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Abstract
Recent empirical evidence indicates that many machine learning applications involve heavy-tailed
gradient noise, which challenges the standard assumptions of bounded variance in stochastic op-
timization. Gradient clipping has emerged as a popular tool to handle this heavy-tailed noise, as
it achieves good performance in this setting both theoretically and practically. However, our cur-
rent theoretical understanding of non-convex gradient clipping has three main shortcomings. First,
the theory hinges on large, increasing clipping thresholds, which are in stark contrast to the small
constant clipping thresholds employed in practice. Second, clipping thresholds require knowledge
of problem-dependent parameters to guarantee convergence. Lastly, even with this knowledge,
current sampling complexity upper bounds for the method are sub-optimal in nearly all parame-
ters. To address these issues, we study convergence of Normalized SGD (NSGD). First, we es-

tablish a parameter-free sample complexity guarantee for NSGD of Õ
(

∆4
1+L4

ε4 +
(
σ
ε

) 2p
p−1

)
to find

an ε-stationary point, where p ∈ (1, 2] is the tail index of heavy tailed noise distribution. In the
setting where all problem parameters are known, we show this complexity can be improved to
O
(

∆1L
ε2 + ∆1L

ε2

(
σ
ε

) p
p−1

)
, matching the previously known lower bound for all first-order methods

in all problem dependent parameters. Finally, we establish high-probability convergence of NSGD
with a mild logarithmic dependence on the failure probability.

1. Introduction

We study the stochastic optimization problem

min
x∈Rd

F (x), F (x) := Eξ∼D [f(x, ξ)] , (1)

where F : Rd → R is a possibly non-convex, L-smooth objective function and ξ is a random
variable from an unknown distribution D. Such problems are pervasive in machine learning [6],
where exact gradients are often infeasible to obtain, necessitating reliance on stochastic gradients.

Traditionally, stochastic gradient methods assume bounded variance of the gradient noise. Un-
der this assumption, it is well known that first order algorithms require at least Ω

(
L∆1σ

2ε−4
)

oracle
calls in the worst case to find an ε-stationary point, i.e. x ∈ Rd with E [∥∇F (x)∥] ≤ ε [2]. Here
∆1 denotes the initialization gap and σ2 the variance. Stochastic Gradient Descent (SGD) with an
appropriately chosen step-size achieves this optimal oracle complexity [18].

However, recent observations in machine learning suggest that the bounded variance assump-
tion may be too restrictive. Empirical evidence from image classification [53], training large lan-
guage models [58], and policy optimization in reinforcement learning [17] indicates that stochastic
gradients often follow heavy-tailed distributions. These findings challenge the standard assump-
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tion, suggesting a shift toward models where only the p-th central moment of the gradient noise is
bounded for some p ∈ (1, 2], i.e. E [∥∇f(x, ξ)−∇F (x)∥p] ≤ σp with σ = σ(p) ≥ 0. Specifically,
the aforementioned works estimate the tail index of stochastic gradients using statistical tests (e.g.,
[41]) and find p < 2; another set of experiments assumes p = 2 and estimates the variance σ2,
which turns out to be too large to be a useful upper bound.

While SGD is optimal when the variance is finite and is often the method of choice when the
noise is benign, the empirical evidence suggests that adaptive algorithms are crucial in the regime
with heavy tailed noise [58]. All works which are able to prove convergence under these conditions
employ the gradient clipping mechanism [11, 20, 21, 27, 30, 32, 45, 50, 58]. This mechanism
replaces the gradient oracle in optimization algorithms by its clipped counterpart

∇̂f(xt, ξt) = min

{
1,

γt
∥∇f(xt, ξt)∥

}
∇f(xt, ξt). (2)

Perhaps the most popular scheme is Clip-SGD, which iterates: xt+1 = xt − ηt∇̂f(xt, ξt).

1.1. Drawbacks of Gradient Clipping Theory

Despite its popularity in the literature, we want to outline several drawbacks of current clipping
theory.

Misalignment between theoretical and practical insights. Existing theoretical analyses of clip-
ping under the (p-BCM) assumption hinge on using a large, p-dependent sequence of increasing
clipping thresholds, e.g. γt = γ · t

1
3p−2 [11, 30, 45, 46, 58]. This choice of clipping thresholds

is based on the following two ideas. First, clipping allows to control the variance of the clipped
gradient estimator ∇̂f(xt, ξt), even in cases where the original gradient oracle has infinite variance.
Second, it ensures that the probability of gradients being clipped decreases over time as γt increases,
thereby reducing the bias introduced by clipping and facilitating convergence.

However, this theoretical recommendation contradicts common practice for clipping in machine
learning, where small, constant thresholds (e.g., γt ≡ 0.25) are typically used instead [40, 55, 59].
In contrast, one can observe that the clipping thresholds commonly used in practice lead to an in-
creasing probability of clipping gradients, eventually resulting in gradients being clipped at every
iteration. This observation runs counter to theoretical insights, which suggest clipping is becoming
less frequent as training progresses. Specifically, we observe this phenomenon in language mod-
elling tasks in Figure 1, and notice the same effect on simpler, synthetic examples in Figure 2. This
aggressive clipping behaviour essentially transforms Clip-SGD into a variant of Normalized SGD:

xt+1 = xt − ηt
gt
∥gt∥

, (NSGD)

where gt = ∇f(xt, ξt) in this case. It is worth noting, however, that unlike Clip-SGD, NSGD only
requires tuning a single parameter η, highlighting its simplicity in comparison. More details on the
experiments can be found in Appendix B.

