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ABSTRACT

Autonomous driving (AD) has experienced significant improvements in recent years and achieved
promising 3D detection, classification, and localization results. However, many challenges remain,
e.g. semantic understanding of pedestrians’ behaviors, and downstream handling for pedestrian
interactions. Recent studies in applications of Large Language Models (LLM) and Vision-Language
Models (VLM) have achieved promising results in scene understanding and high-level maneuver
planning in diverse traffic scenarios. However, deploying the billion-parameter LLMs to vehicles re-
quires significant computation and memory resources. In this paper, we analyzed effective knowledge
distillation of LLM semantic labels to smaller Vision networks, which can be used for the semantic
representation of complex scenes for downstream decision-making for planning and control.

1 Introduction

Vision-language foundation models[[1][2][3] are at the forefront of multi-modal Al, enabling advanced reasoning and
spacial understanding[4]] capabilities by integrating visual and text data. These models are designed to perform a
variety of tasks, such as image captioning, visual question answering (VQA), and cross-modal retrieval, enhancing the
capabilities of virtual assistants, content creation tools, and accessibility applications.

Visual reasoning and understanding is crucial in improving autonomous driving by predicting pedestrian behaviors and
understanding the dynamic environments, which ensure the autonomous vehicle makes safe maneuvers. Autonomous
driving still faces challenges in handling long-tail safety-critical scenarios in pedestrian interactions, e.g. pedestrians
sitting on the roadside, jaywalking, and waiting to cross the crosswalk.

Earlier work on pose estimation techniques[3][6][7], such as those using deep learning models to analyze pedestrian
posture and movements, provides insights into their intentions, such as crossing the street or waiting on the sidewalk.
This field has advanced significantly with the advent of deep learning, such as Convolutional Neural Networks (CNNs)
and PointNet, which extract features from images and 3D data to predict key points on the human body.

Foundation models, like Large Language Models (LLMs) and Vision-Language Models (VLMs) leverage pre-trained
knowledge from the web data to generate human-like responses in natural language and show emergent abilities of
reasoning and few-shot learning. In addition to their success in text and image generation, their embeddings combined
with other models and algorithms in other domains, achieving significant advancement in various applications, such as
e-commerce[8]], recommendation systems[9], anomaly detection, and financial forecasting. Large Language Models
(LLMs) have also shown promising results in autonomous driving and pedestrian understanding tasks such as behavior
prediction and appearance description[[1O][L1][12], a critical gap remains in their practical application for autonomous
driving. Current approaches lack the capability to:

* Train Domain-Specific Models: Existing LLMs and VLMs are often trained on general-purpose datasets,
limiting their effectiveness in the specialized context of autonomous driving. Fine-tuning or adapting these
models for the nuances of pedestrian behavior in traffic scenarios remains a challenge.



* Deploy on Autonomous Vehicles: Deploying large and complex LLMs and VLMs on resource-constrained
autonomous vehicles requires efficient modeling, optimization, and inference strategies that are still under
development.

* Generate Actionable Signals: Current models often produce high-level descriptions or predictions, but lack the
ability to generate specific behavioral signals that can be directly consumed by downstream prediction and
planning modules in an autonomous driving system. Bridging this gap requires translating model outputs into
actionable insights for vehicle control.

Addressing these challenges is crucial for realizing the full potential of LLMs and VLMs in improving pedestrian
understanding for safe and reliable autonomous navigation. Future research should focus on developing specialized
models, efficient deployment strategies, and methods to generate actionable signals that integrate seamlessly with
existing autonomous driving systems.

In this paper, we performed knowledge distillation[13] to transfer general knowledge from pre-trained vision-language
foundation model, GPT4-V|[14], to efficient vision models to understand pedestrian behavior and semantic attributes,
and achieved promising results in open-vocabulary perception and trajectory prediction tasks, compared to baseline
models. We enriched the traditional taxonomy with far more pedestrian attributes and semantic categories.

