
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LANGEVIN SOFT ACTOR-CRITIC: EFFICIENT EX-
PLORATION THROUGH UNCERTAINTY-DRIVEN CRITIC
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing actor-critic algorithms, which are popular for continuous control rein-
forcement learning (RL) tasks, suffer from poor sample efficiency due to lack
of principled exploration mechanism within them. Motivated by the success of
Thompson sampling for efficient exploration in RL, we propose a novel model-free
RL algorithm, Langevin Soft Actor Critic (LSAC), which prioritizes enhancing
critic learning through uncertainty estimation over policy optimization. LSAC
employs three key innovations: approximate Thompson sampling through distri-
butional Langevin Q updates, parallel tempering for exploring multiple modes
of the posterior of the Q function and diffusion synthesized state-action samples
regularized with Q action gradients. Our extensive experiments demonstrate that
LSAC outperforms or matches the performance of mainstream model-free RL
algorithms for continuous control tasks. Notably, LSAC marks the first successful
application of a Langevin Monte Carlo (LMC) based Thompson sampling in con-
tinuous control tasks with continuous action spaces, setting a new benchmark for
future research in the field.

1 INTRODUCTION

We introduce a practical and efficient off-policy model-free online RL algorithm termed Langevin Soft
Actor-Critic (LSAC), which incorporates distributional Langevin Monte Carlo (LMC) critic updates
with parallel tempering and action refinement on diffusion synthesized trajectories. Our approach
employs a distributional Q objective and allows diverse sampling from multimodal Q posteriors
through use of parallel tempering (also known as replica-exchange method), making LSAC especially
well-suited for continuous control tasks in environments like MuJoCo control tasks (Brockman et al.,
2016) and DeepMind Control Suite (DMC) (Tassa et al., 2018).

Although Langevin-style update is powerful for learning posteriors by performing noisy gradient
descent updates to approximately sample from the exact posterior distribution of the Q function,
when naively applied to continuous control settings, it meets with the following three challenges:

(C1) Multidimensional continuous action spaces. In continuous control settings, actions are
typically continuous and multidimensional tensors. This makes it computationally intractable
to naively select the exact greedy actions based on Q posterior approximations, often leading
to sub-optimal performance and inefficient exploration.

(C2) Value approximation errors. While LMC update helps in better exploration (Ishfaq et al.,
2024a;b), it may also lead to instability issues when coupled with deep neural networks
(Dauphin et al., 2014) due to overestimation bias of Q-function. Moreover, naive LMC might
lead to similar actions being overly explored due to high correlation among samples from
the LMC Markov chain at nearby steps which in turn can lead to value approximation error
(Holden, 2019; Vishnoi, 2021).

(C3) Low sample efficiency. Naive LMC updates, akin to many actor-critic frameworks, use a
Update-To-Data (UTD) ratio of 1, which is the number of network updates to actual environ-
ment interactions. This limited UTD ratio often leads to underfitting the complex state-action
representations in continuous control (Chen et al., 2021; Dorka et al., 2023). Relying solely

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

on a single critic update per iteration from on-policy experience is insufficient, as it fails to
leverage the diversity of the data space, thereby hindering critic learning.

Recently there have been several works (Dwaracherla & Van Roy, 2020; Ishfaq et al., 2024a;b) that
provide provably efficient RL algorithms that rely on LMC-style updates. However, these algorithms
are scalable only to pixel-based Deep RL environments with discrete action spaces. One challenge
arises from the multidimensional continuous action spaces in continuous control environments, as
detailed in (C1). LSAC addresses this challenge by eliminating the need to compute the maximum of
Q values over the entire action space to select greedy actions (Ishfaq et al., 2024a). Instead, it employs
a distributional critic learning framework using LMC along with a Maximum Entropy (Max-Ent)
policy objective (Eysenbach & Levine, 2022). Learning distributional critic further mitigates Q-value
overestimation issue as detailed in (C2). To address (C3), LSAC further incorporates Q action
gradient refinement (Yang et al., 2023) in diffusion synthesized state-action samples during the critic
update. This introduces diverse and potentially high-valued synthetic state-action pairs into the
collected trajectories, thereby enhancing critic learning. The actor in turn benefits from more accurate
value estimations and thus improved policy learning. We further use parallel tempering (Chandra
et al., 2019) to allow sampling from multi-modal Q function posterior.

Furthermore, traditional continuous control benchmarks such as DSAC-T (Duan et al., 2023), REDQ
(Chen et al., 2021), SAC (Haarnoja et al., 2018a), and TD3 (Fujimoto et al., 2018), while benefiting
from heuristics such as noise perturbed actions sampling and entropy maximization, do not sufficiently
emphasize principled and directed exploration in their design principles. On the flip side, LSAC
is highly exploratory in nature and effectively increases state-coverage during training by virtue of
using theoretically principled LMC based Thompson sampling.

1.1 KEY CONTRIBUTIONS

To address the aforementioned challenges, we propose Langevin Soft Actor-Critic (LSAC) that endows
traditional Max-Ent actor-critic algorithms with exploratory LMC-style updates and multimodal
posterior sampling techniques for Q function. We summarize our algorithmic contributions as
follows:

Distributional Adaptive Langevin Monte Carlo. Incorporating LMC for updating the Q function
significantly boosts exploration while simultaneously maintaining a crucial balance with exploitation.
To address (C2), we first define a distributed Max-Ent critic objective inspired by Duan et al. (2023).
Then, we employ distributional critic learning with the addition of adaptive LMC samplers. Please
check Algorithm 2 for more details.

Multimodal Q Posteriors. One downside of naive LMC updates is that potentially homogeneous
posterior samples are generated at adjacent gradient steps. This translates to sampling similar critic for
adjacent areas of Q-function posterior and this high correlation restricts exploration within the policy
space while using a single critic for policy update. Consequently, a much longer burn-in period (Roy,
2020) is necessary to ensure adequate mixing of the Markov chain. However, this extended burn-in
period conflicts with the frequent updates required by the agent in complex exploration tasks. To
overcome this challenge, we introduce a simplified version of parallel tempering or replica exchange
method (Geyer & Thompson, 1995; Chandra et al., 2019) that helps with exploring different modes of
the Q-posterior more effectively. This in turn diversifies the actions sampled by the Max-Ent policy.

Diffusion Q Action Gradient. In the off-policy model-free RL setting, directly sampling from
diffusion policies can be prohibitively expensive (Chen et al., 2024), often requiring tens to hundreds
of iterative inference steps per action, particularly in the absence of pretraining with a diffusion
behavior model (Chen et al., 2024). To address this challenge and resolve (C3), we explore an
alternative approach to introduce diversity and multimodality without relying solely on policy
learning. Our strategy incorporates diffusion synthetic data, as proposed by Lu et al. (2024), to
enhance critic updates. By blending online data with synthetic trajectories, and refining actions within
the diffusion synthetic buffer, we leverage the Q action gradient to effectively constrain synthetic
actions within the support set of optimal actions. This approach reduces computational costs and
ensures that synthetic actions effectively contribute to the stability and quality of critic learning,
resulting in more accurate and robust value estimates.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARY

Markov Decision Process and Maximum Entropy RL. We consider Markov Decision Process
(MDP) defined as a tuple (S,A, P0, P,R, γ) where S is a continuous state space, A is a continuous
action space, P0 is the initial state distribution, P : S × A → S is the transition probability,
R : S × A → ∆(R) is the reward distribution function and γ ∈ (0, 1) is the discount factor. At
each timestep t, the agent observes a state st ∈ S and takes an action at ∼ π(at | st) ∈ A following
policy π and transitions to the next state st+1 according to st+1 ∼ P (st+1 | st, at) while receiving
the reward R(st, at). For simplicity, we use the notation (s, a) and (s′, a′) as the current and the
next state-action pairs respectively. Furthermore, we adopt rt to denote R(st, at) and use ρπ(s) and
ρπ(s, a) to denote the state and state-action occupancy measure induced by policy π.

While standard RL aims to find a policy that maximizes the expected cumulative return, in this work,
we consider maximum entropy RL (Ziebart, 2010; Haarnoja et al., 2017) in which the objective
function is augmented with the entropy of a policy at each visited state st:

Jπ =

∞∑
i=0

E(si,ai)∼ρπγ
i[ri + αH(π(· | si))], (1)

where H(π(· | s)) := Ea∼π(· | s)[− log π(a | s)] is the policy entropy and α > 0 is a temperature
coefficient. We denote the entropy augmented cumulative return from st, also known as soft return,
by Gt =

∑∞
i=t γ

i[ri − α log π(ai | si)]. The soft Q-value of policy π, which describes the expected
soft return of policy π upon taking action at at state st, is defined as Qπ(st, at) := rt + γE[Gt+1],
where the expectation is taken over trajectory distribution under policy π.

Langevin Monte Carlo (LMC). LMC is a popular sampling algorithm in machine learning
that leverages Euler discretization method to approximate the continuous-time Langevin diffusion
process (Welling & Teh, 2011). Langevin diffusion (Rossky et al., 1978; Roberts & Stramer,
2002) is a stochastic process that is defined by the stochastic differential equation (SDE) dwt =
−∇L(wt)dt+

√
2dBt, where L : Rn → R is a twice-differentiable function and Bt is a standard

Brownian motion in Rd. Taking Euler-Murayama discretization of the SDE, we obtain the iterative
update rule for LMC:

wt+1 = wt − η∇L(wt) +
√
2ηβ−1ϵt, (2)

where η is a fixed step size, β is the inverse temperature and ϵt ∼ N (0, Id). LMC update generates a
Markov chain whose stationary distribution converges to a target distribution p(x) ∝ exp (−βL(w))
(Roberts & Tweedie, 1996). Intuitively, LMC can be thought as a version of gradient descent perturbed
by Gaussian noise. Replacing the true gradient ∇L(wk) with some stochastic gradient estimators
results in the celebrated stochastic gradient Langevin dynamics (SGLD) algorithm (Welling & Teh,
2011).

Diffusion Models. Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) are a class of
generative models which were inspired by non-equilibrium thermodynamics and first used in image
synthesis. They have recently emerged as a powerful framework for RL to enhance multimodal
decision-making process (Wang et al., 2023; Hansen-Estruch et al., 2023). Given data marginally
distributed as q0(x0), we sample from it by first defining a stochastic differential equation (SDE)

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0(x0), (3)
where wt is the standard d-dimensional Wiener process. Diffusion models gradually add Gaussian
noise from t = 0 to T by setting noise schedules σmax = σT > σT−1 > · · · > σ0 = 0 such that
xt ∼ qt(xt;σt) and qT ∼ N (0, σ2

maxI) is indistinguishable from pure Gaussian noise. Equation 3
admits an equivalent reverse denoising process starting with the fully noised distribution qT (xT):

dxt = (f(t)xt − g2(t)∇x log qt(xt))dt+ g(t)dw̄t, xT ∼ qT (xT), (4)

Since the score function ∇x log qt(xt) at each time step t is unknown, Karras et al. (2022) considers
training a noise predictor ϵθ(xt, t) on the score matching objective

LVLB(θ) = min
θ

Ex∼q0(x0),ϵ∼N (0,σ2I)∥Dθ(x+ ϵ;σ)− x∥22.
to predict the added noise ϵ that converts x0 to xT . Then, the score function can be expressed as
∇x log p0(x;σ) = (Dθ(s;σ)− x)/σ2, and we can generate synthetic samples by solving either the
backward SDE in Equation 4 or using DPM solvers (Lu et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 ALGORITHM DESIGN

In this section, we introduce Langevin Soft Actor Critic (LSAC), as shown in Algorithm 1, which
builds off three main ideas. First, during critic learning, we want to learn and efficiently sample a
Q-value function from its approximate posterior distribution. We leverage Langevin Monte Carlo
(LMC) to perform this. This is a natural adaptation to posterior sampling or Thompson sampling that
is widely used in RL for efficient exploration. Second, we couple LMC based posterior sampling with
distributional value function learning (Duan et al., 2023; Ma et al., 2020) that helps with mitigating
the well-known overestimation issue. Third, to ensure LMC can sample from different modes of
Q-posterior, we use parallel tempering (Chandra et al., 2019). Fourth, to improve sample efficiency
and UTD ratio, during critic update, we synthesize diverse and potentially high-valued state-action
samples using a diffusion model and Q action gradient refinement.