Need for tuning. To our knowledge, all existing convergence results for clipping require knowl-
edge of all problem parameters to set the clipping thresholds {γt}t≥1 and other hyper-parameters of
the underlying algorithm. As these problem-dependent parameters are not known in practice, this
corresponds to the need for extensive hyper-parameter tuning. In particular, for Clip-SGD, there
are 2 hyper-parameters which potentially require tuning. In Appendix B we empirically observe
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Figure 1: Language Modelling
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Figure 2: Toy Example

Both plots consider Clip-SGD and NSGD with tuned parameters. Solid lines correspond to the
left y-axis. The dashed line shows the % of clipped iterations per epoch, corresponding to the right
y-axis. Shaded areas represent the minimal and maximal value within 5 seeds around the median.

that even while requiring extensive hyper-parameter tuning, Clip-SGD is not able to outperform
vanilla NSGD on language modelling tasks.

Suboptimal sample complexities. None of the existing convergence analysis of non-convex Clip-
SGD (and its variants) achieve the sample complexity lower bound Ω

(
∆1L
ε2

+ ∆1L
ε2

(
σ
ε

) p
p−1

)
[58] in

all problem parameters, even when problem parameters are known. In particular, prior to this work,
the optimal heavy-tailed sample complexity remained an open question.

1.2. Our Contributions

Our work seeks to remove the drawbacks listed above by diving into the convergence analysis of
NSGD under heavy tailed noise. We summarize our contributions as follows:

In Section 3.1 we demonstrate that NSGD converges for any tail index p ∈ (1, 2] without any

knowledge of problem specific parameters, achieving an Õ
(
∆4

1+L4

ε4
+ (σ/ε)

2p
p−1

)
oracle complexity

to find an ε-stationary point. When problem parameters are known, this sample complexity can
be further improved to O

(
∆1L
ε2

+ ∆1L
ε2

(
σ
ε

) p
p−1

)
, which matches with the mini-max lower bound

for the class of first-order algorithms under our assumptions [58, Appendix G]. To our knowledge,
NSGD is the first algorithm to achieve either of these properties in the heavy tail regime p < 2.

In Section 3.2, we obtain the first high probability convergence guarantee with a mild log (1/δ)
dependence for NSGD without requiring additional clipping, which is novel even in the case p = 2.

1.3. Related Work

This section summarises closely related works. An extended version can be found in Appendix A.

Gradient Clipping. Gradient clipping is widely used to stabilize the training in various fields of
machine learning [47, 51, 58]. Recently a number of works provide convergence guarantees for
various algorithms when used with clipping in different settings [13, 20, 21, 34, 42, 49]. In the
non-convex setting, Zhang et al. [58] study in-expectation and [45, 50] investigate high probability
convergence of Clip-SGD under the (p-BCM) assumption.
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Normalized SGD. NSGD was first proposed and analysed for deterministic convex functions by
Nesterov [43, 44]. In the non-convex bounded variance setting, Cutkosky and Mehta [10] prove that
incorporating Polyak’s momentum into NSGD removes the necessity of large batchsizes. Yang et al.
[57] furthermore prove parameter-free convergence of the algorithm and a lower bound for NSGD
without momentum in this setting. In the non-convex heavy-tailed setting, [11, 35] study NSGDwith
momentum and extra gradient clipping. Cutkosky and Mehta [11] require the bounded non-central
moment assumption, i.e., E [∥∇f(x, ξ)∥p] ≤ Gp, which is stronger than the (p-BCM) assumption.
Liu et al. [35] on the other hand require an additional almost sure individual smoothness assumption.
Both works suffer from the limitations of clipping discussed in Section 1.1.

2. Preliminaries

Throughout this paper, d ∈ N≥1 denotes the dimension, F : Rd → R the objective and ∇f(·, ·) the
gradient oracle. Unless stated otherwise, L ≥ 0 denotes the L-smoothness parameter and ηt > 0
the stepsizes. We use the common conventions N = {0, 1, . . .}, [n] = {1, 2, . . . , n} and that empty
sums and products are given by their corresponding neutral element.

Building on established work in stochastic optimization [2, 18], we employ the following two
standard assumptions in various results of this study.

Assumption 1 (Lower Boundedness) The objective function F is lower bounded by F ∗ > −∞.

Assumption 2 (L-smoothness) The objective function F is L-smooth, i.e. F is differentiable and
for all x, y ∈ Rd we have ∥∇F (x)−∇F (y)∥ ≤ L ∥x− y∥.

Instead of the traditional bounded variance assumption, we adopt the weaker concept of the bounded
p-th central moment, as discussed in the introduction.

Assumption 3 (p-BCM) The gradient oracle is unbiased and has a finite p-th central moment, i.e.
there exists σ ≥ 0 such that

i) E [∇f(x, ξ)] = ∇F (x), and

ii) E [∥∇f(x, ξ)−∇F (x)∥p] ≤ σp.

Note that for p ∈ (1, 2), by Jensen’s inequality, (p-BCM) is strictly weaker than the usual bounded
variance assumption.