[

2 Pedestrian Semantic Attributes Taxonomy

The existing autonomous driving datasets often fall short in providing comprehensive class labels for pedestrian
behavior and scene understanding. Many datasets include only basic attributes like "walking," "crossing," or "standing,"
which lack the granularity needed for truly sophisticated autonomous driving systems. However, to reach human-level
perception and decision-making, we need a much deeper understanding of pedestrian intentions, actions, and their
interplay with the surrounding environment. This includes factors like gaze direction, body language, interactions
with other pedestrians or objects, and reactions to traffic signals. To address this, we collected detailed annotations
from GPT, leveraging its advanced language processing capabilities to describe pedestrian behavior in a nuanced way.
Then, we applied n-gram processing to analyze these annotations, identifying key phrases and patterns to construct
a comprehensive class taxonomy for pedestrian handling. This taxonomy goes beyond simple labels, capturing the
richness and complexity of human behavior in traffic scenarios, ultimately enabling the development of more intelligent
and responsive autonomous vehicles. Detailed taxonomies we proposed are illustrated in Figure|T]

There are following categories for these semantic labels:

* Pedestrian types: It’s important for autonomous vehicles to recognize different types of pedestrians and
understand how their behavior might vary. For example, children and the elderly may move unpredictably or
need more time to cross the road, while construction workers and figures of authorities might signal hazards
areas or direct traffic.

* Pedestrian Behaviors: Observing pedestrian movements helps predict their future paths, enabling the vehicle
to interact smoothly and safely. This includes yielding to those crossing the street and navigating around those
waiting or moving slowly.

* Location and surroundings are also crucial. Knowing if a pedestrian is on a crosswalk, waiting at the curb, or
walking on the sidewalk helps the vehicle anticipate their actions.

* Weather and environmental condition significantly impact driving decisions. At night or in poor conditions,
extra caution is needed as pedestrians may be less visible or aware of approaching vehicles.

'1. Related work
2. Novelty: annotation, knowledge distillation through annotation from GPT
3. Add discussion emphasizing the increased vocab size, enhancing from 10 to 256.
4. Multi-label classification + trajectory prediction
5. Add one comparison between our method and baseline CLIP on overlapping classes (appeared in both the baseline dataset and
GPT annotated dataset). This showcases that our annotation method provides more fine-grained understanding, resulting in higher
performance on classification — we use classification for quantitative evaluation of understanding (justification for this customized
evaluation is due to lack of fine-grained ground truth)
6. Add one more embedding space clustering result to illustrate the knowledge distillation helps the model to generate better
structured latent space, indicating enhanced behavior understanding.
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Figure 1: Taxonomy of pedestrian semantic labels
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Figure 2: Natural Language Processing to generate multi-class semantic labels

* Object interactions: For example, a person with a dog may take longer to cross, or someone using a cellphone
may be less attentive to traffic. A person riding a scooter has obviously different movement patterns compared
to walking.

3 Dataset and Annotation

The Waymo Open Dataset[[13]] is a powerful dataset for researchers for pedestrian behavior prediction and understanding
in the context of autonomous driving. It offers a rich collection of over 1.2 million images, capturing an object-centric
vehicle or pedestrian instance from Waymo’s self-driving vehicles navigating diverse real-world environments. This
extensive and varied dataset is crucial for training robust models capable of generalizing across different scenarios. The
dataset uses precise 3D bounding boxes annotations to crop 2D object images from cameras. The dataset includes
sequences of images and point clouds for each pedestrian, capturing their movement over time. This temporal
information is essential for understanding pedestrian motion patterns and predicting their future trajectories. The data
is captured in real-world driving scenarios, with the complexities and uncertainties of pedestrian behavior in natural
settings. The dataset covers a wide range of pedestrian behaviors, from simple walking to complex interactions with
other road users. This diversity allows models to learn and generalize across different behavioral patterns.