Algorithm 1: Langevin Soft Actor-Critic (LSAC)
Input: Policy networks πϕ, πϕ̄, critic networks Zψ,Zψ̄ , and diffusion modelM.
Replay buffer D ← ∅, diffusion buffer D′ ← ∅.
Collection of posteriors ΨZ = {ψ(i)}ni=1, entropy factor α, initialize weights ψ(i) for {ψ(i)}ni=1.
Set step size ηQ > 0 and temperatures βa, βα, βπ, βQ, βM .

1 while policy has not converged do
2 for each sampling step do
3 Online interaction with πϕ in the environment, D ← D ∪ {(s, a, r, s′, d)}.
4 for each update step do
5 for i = 1, . . . , n do
6 Sample mini-batch BDi from D and BMi = {(sM , aM , rM , s′M , dM)} from D′.
7 Refine aM with aM ← aM + βa∇aQψ(i)(sM , aM) in BMi .
8 Update Zψ(i) on Bi = BDi ∪BMi with Algorithm 2.

9 Sample ψ(i) ∼ U(ΨZ) at random and recover Bi.
10 Compute α with Equation 12 and update πϕ on Bi with Equation 11.
11 UpdateM on D with Equation 10 and fill up D′.
12 Polyak update ψ̄(i) ← τψ(i) + (1− τ)ψ̄(i), ϕ̄← τϕ+ (1− τ)ϕ̄.

Distributional Critic Learning with Adaptive Langevin Monte Carlo. To describe distributional
critic update, we first define few terminologies. We first define soft state-action return, a random
variable, given by Zπ(st, at) := rt + γGt+1, which is a function of policy π and state-action pair
(st, at). It is easy to observe that Qπ(s, a) = E[Zπ(s, a)]. Instead of the expected state-action
return Qπ(s, a), we aim to model the distribution of the random variable Zπ(s, a). We define
Zπ(Zπ(s, a) | s, a) : S ×A → P(Zπ(s, a)) as a mapping from (s, a) to a distribution over the soft
state-action return Zπ(s, a). We refer to this mapping as value distribution function. We define the
distributional Bellman operator in the maximum entropy framework as

T πZπ(s, a) D
:= r + γ(Zπ(s′, a′)− α log π(a′ | s′)). (5)

We model the value distribution function and stochastic policy as diagonal Gaussian distribution
and parameterize as Zψ(· | s, a) and πϕ(· | s), where ψ and ϕ are the neural network parameters.
Due to Gaussian assumption, Zψ can be expressed as Zψ(· | s, a) = N (Qψ(s, a), σψ(s, a)

2), where
Qψ(s, a) and σψ(s, a) are the mean and standard deviation of value distribution respectively. The
distributional critic is updated by minimizing the following loss function:

LZ(ψ) := ωE(s,a)∼BDKL(T πϕ̄Zψ̄(s, a)∥Zψ(s, a)), (6)

where DKL is the Kullback-Leibler (KL) divergence, B is the replay buffer, and ψ̄ and ϕ̄ denotes the
target network parameters of Zψ and πϕ respectively. The gradient scalar ω := E(s,a)∼B [σψ(s, a)2]
depends on the variance of the distribution function.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Following Duan et al. (2023), we decompose the critic update gradient into two components: mean-
related gradient∇ψLZ,m(ψ) and variance-related gradient∇ψLZ,v(ψ):

∇ψLZ,m(ψ) := −yQ −Qψ(s, a)
σψ(s, a)2 + ϵσ

∇ψQψ(s, a)

∇ψLZ,v(ψ) := −
(clipb(yZ)−Qψ(s, a))2 − σψ(s, a)2

σψ(s, a)3 + ϵσ
∇ψσψ(s, a),

where the target terms yQ and yZ are defined as yQ := r + γ(Qψ̄(s
′, a′) − α log πϕ̄(a

′|s′)) and
yZ := r+γ(Zψ̄(s

′, a′)−α log πϕ̄(a
′|s′)). yZ is further clipped with a clipping function clipb(yZ) :=

clip(yZ , Qψ(s, a)− b,Qψ(s, a) + b) where b ∝ E(s,a)∼Bσψ(s, a) is an automated boundary.

Finally, we can express the sample-based critic update gradient as

∇ψLZ(ψ) ≈ E(s,a)∼B [∇ψLZ,m(ψ) +∇ψLZ,v(ψ)] , (7)

In Appendix B we show that, under some mild assumptions, the posterior over Qψ is of the form
exp(−LZ(ψ))/Z, where Z is the partition function, and that Qψ(s, a) = E(s,a)∼BZψ(s, a). How-
ever, exactly sampling from this distribution is non-trivial as we do not know the partition function.
To this mean, we can use LMC based sampling algorithm. In place of vanilla LMC described in
Equation 2, following Ishfaq et al. (2024a); Kim et al. (2022), we use adaptive Stochastic Gradient
Langevin Dynamics (aSGLD), where an adaptively adjusted bias term is included in the drift function
to enhance escape from saddle points and accelerate the convergence to the true Q posterior, even in
the presence of pathological curvatures and saddle points which are common in deep neural network
(Dauphin et al., 2014). Concretely, we use the following update rule

ψk+1 ← ψk − ηQ(∇ψLZ(ψk) + aζψk) +
√

2ηQβ
−1
Q ϵk, ϵk ∼ N (0, Id), (8)

for a step size ηQ > 0, bias factor a, adaptive preconditioner ζk, and inverse temperature βQ.
Inspired from the Adam optimizer (Kingma & Ba, 2014), the adaptive preconditioner ζk is defined as
ζψk := mk ⊘

√
vk + λ1 where,

mk = α1mk−1+(1−α1)∇LZ(ψk) and vk = α2vk−1+(1−α2)∇LZ(ψk)⊙∇LZ(ψk), (9)

with α1, α2 ∈ [0, 1) being the smoothing factors of the first and second moments of the stochastic
gradients, respectively. Each sampled ψ following Equation 8 parameterizes a possible distributional
Q function and thus is equivalent to sampling from the posterior over distributional Q function.

While our critic update rule is motivated by Ishfaq et al. (2024a), we are the first to apply aSGLD
based parameter sampling for continuous control task along with distributional critic. Moreover, while
in each critic update step, we perform one aSGLD update, Ishfaq et al. (2024a), in their LMCDQN
algorithm, needs to perform this update Õ(K) times, where K is the episode number. This can
significantly increase the runtime of LMCDQN compared to that of LSAC.

Algorithm 2: Distributional Adaptive Langevin Monte Carlo

Input: Policy πϕ and target πϕ̄, critic weight ψ and target ψ̄, data batch B.
1 Sample ϵ ∼ N (0, Id).
2 Update Zψ, Zψ̄ and T πϕ̄Zψ̄(s, a) by Equation 5.
3 Set clipping boundary b ∝ E(s,a)∼Bσψ(s, a), temperature ω ∝ E(s,a)∼B [σψ(s, a)2].
4 Set LZ(ψ) := ωE(s,a)∼BDKL(T πϕ̄Zψ̄(s, a)∥Zψ(s, a)) by Equation 6.
5 Compute the adaptive drift bias ζψ := m⊘

√
v + λ1 using Equation 9.

6 Update Z posterior weights with ψ ← ψ − ηQ(∇ψLZ(ψ) + aζψ) +
√

2ηQβ
−1
Q ϵ.

7 Polyak update b← τb+ (1− τ)E(s,a)∼B [σψ(s, a)], ω ← τω + (1− τ)E(s,a)∼B [σψ(s, a)2].

Parallel Tempering and MultimodalQ Posteriors. Despite the scalability of LMC, its mixing rate
is often extremely slow, especially for distributions with complex energy landscapes (Li et al., 2018).
Performing naive LMC to approximately sample from multimodal Q posterior can thus converge very
slowly which in turn will affect the performance of the algorithm. Parallel tempering (also known

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

as replica exchange) (Marinari & Parisi, 1992; Geyer & Thompson, 1995; Chandra et al., 2019) is
a standard approach for exploring multiple modes of the posterior distribution while performing
LMC. In parallel tempering, multiple MCMC chains (known as replicas) are executed at different
temperature values. It allows global and local exploration which makes it suitable for sampling from
multi-modal distributions (Hukushima & Nemoto, 1996; Patriksson & van der Spoel, 2008).

We use a simplified version of parallel tempering where for all replicas we use the same temperature.
To reduce complexity, we also do not perform replica exchange. Even though, in principle, it can
limit the exploration of the parameter space, as we initialize each replica with different starting points,
it achieves enough exploration for our purpose while maintaining simple implementation. By running
multiple LMC chains ΨQ = {ψ(i)}ni=1, we can sample Q-functions for critics from distinct modes
of the multimodal posterior distribution while ensuring faster convergence and mixing time.

Diffusion Q Action Gradient. Our approach begins with πϕ, which approximates a Max-Ent
policy (Eysenbach & Levine, 2022) used for collecting online trajectories τ . To enhance the diversity
of state-action pairs and increase the UTD ratio for critic updates, we first randomly sample a batch
BDi from the online buffer. Next, we sample synthetic data BMi from a diffusion (Wang et al., 2023;
Lu et al., 2024) generatorM.

However, between the periodic updates ofM, synthetic data generated byM can become stale,
potentially limiting its effectiveness in dynamic environments. Hence, each action sample in BMi is
then refined through gradient ascent βa∇aQψ(i)(s, ã), targeting improved alignment with high-value
regions. While this action gradient approach shares conceptual similarities with DIPO (Yang et al.,
2023), which replaces the original actions from the samples in the replay buffer by performing
gradient ascent for policy optimization, our dual focus on diversity and quality of mini-batch data
used for critic and policy update is distinct. We utilize Q action gradient specifically for critic updates,
ensuring that the synthetic actions are not only diverse but also accurately reflect regions of high Q
value, all while remaining within the valid support set of the action space. Finally, to increment the
UTD ratio, we mix BDi and BMi

into a single parallel data batch Bi and for each 1 ≤ i ≤ n, update
ψ(i) using Algorithm 2.

