-
tently grapple with the “identical shortcut” prob-
lem, wherein the infiltration of abnormal informa-
tion from the condition biases the output towards
an anomalous distribution. In response to this crit-
ical challenge, we introduce a Vague Prototype-
Oriented Diffusion Model (VPDM) that extracts
only fundamental information from the condition
to prevent the occurrence of the “identical short-
cut” problem from the input layer. This model
leverages prototypes that contain only vague in-
formation about the target as the initial condi-
tion. Subsequently, a novel conditional diffusion
model is introduced to incrementally enhance de-
tails based on vague conditions. Finally, a Vague
Prototype-Oriented Optimal Transport (VPOT)
method is proposed to provide more accurate in-
formation about conditions. All these components
are seamlessly integrated into a unified optimiza-
tion objective. The effectiveness of our approach
is demonstrated across diverse datasets, includ-
ing the MVTec, VisA, and MPDD benchmarks,
achieving state-of-the-art results.
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1. Introduction
Unsupervised anomaly detection aims to identify and lo-
calize anomalies when only normal data is available, gar-
nering significant attention in recent years across diverse
application scenarios such as medical image analysis (Fer-
nando et al., 2021), video inspection (Ramachandra et al.,
2020), and defect detection (Bergmann et al., 2019). Given
the need to detect anomalies across multiple tasks, a com-
mon approach involves modeling the distribution of normal
samples following the one-for-one scheme (Gong et al.,
2019; Bergmann et al., 2020; Li et al., 2023). However,
this scheme can be memory-intensive, especially with an
increasing number of classes, and may not align well with
scenarios characterized by substantial intra-class diversity
among normal samples (You et al., 2022a; Lu et al., 2023).
Recent advancements in multi-class unsupervised anomaly
detection (You et al., 2022a; Lu et al., 2023; He et al., 2023)
aim to address these challenges by developing unified mod-
els for multiple classes. Modeling the normal distribution
remains an inherently challenging task, and the complexity
escalates when endeavoring to accurately capture multi-
class distributions within a unified model.

A prevalent approach to learning the distribution of nor-
mal data involves representation-based methods (Roth et al.,
2022; Gudovskiy et al., 2022; Shi et al., 2021; Zaheer et al.,
2020; Liang et al., 2023). These methods operate under
the assumption that a well-trained model cannot effectively
generate samples deviating from the normal distribution.
Consequently, when guided by an anomaly sample, the
model tends to produce normal samples, leading to notice-
able reconstruction errors that can serve as indicators for
detecting anomalies (You et al., 2022a; Mousakhan et al.,
2023). However, this assumption may not always hold
true, as sometimes the infiltration of abnormal information
from the condition biases the output towards an anoma-
lous distribution. This phenomenon, where abnormal inputs
are well-reconstructed, is known as the “identical shortcut”
problem (Gong et al., 2019; You et al., 2022b). Moreover,
in multi-class scenarios, the complexity of the normal data
distribution is heightened, exacerbating the effects of the
“identical shortcut” problem (You et al., 2022a).

Recently, there has been a surge in interest in diffusion-
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based generative models for their ability to generate high-
dimensional data (Ho et al., 2020; Han et al., 2022). Current
diffusion models designed for anomaly detection (He et al.,
2023; Mousakhan et al., 2023; Yin et al., 2023) primarily em-
phasize the creation of influential conditional embeddings
derived from abnormal inputs. These embeddings are subse-
quently fed into the denoising network, steering the reverse
process within the diffusion model. For instance, DiAD (He
et al., 2023) employs pixel-level semantics as conditions to
guide the diffusion model, while LafitE (Yin et al., 2023)
employs a condition-guided approach using feature editing,
which is determined by input samples to guide the genera-
tion processes. However, while these methods aim to use
information-rich conditions to generate high-quality results,
the conditions still retain some anomaly information, poten-
tially leading to the persistence of the “identical shortcut”
problem.

Drawing inspiration from the human memory retrieval mech-
anism (Ratcliff, 1978), which starts recalling the appearance
of a normal sample with vague elements such as shapes and
colors, followed by the gradual recall of more detailed in-
formation, we propose a novel conditional diffusion model
guided by vague conditions. We suggest that initiating the
process with vague conditions, initially excluding anoma-
lous information from the input layer, and then incremen-
tally introducing details through a generative model will
effectively mitigate the occurrence of the “identical short-
cut” problem at its source. In summary, we present the
Vague Prototype-Oriented Diffusion Model (VPDM), metic-
ulously designed to counteract the infiltration of abnormal
condition information at its origin. To achieve this, we uti-
lize prototypes that contain only vague information about
the target as the initial condition. By leveraging prototypes
(Tanwisuth et al., 2021; Guo et al., 2022; Wang et al., 2022)
with fundamental shape and color information, the model
receives adequate guidance for generating corresponding
tasks. Simultaneously, the exclusion of anomalous details
helps avoid misleading the model. Additionally, we intro-
duce a novel conditional diffusion model to incrementally
enhance details based on vague conditions. Finally, we in-
troduce the Vague Prototype-Oriented Optimal Transport
(VPOT) model, leveraging Optimal Transport (OT) (Peyré
et al., 2019) technology to offer more precise information
about conditions. All these components are integrated into
a unified optimization objective.

The main contributions of our work are summarized as
follows:

• Drawing inspiration from the human memory retrieval
mechanism and the intricacies of practical multi-task
anomaly detection, we introduce Vague Prototype-
Oriented Diffusion Model. This model leverages vague
conditions to fundamentally address the challenge of

“identical shortcut” problem.

• Given that the vague condition contains less informa-
tion, it increases the difficulty of generating samples.
We introduce a conditional diffusion model that con-
siders the vague condition across both the forward and
reverse processes within the diffusion model. This re-
sults in a diffusion model that generates samples by
gradually adding details based on vague conditions.

• We introduce the VPOT model, which leverages the
OT distance between distributions to guide the learning
of prototypes, with the goal of summarizing the normal
distribution across multiple classes.

• We present comprehensive experimental results and
comparisons on MVTec-AD, VisA, and MPDD, show-
casing that our method attains SOTA performance
across these datasets.

2. Background
2.1. Multi-class Unsupervised Anomaly Detection

Multi-class unsupervised anomaly detection aims to create
a unified model capable of identifying anomalies within
objects spanning multiple classes when only normal data
is available (You et al., 2022a). It relies on the hypoth-
esis that reconstruction models trained solely on normal
samples excel in normal regions but struggle in anomalous
regions (Chen et al., 2022; You et al., 2022b; Zavrtanik
et al., 2021; Li et al., 2021; Pirnay & Chai, 2022). However,
these methods face the challenge of the “identical shortcut”
problem, where the model may learn to restore anomalies
effectively (Lu et al., 2023). In response, researchers adopt
various strategies to address this issue, such as incorporating
memory mechanisms (Hou et al., 2021; Yin et al., 2023),
instructional information (Shi et al., 2021; Cao et al., 2022),
iteration mechanisms (Dehaene et al., 2020), and pseudo-
anomalies (Collin & De Vleeschouwer, 2021). Despite their
emphasis on enhancing generative capacity through effec-
tive condition guidance, these models remain susceptible
to anomalous information within the conditions, potentially
leading to the “identical shortcut” problem. Unlike these
approaches, we present VPDM, which utilizes vague condi-
tions to fundamentally tackle the challenge of the “identical
shortcut” problem arising from the intrusion of anomaly
information.