3. Main Result

In this section, we present our convergence results for normalized stochastic gradient methods
(NSGD) under the (p-BCM) assumption. In Section 3.1 we examine the parameter-free, as well
as the performance for optimally tuned parameters. In Section 3.2, we derive a high-probability
convergence result for minibatch-NSGD.
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3.1. Normalized SGD can Handle Heavy Tailed Noise

Firstly, we theoretically confirm the robustness of NSGD to misspecification of p and other problem
parameters. This is in stark contrast to current Clip-SGD analyses, which heavily depends on the
knowledge of all parameters. We state the following result for the momentum version of NSGD. The
same result for the minibatch version, i.e. when considering NSGDwith gt = 1

B

∑B
j=1∇f

(
xt, ξ

(j)
t

)
where ξ(1)t , . . . , ξ

(B)
t

i.i.d.∼ ξt, can be found in Appendix E.

Theorem 1 (Parameter-Free Convergence) Let T ≥ 3 and assume (Lower Boundedness), (L-
smoothness) and (p-BCM) with p ∈ (1, 2]. Then the iterates generated by NSGD with gt = βtgt−1+
(1− βt)∇f(xt, ξt) and parameters βt = 1− t−1/2 and ηt = ηt−3/4 satisfy

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
∆1
η + 120ηL log (T ) + 120σ 4p

2−p

(
T

2−p
4p − 1

)
T

1
4

.

In particular, this corresponds to a rate of convergence of Õ
(
(∆1 + L)T−1/4 + σT

− p−1
2p

)
.

We offer a few remarks on this result. Firstly, it might initially seem that the upper bound
blows up as p→ 2. However, by L’Hôspital’s rule, we have limp→2

4p
2−p

(
T (2−p)/4p − 1

)
= log (T ),

making the second statement formally sound. Secondly, this result corresponds to an oracle com-
plexity of Õ

((
∆4

1 + L4
)
ε−4 + (σ/ε)

2p
p−1

)
. While this complexity does not match the lower bound

for parameter-dependent algorithms, it is — to the best of our knowledge — the first fully parameter-
agnostic convergence result under the (p-BCM) assumption. Finally, when plugging p = 2 in our
result, the previous result for the bounded variance setting is reconstructed [57].

Given that the oracle complexity of the previous result is not optimal for parameter-dependent
algorithms, it is intuitive to ask whether it can be improved when having knowledge of problem
parameters. Therefore, the following corollary considers optimal parameters for NSGD-M with con-
stant parameters. We emphasize that the same analysis can be carried out with decreasing stepsizes,
at the mild cost of a multiplicative log (T ) term.

Theorem 2 (Optimal Oracle Complexity) Assume (Lower Boundedness), (L-smoothness) and
(p-BCM) with p ∈ (1, 2]. Then the iterates generated by NSGDwith gt = βtgt−1+(1− βt)∇f(xt, ξt)
and parameters β1 := 0, βt ≡ β := 1−min

{
1,
(
∆1L
σ2T

) p
3p−2

}
for t ≥ 2 and ηt ≡

√
∆1(1−β)

LT satisfy

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ 6

√
∆1L√
T

+ 6σ
p

3p−2

(
∆1L

T

) p−1
3p−2

.

This result implies an oracle complexity of O
(
∆1L
ε2

+ ∆1L
ε2

(
σ
ε

) p
p−1

)
to reach an ε-stationary

point in expectation, which is optimal in all problem parameters under the given assumptions for
the class of first-order methods [58]. To the best of our knowledge, this is the first result to match this
lower bound exactly in the non-convex case. For comparison, Zhang et al. [58] derived convergence
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for Clip-SGD with a rate1 of

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ O
((√

∆1L
(
6
√
σ
) p

p−1 + σ
)
T
− p−1

3p−2 +
√
∆1LT

− 1
2

)
,

which is suboptimal in all parameters besides T . In fact, as p → 1, their upper bound blows up,
whereas the optimal bound turns constant. In contrast, our result is optimal in all parameters and
remains bounded as p→ 1. Additionally, our result recover those in [10]2 with improved constants
when p = 2.

3.2. Convergence with High-Probability

While in-expectation results guarantee small gradient norms given sufficiently many optimiza-
tion runs, computational constraints often preclude running enough procedures. Therefore, in-
probability results of the form with probability at least 1− δ, a single run achieves an ε-stationary
point are more desirable. While the Markov inequality can convert in-expectation results to in-
probability results, the poor dependence on δ renders this result impractical. Therefore, the gold
standard are so called high-probability results with a mild log (1/δ) dependence.

To achieve such results, existing literature relies on either light tail noise assumptions [31, 36],
or the gradient clipping mechanism [11, 20, 42, 45]. The following theorem confirms that NSGD
also has a high-probability convergence guarantee. To the best of our knowledge, we are the first
work to show such result for vanilla NSGD under weak noise assumptions.3

Theorem 3 Assume (Lower Boundedness), (L-smoothness) and (p-BCM) with p ∈ (1, 2]. Then

the iterates generated by NSGD with gt = 1
Bt

∑Bt
i=1∇f(xt, ξ

(i)
t ), where ξ(1)t , . . . , ξ

(Bt)
t

i.i.d.∼ ξt, and

parameters ηt ≡
√

∆1
LT and Bt ≡ max

{
1,
(

σ2T
∆1L

) p
2p−2

}
satisfy

1

T

T∑
t=1

∥∇F (xt)∥ ≤ (11 + 30 log (1/δ))

√
∆1L√
T

with probability at least 1−δ. This corresponds to an oracle complexity of Õ
(
∆1L
ε2

+ ∆1L
ε2

(
σ
ε

) p
p−1

)
.