The diffusion modelM is trained with the score matching loss

LM(θ) := Et∼U([T]),z∼N (0,Id),(s,a)∼D∥z − ϵθ(
√
ᾱta+

√
1− ᾱtz, s, t)∥22, (10)

where U([T]) denotes the uniform distribution over a finite collection of reverse time indices
{1, . . . , T}. The weights ᾱt :=

∏t
i=1 αi, αi := 1 − βi, are computed via predefined diffusion

temperatures {βi}Ti=1.

Policy Improvement. For each actor update step, we randomly sample a Z weight ψ(i) from ΨZ
and retrieve the mixed replay data batch Bi. Soft policy improvement maximizes the usual Max-Ent
objective

Lπ(ϕ) = Es∼Bi,a∼πϕ [Qψ(i)(s, a) + αH(πϕ(a|s))]
= Es∼Bi,a∼πϕ

[
EZ(s,a)∼Z

ψ(i) (· | s,a)[Z(s, a)] + αH(πϕ(a|s))
]
.

(11)

Following Haarnoja et al. (2018a;b), the entropy coefficient α is updated with

α← α− βα∇α(− log πϕ(a|s)−H), (12)

where H is the expected entropy. Finally, we update the diffusion model M periodically with
on-policy data and generate |D′| copies of synthetic transitions into D′, while target networks are
updated using the Polyak averaging approach.

4 EXPERIMENTS

4.1 EXPERIMENTS IN MUJOCO AND DMC

Main Results. We present empirical evaluations of LSAC on the MuJoCo benchmark (Todorov
et al., 2012; Brockman et al., 2016) and the DeepMind Control Suite (DMC) (Tassa et al., 2018),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

showing that LSAC is able to outperform or match several strong baselines, including DSAC-T (Duan
et al., 2023), the current state-of-the-art model-free off-policy RL algorithm. Other baselines include
DIPO (Yang et al., 2023), SAC (Haarnoja et al., 2018a), TD3 (Fujimoto et al., 2018), PPO (Schulman
et al., 2017), TRPO (Schulman et al., 2015), REDQ (Chen et al., 2021) and QSM (Psenka et al.,
2024). Our code is available at https://anonymous.4open.science/r/LSAC-FAA0/.

We emphasize that, for implementation simplicity and fair comparisons, both policy and critic
networks sizes are kept the same for our algorithm and all of the baselines. After an initial warm-up
stage of 1e5 steps, we gradually anneal LMC step size ηQ from the initial 1e-3 down to 1e-4. For
computing adaptive drift bias ζψ, we use fixed values of α1 = 0.9, α2 = 0.999 in Equation 9, and
λ = 10−8 without tuning them. To prevent gradient explosion during training, we clip the sum of the
gradient and the adaptive bias term using clipc(∇ψLQ(ψ) + aζψ) by a constant c = 0.7.

We accelerate training following the SynthER (Lu et al., 2024) implementation and update the
diffusion generatorM using the data D every 1e4 time steps. During the critic updates, for each
ψ(i) ∈ ΨQ, where 1 ≤ i ≤ n, the sampled replay buffer data is mixed with a synthetic batch BMi

with a ratio of 0.5. This synthetic batch is generated from the diffuser, with its state-action samples
immediately optimized through gradient ascent with respect to the Q function, parameterized by the
current weight ψ(i).

From Figure 1 and Table 1, we see that LSAC outperforms other baselines in 5 out of 6 tasks from
MuJoCo. In Humanoid-v3 even though DSAC-T outperforms LSAC, the difference is marginal. For
space constraint we report the DMC result in Appendix C and Figure 8.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

20000

Av
er

ag
e

R
et

ur
n

(a) Halfcheetah-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(b) Ant-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

50

100

150

Av
er

ag
e

R
et

ur
n

(c) Swimmer-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2000

4000

6000

Av
er

ag
e

R
et

ur
n

(d) Walker2d-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(e) Hopper-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2500

5000

7500

10000

Av
er

ag
e

R
et

ur
n

(f) Humanoid-v3

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC (ours) DSAC-T DIPO TD3 PPO SAC TRPO REDQ QSM

Figure 1: Training curves for six MuJoCo continuous control tasks over 1e6 time steps. Results are
averaged over a window size of 11 epochs and across 10 seeds. Solid lines represent the median
performance, and the shaded regions correspond to 90% confidence interval.

Environments\Methods LSAC (ours) DSAC-T DIPO SAC TD3 PPO TRPO REDQ

HalfCheetah 17948 ± 1724 12703 ± 1711 9329 ± 1798 10543 ± 1422 9034 ± 1350 6560 ± 1189 6534 ± 1345 10022 ± 1298
Ant 7411 ± 155 6153 ± 211 5459 ± 163 5297 ± 289 4839 ± 271 3055 ± 131 3271 ± 146 6091 ± 129

Swimmer 151 ± 11 129 ± 9 114 ± 11 76 ± 5 102 ± 10 76 ± 6 60 ± 4 134 ± 22
Walker2d 6143 ± 394 5880 ± 411 4921 ± 549 4535 ± 402 4625 ± 399 3182 ± 233 2228 ± 302 4598 ± 318
Hopper 3839 ± 537 3327 ± 588 3138 ± 731 2919 ± 165 2604 ± 140 2315 ± 152 2096 ± 201 3002 ± 512

Humanoid 8545 ± 740 9028 ± 792 5012 ± 811 6807 ± 734 4455 ± 820 1018 ± 102 4459 ± 564 7213 ± 621

Table 1: Maximum Average Return across 10 seeds over 1e6 time steps. Maximum value and
corresponding single standard deviation for each task is bolded.

7

https://anonymous.4open.science/r/LSAC-FAA0/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Sensitivity Analysis. In Figure 2, we present the learning curves of LSAC for different
values of learning rates ηQ ∈ {10−2, 10−3, 3 × 10−4, 10−4}, inverse temperature βQ ∈
{105, 106, 107, 108, 109}, and adaptive bias terms a ∈ {10, 1, 0.1, 0.01}. We observe that our algo-
rithm is most sensitive to the step size ηQ in the LMC update and the bias factor a from Equation 8.
On the contrary, LSAC is less sensitive to the choice of the inverse temperature βQ.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

20000

Av
er

ag
e

R
et

ur
n

■ a = 10
■ a = 1.0
■ a = 0.1
■ a = 0.01

(a) Bias factor a

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

20000

Av
er

ag
e

R
et

ur
n

■ ηQ = 1× 10−2

■ ηQ = 1× 10−3

■ ηQ = 3× 10−4

■ ηQ = 1× 10−4

(b) Learning rate ηQ

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

20000

Av
er

ag
e

R
et

ur
n

■ βQ = 109

■ βQ = 108

■ βQ = 107

■ βQ = 106

■ βQ = 105

(c) Inverse temperature βQ

Figure 2: Sensitivity analysis of different parameters on HalfCheetah-v3 environment. A comparison
of LSAC with different bias factors, step sizes, and inverse temperature parameters.

We now present a comprehensive ablation analysis of LSAC by systematically removing individual
algorithmic contributions while maintaining optimal parameters for the remaining components. We
refer the readers to Table 4 for a complete list of hyperparameters used for each model.

Impact of distributional critic on performance and overestimation bias. To understand the
impact of distributional critic, we run ablation studies where we replace our distributional critic with
standard critic implementation in SAC (Haarnoja et al., 2018a). Figure 3 shows that the performance
of LSAC declines significantly when distributional critic is replaced by standard critic. To find out
what might be driving such performance gap, following the same evaluation protocol as Chen et al.
(2021), we compare the normalized Q estimation biases in Figure 4. We observe that throughout
most of training, LSAC with distributional critic has a much smaller and often near-constant under-
estimation bias compared to LSAC with standard critic. It indicates that distributional critic allows
more stable learning and increased performance by lowering Q estimation bias.

destabilize learning due to overestimation bias.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

20000

Av
er

ag
e

R
et

ur
n

(a) Halfcheetah-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2000

4000

6000

Av
er

ag
e

R
et

ur
n

(b) Walker2d-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

50

100

150

Av
er

ag
e

R
et

ur
n

(c) Swimmer-v3

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC with distributional critic LSAC with standard critic

Figure 3: Ablation on MuJoCo environments comparing the replacement of the distributional critic
component with a standard critic. LSAC with distributional critic is more performant than the variant
where standard critic is used.

Usefulness of the synthetic experience replay and action gradient ascent. Figure 5a indicates
that the performance of LSAC experiences only a marginal decline in HalfCheetah-v3 when the
diffusion Q action gradient is excluded. However, a more pronounced drop is observed in Ant-v3
(Figure 5b) and Swimmer (Figure 5c) when action gradient is excluded.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

1

2

IQ
M

 N
or

m
 Q

 B
ia

s

(a) HalfCheetah-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

1

2

IQ
M

 N
or

m
 Q

 B
ia

s

(b) Walker2d-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

1

2

IQ
M

 N
or

m
 Q

 B
ia

s

(c) Swimmer-v3

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC with distributional critic LSAC with standard critic

Figure 4: Normalized Q bias plots for ablation study of the distributional critic component in LSAC.
The Q bias value is estimated using the Monte-Carlo return over 1e3 episodes on-policy, starting
from states sampled in the replay buffer.

Number of parallel critics. In Figure 6a, we observe that when LSAC is equipped with too few or
too many parallel critics |ΨQ|, the performance drops. This is due to when the parallel critic number
is too low, the LMC sampler cannot explore different modes of the posterior distribution. On the
other hand, when the critic number is high, it may hamper the actor learning as during each policy
update it may encounter some critics only very few times due to uniform sampling of the critic. This
may cause drop in the performance.

Usefulness of aSGLD sampler. In Figure 6b, we observe that approximate Thompson sampling
through aSGLD sampler boosts the performance compared to when the critics are simply trained
with the Adam (Kingma & Ba, 2014) optimizer. When only Adam is used, the collection of critics
can be thought of as an ensemble akin to bootstrapped DQN (Osband et al., 2016a).

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

20000

Av
er

ag
e

R
et

ur
n

■ w/ Diffusion Q gradient
■ w/o diffusion Q gradient

(a) HalfCheetah-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

■ w/ Diffusion Q gradient
■ w/o diffusion Q gradient

(b) Ant-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

50

100

150

Av
er

ag
e

R
et

ur
n

■ w/ Diffusion Q gradient
■ w/o diffusion Q gradient

(c) Swimmer

Figure 5: Ablation study of Q action gradient regularization of synthetic state-action samples on the
effect of average return in three MuJoCo environments.

Learning is stable in practice. While off-policy deep RL algorithms are often challenging to
stabilize, we found that LSAC is fairly stable as shown in Figure 18. This is likely due to the KL
objective on which parallel distributional critics are optimized, where the stochastic soft state-action
value Zψ remains close to the value target distribution T πϕ̄Zψ̄. Moreover, distributional critic
stabilizes learning by mitigating overestimation bias.