We use GPT4-V to generate annotations about the pedestrians in 2D images. The input prompt is "You are a helpful
autonomous driving agent. Describe the action and behavior of the pedestrians, and the unusual which needs the



(a) GPT Annotation: potential jaywalker observing
traffic (b) GPT Annotation: pedestrian waiting at crosswalk

Figure 3: GPT4-V annotations provides useful semantic information about pedestrian behavior

driver’s attention." We also provide few-shots examples, to instruct the assistant to answer the question directly, without
unnecessary details, and only focus on the important elements in the scene related to autonomous driving. We further
apply unigram and bi-gram text mining in GPT’s annotations, to find the most important 256 words and phrases of
highest frequency to describe the pedestrian’s behavior, which can be used as semantic labels to train our model to
understand the most important aspects of the scene. Examples of annotations are illustrated in 3]

4 Knowledge Distillation to Vision Network

We formulate the problem as a multi-label classification problem. Given the extracted semantic text labels, we predict
the probability that the semantic labels appear in the GPT annotations. For example, the GPT annotation contains
"crossing’ and “walking’. The ground truth labels are P(’Crossing’) = 1 and P ("Walking’) = 1.0, and other labels not
in the description are assigned a probability of zero. In this way, we can use semantic labels to supervise our vision
network.

4.1 Knowledge Distillation Method
4.1.1 Teacher Model (GPT)

We won’t delve into the internal workings of GPT here, as it’s a complex black-box transformer model. Assume it
outputs a sequence of text.

We redefine the output as the semantics describing pedestrian’s intents or attributes of multiple class labels C. GPT’s
output texts are converted to class labels with probability:

~_J1, ifi-thclass appears in GPT’s output
Yi= 0, otherwise
4.1.2 Student Model

We have a light-weight Vision model to learn semantic attributes output from GPT teacher model. The specific
architecture is discussed in the following section. We add two-layer MLP to adapt vision network output to semantic
classes, which take the form of fy(x).

4.1.3 Binary Cross-entropy loss

The core of knowledge distillation is to minimize the difference between the teacher’s and student’s predictions. We use
Binary cross-entropy to predict if the predicted class appears in GPT’s answer.
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where: £(6) is the binary cross-entropy loss, y; is the teacher’s label (0 or 1) for class i, fy(x); is the student’s logit for

class i, o is the sigmoid function: o(z) = H—%

4.2 CNN and Vision Transformer

When choosing between Vision Transformer (ViT)[16] and CNNJ17] backbones for semantic embedding, several
trade-offs need consideration. ViT, with its attention mechanism, excels at capturing global dependencies and contextual
relationships within images, potentially leading to richer semantic representations. However, this comes at the cost of
computational efficiency, especially for high-resolution inputs, due to the quadratic complexity of attention. On the other
hand, CNN architecture offers a good balance between performance and efficiency. Its hierarchical structure efficiently
processes local features and scales well to larger images. However, it might not capture long-range dependencies as
effectively as ViT.

4.3 Experiment leveraging Foundation Models

CLIP[18]] is a cutting-edge model in the field of natural language processing and computer vision, developed to facilitate
the extraction of rich, contextual information from images and text. OpenClip[[1][[19] is an open-source implementation
inspired by the CLIP (Contrastive Language-Image Pretraining) model by OpenAl, which has been highly influential
in advancing multi-modal learning. The model excels at understanding and generating both textual and visual data,
enabling it to bridge the gap between language and images. It uses a contrastive learning approach and learns to
associate images with their corresponding textual descriptions, improving its ability to perform tasks such as image
captioning and visual question answering.

SAM (Segment Anything Model)[20] and its successor SAM?2 are advanced foundation models created by Meta Al,
aimed at transforming image and video segmentation. They allow users to pinpoint and identify objects within an image
or video through simple prompts such as points or boxes, effectively instructing the model to segment anything". While
SAM is proficient in general image segmentation, SAM2 significantly enhances this capability by integrating temporal
context, making it especially skilled in video segmentation. This improvement arises from SAM?2’s capacity to track
objects across frames, gaining insights into their movement and transformations over time. By accurately segmenting
pedestrians and other objects in images, SAM can uncovers essential details regarding their positioning and interactions,
and also other signals by recognizing gestures from different body parts, such as hands, legs movements. This detailed
information can be useful to infer pedestrian’s actions and intents, such as walking, running, standing, as well as to
forecast their intentions given the context, such as they crossing the road at a crosswalk or engage in jaywalking, or
even if they are exiting from the vehicle.