2.2. Diffusion Model

Diffusion probabilistic models (Sohl-Dickstein et al.,
2015) take the form pθ(x

0) :=
∫
pθ(x

0:T )dx1:T , where
x1, ...,xT represent latent variables (Ho et al., 2020). One
well-known diffusion model is the denoising diffusion prob-
abilistic model (DDPM) (Ho et al., 2020), which consists
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Figure 1. The overall framework of proposed Vague Prototype-Oriented Optimal Transport (VPOT), which consist of a pre-trained feature
extractor (EfficientNe), a proposed VPOT model and a well designed diffusion model. The upper part provides insight into the workings
of VPOT, while the lower half visualizes how VPDM generates normal samples for the corresponding class. The class-based information
is initially extracted through low-pass filtering, then mapped to the vague normal pattern in the vague prototype, and finally, details are
incrementally added through a specially designed diffusion model.

of two processes: the forward (diffusion) process and the
reverse process. Following the Markov chain, the forward
process gradually adds noise, transforming an input vector
x0 into a Gaussian noise vector xT over T steps:

q(x1:T | x0) :=
∏T

t=1 q(x
t | xt−1),

q(xt | xt−1) := N (
√
1− βtxt−1, βtI)

(1)

where βt represents a small positive constant denoting the
noise level. In practical applications, we directly sample xt

from x0 as the following: q(xt | x0) = N (
√
αtx0, (1 −

αt)I), where ᾱt := 1−βt and αt :=
∏T

t=1 ᾱ
t. The reverse

process involves denoising xt back to x0 and is defined as
a Markov chain with a learned Gaussian transition:

pθ(x
0:T ) := p(xT )

∏T
t=1 pθ(x

t−1 | xt),

pθ(x
t−1 | xt) := N (µθ(x

t, t),σθ(x
t, t))

(2)

In DDPM (Ho et al., 2020), the parameterization of
pθ(x

t−1 | xt) is defined as:

µθ(x
t, t) = 1

αt (x
t − βt√

1−αt
ϵθ(x

t, t)),

σθ(x
t, t) = (β̄t)1/2,

if t = 1 : β̄t = β1, else : β̄t = 1−αt−1

1−αt βt

(3)

where the ϵθ is denoising function and which can be trained
by solving the following optimization problem:

min
θ

L(θ) := Ex0∼q(x0),ϵ∼N (0,I),t ∥ϵ− ϵθ(x
t, t))∥2 (4)

Using the trained denoising function ϵθ, we can generate
samples step by step from N (0, I) randomly. However, in

the context of multi-class unsupervised anomaly detection,
the objective is to generate the normal samples x condi-
tioned on the no the normal or abnormal images. Several
studies (He et al., 2023; Mousakhan et al., 2023; Yin et al.,
2023) have explored adapting diffusion models for this task
by injecting conditional information into the reverse process
to guide the generative process.

2.3. Optimal Transport

OT is a widely used tool for quantifying the difference
between two distributions (Peyré et al., 2019). Specifically,
considering two discrete distributions as p =

∑n
i=1 aiδxi

and q =
∑m

j=1 bjδyj
, where xi, yj ∈ Rd and δx is the Dirac

function that places a unit point mass at x. The OT distance
between p and q can be expressed as:

OT(p, q) = min
T∈Π(p,q)

⟨T,C⟩ (5)

where ⟨·, ·⟩ denotes the Frobenius dot-product, C ∈
R≥ 0n×m is the transport cost matrix. T ∈ Rn×m

>0 refers
to the doubly stochastic transport probability matrix that
Π(p, q) := {T |

∑n
i=1 Tij = bj ,

∑m
j=1 Tij = ai}, which

can be learned by minimizing OT(p, q). As the optimiza-
tion of Eq. 5 often demands a high computational cost, the
Sinkhorn algorithm for discrete OT, which is achieved by in-
troducing the entropic regularization H = −

∑
ij Tij lnTij ,

is commonly used in practice to reduce the computation
(Peyré et al., 2019).
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3. Methodology
Taking inspiration from the human memory retrieval mech-
anism (Ratcliff, 1978), where recalling the appearance of a
normal sample starts with vague elements such as shapes
and colors, followed by the progressive recall of more de-
tailed information, in this section, we introduce VPDM, a
novel framework that employs prototypes containing only
vague information about the target as the initial condition.
By excluding anomalous information from the input layer,
we alleviate concerns about anomaly information infiltration.
As depicted in Fig. 1, VPDM consist of two main compo-
nents, we first present the VPOT model. VPOT leverages
OT (Peyré et al., 2019) technology to provide more precise
information about conditions. In contrast to existing models
(Yin et al., 2023; He et al., 2023) that use information-rich
conditions to guide the model, the vague prototype elimi-
nates anomaly information at the input level. However, this
also leads to the loss of some normal information, mak-
ing the generation process more challenging. To overcome
this, the second part of VPDM is a novel conditional dif-
fusion model that incrementally enhances details based on
vague conditions. Finally, these two models are integrated
into a unified framework, leveraging a hybrid optimization
approach. From a conceptual standpoint, VPDM can be
viewed as a Bayesian generative model (Tran et al., 2019),
where the generative process can be expressed as:

p(x0) =
∫
x1:T p(xT | ŷ)

∏T
t=1 p(x

t−1 | xt, ŷ)dx1:T

(6)
Where the x1:T are latents of the same dimensionality as
the data x0 ∼ p(x0), ŷ is the vague condition generated by
VPOT model.

3.1. Learning Vague Prototype with Optimal Transport

Existing works (Hou et al., 2021; Yin et al., 2023; Shi et al.,
2021) predominantly focus on designing information-rich
conditions to enhance the model’s generative capability. In
contrast, VOPT is proposed to characterizing the normal
distribution using a set of vague prototypes containing only
fundamental task information. This adjustment provides
several advantages. Firstly, the occurrence of the “identical
shortcut” is primarily caused by the infiltration of anomaly
information from input samples, enabling the model to pro-
ficiently generate anomaly samples. The vague prototypes
we propose contain minimal information, primarily vague
elements like shapes and colors. By excluding anomalous in-
formation from the input layer, we alleviate concerns about
anomaly information infiltration. Secondly, the prototypes
encapsulate various normal dynamic patterns for different
tasks (Wang et al., 2022; Li et al., 2023), allowing VPDM
to cover multi-class with diverse characteristics through this
group of prototypes. This enables the model to better cap-
ture the different patterns inherent in multi-class scenarios.