4.2 EXPLORATION CAPABILITY OF LSAC

To further evaluate the exploration ability of LSAC, we test our method on two types of maze environ-
ments, a custom version of PointMaze Medium-v3 and AntMaze-v4 from de Lazcano et al. (2024),
which are implemented based on the D4RL benchmark (Fu et al., 2020). In PointMaze Medium-v3,
the agent is tasked with manipulating a ball to reach some unknown goal position in the maze. The
initial state of the ball is at the center of the maze and we define two potential goal states for the ball -
the top right and the bottom left corner of the maze. Please refer to Appendix D for further details

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

20000

Av
er
ag
e
R
et
ur
n

■ |ΨQ| = 1
■ |ΨQ| = 10
■ |ΨQ| = 20
■ |ΨQ| = 50

(a) Number of parallel critics

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

20000

Av
er

ag
e

R
et

ur
n

■ aSGLD (ηQ = 1× 10−3)
■ Adam (ηQ = 3× 10−4)

(b) Different Q samplers

100 1,000 10,000 100,000
Update frequency (steps)

0

5000

10000

15000

20000

Av
er

ag
e

R
et

ur
n

0.65

0.70

0.75

0.80

0.85

0.90

0.95

N
or

m
al

iz
ed

 T
ra

in
in

g
Ti

m
e

(c) Update frequencies of M

Figure 6: Ablation study on HalfCheetah-v3 environment. Performance of LSAC is affected by (a)
the choice of parallel critics number and (b) the use of LMC (aSGLD) sampler. (c) The performance
difference between each update frequency of diffusion modelM is not significant.

on the environments. We first train the agent for 500k environment steps, and then use its oracle to
complete 200 evaluation episodes. The agent has better exploration ability if it solves the task by
reaching multiple goals or finding out multiple paths leading to a goal.

To quantify the exploration ability of LSAC and other baseline methods, we discretize the maze and
track the cell visitation to visualize the exploration density map and track the cell visitation. We set
the maximum density threshold to be 100 visits per cell to reduce the dominance of high-density areas
such as the agent’s start location, which may otherwise interfere with measuring the true trajectory
densities. In Figure 7 and Figure 9, we see that LSAC is capable of discovering multiple paths leading
to both goals while all other baselines, except for DIPO (Yang et al., 2023), either fail to solve the task
or only manage to discover a single path. While DIPO also manages to find multiple paths toward
the goal, LSAC offers state coverage that is comparable to or greater than that of DIPO, as shown in
Figure 10.

(a) LSAC (ours) (b) DSAC-T (c) DIPO (d) SAC

(e) TD3 (f) PPO (g) TRPO

0 50

0

50

0 50

0

50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Exploration density maps of LSAC and baseline algorithms tested on the customized
PointMaze Medium-v3 environment. The two goals are located in the upper-right and lower-left
corners, as shown by the triangle markers. The starting position is at the center of the maze map.

5 CONCLUSION

In this paper, we introduced LSAC, an off-policy algorithm that leverages LMC based approximate
Thompson sampling to learn distributional critic. We observe that distributional critic learning coupled
with LMC based exploration can boost performance while mitigating overestimation issue commonly
seen in other model-free methods. Future work includes trying more advanced approximate samplers
such as underdamped Langevin Monte Carlo (Ishfaq et al., 2024b).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.
(p. 22.)

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. (pp. 1, 6, 19, and 20.)

Rohitash Chandra, Konark Jain, Ratneel V Deo, and Sally Cripps. Langevin-gradient parallel
tempering for bayesian neural learning. Neurocomputing, 359:315–326, 2019. (pp. 2, 4, and 6.)

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=xCRr9DrolJ. (p. 2.)

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double Q-learning:
Learning fast without a model. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=AY8zfZm0tDd. (pp. 1, 2, 7, 8, 20, and 24.)

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic
actor critic. Advances in Neural Information Processing Systems, 32, 2019. (p. 15.)

Djork-Arné Clevert. Fast and accurate deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015. (p. 21.)

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. Advances in neural information processing systems, 27, 2014. (pp. 1 and 5.)

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan Terry. Gymna-
sium robotics, 2024. URL http://github.com/Farama-Foundation/Gymnasium-Robotics.
(p. 9.)

Nicolai Dorka, Tim Welschehold, and Wolfram Burgard. Dynamic update-to-data ratio: Minimizing
world model overfitting. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=ZIkHSXzd9O7. (p. 1.)

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE
transactions on neural networks and learning systems, 33(11):6584–6598, 2021. (p. 20.)

Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, and Shengbo Eben Li. DSAC-T:
Distributional soft actor-critic with three refinements. arXiv preprint arXiv:2310.05858, 2023. (pp.
2, 4, 5, 7, 17, 20, and 24.)

Vikranth Dwaracherla and Benjamin Van Roy. Langevin DQN. arXiv preprint arXiv:2002.07282,
2020. (pp. 2 and 15.)

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust RL
problems. In International Conference on Learning Representations, 2022. (pp. 2 and 6.)

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,
Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration. In International Conference on Learning
Representations, 2018. (p. 15.)

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020. (p. 9.)

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.
(pp. 2, 7, 17, and 20.)

11

https://openreview.net/forum?id=xCRr9DrolJ
https://openreview.net/forum?id=AY8zfZm0tDd
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://openreview.net/forum?id=ZIkHSXzd9O7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Charles J Geyer and Elizabeth A Thompson. Annealing markov chain monte carlo with applications
to ancestral inference. Journal of the American Statistical Association, 90(431):909–920, 1995.
(pp. 2 and 6.)

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017. (p. 3.)

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018a. (pp. 2, 6, 7, 8, 17, 20, and 24.)

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b. (p. 6.)

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS. (pp. 17, 20, and 21.)

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
IDQL: Implicit Q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023. (p. 3.)

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. (p. 3.)

Lars Holden. Mixing of MCMC algorithms. Journal of Statistical Computation and Simulation, 89:
1–19, 05 2019. doi: 10.1080/00949655.2019.1615064. (p. 1.)

Vincent Huang, Tobias Ley, Martha Vlachou-Konchylaki, and Wenfeng Hu. Enhanced experience
replay generation for efficient reinforcement learning. arXiv preprint arXiv:1705.08245, 2017. (p.
15.)

Koji Hukushima and Koji Nemoto. Exchange monte carlo method and application to spin glass
simulations. Journal of the Physical Society of Japan, 65(6):1604–1608, 1996. (p. 6.)

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, pp. 4607–4616. PMLR, 2021.
(p. 15.)

Haque Ishfaq, Qingfeng Lan, Pan Xu, A Rupam Mahmood, Doina Precup, Anima Anandkumar, and
Kamyar Azizzadenesheli. Provable and practical: Efficient exploration in reinforcement learning
via Langevin Monte Carlo. In The Twelfth International Conference on Learning Representations,
2024a. (pp. 1, 2, 5, and 15.)

Haque Ishfaq, Yixin Tan, Yu Yang, Qingfeng Lan, Jianfeng Lu, A. Rupam Mahmood, Doina Precup,
and Pan Xu. More efficient randomized exploration for reinforcement learning via approximate
sampling. In Reinforcement Learning Conference, 2024b. (pp. 1, 2, 10, and 15.)

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022. (p. 3.)

Sehwan Kim, Qifan Song, and Faming Liang. Stochastic gradient Langevin dynamics with adaptive
drifts. Journal of statistical computation and simulation, 92(2):318–336, 2022. (p. 5.)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. (pp. 5, 9, 21, and 22.)

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. Advances in Neural Information
Processing Systems, 33:741–752, 2020. (p. 15.)

12

https://openreview.net/forum?id=S1lOTC4tDS

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018. (p. 5.)

Zechu Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
Learning multimodal behaviors from scratch with diffusion policy gradient. arXiv preprint
arXiv:2406.00681, 2024. (p. 15.)

Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. Hyperdqn: A randomized
exploration method for deep reinforcement learning. In International Conference on Learning
Representations, 2021. (p. 15.)

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015. (p. 21.)

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022. (p. 3.)

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. Advances
in Neural Information Processing Systems, 36, 2024. (pp. 2, 6, 7, 15, and 22.)

Xiaoteng Ma, Li Xia, Zhengyuan Zhou, Jun Yang, and Qianchuan Zhao. Dsac: Distributional soft
actor critic for risk-sensitive reinforcement learning. arXiv preprint arXiv:2004.14547, 2020. (pp.
4 and 17.)

Enzo Marinari and Giorgio Parisi. Simulated tempering: a new monte carlo scheme. Europhysics
letters, 19(6):451, 1992. (p. 6.)

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. Advances in neural information processing systems, 29, 2016a. (pp. 9 and 15.)

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pp. 2377–2386. PMLR, 2016b.
(p. 15.)

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018. (p. 15.)

Alexandra Patriksson and David van der Spoel. A temperature predictor for parallel tempering
simulations. Physical Chemistry Chemical Physics, 10(15):2073–2077, 2008. (p. 6.)

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018. (p. 15.)

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via Q-score matching. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=35ahHydjXo. (pp. 7, 15, and 24.)

Gareth O Roberts and Osnat Stramer. Langevin diffusions and metropolis-hastings algorithms.
Methodology and computing in applied probability, 4(4):337–357, 2002. (p. 3.)

Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions and
their discrete approximations. Bernoulli, pp. 341–363, 1996. (p. 3.)

Peter J Rossky, Jimmie D Doll, and Harold L Friedman. Brownian dynamics as smart Monte Carlo
simulation. The Journal of Chemical Physics, 69(10):4628–4633, 1978. (p. 3.)

Vivekananda Roy. Convergence diagnostics for Markov Chain Monte Carlo. Annu. Rev. Stat. Appl, 7:
387–412, 2020. (p. 2.)

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In Advances
in Neural Information Processing Systems, pp. 14410–14420, 2019. (p. 15.)

13

https://openreview.net/forum?id=35ahHydjXo

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015. (pp.
7, 17, and 20.)

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. (pp. 7, 17, and 20.)

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015. (p. 3.)

Malcolm Strens. A Bayesian framework for reinforcement learning. In ICML, volume 2000, pp.
943–950, 2000. (p. 15.)

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018. (pp. 1, 6, 17, 19, and 20.)

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000. (p. 21.)

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012. (p. 6.)

Nisheeth K Vishnoi. An introduction to Hamiltonian Monte Carlo method for sampling. arXiv
preprint arXiv:2108.12107, 2021. (p. 1.)

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator. arXiv
preprint arXiv:2405.15177, 2024. (p. 15.)

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. (pp. 3 and 6.)

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 681–688.
Citeseer, 2011. (p. 3.)

Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon Shaolei Du. Near-optimal
randomized exploration for tabular Markov decision processes. In Advances in Neural Information
Processing Systems, 2022. (p. 15.)

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023. (pp. 2, 6, 7, 10, 15, 17, 20,
and 24.)

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving
sample efficiency in model-free reinforcement learning from images, 2020. URL https://open
review.net/forum?id=HklE01BYDB. (p. 20.)

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id= SJ- yyes8. (pp. 17, 20,
and 21.)

Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
Frequentist regret bounds for randomized least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pp. 1954–1964. PMLR, 2020. (p. 15.)

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010. (p. 3.)