As high-probability guarantees imply in-expectation guarantees by integration, his result is
again optimal in ∆1, L, σ and ε. We are not aware of any lower bounds specifying the optimal
δ-dependence. For comparison, for Clip-SGD Nguyen et al. [45] proved a rate of

1

T

T∑
t=1

∥∇F (xt)∥ ≤ Õ
((

σ
p

2(p−1) (∆1L)
p−2

4(p−1) +
(
∆1Lσ

2
)1/4)

T
− p−1

3p−2 + (∆1L)
1/4T

− p−1/2
3p−2

)
,

which is suboptimal in all parameters besides T in the stochastic case. In fact, as p→ 1, their upper
bound blows up whenever σ ≥ ∆1L, whereas the optimal bound turns constant. In the deterministic
case, even the dependence on T is suboptimal. In contrast, our result is noise adaptive in the sense

1. We ignore non-leading terms and simplify the rate in their favour.
2. Note that the authors did not use β1 = 0, resulting in an additional term. However this term is not leading and hence

does not affect the oracle complexity.
3. Note that there are works such as [3] that provide high-probability guarantees for NSGD under stronger noise as-

sumptions. Other works such as [11] require an additional clipping step on top of normalization.
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that, for σ = 0, the optimal deterministic oracle complexity is obtained. More remarks can be found
in Appendix D.3.

4. Conclusion

This work analyses Normalized SGD under heavy-tailed noise. Our theoretical analysis reveals
several interesting insights. First, we extend our understanding of high-probability convergence
under heavy tailed noise, providing the first such guarantee with an algorithm that does not require
gradient clipping. Second, we tightly characterize the optimal sample complexity in all parameters
under the (p-BCM) assumption as Theorem 2 is first convergence result that tightly matches the
corresponding lower bound [58, Appendix G]. Lastly, our results for parameter-free NSGD suggest
the robustness of the algorithm to misspecification of its parameters.

Several open questions arise from this work for future research. For instance, it remains unclear
whether our high-probability result can be extended to NSGD with momentum or variance reduced
gradient estimators. More importantly, it remains open whether the sample complexity that is op-
timal for parameter-dependent algorithms can be achieved by any algorithm without knowledge of
problem parameters.
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Appendix A. Extended Related Work

Gradient clipping is widely used to stabilize the training in various fields of machine learning
[47, 51, 58]. Recently a number of works provide convergence guarantees for Clip-SGD and its
variants in different settings, e.g., [13, 20, 21, 34, 42, 49] to name a few. However, the results
in the non-convex stochastic setting are relatively scarce. In particular, Zhang et al. [58] study
in-expectation and Nguyen et al. [45], Sadiev et al. [50] investigate high probability convergence
of Clip-SGD under (p-BCM). All above mentioned works use increasing (iteration dependent)
clipping parameters, e.g., γt = γ · t

1
3p−2 , and derive suboptimal convergence rates, see Section 3.1

for a more detailed discussion. A momentum version of Clip-SGD was analyzed in [37] assuming
the bounded second moment of stochastic gradients. However, their proof crucially relies on setting
the clipping threshold larger than the expected gradient norm. Recently, [26] offer a new analysis of
Clip-SGDwith constant clipping threshold under BV setting. However, their proof crucially relies
on bounded variance and seems challenging to extend to (p-BCM) setting. It is worth mentioning
that gradient clipping is also used to tackle heavy tailed noise in bandits and RL literature, e.g.,
[7, 8]. Moreover, Clip-SGD is the key mechanism to ensure differential privacy [1, 52].
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Normalized SGD was first proposed by Nesterov [43, 44] and analyzed in the deterministic
convex case. Later the analysis was extended to smooth [28] and stochastic [22] settings. In the non-
convex case, Cutkosky and Mehta [10] show how to remove large mini-batch requirement for NSGD
by incorporating Polyak’s momentum. Later, Yang et al. [57] derive a tight lower bound for NSGD
without momentum and Hübler et al. [23] study the parameter agnosticity of momentum NSGD
under a relaxed smoothness assumption. In a different line of works, Levy [29] study the ability
of NSGD to escape from saddle points. However, all above mentioned works make strong noise
assumptions such as BV. The most closely related to our work are [11, 35], which study variants
of NSGD under heavy tailed noise. Unfortunately, these works use both normalization and gradient
clipping with increasing clipping parameter, which necessitates tuning γt. Moreover, Cutkosky and
Mehta [11] assume bounded non-central moment assumption, i.e., E [∥∇f(x, ξ)∥p] ≤ Gp, which is
stronger than our (p-BCM). This assumption is relaxed in [35] to (p-BCM) at the cost of imposing
an additional (almost sure) individual smoothness assumption for each f(x, ξ). Another line of
work assumes that the noise distribution has a probability density that is symmetric and strictly
positive in a neighborhood of zero [3, 24, 48]. Under this assumption, they study SGD type methods
with general non-linearities, which include gradient clipping and normalization as a special case.
Compared to these works, we work with a different (p-BCM) assumption.