Finally, we introduce the OT algorithm to learn the vague
prototypes and enhance the quality of the prototypes by op-
timizing the OT loss. This approach improves the model’s
ability to capture various patterns, beneficial for multi-class
settings (Wang et al., 2022; Tanwisuth et al., 2021).

In the VPOT model, the initial step involves extracting fun-
damental information from the input image while filter-
ing out undesired anomalies and intricate details. Drawing
inspiration from recent works (Choi et al., 2021; Wang
et al., 2023) that employ low-pass filtering for information
segmentation in feature space, the retained low-frequency
information primarily encompasses fundamental task ele-
ments, such as shape and color, offering a vague represen-
tation of the current sample. The discarded high-frequency
information includes intricate details like edges and tex-
tures, contributing minimally to guiding the model in gen-
erating the corresponding task but potentially introducing
significant anomalous information, leading to the genera-
tion of anomalous samples. The low-frequency segment
from the input image is then extracted to learn vague pro-
totypes. Leveraging a pre-trained EfficientNet (ϕ) (Tan &
Le, 2021) for visual token extraction, we obtain the fea-
ture f = ϕ(x) ∈ Rw×h×c, where w and h represent the
width and height of the features extracted by ϕ, and c is
the number of channels. To capture fundamental task infor-
mation in f , we employ a downsampler T down(·), result-
ing in f down = T down(f) ∈ R(w/N)×(h/N)×c, where N
represents the number of downsamples. This operation is
analogous to low-pass filtering (Choi et al., 2021).

Considering a set of randomly initialized vague prototypes
β = [β1, β2, ..., βK ] ∈ RK×d, where K is the number of
vague prototypes and d = w × h × c/N2 represents the
feature dimension. To model the normal distribution over
training data, we can represent Kf features as an empirical
distribution over Kf :

Pf =
∑Kf

i=1
1

Kf
δf i

down
,f i

down ∈ Rd (7)

The vague prototypes represent distinct fundamental infor-
mation from multiple classes by combining them with each
other. Each prototype holds a similar level of importance
and captures a foundational element. Consequently, the
distribution over vague prototypes can be defined as an em-
pirical distribution:

Pβ =
∑K

i=1
1
K δβi , βi ∈ Rd (8)

where β is vague prototypes. In this way, we can get the
transport probability matrix T ∈ RKf×K by pushing Pβ to
Pf :

T = OT(Pf , Pβ) = min
T

⟨T ,C⟩ def.
=

Kf∑
i

K∑
j

TijCij (9)
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C ∈ RKf×K
≥0 is the transport cost matrix, where we use

the Euclidean distance between the embedding f down and

the prototype β, denoted as Cij =
√
(f i

down − βj)2. The
transport probability matrix T should satisfy Π(g,h) :={
T | T1Kg

= g,T⊤1Nj
= h

}
, where g = [1/K] and

h = [1/Kf ] are two probability vectors defined in Eq. 7
and Eq. 8. OT provides an optimal transport plan from the
embedding Pf to the prototype Pβ based on the cost matrix
C, allowing us to construct a vague condition y using the
transport probability T and prototypes β:

y = T × β,y ∈ RKj×d (10)

In this manner, the vague condition y has undergone refine-
ment to minimize the influence of anomalous information.
Simultaneously, the prototypes encapsulate diverse normal
dynamic patterns for different tasks, enhancing the ability
of y to effectively capture the distinct patterns inherent in
multi-class scenarios. Drawing inspiration from existing
OT-based prototype-oriented methods (Guo et al., 2022;
Tanwisuth et al., 2021), we employ the entropic constraint
(Cuturi, 2013) to learn the prototypes β. The average OT
loss for all training sets is defined as:

LOT = min
β

Ef down∼T down(ϕ(Dx))

[ Kf∑
i

K∑
j

TijCij

+

Kf∑
i

K∑
j

Tij ln(Tij)
]

= min
β

Ef down∼T down(ϕ(Dx))

[
OT(Pf , Pβ)

]
(11)

T down(·) is the downsampler. ϕ(·) represents the pre-
trained EfficientNet, and Dx is the training set consisting
of normal samples. Finally, an upsampler T up(·) has been
employed to process y and generate ŷ to guide the diffusion
model, where ŷ = T up(y) ∈ Rw×h×c.

3.2. Vague Prototype-Oriented Diffusion Model

Diverging from existing conditional diffusion models that
use information-rich conditions to alleviate the difficulty of
the generation process, VPDM employs a vague condition
to guide the model, imposing higher demands on the gen-
erative model. To address this challenge, we modify the
endpoint of the forward process in the feature space mapped
by EfficientNet (ϕ), denoted as xT , which typically follows
a standard normal distribution N (0, 1). We introduce the
vague condition ŷ into the endpoint p(xT ) as follows:

p(xT | ŷ) = N (ŷ, I) (12)

With this configuration, the generation process commences
at N (ŷ, I). Subsequently, based on the fundamental task

information in the vague condition ŷ, details are gradually
added, thereby generating normal samples. To better utilize
the guidance of ŷ, we also incorporate it into the forward
process in VPDM. With the diffusion schedule βt

t=1:T ∈
(0, 1), the conditional distributions for the forward process
at all other time steps can be defined as:

q
(
xt | xt−1, ŷ

)
∼ N (xt | µ1, β

tI)

µ1 =
√

1− βtxt−1 + (1−
√
1− βt)ŷ

(13)

Inspired by the DDPM (Ho et al., 2020), we sample xt

directly from x0 with an arbitrary timestep t:

q
(
xt | x0, ŷ

)
∼ N (xt | µ2, (1−

√
αt)I)

µ2 =
√
αtx0 + (1−

√
αt)ŷ

(14)

where ᾱt := 1 − βt and αt :=
∏T

t=1 ᾱ
t. In Eq. 13, the

mean term µ1 in the forward process can be conceptual-
ized as an interpolation between the true data x0 and the
conditional representation ŷ. This process is the reverse
of the human recall mechanism, gradually reducing details
from a complete image to a vague basic concept. As the
VPOT model eliminates anomalous information in ŷ and
the diffusion model solely focuses on adding details, VPDM
minimizes the infiltration of anomalous information. Mean-
while, the diffusion model only needs to focus on adding
details from ŷ to x0 rather than generating a sample from
noise, reducing the difficulty of generation while enhanc-
ing the quality of the generated samples. Considering the
forward process in Eq. 13, the corresponding manageable
posterior for the forward process is:

q
(
xt−1 | x0,xt, ŷ

)
∼ N

(
xt−1 | γ0x0 + γ1x

t + γ2ŷ, β̃
tI
)

γ0 = βt
√
αt−1

1−αt , γ1 = (1−αt−1)
√
ᾱt

1−αt ,

γ2 = 1 + (
√
αt−1)(

√
ᾱt+

√
αt−1)

1−αt , β̃t = (1−αt−1)
1−αt βt

(15)
The derivation can be found in Appendix A.