14

https://openreview.net/forum?id=HklE01BYDB
https://openreview.net/forum?id=HklE01BYDB
https://openreview.net/forum?id=_SJ-_yyes8

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

Posterior sampling. Our research is closely aligned with approaches that utilize posterior sampling,
specifically Thompson sampling, within the reinforcement learning (RL) framework (Strens, 2000).
Notably, Osband et al. (2016b), Russo (2019), and Xiong et al. (2022) introduced randomized least-
squares value iteration (RLSVI), which incorporates frequentist regret analysis in the context of
tabular Markov Decision Processes (MDPs). RLSVI strategically adds carefully calibrated random
noise to the value function to promote exploration. Building on this, Zanette et al. (2020) and Ishfaq
et al. (2021) extended RLSVI to linear MDP settings. Although RLSVI achieves favorable regret
bounds in both tabular and linear scenarios, its reliance on predefined and fixed features during
training limits its applicability to deep RL environments (Li et al., 2021).

To address this limitation, Osband et al. (2016a; 2018) proposed training an ensemble of randomly
initialized neural networks, treating them as approximate posterior samples of Q functions. However,
this ensemble approach incurs significant computational overhead. Alternatively, some studies have
explored directly injecting noise into network parameters (Fortunato et al., 2018; Plappert et al.,
2018). For instance, Noisy-Net (Fortunato et al., 2018) learns noisy parameters through gradient
descent, while Plappert et al. (2018) introduced constant Gaussian noise to the network parameters.
Nonetheless, Noisy-Net does not guarantee an accurate approximation of the posterior distribution
(Fortunato et al., 2018).

Dwaracherla & Van Roy (2020); Ishfaq et al. (2024a;b) propose using Langevin Monte Carlo for
approximate Thompson sampling which is the most related work to ours. Furthermore, Ciosek
et al. (2019) explored bootstrapped DQN-inspired actor-critic algorithms but were unable to manage
scenarios involving multimodal Q posterior distributions.

Upsampling in RL training. Prior RL studies that augment existing datasets typically employ
Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs). For example,
Huang et al. (2017) utilized GANs to generate synthetic data for pre-training RL agents, thereby
accelerating training in production environments. Similarly, Lee et al. (2020) applied sequential latent
variable models like VAEs to perform amortized variational inference in Partially Observable Markov
Decision Processes (POMDPs). However, as highlighted by Lu et al. (2024), these methods often
face limitations in achieving rapid training in online proprioceptive settings and scalability in data
synthesis.

Online reinforcement learning with diffusion. Recently, there has been growing interest in using
diffusion model to represent policies in online reinforcement learning due to its inherent ability in
learning complex and multimodal distributions. One of the earliest works, that employ diffusion
policies for online RL is DIPO (Yang et al., 2023). DIPO uses the critic to update the sampled action
from the replay buffer using action gradient before fitting the actor using the updated actions from
the replay buffer. Psenka et al. (2024) argues that optimizing the likelihood of the entire chain of
denoised actions can be computationally inefficient and instead proposes Q-Score Matching (QSM)
that iteratively aligns the gradient of the diffusion actor (i.e. score) with the action gradient of the
critic. Li et al. (2024) proposes DDiffPG - an actor-critic algorithm that learns multimodal policies
parameterized as diffusion models from scratch. To discover different modes in the policy, DDiffPG
uses novelty-based intrinsic motivation along with off-the-shelf unsupervised hierarchical clustering
methods. More recently, Wang et al. (2024) proposes DACER that uses the reverse process of the
diffusion model as a policy function. To perform adaptive adjustment of the exploration level of
the diffusion policy, DACER estimates the entropy of the diffusion policy using Gaussian mixture
model. We emphasize that while these works utilize diffusion models to parameterize policies, we
use diffusion model to create synthetic data to enhance critic learning.

B THEORETICAL INSIGHTS

Without considering the gradient scalar ω, the objective function of critic update from Equation 6 can
be written as

LZ(ψ) = E(s,a)∼BDKL(T πϕ̄Zψ̄(s, a)∥Zψ(s, a)). (13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Using Proposition B.1, it can be further shown that the objective function in Equation 13 is equivalent
to the following:

LZ(ψ) = −E (s,a,r,s′)∼B,a′∼π
ϕ̄
,

Z(s′,a′)∼Zψ̄(· | s′,a′)

[
logP(T πϕ̄Z(s, a) | Zψ(· | s, a))

]
+ c, (14)

where c is a term independent of ψ.

Since Zψ is assumed to be a Gaussian model, it can be expressed as Zψ(· | s, a) =
N (Qψ(s, a), σψ(s, a)

2), where Qψ(s, a) and σψ(s, a) are the outputs of the value network. Then
ignoring the ψ independent term c, Equation 14 can be written as

LZ(ψ) = −E (s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Z
ψ̄

(· | s′,a′)

log

(
exp(− (T πϕ̄Z(s,a)−Qψ(s,a))2

2σψ(s,a)2
)

√
2πσψ(s, a)

)

= E (s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Z
ψ̄

(· | s′,a′)

[
(T πϕ̄Z(s, a)−Qψ(s, a))2

2σψ(s, a)2
+ log(

√
2πσψ(s, a))

]

= E (s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Z
ψ̄

(· | s′,a′)

[
(yZ −Qψ(s, a))2

2σψ(s, a)2
+ log(

√
2πσψ(s, a))

]
(15)

where we used the definition yZ = r + γ(Zψ̄(s
′, a′)− α log πϕ̄(a

′|s′)).
Now, let’s assume the prior for parameters ψ is a Gaussian distribution with mean zero and variance
σ2.Then by Bayes rule, we have

− log p(ψ |B) = − log p(B |ψ)− log p(ψ) + log p(B)

=
1

2
E(s,a,r,s′)∼B

[
(yZ −Qψ(s, a))2

]
+
λ

2
∥ψ∥2 + C,

(16)

where C is constant and λ = 1/σ2. For simplicity of the analysis, let us assume that the variance σ2
ψ

is a constant. Then, Equation 15 can be written as

LZ(ψ) = E (s,a,r,s′)∼B,a′∼π
ϕ̄
,

Z(s′,a′)∼Zψ̄(· | s′,a′)

[
(yZ −Qψ(s, a))2

C1
+ C2

]
, (17)

where C1 and C2 are constants.

Combining Equation 16 and Equation 17, we have that LZ(ψ) ∝ − log p(ψ |B) and thus conse-
quently we have:

p(ψ |B) =
1

Z
exp(−LZ(ψ)), (18)

where Z is the normalizing constant.

Proposition B.1. The objective function in Equation 13 for learning distributional critic is equivalent
to the following:

LZ(ψ) = −E (s,a,r,s′)∼B,a′∼π
ϕ̄
,

Z(s′,a′)∼Zψ̄(· | s′,a′)

[
logP(T πϕ̄Z(s, a) | Zψ(· | s, a))

]
16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. The proof is adapted from Ma et al. (2020). From Equation 13, the loss function for distribu-
tional critic update is given by:

LZ(ψ) = E(s,a)∼BDKL(T πϕ̄Zψ̄(s, a)∥Zψ(s, a))

= E(s,a)∼B

[∑
T πϕ̄Z(s,a)

P(T πϕ̄Z(s, a) | T πϕ̄Zψ̄(· | s, a)) log
P(T πϕ̄Z(s, a) | T πϕ̄Zψ̄(· | s, a))
P(T πϕ̄Z(s, a) | Zψ(· | s, a))

]

= −E(s,a)∼B
[∑
T πϕ̄Z(s,a)

P(T πϕ̄Z(s, a) | T πϕ̄Zψ̄(· | s, a)) logP(T πϕ̄Z(s, a) | Zψ(· | s, a))
]
+ c

= −E(s,a)∼B
[
ETπϕ̄Z(s,a)∼T πϕ̄Zψ̄(· | s,a) logP(T

πϕ̄Z(s, a) | Zψ(· | s, a))
]
+ c

= −E(s,a)∼B
[
E (r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Z
ψ̄

(· | s′,a′)

logP(T πϕ̄Z(s, a) | Zψ(· | s, a))
]
+ c

= −E (s,a,r,s′)∼B,a′∼π
ϕ̄
,

Z(s′,a′)∼Zψ̄(· | s′,a′)

[
logP(T πϕ̄Z(s, a) | Zψ(· | s, a))

]
+ c

where c is a term independent of ψ. This completes the proof.

C DMC EXPERIMENT RESULTS

For DMC, we consider 12 hard exploration tasks with both dense and sparse rewards. We refer the
readers to Table 3 for the list of these 12 tasks and their corresponding properties. From Table 2 and
Figure 8, we see that LSAC outperforms both model-free (DSAC-T (Duan et al., 2023), DIPO (Yang
et al., 2023), TD3 (Fujimoto et al., 2018), PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018a),
TRPO (Schulman et al., 2015), DrQ-v2 (Yarats et al., 2022)) and model-based (Dreamer (Hafner
et al., 2020)) in 9 out of 12 tasks.

Environments\Methods LSAC (ours) DSAC-T DIPO SAC TD3 PPO TRPO Dreamer DrQ-v2

Cheetah Run 967 ± 98 540 ± 173 521 ± 112 693 ± 191 549 ± 138 492 ± 76 603 ± 48 792± 168 747 ± 172
Cartpole Bal. Sp. 1000 ± 11 1000 ± 24 1000 ± 37 100 ± 8 991 ± 12 997 ± 6 996 ± 9 1000 ± 5 1000 ± 11
Cartpole Swi. Sp. 610 ± 41 573 ± 102 112 ± 24 78 ± 23 65 ± 32 164 ± 18 42 ± 15 751 ± 142 783 ± 52

Reacher Easy 941 ± 23 928 ± 46 931 ± 39 912 ± 41 905 ± 20 249 ± 11 331 ± 30 481 ± 42 938 ± 34
Reacher Hard 981 ± 142 11 ± 4 501 ± 182 243 ± 91 38 ± 14 9 ± 3 8 ± 1 852 ± 152 861 ± 109

Fish Swim 892 ± 122 716 ± 59 816 ± 65 531 ± 92 748 ± 101 117 ± 12 283 ± 44 509 ± 38 870 ± 74
Hopper Hop 557 ± 71 344 ± 89 27 ± 2 10 ± 4 13 ± 8 7 ± 3 10 ± 2 407 ± 31 392 ± 113

Finger Turn Easy 978 ± 64 751 ± 139 548 ± 107 388 ± 41 525 ± 73 373 ± 62 379 ± 28 965 ± 83 972 ± 79
Finger Turn Hard 949 ± 34 743 ± 42 271 ± 161 251 ± 27 252 ± 21 250 ± 11 253 ± 34 790 ± 21 832 ± 79

Walker Walk 964 ± 20 913 ± 28 929 ± 37 968 ± 47 917 ± 12 532 ± 9 261 ± 187 752 ± 41 965 ± 34
Walker Run 869 ± 67 731 ± 93 391 ± 227 465 ± 71 388 ± 86 89 ± 21 221 ± 33 726 ± 85 717 ± 39

Quadruped Run 473 ± 41 16 ± 3 157 ± 94 72 ± 25 21 ± 19 113 ± 27 11 ± 5 788 ± 139 753 ± 58

Table 2: Maximum Average Return of LSAC and baselines across ten seeds over 3e6 training steps on
selected DMC (Tassa et al., 2018) tasks, which consist of complex control tasks that feature complex
dynamics, sparse rewards, and hard explorations. Maximum value and corresponding single standard
deviation for each task is bolded.