Sapiens|21] is a family of foundation models specifically designed to excel at human-centric vision tasks, making it
a strong candidate for enhancing autonomous driving pedestrian handling. Pre-trained on a massive dataset of over
300 million images, Sapiens already possesses a deep understanding of human appearance, pose, and movement. By
fine-tuning it with data specific to driving scenarios, we can leverage this pre-existing knowledge for more robust
pedestrian behavior and scene understanding, and enhance its ability to predict pedestrian actions, and behavior signals
leveraging scene contexts.

Different vision-foundation models have their individual strengths and expertise. For example, CLIP can capture
global semantics and interactions, SAM can segment objects of different semantic classes, and Sapiens can leverage
domain-specific pre-training for human body data. By combining these models, we can use the ensemble method
to further boost the model’s performance. We used a cross-attention[22]] mechanism to aggregate information from
multiple foundation models and were able to combine and extract useful features from multiple domain experts.

QWiEyL)"
Vd
where () is a trainable latent query vector of dimension d, Ey 1, = [E4, ..., E,] is the matrix consists of embeddings

from multiple vision language models, and W} and W, are projection matrix to generate key and value for attention
mechanism.

Ensemble of Embedding = softmax ( ) WoEvT

The overall model architecture is demonstrated in Figure [4]
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Pre-Trained Model | Num of Params | BLEU Score
CLIP (ViT-B) 88 million 0.274
CLIP (ResNet) 420 million 0.285
SAM (ViT-B) 89 million 0.254
Sapiens-0.3B 336 million 0.214
Ensemble 845 million 0.312
Table 1: Evaluation results of knowledge distillation to pre-trained vision models

4.4 Evaluation
4.4.1 Quantitative Evaluation

During inference, the model output a set of text labels whose confidence is higher than a pre-set threshold. We manually
tuning the threshold, and found 0.15 is the optimal value to match the length of GPT-4V’s reference answers, and we
use this threshold value for further evaluation. We can evaluate the model using common metrics in Natural Language
Processing, like BLEU score, precision / recall.

BLEUJ23]] score is a popular metric for evaluating the quality of machine-generated text, and it can be effectively used
for assessing text label generation tasks. BLEU measures how much of the generated text matches the reference text. It
looks for the presence of correct words and phrases, ensuring the generated labels are accurate and relevant. BLEU
also considers how much of the reference text is captured in the generated output, by adding penalty to generated texts
whose length is less than the length of reference text, ensuring the generated labels are comprehensive and cover all
essential aspects. By combining these two aspects, BLEU helps find a good balance between precision and recalls. To
reduce the sensitivity to the word ordering, we only use 1-gram matching, and the label of two words, such as "using
cellphone" is treated as one text label.

The evaluation result in Table|l{shows that CLIP model out-performs SAM and Sapien , even if Sapiens has the largest
number of parameters. The advantage of CLIP model is because of its training objective to align text embedding with
image embedding, and focus on global semantic information of lower resolution images. While SAM and Sapiens
model are more focused on traditional computer vision tasks, like segmentations and human pose estimations on higher
resolution images, and lacks more alignment with text domain. However, by leveraging ensemble of the model we are
able to achieve the best result by selecting salient information of each model, and makes the most informed predictions.

4.4.2 Qualitative Evaluation

We analyzed the examples compared to reference answers generated by GPT. We can observe that the fine-tuned model
after knowledge distillation was able to describe the actions of the pedestrian in the scene, and understanding the
context, e.g. at the bus station, waiting, and their more fine-grained actions, such as looking at cellphone, holding items
and pushing strollers.