3.3. Model Training

In this paper, we integrate the VPOT model and denoising
model into a unified optimization objective. The pre-trained
EfficientNet (ϕ) does not participate in training, so our focus
is solely on the vague prototypes β and the denoising net-
work εθ(·). As shown in Eq. 6, the optimization objective of
the diffusion model part is to maximize the evidence lower
bound (ELBO) of the log marginal likelihood, formulated
as:

log p
(
x0 | ŷ

)
≥ logEq(x1:T ,|x0,ŷ)[

p(x0:T |ŷ)

q(x1:T ,|x0,ŷ)
]

= Eq[− log p(x0 | x1, ŷ)] +DKL(q(x
T | x0, ŷ)∥p(xT | ŷ))

+
∑T

t=2 DKL(q
(
xt−1 | x0,xt, ŷ

)
∥p(xt−1 | xt, ŷ))

(16)

5



Vague Prototype-Oriented Diffusion Model for Multi-class Anomaly Detection

Table 1. Anomaly detection/localization results with AUROC metric on MVTec-AD. All methods are evaluated under the multi-class
settings. The learned model is applied to detect anomalies for all categories without fine-tuning. The best results are bold with black.

Category US PSVDD PaDiM MKD DRAEM RD4AD UniAD DiAD HVQ-Trans Ours

O
bj

ec
t

Bottle 84.0 / 67.9 85.5 / 86.7 97.9 / 96.1 98.7 / 91.8 97.5 / 87.6 98.7 / 97.7 99.7 / 98.1 99.7 / 98.4 100 / 98.3 100 ±0.00 / 98.6 ±0.01
Cable 60.0 / 78.3 64.4 / 62.2 70.9 / 81.0 78.2 / 89.3 57.8 / 71.3 85.0 / 83.1 95.2 / 97.3 94.8 / 96.8 99.0 / 98.1 97.8±0.19 / 98.1±0.05

Capsule 57.6 / 85.5 61.3 / 83.1 73.4 / 96.9 68.3 / 88.3 65.3 / 50.5 95.5 / 98.5 86.9 / 98.5 89.0 / 97.1 95.4 / 98.8 97.0±0.21 / 98.8±0.02
Hazelnut 95.8 / 93.7 83.9 /97.4 85.5 / 96.3 97.1 / 91.2 93.7 / 96.9 87.1 / 98.7 99.8 / 98.1 99.5 / 98.3 100 / 98.8 99.9±0.01 / 98.7±0.04
Metal Nut 62.7 / 76.6 80.9 / 96.0 88.0 / 84.8 64.9 / 64.2 72.8 / 62.2 99.4 / 94.1 99.2 / 94.8 99.1 / 97.3 99.9 / 96.3 98.9±0.03 / 96.0±0.01

Pill 56.1 / 80.3 89.4 / 96.5 68.8 / 87.7 79.7 / 69.7 82.2 / 94.4 52.6 / 96.5 93.7 / 95.0 95.7 / 95.7 95.8 / 97.1 97.9±0.23 / 96.4±0.06
Screw 66.9 / 90.8 80.9 / 74.3 56.9 / 94.1 75.6 / 92.1 92.0 / 95.5 97.3 / 99.4 87.5 / 98.3 90.7 / 97.9 95.6 / 98.9 95.5±0.26 / 99.3±0.01

Toothbrush 57.8 / 86.9 99.4 / 98.0 95.3 / 95.6 75.3 / 88.9 90.6 / 97.7 99.4 / 99.0 94.2 / 98.4 99.7 / 99.0 93.6 / 98.6 94.6±0.22 / 98.8±0.02
Transistor 61.0 / 68.3 77.5 / 78.5 86.6 / 92.3 73.4 / 71.7 74.8 / 64.5 92.4 / 86.4 99.8 / 97.9 99.8 / 95.1 99.7 / 97.9 99.7±0.02 / 99.1±0.01

Zipper 78.6 / 84.2 77.8 / 95.1 79.7 / 94.8 87.4 / 86.1 98.8 / 98.3 99.6 / 98.1 95.8 / 96.8 95.1 / 96.2 97.9 / 97.5 99.0±0.06 / 98.0±0.09

Te
xt

ur
e

Carpet 86.6 / 88.7 63.3 / 78.6 93.8 / 97.6 69.8 / 95.5 98.0 / 98.6 97.1 / 98.8 99.8 / 98.5 99.4 / 98.6 99.9 / 98.7 100±0.00 / 98.8±0.03
Grid 69.2 / 64.5 66.0 / 70.8 73.9 / 71.0 83.8 / 82.3 99.3 / 98.7 99.7 / 99.2 98.2 / 96.5 98.5 / 96.6 97.0 / 97.0 98.6±0.07 / 98.0±0.01

Leather 97.2 / 95.4 60.8 / 93.5 99.9 / 84.8 93.6 / 96.7 98.7 / 97.3 100 / 99.4 100 / 98.8 99.8 / 98.8 100 / 98.8 100±0.00 / 99.2±0.01
Tile 93.7 / 82.7 88.3 / 92.1 93.3 / 80.5 89.5 / 85.3 99.8 / 98.0 97.5 / 95.6 99.3 / 91.8 96.8 / 92.4 99.2 / 92.2 100±0.00 / 94.5±0.12

Wood 90.6 / 83.3 72.1 / 80.7 98.4 / 89.1 93.4 / 80.5 99.8 / 96.0 99.2 / 96.0 98.6 / 93.2 99.7 / 93.3 97.2 / 92.4 98.2±0.11 / 95.3±0.07

Mean 74.5 / 81.8 76.8 / 85.6 84.2 / 89.5 81.9 / 84.9 88.1 / 87.2 93.4 / 96.0 96.5 / 96.8 97.2 / 96.8 98.0 / 97.3 98.4±0.04 / 97.8±0.02

Algorithm 1 Training
1: Initialize the parameters;
2: repeat
3: Draw x0 ∼ q(x0)
4: Draw t ∼ Uniform({1, 2, ..., T})
5: Draw ϵ ∼ N (0, 1)
6: Draw ŷ = VPOT(x0)
7: Compute the loss in Eq. 17
8: Take numerical optimization step on:

∇L
9: until converged

Algorithm 2 Inference

1: Draw ŷ = VPOT(x0)
2: xT ∼ N (ŷ, I)
3: for t = T to 1 do
4: Calculate reparameterize: Xt = (1/αt)(xt − (1 −

√
αt)ŷ −√

1− αtεθ(x
t, ŷ, t))

5: if t > 1: draw ϵ ∼ N (0, 1)

6: xt−1 = γ0X
t + γ1x

t + γ2ŷ +

√
β̃
t
ε

7: else: xt−1 = Xt

8: end for

where DKL(q∥p) represents the Kullback–Leibler (KL) di-
vergence from distribution p to distribution q. For the VPOT
model, the OT loss presented in Eq. 11 plays a pivotal role
in our comprehensive loss formulation. This loss function is
instrumental in guiding the learning of prototypes, ensuring
that the vague conditions ŷ are effectively aligned with the
normal data distribution. The final loss function for VPDM
can be expressed as follows:

L = LELBO + LOT (17)

Here, LELBO denotes the ELBO as defined in Eq. 16.
Leveraging Eq. 17, the vague prototypes are directed by
LELBO to learn how to contribute to generating the final
samples. Additionally, they are guided by LOT , providing
a principled and unsupervised approach to encourage the
vague prototypes to capture the diverse normal patterns
within multi-class. We regard this as a unique advantage
of hybrid optimization. Finally, the training and inference
processes are outlined in Algorithms 1 and 2.