D GOAL-REACHING MAZE EXPERIMENTS

In this section, we describe the PointMaze Medium-v3 and the AntMaze-v4 environments in detail.

PointMaze Medium-v3 Environment. In PointMaze Medium-v3, the agent is tasked with manipu-
lating a ball to reach some unknown goal position in the maze, with each observation as a dictionary,
consisting of an array of the ball’s kinetic information, an achieved goal key representing the
current state of the green ball, and a desired goal key representing the final goal to be achieved.
The action is a force vector applied to the ball. The initial state of the ball is at the center of the maze,
and we define the goal positions to be at the upper-right and lower-left corners. The reward function
is defined to be the negative Euclidean distance between the desired goal and the visited state.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(a) Cheetah Run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(b) Finger Turn Easy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(c) Finger Turn Hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(d) Reacher Hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(e) Reacher Easy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(f) Walker Walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

(g) Walker Run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(h) Fish Swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(i) Cartpole Balance Sparse

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(j) Cartpole Swingup Sparse

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

200

400

600

Av
er

ag
e

R
et

ur
n

(k) Hopper Hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0

250

500

750

1000

Av
er

ag
e

R
et

ur
n

(l) Quadruped Run

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC DSAC-T DIPO TD3 PPO SAC TRPO Dreamer DrQ-v2

Figure 8: Training curves for 12 DMC continuous control tasks. Results are gathered throughout
3e6 steps of online interaction with the environments, averaged over a window size of 20 and across
10 seeds. Solid lines represent the median performance, and the shaded regions correspond to 90%
confidence interval.

AntMaze-v4 Environment. Similar to PointMaze Medium-v3, AntMaze-v4 is also a navigation
task, in which the agent is tasked with controlling a complex 8 degree-of-freedom (DOF) quadruped
robot. The objective is to reach one of the two goal positions where the red balls are located. Each
goal can be accessed through two routes. The agent can bypass the obstacle on the right by either
going up or down, and similarly for the two obstacles on the left. The episode length is set to 700. A
sparse 0-1 reward is applied upon reaching the goal.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) LSAC (ours) (b) DSAC-T (c) DIPO (d) SAC

(e) TD3 (f) PPO (g) TRPO

0 50

0

50

0 50

0

50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Exploration density maps of LSAC and baseline algorithms tested on the AntMaze-v4
environment. The two goals are depicted by the triangle markers which are located on the left side of
the maze. The starting position is at the center of the right side of the maze.

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC (ours) DSAC-T DIPO TD3 SAC PPO TRPO
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) AntMaze-v4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0.00

0.25

0.50

0.75

1.00

St
at

e
C

ov
er

ag
e

(b) PointMaze-v3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (million)

0.00

0.25

0.50

0.75

1.00

St
at

e
C

ov
er

ag
e

D.2 BASELINE METHODS

For the evaluation of baseline algorithms on MuJoCo, we consider DSAC-T (Duan et al., 2023),
DIPO (Yang et al., 2023), SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018), PPO (Schulman
et al., 2017), and TRPO (Schulman et al., 2015). Additionally, for the DMC benchmark we add
two additional strong continuous control baselines for visual learning, DrQ-v2 (Yarats et al., 2022)
and Dreamer (Hafner et al., 2020). In particular, Dreamer is a leading model-based algorithm
for visual continuous control, which tends to achieve better sample complexity in expense of a
greater computational burden from learning a separate state dynamics model. The highest reported
performnce on the continuous tasks is achieved by DSAC-T (Duan et al., 2023), an improved version
of DSAC and TD4 (Duan et al., 2021) that uses expected value substituting, twin value distribution
learning, and variance-based critic gradient adjusting. Note that since vanilla SAC is a rather weak
baseline, we consider augmenting it with the convolutional encoder from SAC-AE (Yarats et al.,
2020), similar to what has been done in (Yarats et al., 2022).

We also provide links to the public codebases used for reproducing the baseline results1.

The shared hyperparameters for all methods on MuJoCo tasks can be found in Table 2. We used the
best hyperparameters reported by the authors, since all methods use MuJoCo for continuous control
evaluation and their authors performed extensive hyperparamter sweeping. We keep these major
hyperparameters fixed when testing on the DMC benchmark for implementation simplicity.

D.3 MORE ON DIFFUSION Q ACTION GRADIENT

The diffusion generatorM in Algorithm 1 plays a crucial role in synthesizing a batch BMi
of full

environment transitions for each critic Qψi . These synthetic transitions consist of concatenated states
sM , actions aM , episodic rewards rM , next observations s′M , and binary terminal masks dM . We
set the mixing ratio of BDi ∪BMi

to be 0.5 following the design choice of Ball et al. (2023), where
|BDi | = |BMi | = 128 so the overall batch size stays the same as baseline methods at |B| = 256. We
trainM on normalized transition tuples from the collected online trajectories within the replay buffer
D, ensuring that each entry has a mean of zero and a standard deviation of one, except for the done
signals which remain unnormalized and are thresholded to either 0 or 1 based on a cutoff of 0.5.

1DSAC-T: https://github.com/Jingliang-Duan/DSAC-v2; DIPO: https://github.com/BellmanTi
meHut/DIPO; SAC: https://github.com/haarnoja/sac; TD3: https://github.com/sfujim/TD3; PPO:
https://github.com/nikhilbarhate99/PPO-PyTorch; TRPO: https://github.com/ikostrikov/pyto
rch-trpo; Dreamer: https://github.com/danijar/dreamer; DrQ-V2: https://github.com/facebookr
esearch/drqv2.

19

Figure 10: State coverage of LSAC and baselines in the maze environments. For state coverage, we
measure the binary coverage of each cell. The y-axis indicates the percentage of cells that have been
visited.

E IMPLEMENTATION DETAILS FOR THE EXPERIMENTS

In this section, we provide further details on the environments and the algorithm implementation.

E.1 ENVIRONMENTS

MuJoCo and DMC. Our experimental evaluations are mainly based on the MuJoCo environments
(Brockman et al., 2016) and the DeepMind Control Suite (DMC) (Tassa et al., 2018). For MuJoCo,
we pick the six most challenging vector-input-based control tasks (HalfCheetah, Ant, Humanoid,
Walker2d, Hopper, and Swimmer). On the other hand, DMC offers environments of various difficulty
levels, including complex multi-joint bodies and high degree of freedom settings. Hence, we select in
particular sparse and hard environments to test the exploration ability of LSAC and baselines. No
modifications were made to the state, action, or reward spaces. The action spaceA in both continuous
control benchmarks is by default the box [−al, ah]d, where d := dimA is the dimension of the action
space, and al, ah are the low and high action limit, respectively. DMC environment observations,
different from MuJoCo’s vectorized states input, are stacks of three consecutive RGB images, each
of size 84× 84, stacked along the channel dimension to enable inference of dynamic information
like velocity and acceleration. Thus, DMC places more emphasis than MuJoCo on pixel-based
proprioceptive tasks, which better tests an agent’s learning in visual continuous control together with
more challenging exploration tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025
6

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 1. Benchmarks. (a) Humanoid-v3: (s × a) ∈ R376 × R17. (b) Ant-
v3: (s × a) ∈ R111 × R8. (c) HalfCheetah-v3: (s × a) ∈ R17 × R6.
(d) Walker2d-v3: (s × a) ∈ R17 × R6. (e) InvertedDoublePendulum-v3:
(s × a) ∈ R6 × R1. (f) Hopper-v3: (s × a) ∈ R11 × R3. (g) Pusher-v2:
(s × a) ∈ R23 × R7. (h) Reacher-v2: (s × a) ∈ R11 × R2. (i) Swimmer-
v3: (s × a) ∈ R8 × R2. (j) BipedalWalker-v3: (s × a) ∈ R24 × R4. (k)
CarRacing-v1: (s× a) ∈ R96×96×3 × R2 (image-input)

Bipedalwalker) and one image-input-based control task (Car-
Racing). All baseline algorithms used are accessible in GOPS
[13], an open-source RL solver developed with PyTorch.

A. Baselines

Our algorithm is evaluated against well-known model-free
algorithms. These include deep deterministic policy gradient
(DDPG) [5], trust region policy optimization (TRPO) [16],
proximal policy optimization (PPO) [17], twin delayed deep
deterministic policy gradient (TD3) [8], and soft actor-critic
(SAC) [10]. These baselines have been widely tested and
employed across a range of demanding domains. By com-
paring with these algorithms, we aim to provide an objective
evaluation of DSAC-T. We also draw comparisons between
DSAC-T and DSAC-v1, where DSAC-T employs an adaptive
clipping boundary with ξ = 3 and DSAC-v1 utilizes a fixed
value of b = 20.

To maintain fairness in comparison, our DSAC-T algorithm
is also implemented in GOPS, ensuring an identical modular
architecture. For the value distribution and stochastic policy,
we employ a diagonal Gaussian distribution. Specifically, each
neural network projects the input states to the mean and stan-
dard deviation. The Adam optimization method is employed
for all parameter updates. All algorithms, including baselines
and DSAC-T, follow a similar network architecture and use
equivalent hyperparameters. Specifically, for tasks with vector
inputs, we implement a multi-layer perceptron architecture for
both the actor and critic networks. Each of these networks

256
olving image
This network
observations

six sequential
These

of sizes
detailed hy-

perparameters are provided in Table I.

TABLE I
DETAILED HYPERPARAMETERS.

Hyperparameters Value
Shared

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Actor learning rate 1e−4
Critic learning rate 1e−4
Discount factor (γ) 0.99
Policy update interval 2
Target smoothing coefficient (τ) 0.005
Reward scale 1

Maximum-entropy framework
Learning rate of α 3e−4
Expected entropy (H) H = −dim(A)

Deterministic policy
Exploration noise ϵ ∼ N (0, 0.12)

Off-policy
Replay buffer size 1× 106

Sample batch size 20
On-policy

Sample batch size 2000
Replay batch size 2000

B. Results

We conducted five separate tests for each algorithm, using
distinct but consistent random seeds across all algorithms.
Learning curves and policy performance are presented in Fig.
2 and Table II, respectively. Our results reveal that DSAC-T
surpasses (at least matches) the performance of all baseline
algorithms across all benchmark tasks. Taking Humanoid-v3
as an example, compared with SAC, TD3, PPO, DDPG, and
TRPO, our algorithm shows relative improvements of 16.0%,
92.3%, 57.7%, 104.7%, and 1022.2%, respectively. These
results suggest that DSAC-T sets a new standard of perfor-
mance for model-free RL algorithms. Moreover, compared to
its predecessor (DSAC-v1), this new version (DSAC-T) has
achieved substantial enhancements in both learning stability
and final outcomes.

Table III showcases the relative estimation bias for each
algorithm. While both DSAC-v1 and DDPG utilize a single
critic (excluding the target critic) in an off-policy manner,
DSAC-v1 exhibits lower overestimation bias overall. This
suggests that value distribution learning can partly counteract
overestimation issues. By incorporating the twin value dis-
tribution learning technique, DSAC-T further reduces overes-
timation bias, leading to a minor underestimation in certain
benchmarks. As a result, DSAC-T achieves enhanced learning
stability compared to DSAC-v1. Guided by the principle
that underestimation is preferred over overestimation when
biases are of similar magnitude, the estimation accuracy of

Figure 11: OpenAI MuJoCo (Brockman et al., 2016) benchmarks. From left to right: Humanoid,
Ant, HalfCheetah, Walker2d, Hopper, and Swimmer.