More recently, the role of normalization was investigated for sharpness aware minimization [12],
and the variants of NSGD showed an impressive empirical and theoretical success in more structured
non-convex problems in RL [4, 15, 16]. However, these works are also restricted to benign BV noise
assumption. Some recent works also make connections with SignSGD algorithm [5, 9, 25], which
applies a coordinate-wise normalization. Indeed, the convergence analysis of SignSGD and NSGD
are closely related and our techniques can be extended to its sign variants [33, 54].
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Appendix B. Experiments

In this section, we present experiments designed to empirically motivate and validate the theoretical
findings of this paper.

B.1. Toy Example

To better understand the behaviour of Clip-SGD, we conduct a small experiment on the function

f(x, ξ) =
1

2
∥x∥2 + ⟨x, ξ⟩,

where d = 10 and ξ is a symmetrized Pareto vector with tail index p = 1.8. We pick the step-size
for Clip-SGD according to theory (for p = 2), i.e., γt = γ ·

√
t, ηt = η/

√
t, and tune γ and η

over a wide range of possible values. We find that the optimal choice for our problem is γ = 0.001,
η = 100, which makes Clip-SGD trigger clipping at every iteration. This effectively reduces
Clip-SGD to NSGD. For comparison we show the convergence of tuned Clip-SGD and NSGD
(with gt = ∇f(xt, ξt), ηt = η/

√
t) in Figure 2 and find that indeed the two behave very similarly.

Notice, however, that unlike Clip-SGD, NSGD has only one tuning parameter, the step-size η.

B.2. Language Modelling

Since heavy tails have prominently been observed in language modelling tasks [58], our experiments
target this task.

Experimental Setup. We conduct training on the Penn Treebank (PTB) [38] and WikiText-2 [39]
datasets using the AWD-LSTM architecture [40]. Hyperparameters of the model were chosen ac-
cording to [40]. To observe the exact optimization behaviour of algorithms, the averaging mechanic
of the model was disabled.

In order to examine the behaviour of Clip-SGD and compare it to NSGD, we tuned their re-
spective parameters using a course grid search in a 50 epoch training. For NSGD we considered
the stepsizes ηt = ηt−r and tuned η and r. For Clip-SGD we considered the same stepsizes and
additionally tuned the clipping threshold γ. The parameters resulting on the above described tuning
scheme on the PTB dataset were (η, r, γ) = (50, 0.1, 0.25) for Clip-SGD and (η, r) = (50, 0.25)
for NSGD. It should be noted that the observed optimal clipping threshold γ = 0.25 is in line
with the previous empirical work by Merity et al. [40] that introduced the AWD-LSTM. The re-
sulting parameters on the WikiText-2 dataset were (η, r, γ) = (30, 0, 0.15) for Clip-SGD and
(η, r) = (15, 0.1) for NSGD. The final training was then carried out for 300 epochs on the 5 seeds
0, 1970, 2000, 2024, 2112.

All experiments were carried out on Nvidia RTX 3090 GPUs in an internal cluster. The total
compute including preliminary experiments were approximately 380 GPU hours. Roughly 200 of
these were used for preliminary experiments and parameter-tuning, 180 for the final experiments.

The AWD-LSTM [40] is released under a BSD 3-Clause License, the Penn Treebank dataset
[38] under the LDC User Agreement for Non-Members and the WikiText-2 dataset [39] under the
Creative Commons BY-SA 3.0 license.

From Clipping to Normalization. Figures 3 and 4 show the behaviour of Clip-SGD and NSGD
on both datasets with their corresponding tuned parameters. We want to discuss two observations.
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Figure 3: PTB
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Figure 4: WikiText-2

Both plots consider Clip-SGD and NSGD with tuned parameters. Solid lines represent the training
loss and correspond to the left y-axis. The dashed line shows the percentage of clipped iterations
per epoch by Clip-SGD, corresponding to the right y-axis. Shaded areas represent the minimal
and maximal value within 5 seeds, the line the median.

Firstly, and maybe surprisingly, the dashed line represents the percentage of clipped stochastic gra-
dients per epoch. One can see that in both cases, Clip-SGD clips every iteration after a certain
epoch, becoming equivalent to NSGD. Secondly, it can be noted that both algorithms behave similar
when measured with their corresponding training loss, depicted with solid lines. Both these obser-
vations suggest that the empirical behavior of Clip-SGD is very close to NSGD and the opposite
of what its theory would suggest.

Reasons for the Clipping Behaviour. We first want to understand why a) the percentage of
clipped gradients increases over time, before b) eventually clipping all iterations. Therefore Fig-
ure 5 and Figure 6 examine the average batch-gradient norm per epoch, i.e. 1

B

∑t0+B−1
t=t0

∥gt∥ where
the epoch consists of B mini-batches and starts at iteration t0. The plot suggests that, while the
training loss decreases, the stochastic gradient norms increase — a phenomenon that has been well
known for many years [19, Chapter 8]. Therefore, while surprising at first, the increasing clipping
percentage was to be expected in hindsight, answering question a). The fact that the optimal clip-
ping threshold is exactly at the scale of the is more surprising and, to the best of our knowledge, has
not yet been observed in the literature.