3.4. Anomaly Localization and Detection

The result of anomaly localization is an anomaly score map,
denoted as S, calculated as the L2 norm of the reconstruc-
tion differences, expressed as S = ∥x0 − x0

rec∥2 ∈ Rw×h.

Since the VPOT model and the proposed diffusion model
operate on the feature space mapped by EfficientNet (ϕ), S
is up-sampled to the image size using bi-linear interpolation
to obtain the localization results. Anomaly detection aims
to identify whether an image contains anomalous regions.
We transform the anomaly score map, denoted as S, to the
anomaly score of the image by taking the maximum value
of the average-pooled S.

4. Experimental Evaluation
4.1. Experiments Setup

Dataset: Three datasets are utilized in our paper: (1)
MVTec-AD dataset (Bergmann et al., 2019) serves as a
simulation of real-world industrial production scenarios,
specifically designed for unsupervised anomaly detection.
(2) VisA dataset (Zou et al., 2022) is a recently published
large dataset, which consists of 9,621 normal and 1,200
anomalous high-resolution images. (3) MPDD (Jezek et al.,
2021) contains 6 classes of metal parts, focusing on defect
detection during the fabrication of painted metal parts. More
details about the datasets can be find in Appendix B.

Evaluation metrics:We report the Area Under the Receiver
Operator Curve (AUROC) on imagelevel anomaly detection

6
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Table 2. Anomaly detection/localization results with AUROC metric on VisA. All methods are evaluated under the multi-class settings.
The learned model is applied to detect anomalies for all categories without fine-tuning. The best results are bold with black.

Category DRAEM JNLD OmniAL UniAD DiAD HVQ-Trans Ours

Complex

structure

PCB1 83.9 / 94.0 82.9 / 98.0 77.7 / 97.6 95.4 / 99.3 88.1 / 98.7 96.7 / 99.4 98.2±0.02 / 99.6±0.03
PCB2 81.7 / 94.1 79.1 / 95.0 81.0 / 93.9 93.6 / 97.8 91.4 / 95.2 93.4 / 98.0 97.5±0.03 / 98.8±0.01
PCB3 87.7 / 94.1 90.1 / 98.5 88.1 / 94.7 88.6 / 98.3 86.2 / 96.7 92.0 / 98.3 94.5±0.08 / 98.7±0.01
PCB4 87.1 / 72.3 96.2 / 97.5 95.3 / 97.1 99.4 / 97.9 99.6 / 97.0 99.5 / 97.7 99.9±0.01 / 97.8±0.06

Multiple

instances

Macaroni 1 68.6 / 89.8 90.5 / 93.3 92.6 / 98.6 92.2 / 99.3 85.7 / 94.1 93.1 / 99.4 97.5±0.02 / 99.6±0.01
Macaroni 2 60.3 / 83.2 71.3 / 92.1 75.2 / 97.9 85.9 / 98.0 62.5 / 93.6 86.2 / 98.5 85.7±0.12 / 99.0±0.03
Capsules 89.6 / 96.6 91.4 / 99.6 90.6 / 99.4 72.0 / 98.3 58.2 / 97.3 77.1 / 99.0 79.5±0.31 / 99.1±0.01
Candles 70.2 / 82.6 85.4 / 94.5 86.8 / 95.8 96.8 / 99.2 92.8 / 97.3 96.8 / 99.2 97.2±0.07 / 99.4±0.01

Single

instance

Cashew 67.3 / 68.5 82.5 / 94.1 88.6 / 95.0 92.4 / 98.7 91.5 / 90.9 94.9 / 99.2 90.0±0.13 / 98.0±0.02
Chewing gum 90.0 / 92.7 96.0 / 98.9 96.4 / 99.0 99.4 / 99.2 99.1 / 94.7 99.4 / 98.8 99.0±0.01 / 98.6±0.02

Fryum 86.2 / 83.2 91.9 / 90.0 94.6 / 92.1 89.8 / 97.7 89.8 / 97.6 90.4 / 97.7 92.0±0.03 / 98.6±0.04
Pipe fryum 87.1 / 72.3 87.5 / 92.5 86.1 / 98.2 97.4 / 99.2 96.2 / 99.4 98.5 / 99.4 98.8±0.01 / 99.4±0.01

Mean 80.5 / 87.0 87.1 / 95.2 87.8 / 96.6 91.9 / 98.6 86.8 / 96.0 93.2 / 98.7 94.2±0.09 / 98.9±0.02

and pixel-wise anomaly localization following the previous
works (He et al., 2023; You et al., 2022a; Lu et al., 2023).

Implementation details: In the VPOT model, the number
of prototypes is set to 50, and the downsampler sampling
multiplier is 4. For the diffusion model, the number of
timesteps is configured as T = 1000, and a linear noise
schedule is employed with β1 = 10−4 and βT = 0.02,
consistent with the setup in Ho et al. (2020). More details
about the implementation can be find in Appendix D.

Baselines: We extensively compare our model with 14
baselines with different experiment settings. Such as a
unified SOTA HVQ-Trans (Lu et al., 2023) method and
the diffusion-based methods DiAD(He et al., 2023). More
details about the baselines can be find in Appendix C.

4.2. Main Result

4.2.1. QUANTITATIVE ANALYSIS

Anomaly detection: The results of anomaly detection on
the MVTec-AD dataset are comprehensively presented in
Table 1. HVQ-Trans, a state-of-the-art method known for
its well-designed transformer structure, and DiAD, repre-
senting the latest diffusion-based anomaly detection model,
serve as the primary baselines for comparison. In this evalu-
ation, the proposed VPDM consistently demonstrates supe-
rior performance, outperforming all competitive baselines.
Notably, VPDM showcases a significant performance boost,
surpassing HVQ-Trans by 1.65% and 2.15% on Capsule
and Pill, respectively. This notable improvement can be
attributed to the efficacy of the proposed VPOT model and
the underlying diffusion model in effectively addressing
the challenges posed by the “identical shortcut” problem.
The results underscore the robustness and effectiveness of
VPDM in anomaly detection tasks.