Figure 12: DeepMind Control Suite (Tassa et al., 2018) domains. From left to right: Finger, Fish,
Cheetah, Reacher, Cartpole, and Walker.

For DMC, we consider 12 hard exploration tasks with both dense and sparse rewards, in which many
other off-policy model-free RL algorithms often struggle. We refer the reader to Table 3 for detailed
description of the DMC environments we use in our experiments. Figure 12 shows some examples of
the DMC environments.

Task Traits dim(S) dim(A)

Cheetah Run run, dense 18 6
Finger Turn Easy turn, sparse 6 2
Finger Turn Hard turn, sparse 6 2
Reacher Hard reach, dense 4 2
Reacher Easy reach, dense 4 2
Walker Walk walk, dense 18 6
Walker Run run, dense 18 6
Fish Swim swim, dense 26 5
Cartpole Balance Sparse balance, sparse 4 1
Cartpole Swingup Sparse swing, sparse 4 1
Hopper Hop move, dense 14 4
Quadruped Run run, dense 56 12

Table 3: A detailed description of each task used in the DeepMind Control Suite (DMC) (Tassa et al.,
2018) experiment.

E.2 BASELINE METHODS

For the evaluation of the baseline algorithms on MuJoCo, we consider DSAC-T (Duan et al., 2023),
DIPO (Yang et al., 2023), SAC (Haarnoja et al., 2018a), TD3 (Fujimoto et al., 2018), PPO (Schulman
et al., 2017), TRPO (Schulman et al., 2015) and REDQ (Chen et al., 2021). Additionally, for the DMC
benchmark we add two additional strong baselines for visual learning, DrQ-v2 (Yarats et al., 2022)
and Dreamer (Hafner et al., 2020). In particular, Dreamer is a leading model-based algorithm for
visual continuous control setting, which tends to achieve better sample complexity in the expense of
a greater computational burden from learning a separate state dynamics model. The highest reported
performance on the continuous tasks is achieved by DSAC-T (Duan et al., 2023), an improved version
of DSAC (Duan et al., 2021) that uses expected value substituting, twin value distribution learning,
and variance-based critic gradient adjusting. Note that since vanilla SAC is a rather weak baseline,
we consider augmenting it with the convolutional encoder from SAC-AE (Yarats et al., 2020), similar

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

to what has been done in (Yarats et al., 2022). We use publicly available codebases for reproducing
the baseline results.1

The hyperparameters shared across all methods for the MuJoCo tasks are listed in Table 4. We
adopted the best hyperparameters reported by the authors of the respective baseline methods, as all
of them utilize MuJoCo for continuous control evaluation and conducted extensive hyperparameter
sweeps. For implementation simplicity, we maintain these key hyperparameters fixed when testing
on the DMC benchmark.

Hyperparameter LSAC (ours) DSAC-T DIPO SAC TD3 PPO

Num. hidden layers 3 3 3 3 3 3
Num. hidden nodes 256 256 256 256 256 256
Activation GeLU GeLU Mish ReLU ReLU Tanh
Batch size |B| 256 256 256 256 256 256
Replay buffer size |D| 1e6 1e6 1e6 1e6 1e6 1e6
Diffusion buffer size |D′| 1e6 N/A 1e6 N/A N/A N/A
Discount for reward γ 0.99 0.99 0.99 0.99 0.99 0.99
Target smoothing factor τ 0.005 0.005 0.005 0.005 0.005 0.005
Optimizer aSGLD Adam Adam Adam Adam Adam
Adaptive bias (α1, α2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Inverse temperature βQ 1e-8 N/A N/A N/A N/A N/A
Actor learning rate βπ 3e-4 3e-4 3e-4 3e-4 3e-4 7e-4
Num. pair of critics n 10 1 1 1 1 N/A
Critic learning rate ηQ 1e-3→ 1e-4 3e-4 3e-4 3e-4 3e-4 7e-4
Actor Critic grad norm 0.7 N/A 2 N/A N/A 0.5
Replay memory size 1e6 1e6 1e6 1e6 1e6 1e6
Entropy coefficient α 0.2 0.2 N/A 0.2 N/A 0.01
Expected entropy H − dimA − dimA N/A N/A N/A N/A
Diffusion training frequency 1e4 N/A 1 N/A N/A N/A

Table 4: Common hyperparameters used across all 6 MuJoCo and 12 DMC tasks for each off-policy
algorithm or baseline.

E.2.1 ADDITIONAL BASELINES FOR THE DMC EXPERIMENT

The two additional baselines we use for the DMC experiments are Dreamer (Hafner et al., 2020) and
DrQ-v2 (Yarats et al., 2022). They use a few different network configurations and additional model
components. Dreamer (Hafner et al., 2020) uses a pair of convolutional encoder and decoder networks,
with remaining functions implemented as three dense layers of size 300 with ELU activations (Clevert,
2015). Action outputs are passed through a tanh mean layer, scaled by a factor of 5 and applied
with softplus transformation. The world model, value model, and action models are all trained
on batches of 50 sequences of length 50, using the Adam (Kingma & Ba, 2014) optimizer with
learning rates 6e-4, 8e-5, and 8e-5, respectively. Gradient norms over 100 are scaled down. We
note that Dreamer uses an imagination horizon of H = 15, which is exclusive to itself, while the
value targets Vλ are updated with discount factor γ = 0.99 and λ = 0.95. The first five episodes
are used as warm-up period, where the random actions are sampled with N (0, 0.3) exploration
noise. The latent dynamics model is trained on an information bottleneck objective (Tishby et al.,
2000): max I(s1:T ; (o1:T , r1:T) | a1:T)− βI(s1:T , i1:T | a1:T), where β is a scalar temperature and
it are dataset indices such that p(ot | it) = δ(ot − ōt). On the other hand, DrQ-v2 (Yarats et al.,
2022) uses DDPG (Lillicrap et al., 2015) as a backbone and augment it with n-step returns for
estimating the TD error. Image encoders fξ are used to embed augmented image observations into
a low-dimensional latent vector by a CNN. Exploration noise is scheduled according to σ(t) =
σinit + (1−min(t/T, 1))(σfinal − σinit) at different states of training. A bigger batch size of 512

1DSAC-T: https://github.com/Jingliang-Duan/DSAC-v2; DIPO: https://github.com/Bellman
TimeHut/DIPO; SAC: https://github.com/haarnoja/sac; TD3: https://github.com/sfujim/TD3;
PPO: https://github.com/nikhilbarhate99/PPO-PyTorch; TRPO: https://github.com/ikost
rikov/pytorch-trpo; REDQ: https://github.com/thu-ml/tianshou; QSM: https://github.c
om/Alescontrela/score matching rl; Dreamer: https://github.com/danijar/dreamer; DrQ-V2:
https://github.com/facebookresearch/drqv2.

21

https://github.com/Jingliang-Duan/DSAC-v2
https://github.com/BellmanTimeHut/DIPO
https://github.com/BellmanTimeHut/DIPO
https://github.com/haarnoja/sac
https://github.com/sfujim/TD3
https://github.com/nikhilbarhate99/PPO-PyTorch
https://github.com/ikostrikov/pytorch-trpo
https://github.com/ikostrikov/pytorch-trpo
https://github.com/thu-ml/tianshou
https://github.com/Alescontrela/score_matching_rl
https://github.com/Alescontrela/score_matching_rl
https://github.com/danijar/dreamer
https://github.com/facebookresearch/drqv2

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

and a smaller learning rate of 1e-4 is used. Evaluation frequency is set to be once every 10 episodes,
same for each method.

E.3 MORE ON DIFFUSION Q ACTION GRADIENT

The diffusion generatorM in Algorithm 1 plays a crucial role in synthesizing a batch BMi
of full

environment transitions for each critic Qψi . These synthetic transitions consist of concatenated states
sM , actions aM , episodic rewards rM , next observations s′M , and binary terminal masks dM . We
set the mixing ratio of BDi ∪BMi to be 0.5 following the design choice of Ball et al. (2023), where
|BDi | = |BMi | = 128. Thus, the overall batch size stays the same as baseline methods at |B| = 256.
We trainM on normalized transition tuples from the collected online trajectories within the replay
buffer D, ensuring that each entry has a mean of zero and a standard deviation of one, except for the
done signals which remain unnormalized and are thresholded to either 0 or 1 based on a cutoff of 0.5.

To speed up online RL training, we updateM using data from D every 1e4 online interaction steps
and generate 1e6 transitions right after each update ofM, which are then stored in the diffusion
buffer. The diffusion buffer D′ differs from the online replay buffer D in that the log probability of
Max-Ent actions are not collected and that its action samples are normalized, such that aM ∈ [−1, 1]d
to suit for more effective Q action gradient regularization. Our implementation ofM uses the default
training hyperparameters in Lu et al. (2024).

Although Lu et al. (2024) has observed the fidelity of these synthetic samples by comparing their
high-level statistics to those of the on-policy data, a potential limitation arises from the generated data
becoming stale during the 1e4 online interaction steps, due to the fact thatM remains unchanged and
the uncertainty in critic function updates. Hence, we apply Q action gradient on normalized synthetic
action samples by gradient ascent along the Q gradient field. We make use of the Adam optimizer
(Kingma & Ba, 2014) with Polyak coefficients (α1, α2) = (0.9, 0.99) and a learning rate of 3e-4.
After Q action gradient update on aM ∼ D′, we replace these state-action pairs in the diffusion buffer
to update our belief about the current high-value regions in the action space and mitigate the risk of
data staleness.

In Figure 14, we show distribution heatmaps of sampled actions a in the online replay buffer D,
synthesized action samples aM in the diffusion buffer D′, as well as Q gradient-optimized actions
aM ∼ ∇aQ. We observe that one update ofM every 1e4 steps is adequate to match the high-valued
region in the sample distributions. We also plot the best average return corresponding to each choice
of updating frequency in three MuJoCo environments in Figure 13, which supports our choice of
update frequency ofM.