To gain a deeper understanding of the clipping behavior, we fix the optimal stepsizes and com-
pare different clipping threshold in Figure 7 and Figure 8.
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Figure 5: PTB
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Figure 6: WikiText-2

Both plots consider Clip-SGD and NSGD with tuned parameters. Solid lines represent the training
loss and correspond to the left y-axis. Dashed lines show the average stochastic gradient norm per
epoch, corresponding to the right y-axis. Shaded areas represent the minimal and maximal value
within 5 seeds, the line the median.
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Figure 7: PTB dataset
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Figure 8: WikiText dataset

Comparison of different clipping thresholds for Clip-SGD. All parameters besides the clipping-
threshold are fixed as described in Appendix B.
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Appendix C. Technical Results

This section contains various technical results required for our results. We start with two lemmas
that arise due to the normalization in NSGD.

Lemma 4 For all a, b ∈ Rd with a ̸= 0 we have

a⊤b

∥b∥
≥ ∥a∥ − 2 ∥a− b∥ .

Proof We calculate

a⊤b

∥b∥
=

(a− b)⊤b
∥b∥

+ ∥b∥ ≥ −∥a− b∥+ ∥b∥ ≥ ∥a∥ − 2 ∥a− b∥ ,

where we used Cauchy-Schwarz in the first, and ∥a∥ ≤ ∥a− b∥+ ∥b∥ in the second inequality.

Lemma 5 (Expected Angle Bound) Let (Ω,A,P) be a probability space and X : Ω → Rd a
random vector. Furthermore let µ ∈ Rd \ {0} , σ := E [∥X − µ∥] and suppose that X ̸= 0 almost
surely. Then it holds that

E
[

µ⊤X

∥µ∥ ∥X∥

]
≥ 1− 2

σ

∥µ∥
.

Proof We apply Lemma 4 with a← µ and b← X to derive

µ⊤X

∥X∥
≥ ∥µ∥ − 2 ∥µ−X∥ .

Dividing both sides by ∥µ∥ and taking expectations yields the claim.

The next lemma shows that t-dependent parameters have the same (up to constants) behavior as
constant, T -dependent, parameters in NSGD.

Lemma 6 (see [23, Lemma 10]) Let q ∈ (0, 1), r ∈ [0, 1] and T ∈ N≥2. Then
T∑
t=1

t−r
T∏

τ=t+1

(
1− τ−q

)
≤ 2 exp

(
1

1− q

)
(T + 1)q−r.

To control the error of the momentum gradient estimator, we will require the following inequality.

Lemma 7 (see [56]) Let X1, . . . , Xn ∈ Rd be a sequence of random vectors, Sn :=
∑n

j=1Xj and
p ∈ [1, 2]. Assume E [∥Xj∥p] <∞ and E [Xj+1 |Sj ] = 0 a.s. for all j ∈ [n]. Then

E [∥Sn∥p] ≤ 2
n∑

j=1

E [∥Xj∥p] .

In order to apply Lemma 7, we require the following lemma on conditional expectations.
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Lemma 8 (c.f. Durrett [14, Example 4.1.7]) Let (Ω,F ,P) be a probability space and X,Y be
independent random variables mapping to measurable spaces (E1,Σ1) and (E2,Σ2) respectively.
Furthermore let h : E1×E2 → Rd be a (Lebesgue-)measurable function with E [∥h(X,Y )∥] <∞.
Then

E [h(X,Y ) |X]
a.s.
= g(X), where g(x) := E [h(x, Y )] .

Proof First note that, by Fubini’s Theorem, g is Σ1/Bd measurable and hence g(X) is σ(X)/Bd
measurable. Therefore it suffices to show that

E [h(X,Y )1A] = E [g(X)1A]

for all A ∈ σ(X). First note that, by definition of σ(X) =
{
X−1(C) : C ∈ Σ1

}
, there exists

B ∈ Σ1 with A = X−1(B). Next, by independence of X and Y , their joint induced measure is a
product measure µ× ν on E1 × E2. Combining, we get

E [h(X,Y )1A] =

∫
A
h(X(ω), Y (ω))dP(ω) =

∫
E1×E2

h(x, y)1B(x)d(µ× ν)(x, y).

By our assumption E [∥h(X,Y )∥] < ∞ we know that h is µ × ν integrable and Fubini’s Theorem
hence yields∫

E1×E2

h(x, y)1B(x)d(µ× ν)(x, y) =
∫
E1

∫
E2

h(x, y)dν(y)1B(x)dµ(x)

=

∫
E1

g(x)1B(x)dµ(x)

= E [g(X)1A] .

This completes the proof.

Finally, we will require the following Martingale concentration inequality for high-probability
guarantees.

Lemma 9 (see [31, Lemma 1]) Let (Ft)t∈N be a Filtration and (Dt)t∈N a Martingale Difference
Sequence with respect to (Ft)t∈N. Furthermore, for each t ∈ N≥1, let σt be Ft−1-measurable and

assume that E
[
exp

(
D2

t

σ2
t

) ∣∣∣Ft−1

]
≤ e. Then, for all T ∈ N,

∀λ > 0, δ ∈ (0, 1) : P

(
T∑
t=1

Dt ≤
3

4
λ

T∑
t=1

σ2t +
1

λ
log

(
1

δ

))
≥ 1− δ.
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Appendix D. Missing Proofs

This section contains the proofs that are missing in the main part of the paper. Throughout this
section we denote the iterates generated by NSGD with (xt). Furthermore, we denote the natural
filtration of our iterates by Ft := σ(g1, . . . , gt).