In comparison to MVTec-AD, VisA presents greater chal-
lenges due to its more intricate structures and scenes featur-

Table 3. Ablation studies were conducted to assess anomaly detec-
tion/localization results using the AUROC metric on MVTec-AD.

Vague Prototype OT OT-loss N (0, I) N (ŷ, I) Result

! - - - - ! 68.4 / 68.8
! ! - - - ! 93.5 / 94.1
! ! ! - - ! 97.1 / 96.9
! ! ! ! ! - 76.7 / 80.1
- ! ! ! - ! 96.5 / 96.8
! ! ! ! - ! 98.4 / 97.8

ing multiple misaligned instances. Table 2 showcases the
superior performance of VPDM compared to other meth-
ods in the multi-class setting. Our proposed model outper-
forms the top-performing comparison methods, HVQ-Trans,
and DiAD, by 1.06% and 7.86%, respectively. In conclu-
sion, VPDM demonstrates effectiveness and efficiency in
anomaly detection applications. For a detailed quantitative
analysis on MPDD, please refer to Appendix E.

Anomaly localization: Anomaly localization aims to detect
anomalous regions given an anomalous sample. The local-
ization results on MVTec-AD are presented in Table 1. Our
model consistently outperforms all competitive baselines
on average. Notably, even against strong SOTA baselines
such as HVQ-Trans and DiAD, our model exhibits superior
performance, surpassing them by 0.51% and 1.02%, respec-
tively. This achievement can be attributed to the innovative
concepts introduced, such as the incorporation of vague
conditions. While HVQ-Trans mitigates the infiltration of
anomalous information through a specially designed trans-
former structure, it still experiences some leakage due to
excessive anomalous information entering from the input
layer. In contrast, our proposed VPDM effectively reduces
anomalous information from the input layer, alleviating
the subsequent challenges associated with troubleshooting
anomalous information. The localization results on VisA
are detailed in Table 2, where our model consistently outper-
forms all competitive baselines on average. For additional

7



Vague Prototype-Oriented Diffusion Model for Multi-class Anomaly Detection

GTNormal Anormaly Recon Pred GTNormal Anormaly Recon Pred

tr
a
n

si
st

o
r

h
a
ze

ln
u

t

ca
rp

et
le

a
th

er

GTNormal Anormaly Recon Pred GTNormal Anormaly Recon Pred

tr
a
n

si
st

o
r

h
a
ze

ln
u

t

ca
rp

et
le

a
th

er

Figure 2. Qualitative results for anomaly localization on MVTec-AD. From left to right: normal sample as the reference, anomaly, our
reconstruction, ground-truth, and our predicted anomaly map.
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ŷ ŷSample GT Recon
downfReconSample GT

downf

b
o
tt

le
ca

p
su

le
m

et
a
l_

n
u

t

ti
le

w
o
o
d

zi
p

p
er

ŷ ŷ

Figure 3. Visualization of features at various steps of VPDM, from left to right: normal sample, ground truth, downsampler feature (f down),
VPOT output (ŷ), and reconstruction.

quantitative analysis on MPDD, please refer to Appendix E.

Ablation study: To assess the effectiveness of the proposed
modules, which include the vague (low-pass) operation, pro-
totypes, OT, and various diffusion models, we conducted
comprehensive ablation studies on MVTec-AD. The results,
as presented in Table 3, reveal the following key observa-
tions: (i) The performance of VPDM without the vague
process drops by 1.93% (from 98.2 to 96.5), indicating that
while the other components of VPDM contribute to miti-
gating the “identical shortcut”, it is still crucial to reduce
anomalous information from the input layer through the
vague process; (ii) When we replace the diffusion model
with DDPM, the performance drops significantly by 22.05%
(from 98.2 to 76.7), highlighting the pivotal role of the
proposed diffusion model in VPDM. The vague condition
provided by the VPOT model includes only fundamental
information, making the generation process more challeng-
ing. It is difficult for the general diffusion model to generate
the desired result directly from noise; (iii) The application
of OT and OT loss demonstrates an improvement of 3.81%
3.71% (from 93.5 to 97.1) and 1.32% (from 97.1 to 98.2),
respectively. This validates the advantage of using OT to
index prototypes and indicates that optimizing OT loss is
beneficial for prototypes; (iv) Without the VPOT model,
using the result of the vague process to guide the proposed
diffusion model results in a significant drop of 30.49% (from
68.4 to 98.2). This emphasizes the critical importance of
the proposed VPOT module. For additional ablation studies,

please refer to Appendix F.

4.2.2. QUALITATIVE ANALYSIS

To showcase the capability of modeling normal distribu-
tions, we visualize the generated results. As depicted in
Fig.2, VPDM successfully reconstructs anomalies into their
corresponding normal samples, accurately localizing anoma-
lous regions through reconstruction differences for both ob-
ject anomalies (Left) and texture damages (Right). The
distinctiveness of the proposed VPDM lies in excluding
detailed information from the input images, retaining only
the basic information input to the model. The images were
low-pass filtered to index the normal distribution in the
vague prototype, which was then used to guide the diffusion
model in generating samples, we illustrated this process
in Fig. 3. In Fig. 3, f down denotes the low-pass filtered
image where most anomalous components are eliminated.
Using this vague feature to query the normal distribution
in vague prototypes via OT, the result ŷ completely elimi-
nates anomalous information, becoming a vaguely normal
sample. Subsequently, the proposed well-designed diffu-
sion model adds details progressively, allowing VPDM to
successfully reconstruct anomalies into their corresponding
normal samples. For additional qualitative analysis, please
refer to Appendix G.
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5. Conclusion
In this paper, we introduce the VPDM for multi-class
anomaly detection, specifically designed to counteract the
infiltration of abnormal condition information at its origin,
thus avoiding the “identical shortcut” problem. VPDM uti-
lizes prototypes containing only vague information about
the target as the initial condition. A carefully designed dif-
fusion model is subsequently employed to progressively en-
rich these vague prototypes with finer details. By leveraging
prototypes with fundamental shape and color information,
the model receives sufficient guidance for generating corre-
sponding tasks. Simultaneously, the exclusion of anomalous
details helps prevent the model from being misled. Finally,
we introduce the VPOT model, leveraging OT technology
to offer more precise information about conditions. Experi-
mental results and comparisons on the MVTec-AD, VisA,
and MPDD datasets demonstrate that VPDM achieves state-
of-the-art performance.
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A. Derivation for Forward Process Posteriors:
In this section, we derive the mean and variance of the forward process posteriors q

(
xt−1 | xt−1,x0, ŷ

)
in Eq. 15:

q
(
xt−1 | xt−1,x0, ŷ

)
∝ q

(
xt | xt−1, ŷ

)
q
(
xt−1 | x0, ŷ

)
∝ exp(−1

2
(
(xt − (1−

√
ᾱt)ŷ −

√
ᾱtxt−1)2

βt

+
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√
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√
αt−1)ŷ)2