100 1,000 10,000 100,000
Update frequency (steps)

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 T
ra

in
in

g
Ti

m
e

(a) Ant-v3

100 1,000 10,000 100,000
Update frequency (steps)

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 T
ra

in
in

g
Ti

m
e

(b) Hopper-v3

100 1,000 10,000 100,000
Update frequency (steps)

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

R
et

ur
n

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 T
ra

in
in

g
Ti

m
e

(c) Walker2d-v3

Figure 13: Sensitivity analysis on the performance and training time of LSAC for different choices of
update frequencies of diffusion generatorM, in three MuJoCo environments. Results are averaged
over 10 seeds. The performance difference between each update frequency ofM is not significant on
Ant-v3 and Walker2d-v3. However, LSAC scores less with the least update frequency (one in 1e5
steps) in Hopper-v3. The purple dots represent normalized training time.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1 10

1

1

0

aM ∼ ∇aQ, 1e5 steps
1 10

1

1

0

aM ∼ ∇aQ, 1e4 steps
1 10

1

1

0

aM ∼ ∇aQ, 1e3 steps
1 10

1

1

0

aM ∼ ∇aQ, 1e2 steps

1 10

1

1

0

a ∼ D, 1e5 steps
1 10

1

1

0

a ∼ D, 1e4 steps
1 10

1

1

0

a ∼ D, 1e3 steps
1 10

1

1

0

a ∼ D, 1e2 steps

1 10

1

1

0

aM ∼ D′, 1e5 steps
1 10

1

1

0

aM ∼ D′, 1e4 steps

1 10

1

1

0

aM ∼ D′, 1e3 steps
1 10

1

1

0

aM ∼ D′, 1e2 steps

Figure 14: Comparison of Q gradient optimized sample distribution d{aM∼∇aQ} (first row), replay
action sample distribution d{a∼D} (second row), and diffusion buffer sample distribution d{aM∼D′}
(third row). The number of steps in the caption means the update frequency ofM. Darker regions
denote higher density. We randomly sample a batch of 1e3 transitions from all three distributions at
2e5 time steps on the Ant-v3 environment. The 2D kernel density estimate of these distributions are
taken from action space dimensions 2 and 3. We see that updatingM every 1e4 steps is suitable for
replicating the on-policy buffer action distributions with an optimal total training time. More frequent
updates ofM during training (frequency ≤ 1e3 steps) leads to higher training time cost as shown in
Figure 13. Q gradient optimization further refines the synthesized actions aM ∼ D′ to better align
with d{a∼D}.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F COMPUTATIONAL EFFICIENCY OF LSAC COMPARED TO BASELINES

Ensuring computational efficiency is critical if we want to make application of RL in the real world
problems practical. As LSAC introduces parallel distributed critic learning with diffusion synthesized
state-action samples for diverse critic learning, it naturally raises a question of whether the processing
speed (wall-clock runtime) and the memory efficiency (number of learnable parameters in each
model) become a bottleneck for training LSAC. To answer this question, we compare LSAC to other
baselines representative of two other RL training paradigms namely single-critic learning with policy
entropy and diffusion policy inference. Among our baselines, we use DSAC-T (Duan et al., 2023),
SAC (Haarnoja et al., 2018a), DIPO (Yang et al., 2023), QSM (Psenka et al., 2024), and REDQ
(Chen et al., 2021). Our experiment indicates that, besides demonstrating superior sample efficiency
and outperforming the baselines in most environments in Figure 1 and Figure 8, LSAC also achieves
comparable or better computational efficiency than that of the baselines, as shown in Figure 15. To
facilitate fair wall-clock time comparison, all algorithms are trained on the same hardware (i.e a
single NVIDIA Quadro RTX 8000 GPU machine).

From Table 5 and Figure 15, we see that the processing speed of LSAC is somewhat slower than that
of DSAC-T, primarily due to the time spent on parallel critic learning and diffusion upsampling, which
is amortized over every 1e4 steps. However, LSAC training is significantly faster than ensemble
based method - REDQ. As for diffusion-based policy methods like DIPO and QSM, while they
offer the benefit of multimodal action distributions, they do so at the cost of expensive diffusion
policy inference steps during online trajectory rollouts, which makes them considerably slower during
training. A clear comparison of total time taken by these algorithms can be found in Table 5 and
Figure 15.

Environment\Algorithm LSAC (ours) DSAC-T DIPO SAC QSM REDQ

Ant-v3 1128 (1095) 876 (857) 2119 (911) 751 (722) 1898 (735) 1623 (1589)
HalfCheetah-v3 1157 (1112) 858 (799) 2253 (946) 781 (737) 1912 (779) 1740 (1694)

Walker2d-v3 1141 (1101) 901 (879) 2191 (966) 761 (721) 1850 (753) 1828 (1625)
Humanoid-v3 1209 (1162) 904 (857) 2410 (911) 768 (719) 1937 (732) 1794 (1633)

Hopper-v3 1124 (1078) 884 (792) 2391 (898) 772 (721) 1893 (778) 1879 (1417)
Swimmer-v3 1197 (1049) 910 (891) 2201 (913) 764 (703) 1829 (716) 1803 (1544)

Table 5: Process times in ms per each actor-critic update loop in the MuJoCo environments. Process
times per Q functions update are shown in the parenthesis.

Environment\Algorithm LSAC (ours) DSAC-T DIPO SAC QSM REDQ

Ant-v3 2.992M 301K 5.109M 168K 4.829M 1.066M
HalfCheetah-v3 2.591M 269K 4.307M 177K 3.516M 961K

Walker2d-v3 2.447M 255K 4.092M 146K 3.978M 795K
Humanoid-v3 4.807M 472K 7.041M 166K 6.125M 1.840M

Hopper-v3 2.944M 243K 4.121M 146K 3.772M 796K
Swimmer-v3 2.874M 239K 4.908M 135K 4.063M 771K

Table 6: Number of learnable parameters in each method. LSAC has less parameters compared
to diffusion policy-based model-free algorithms (DIPO, QSM) but more than those of double or
ensemble-based actor-critic methods (DSAC-T, SAC, REDQ). LSAC uses the same network structure
and ensemble size across tested environments. The difference in the number of parameters is due
to different observation and action dimensions in each environment, which affect the layer sizes of
model networks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5
Steps (million)

0

2000

4000

6000

Av
er

ag
e

R
et

ur
n

2.
9e

5

3.
9e

5

1.
8e

5

4.
5e

5

2.
3e

5
2.

1e
5

(a) AR at 10h, Ant

0.0 0.1 0.2 0.3 0.4 0.5
Steps (million)

0

5000

10000

15000

Av
er

ag
e

R
et

ur
n 3.

0e
5

3.
6e

5

1.
9e

5

4.
2e

5

2.
3e

5
2.

0e
5

(b) AR at 10h, Cheetah

0.0 0.1 0.2 0.3 0.4 0.5
Steps (million)

0

2000

4000

6000

Av
er

ag
e

R
et

ur
n

3.
2e

5

3.
9e

5

1.
9e

5

4.
5e

52.
3e

5
2.

2e
5

(c) AR at 10h, Walker

LSAC DSAC-T DIPO SAC REDQ QSM
Algorithms

0

20000

40000

60000

80000

W
al

lc
lo

ck
 R

un
tim

e
(s

) LSAC
DSAC-T
DIPO
SAC
REDQ
QSM

(d) Runtime at 2e5 steps, Ant

LSAC DSAC-T DIPO SAC REDQ QSM
Algorithms

0

20000

40000

60000

80000

W
al

lc
lo

ck
 R

un
tim

e
(s

) LSAC
DSAC-T
DIPO
SAC
REDQ
QSM

(e) Runtime at 2e5 steps, Cheetah

LSAC DSAC-T DIPO SAC REDQ QSM
Algorithms

0

20000

40000

60000

80000

W
al

lc
lo

ck
 R

un
tim

e
(s

) LSAC
DSAC-T
DIPO
SAC
REDQ
QSM

(f) Runtime at 2e5 steps, Walker

0.0 0.1 0.2 0.3 0.4 0.5
Steps (million)

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

3.
2e

5 3.
8e

5

1.
9e

5

4.
5e

5

2.
3e

5
2.

1e
5

(g) AR at 10h, Hopper

0.0 0.1 0.2 0.3 0.4 0.5
Steps (million)

0

50

100

150

Av
er

ag
e

R
et

ur
n

3.
4e

5

3.
9e

5

2.
1e

5

4.
6e

5

2.
4e

52.
2e

5

(h) AR at 10h, Swimmer

0.0 0.1 0.2 0.3 0.4 0.5
Steps (million)

0

2000

4000

6000

Av
er

ag
e

R
et

ur
n

2.
8e

5 3.
5e

5

1.
8e

5

4.
3e

5

2.
1e

5
2.

1e
5

(i) AR at 10h, Humanoid

LSAC DSAC-T DIPO SAC REDQ QSM
Algorithms

0

20000

40000

60000

80000

W
al

lc
lo

ck
 R

un
tim

e
(s

) LSAC
DSAC-T
DIPO
SAC
REDQ
QSM

(j) Runtime at 2e5 steps, Hopper

LSAC DSAC-T DIPO SAC REDQ QSM
Algorithms

0

20000

40000

60000

80000

W
al

lc
lo

ck
 R

un
tim

e
(s

) LSAC
DSAC-T
DIPO
SAC
REDQ
QSM

(k) Runtime at 2e5 steps, Swimmer

LSAC DSAC-T DIPO SAC REDQ QSM
Algorithms

0

20000

40000

60000

80000

W
al

lc
lo

ck
 R

un
tim

e
(s

) LSAC
DSAC-T
DIPO
SAC
REDQ
QSM

(l) Runtime at 2e5 steps, Humanoid

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC (ours) DSAC-T DIPO SAC REDQ QSM

Figure 15: The first and the third row show the number of steps completed in 10 hour of training and
the corresponding average return (AR) in corresponding environments. The second and the fourth row
show the average wall-clock runtime in seconds to complete 2e5 steps in respective environments.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(a) Ant-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(b) Hopper-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2500

5000

7500

Av
er

ag
e

R
et

ur
n

(c) Humanoid-v3

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC with distributional critic LSAC with standard critic

Figure 16: Ablation on MuJoCo environments comparing the replacement of the distributional critic
component with a standard critic. LSAC is more performant with improved stability than the ablated
counterpart.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

1

2

IQ
M

 N
or

m
 Q

 B
ia

s

(a) Ant-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

1

2

IQ
M

 N
or

m
 Q

 B
ia

s

(b) Hopper-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

1

2

IQ
M

 N
or

m
 Q

 B
ia

s
(c) Humanoid-v3

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC with distributional critic LSAC with standard critic

Figure 17: Normalized Q bias plots for ablation study of the distributional critic component in LSAC.
The Q bias value is estimated using the Monte-Carlo return over 1e3 episodes on-policy, starting
from states sampled in the replay buffer.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

5000

10000

15000

Av
er

ag
e

R
et

ur
n

(a) Halfcheetah-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(b) Ant-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

100

200

Av
er

ag
e

R
et

ur
n

(c) Swimmer-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2000

4000

6000

Av
er

ag
e

R
et

ur
n

(d) Walker2d-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(e) Hopper-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps (million)

0

2500

5000

7500

Av
er

ag
e

R
et

ur
n

(f) Humanoid-v3

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

LSAC (ours) DSAC-T DIPO

Figure 18: Training curves for the six most challenging MuJoCo continuous control tasks over 1e6
time steps and over 10 individual runs. LSAC is almost similarly stable as DSAC-T, and more stable
compared to DIPO in most cases.

26

	Introduction
	Key Contributions

	Preliminary
	Algorithm Design
	Experiments
	Experiments in MuJoCo and DMC
	Exploration Capability of LSAC

	Conclusion
	Related Work
	Theoretical Insights
	DMC Experiment Results
	Goal-Reaching Maze Experiments
	Implementation Details for the Experiments
	Environments
	Baseline methods
	Additional baselines for the DMC experiment

	More on Diffusion Q Action Gradient

	Computational efficiency of LSAC compared to baselines