We start by deriving a descent lemma. While such descent lemmas are well studied for NSGD in
the literature — to the best of our knowledge — none highlight the importance of the angle between
gt and∇F (xt). As this angle will play a crucial role in our high-probability result, we will provide
our version of the descent lemma and its proof below.

Lemma 10 (Descent Lemma) Assume (Lower Boundedness) and (L-smoothness). Furthermore
let

ϕt :=
∇F (xt)⊤gt
∥∇F (xt)∥ ∥gt∥

denote the cosine between gt and ∇F (xt). Then the iterates of NSGD satisfy
T∑
t=1

ηtϕt ∥∇F (xt)∥ ≤ ∆1 +
L

2

T∑
t=1

η2t .

Proof By the definition of xt+1, (L-smoothness) implies

F (xt+1)− F (xt) ≤ −ηt∇F (xt)⊤
gt
∥gt∥

+
L

2
η2t = −ηt

∇F (xt)⊤gt
∥∇F (xt)∥ ∥gt∥

∥∇F (xt)∥+
L

2
η2t .

Summing up over t ∈ [T ] and telescoping now yields

F ∗ − F (x1) ≤ F (xT+1)− F (x1) ≤ −
T∑
t=1

ηtϕt ∥∇F (xt)∥+
L

2

T∑
t=1

η2t ,

where we used (Lower Boundedness) in the first inequality. This completes the proof.

Thus, if we could guarantee that the angle between the gradient oracle and true gradient remains
bounded away from zero, we would be done. Since this can however, even in expectation, not be
guaranteed, we need a more detailed analysis to prove our results.

D.1. Proofs of Section 3.1

We start with a unified result for normalized algorithms. This method does not specify the exact
gradient oracle, allowing to incorporate different gradient estimators and noise assumptions after-
ward.

Proposition 11 (c.f. [10, Lemma 2]) Assume (Lower Boundedness), (L-smoothness) and ∞ >
σt := E [∥gt −∇F (xt)∥]. Then the iterates (xt)t∈N≥1

generated by NSGD satisfy

T∑
t=1

ηt∑T
τ=1 ητ

E [∥∇F (xt)∥] ≤
∆1 +

L
2

∑T
t=1 η

2
t + 2

∑T
t=1 ηtσt∑T

τ=1 ητ
.
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Note that for constant parameters ηt ≡ η and σt ≡ σ this result reduces to

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
∆1

ηT
+
ηL

2
+ 2σ. (3)

While the result stems from [10], we want to make a few remarks on this result. Firstly note that
Proposition 11 does not require decreasing stepsizes or any other similar assumption. Secondly,
the weights wt :=

ηt∑T
τ=1 ητ

define a discrete probability distribution over the iterates of the method,

allowing to sample from the iterates to find a point x̄T , which is an ε-stationary point in expectation.
Lastly, Proposition 11 does not make any assumptions on the noise. In particular, the stochastic
gradient oracle is not assumed to be unbiased. Instead the upper bound depends on the first central
moment, which is typically controlled in one of three ways. Empirical studies have observed that
noise often becomes more benign along the training trajectory by itself [58, Figure 2]. From an
algorithmic standpoint, it is well known that noise can be controlled by using minibatches [60] or
momentum [10] under the bounded variance assumption.

We provide a slightly different proof of Proposition 11 when compared to [10] below.
Proof of Proposition 11. Let ϕt :=

∇F (xt)
⊤gt

∥∇F (xt)∥∥gt∥ denote the cosine between ∇F (xt) and gt. Then,
by Lemma 10, we have

T∑
t=1

ηtϕt ∥∇F (xt)∥ ≤ ∆1 +
L

2

T∑
t=1

η2t . (4)

Next we apply Lemma 4 to get

E [ϕt ∥∇F (xt)∥] ≥ E [∥∇F (xt)∥ − 2 ∥gt −∇F (xt)∥] ≥ E [∥∇F (xt)∥]− 2σt,

where we applied our assumption σt ≥ E [∥gt −∇F (xt)∥] in the last inequality. Therefore, by
taking expectations in (4), we get

T∑
t=1

ηtE [∥∇F (xt)∥] ≤ ∆1 +
L

2

T∑
t=1

η2t + 2
T∑
t=1

ηtσt.

Dividing by
∑T

τ=1 ητ yields the claim.

In the following lemma, we show that momentum is still able to improve NSGD when the noise
assumption is relaxed from bounded variance to (p-BCM). In Appendix D.2, Equation (9), we will
prove the same result for minibatches, effectively demonstrating that both methods still work under
the relaxed noise assumption.

Lemma 12 Let β1 = 0 and assume (L-smoothness), (p-BCM) with p ∈ (1, 2]. Then the iterates
generated by NSGD with gt = βtgt−1 + (1− βt)∇f(xt, ξt) satisfy

E [∥gt −∇F (xt)∥] ≤ L
t∑

τ=2

ητ−1βτ :t + σ

(
t∑

τ=1

(
β(τ+1):t(1− βτ )

)p)1/p

,

where βa:b denotes
∏b

κ=a βκ.

The proof of this Lemma mainly follows similar arguments as in the bounded variance setting
but applies the more general von Bahr and Essen inequality [56] instead of the manual argument
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by [10]. When using constant parameters, this lemma reduces to E [∥gt −∇F (xt)∥] ≤ L η
1−β +

σ(1− β)
p−1
p . In particular, it recovers the known results for p = 2.