1− αt−1
))

∝ exp(−1

2
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√
ᾱt(xt − (1−

√
ᾱt)ŷ)xt−1

βt

+
(xt−1)2 − 2(

√
αt−1x0 + (1−

√
αt−1)ŷ)xt−1

1− αt−1
))

= exp(−1

2
(B1(x

t−1)2 − 2B2x
t−1))

where

B1 =
ᾱt(1− αt−1) + βt

βt(1− αt−1)
=

1− αt

βt(1− αt−1)

B2 =

√
αt−1

1− αt−1
x0 +

√
ᾱt

βt
xt + (

√
ᾱt(

√
ᾱt − 1)

βt
+

1−
√
αt−1

1− αt−1
)ŷ

and we have the posterior variance:

β̃t = 1/B1 =
(1− αt−1)

1− αt
βt

Meanwhile, the following coefficients of the terms in the posterior mean through dividing each coefficient in B2 by B1

γ0 =

√
αt−1

1− αt−1
/B1 =

βt
√
αt−1

1− αt

γ1 =

√
ᾱt

βt
/B1 =

(1− αt−1)
√
ᾱt

1− αt

γ2 = (

√
ᾱt(

√
ᾱt − 1)

βt
+

1−
√
αt−1

1− αt−1
)/B1

=
ᾱt − αt −

√
ᾱt(1− αt−1) + βt − βt

√
αt−1

1− αt−1

= 1 +
(
√
αt − 1)(

√
ᾱt +

√
αt−1)

1− αt

which together give us the posterior mean

µ(x0,xt, ŷ) = γ0x
0 + γ1x

t + γ2ŷ
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Table 4. Anomaly detection results with AUROC metric on MPDD. All methods are evaluated under the multi-class settings. The best
results are bold with black.

Normal Indices PatchSVDD PaDiM DRAEM RevDistill PatchCore FastFlow UniAD HVQ-Trans Ours

Bracket Black 85.8 / 67.9 71.1 / 93.1 81.2 / 97.9 81.0 / 97.3 77.3 / 96.9 81.4 / 82.4 95.9 / 94.3 91.6 / 96.1 97.8±0.05 / 98.2±0.01
Bracket Brown 97.3 / 63.2 75.0 / 95.0 85.0 / 53.8 86.0 / 97.2 83.1 / 95.3 97.5 / 80.3 94.2 / 98.7 90.3 / 98.2 97.9±0.23 / 98.6±0.01
Bracket White 87.2 / 55.8 73.0 / 97.2 78.8 / 95.7 83.6 / 98.8 75.8 / 99.6 72.3 / 98.1 84.8 / 95.0 89.7 / 94.5 95.2±0.31 / 99.2±0.02

Connector 99.8 / 90.2 83.8 / 97.2 88.8 / 85.1 99.5 / 99.5 96.4 / 98.4 94.0 / 94.0 89.8 / 97.9 88.3 / 97.9 97.5±0.11 / 98.9 ±0.01
Metal Plate 84.6 / 91.0 51.1 / 90.2 100 / 99.2 100 / 99.2 100 / 98.6 99.7 / 97.9 77.6 / 93.3 94.4 / 96.4 100±0.00 / 98.9 ±0.03

Tubes 79.1 / 41.7 75.6 / 88.7 96.2 / 98.2 95.5 / 99.1 68.5 / 97.3 77.1 / 96.9 74.8 / 92.1 78.9 / 97.1 93.4±0.19 / 98.2±0.01

Mean 89.0 / 68.3 71.6 / 93.6 88.3 / 88.3 90.9 / 98.5 83.5 / 97.7 87.0 / 91.6 86.2 / 95.2 88.9 / 96.7 96.9±0.11 / 98.6±0.01

B. Dataset:
MVTec-AD dataset: MVTec-AD dataset (Bergmann et al., 2019) serves as a simulation of real-world industrial production
scenarios, specifically designed for unsupervised anomaly detection. It features a diverse range of 5 texture types and 10
object types, totaling 5,354 high-resolution images across different domains. The training set is composed of 3,629 images
containing solely anomaly-free samples, while the test set comprises 1,725 images, including both normal and abnormal
instances. Detailed pixel-level annotations are provided for precise evaluation of anomaly localization.

VisA dataset: VisA dataset (Zou et al., 2022) includes 10,821 high-resolution images, consisting of 9,621 normal images
and 1,200 anomaly images featuring 78 distinct anomaly types. Organized into 12 subsets, each corresponds to a specific
object type, with the 12 objects categorized into three types: Complex structure, Multiple instances, and Single instance.

MPDD dataset: MPDD (Jezek et al., 2021) contains 6 classes of metal parts, focusing on defect detection during the
fabrication of painted metal parts. Its training set is composed of 888 normal samples without defects, and the test set is
composed of 458 samples either normal or anomalous. In particular, samples in MPDD have non-homogeneous backgrounds
with diverse spatial orientations, different positions, and various light intensities, leading to greater challenges in anomaly
detection.

C. Baselines:
We conduct and analyze a variety of qualitative and quantitative comparison experiments on MVTec-AD, VisA, and MPDD.
We choose the basic method US (Bergmann et al., 2020), RevDistill (Deng & Li, 2022),PatchCore (Roth et al., 2022),
FastFlow (Yu et al., 2021) and PSVDD (Yi & Yoon, 2020), a synthesizing-based method DRAEM (Zavrtanik et al., 2021),
three embedding-based methods MKD(Salehi et al., 2021), PaDiM (Defard et al., 2021) and RD4AD (Deng & Li, 2022),
the reconstruction-based methods JNLD (Zhao, 2022), OmniAL(Zhao, 2023), UniAD(You et al., 2022a), a unified SOTA
HVQ-Trans (Lu et al., 2023) method and the diffusion-based methods DiAD(He et al., 2023).

D. Implementation details:
The image size is chosen as 224 × 224, and the size for resizing feature maps is set to 32 × 32. The feature maps from
stage-1 to stage-4 of EfficientNet-b4 (Tan & Le, 2021) are resized and concatenated to form a 272-channel feature map. In
the VPOT model, the number of prototypes is set to 50, and the downsampler sampling multiplier is 4. For the diffusion
model, the number of timesteps is configured as T = 1000, and a linear noise schedule is employed with β1 = 10−4 and
βT = 0.02, consistent with the setup in Ho et al. (2020). We used the Adam optimizer with a learning rate of 0.001 and a
batch size of 32. All experiments were implemented in PyTorch (Paszke et al., 2019) and conducted on an NVIDIA RTX
3090 24GB GPU.