We also found in some cases as shown in[5] the model is able to predict more comprehensive semantic attributes of the
pedestrian, because LLMs tend to use auto-aggressive and Beam-search to generate the text in answers, which might
only focus on the most important aspect of the image, but neglect other factors of the scene. By knowledge distillation
with a variety of GPT annotations, the fine-tuned model is able to learn probability distribution of all semantic labels
more comprehensively, and even provide richer and more complete and diverse information of the scene.



Average Displacement Error | Final Displacement Error
(3 seconds, in meters) (3 seconds in meters)
Baseline 0.216 0.437
Baseline + VLM Embedding | 0.182 0.374

Table 2: By leveraging distilled VLM embedding, we are able to significantly reduce trajectory error for downstream
trajectory prediction task

4.4.3 Evaluation on Downstream Prediction Task

The pedestrian behavior signals and latent semantic embedding can generate early signals for downstream trajectory
prediction tasks, where autonomous vehicle can forecast the traffic agent’s trajectory and take actions to react. We
also evaluated if the learned embedding after fine-tuning can improve the downstream task and potentially enhance
autonomous vehicle’s end-to-end performance. In this task, we use the past 1-second cooridinates of pedestrians
to predict the position of the next 3 seconds. We use classicial RNN trajectory prediction architecture[24] [?], and
performed the ablation study by comparing the performance of adding distilled Vision-Language-Model features.

The trajectory prediction task is formulated as below:

Xt = [$t7 yt]

where x; represents the 2D coordinates of the pedestrian at time .

h, = f(hy—1,x; ® Evi; Wy)

We use RNN model with two layers: h; is the hidden state at time ¢, f(-) is the RNN cell, Ey 15/ is the distilled Vision
Language Model embedding concatenated with input features, W, represents the learnable parameters of the RNN.

X1 = g(hy; W)

where X;1 is the predicted next pedestrian, g(-) is the linear transformation to output coordinates, W, represents the
output layer parameters. The training objective is to minimize the distances between predicted position and ground
truth position. Our experiment shows significant improvements in trajectory errors at 3 seconds, compared to baseline
only use position coordinate feature.

We evaluate the trajectory prediction metrics as shown in Table 2] and by leveraging vision language model embedding,
we are able to significantly reduce trajectory error metrics

Prediction: crossing, waiting, carrying Prediction: walking, holding (umbrella), rainy
GPT Answer: crossing GT Answer: walking
(a) imagel (b) image2

Figure 5: Qualititve Evaluations: more figures to be added in https://docs.google.com/document/d/
11jpgML4oEnYBFtKC_IyjX8mBI-0v2Ydfi_bx3tHZZPU/edit7tab=t.0

The Average Displacement Error (ADE): The average distance between ground truth and prediction trajectories overall predicted
time-steps within 3 seconds. Final Displacement Error (FDE): The average distance between ground truth and prediction trajectories
for the final predicted time-step at 3 seconds.


https://docs.google.com/document/d/1ijpqML4oEnYBFtKC_IyjX8mBI-Ov2Ydfi_5x3tHZZPU/edit?tab=t.0
https://docs.google.com/document/d/1ijpqML4oEnYBFtKC_IyjX8mBI-Ov2Ydfi_5x3tHZZPU/edit?tab=t.0
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Figure 6: GPT fails to provide accurate estimate of pedestrian keypoints

5 Conclusion

We proposed knowledge distillation method distilling knowledge from large-scale vision-language foundation models
to smaller vision network, which improved open-vocabulary perception task and downstream trajectory prediction tasks.
We also proposed more diverse and comprehensive taxonomy of pedestrian behaviors and attributes for autonomous
driving. Our

6 Limitation and Future Directions

6.1 Pedestrian Localization and Keypoint Localization

Overall, we observe that GPT4-V is still lacking in pedestrian pose segmentations|6 Due to this, further instruction
tuning and more training data specific to pedestrian tasks are required to enhance its ability.
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