E. More Quantitative Results:
Anomaly detection:The anomaly detection results on MPDD, meticulously outlined in Table 4, provide a thorough
examination of the effectiveness of our proposed VPDM. In a noteworthy display of superior performance, our model
consistently outperforms all competitive baselines, showcasing its robust capabilities in handling anomaly detection
challenges. Specifically, when benchmarked against HVQ-Trans and UniAD, two formidable methods renowned for their
transformer structure and diffusion-based approaches, respectively, our VPDM surpasses them by a substantial 8.26% and
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11.04%on average. This impressive margin underscores the prowess of our innovative VPOT model and diffusion model in
effectively mitigating the intricate “identical shortcut” problem. The deliberate design choices within VPDM, emphasizing
the use of vague conditions, set it apart from existing conditional diffusion models. The integration of the proposed VPOT
model and diffusion model emerges as a powerful solution, achieving state-of-the-art performance on the MPDD dataset.

Anomaly localization:Anomaly localization, a pivotal aspect of our study, is geared towards identifying anomalous regions
within a given anomalous sample. The comprehensive localization results on MPDD, meticulously presented in Table 4,
affirm the consistent superiority of our proposed VPDM over all competitive baselines. In a striking demonstration of
its efficacy, our model outperforms strong SOTA baselines, including HVQ-Trans and UniAD, by a remarkable 1.93%
and 3.45%, respectively, on average. This notable accomplishment can be attributed to the innovative concepts integrated
into VPDM, particularly the strategic incorporation of vague conditions. While HVQ-Trans employs a specially designed
transformer structure to mitigate the infiltration of anomalous information, it is susceptible to some leakage due to the
excessive entry of anomalous information from the input layer. In stark contrast, our VPDM adeptly addresses this challenge
by effectively reducing anomalous information from the input layer. This reduction proves pivotal in alleviating subsequent
challenges associated with troubleshooting anomalous information, establishing VPDM as a leading solution for anomaly
localization on the MPDD dataset.

F. More Ablation Studies:
A visual ablation study on VPDM is presented in Fig. 4. Each block consists of four columns: the first column displays
the real sample along with its labeling, the second column depicts the direct use of the original input(x) as a condition,
and the subsequent images showcase the corresponding generated results. The third column displays the image that has
undergone low-pass filtering, followed by its generated result as a condition. In the fourth column, the (VPOT) condition is
reconstructed by the prototype after applying the low-pass, along with its corresponding generated result. In Fig. 4, f down
denotes the low-pass filtered image where most anomalous components are eliminated. Using this vague feature to query
the normal distribution in vague prototypes via OT, the result ŷ completely eliminates anomalous information, becoming a
vaguely normal sample.

The distinctive feature of the proposed VPDM lies in the exclusion of detailed information from the input images, retaining
only the fundamental information input to the model. The images underwent low-pass filtering to characterize the normal
distribution in the vague prototype, which was subsequently employed to guide the diffusion model in generating samples.
Figure 4 illustrates the impact of the proposed VPDM. When using the input image directly as a condition, the “identical
shortcut” problem becomes severe, leading to the reconstruction of anomalous. Although this issue is somewhat alleviated
after low-pass filtering, the vague image still contains a certain amount of anomalous information, resulting in misleading
results. Ultimately, the problem is effectively addressed by using VPOT to reconstruct the entire condition before generating
samples, demonstrating the efficacy of the proposed model.

G. More Qualitative Results:
To delve deeper into the comparative analysis between VPDM and existing methodologies, we present a visual exploration
of anomaly detection results involving VPDM, HVQ-Trans, DiAD, and UniAD, as depicted in Fig.5 for MVTec-AD and Fig.
6 for MPDD. HVQ-Trans, leveraging a specialized transformer structure, endeavors to mitigate the infiltration of anomalous
information; however, it grapples with potential leakage arising from an excess of anomalous data at the input layer. In
contrast, VPDM adeptly tackles this challenge by efficiently reducing anomalous information from the input layer.

Furthermore, we provide detailed visualizations of the generated results. The results, showcased in Fig.7 for MVTec-AD,
Fig.8 for VisA and Fig. 9 for MPDD underscore the remarkable performance of the VPDM. In these visual representations,
VPDM consistently and successfully transforming anomalous into their corresponding normal samples. The visualizations
not only illustrate the accuracy of the model in localizing anomalous regions but also showcase its versatility in handling
different types of anomalies, including object anomalies and texture damages. By meticulously capturing reconstruction
differences, VPDM effectively discerns and highlights the specific areas that deviate from the normal distribution. These
visual insights serve as a testament to the model’s efficacy in addressing the challenges posed by anomalies, further
solidifying VPDM as a powerful solution for anomaly detection and localization across various datasets and scenarios.
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GT ŷdownfx
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Figure 4. A visual ablation study on VPDM is presented. Each block consists of four columns: the first column displays the real sample
along with its labeling, the second column depicts the direct use of the original input(x) as a condition, and the subsequent images
showcase the corresponding generated results. The third column displays the image that has undergone low-pass filtering, followed by its
generated result as a condition. In the fourth column, the (VPOT) condition is reconstructed by the prototype after applying the low-pass,
along with its corresponding generated result.
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Normal Anormaly Ours DiAD UniADHVQ-Trans GT Ours DiADHVQ-Trans UniADNormal Anormaly Ours DiAD UniADHVQ-Trans GT Ours DiADHVQ-Trans UniAD

Figure 5. Qualitative results for anomaly localization on MVTec-AD. From left to right: normal sample as the reference, anomaly, our
reconstruction, HVQ-Trans reconstruction, DiAD reconstruction, UniAD reconstruction, ground-truth, our predicted anomaly map,
HVQ-Trans predicted anomaly map, DiAD predicted anomaly map and UniAD predicted anomaly map.
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Normal Anormaly Ours UniADHVQ-Trans GT Ours UniADHVQ-TransNormal Anormaly Ours UniADHVQ-Trans GT Ours UniADHVQ-Trans

Figure 6. Qualitative results for anomaly localization on MPDD. From left to right: normal sample as the reference, anomaly, our
reconstruction, HVQ-Trans reconstruction, UniAD reconstruction, ground-truth, our predicted anomaly map, HVQ-Trans predicted
anomaly map and UniAD predicted anomaly map.
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GTNormal Anormaly Recon PredGTNormal Anormaly Recon Pred GTNormal Anormaly Recon PredGTNormal Anormaly Recon Pred

Figure 7. Qualitative results for anomaly localization on MVTec-AD. From left to right: normal sample as the reference, anomaly, our
reconstruction, ground-truth, and our predicted anomaly map.
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GTNormal Anormaly Recon PredGTNormal Anormaly Recon Pred GTNormal Anormaly Recon PredGTNormal Anormaly Recon PredGTNormal Anormaly Recon Pred GTNormal Anormaly Recon Pred

Figure 8. Qualitative results for anomaly localization on VisA. From left to right: normal sample as the reference, anomaly, our
reconstruction, ground-truth, and our predicted anomaly map.
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Figure 9. Qualitative results for anomaly localization on MPDD. From left to right: normal sample as the reference, anomaly, our
reconstruction, ground-truth, and our predicted anomaly map.
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