Proof (c.f. [10]). To simplify notation we first define

εt := ∇f(xt, ξt)−∇F (xt)
µt := gt −∇F (xt),
St := ∇F (xt−1)−∇F (xt),
αt := 1− βt.

Now we calculate

gt = βtgt−1 + (1− βt)∇f(xt, ξt)
= βt(∇F (xt−1) + µt−1) + (1− βt)(εt +∇F (xt))
= ∇F (xt) + (1− βt)εt + βtSt + βtµt−1

and unrolling yields

µt = β2:tγ1 +

t∑
τ=2

β(τ+1):tατετ +

t∑
τ=2

βτ :tSτ =

t∑
τ=1

β(τ+1):tατετ +

t∑
τ=2

βτ :tSτ ,

where we used β1 = 0 in the second equality. Therefore

E [∥µt∥] ≤ E

[∥∥∥∥∥
t∑

τ=1

β(τ+1):tατετ

∥∥∥∥∥
]
+

t∑
τ=2

βτ :tE [∥Sτ∥] . (5)

The second sum can straight forward be upper bounded by L
∑t

τ=2 ητ−1βτ :t. To control the first
sum we want to apply Lemma 7. Therefore letXτ := β(τ+1):tατετ and note that this sequence does
fulfil the required assumptions of the lemma. By applying Jensen’s we hence get

E

[∥∥∥∥∥
t∑

τ=1

β(τ+1):tατετ

∥∥∥∥∥
]
≤ E

[∥∥∥∥∥
t∑

τ=1

β(τ+1):tατετ

∥∥∥∥∥
p]1/p

≤

(
2

t∑
τ=1

(
β(τ+1):tατ

)pE [∥ετ∥p]

)1/p

.

Plugging these bounds into (5) yields

E [∥µt∥] ≤ σ

(
2

t∑
τ=1

(
β(τ+1):tατ

)p)1/p

+ L

t∑
τ=2

ητ−1βτ :t

and hence the claim.

Next up, we provide the parameter-free convergence result for NSGD-M, i.e. NSGD with

gt ← βtgt−1 + (1− βt)∇f(xt, ξt).

The idea behind the proof follows similar steps as [10], does however require additional attention to
the noise term.
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Proof of Theorem 1. To shorten notation we define r := 3/4, q := 1/2, and hence ηt = ηt−r, βt =
1− t−q. From Proposition 11 we get

T∑
t=1

ηt∑T
τ=1 ητ

E [∥∇F (xt)∥] ≤

(
T∑
t=1

ηt

)−1(
∆1 +

L

2

T∑
t=1

η2t + 2
T∑
t=1

ηtσt

)

≤ T r−1

(
∆1

η
+

3

2
ηL+ 2

T∑
t=1

t−rσt

)
,

(6)

where we used
∑T

t=1 ηt ≥ ηT 1−r and
∑T

t=1 η
2
t ≤ 3η2 in the second inequality. To control the third

term, we apply Lemma 12 and Lemma 6 to get
T∑
t=1

t−rσt ≤ 4 exp

(
1

1− q

) T∑
t=1

(
σt

−r−q p−1
p + ηLt−2r+q

)
= 4e2

T∑
t=1

(
σt

− 5p−2
4p + ηLt−1

)
.

≤ 4e2

(
σ

T∑
t=1

t
− 5p−2

4p + ηL(1 + log (T ))

)
.

In order to bound
∑T

t=1 t
− 5p−2

4p we note that 5p−2
4p = 1 iff p = 2 and hence

T∑
t=1

t
− 5p−2

4p ≤ 1 +

∫ T

1
t
− 5p−2

4p dt ≤

1 + log (T ), if p = 2

1 + 1
1− 5p−2

4p

(
T
1− 5p−2

4p − 1
)
, otherwise.

Now note that, due to L’Hôspital, limq→1
1

1−q

(
T 1−q − 1

)
= log (T ) and hence we can unify the

cases by writing the second expression and using continuous extensions. Plugging into (6) yields
T∑
t=1

ηt∑T
τ=1 ητ

E [∥∇F (xt)∥]

≤ T r−1

(
∆1

η
+ 8e2ηL(1 + log (T )) + 8e2σ

(
1 +

4p

2− p

(
T

2−p
4p − 1

)))
≤ T−1/4

(
∆1

η
+ 120ηL log (T ) + 120σ

4p

2− p

(
T

2−p
4p − 1

))
,

where we used that 4p
2−p

(
T

2−p
4p − 1

)
≥ 1 for T ≥ 3 in the last inequality. The second statement

follows from the observation limq→1
1

1−q

(
T 1−q − 1

)
= log (T ).

Finally we prove the oracle complexity of tuned NSGD.
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Proof of Theorem 2. To shorten the notation we write ηt ≡ η, βt ≡ β and α := 1− β. Combining
Proposition 11 with Lemma 12 yields

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
∆1

ηT
+
ηL

2
+ 2σα

p−1
p +

2Lη

α

=

√
∆1L

αT
+

√
∆1Lα

2
√
T

+ 2σα
p−1
p + 2

√
∆1L

αT

≤ 4

√
∆1L

αT
+ 2σα

p−1
p .

(7)

We now make a case distinction. Case 1: α = 1. This implies σ ≤
√

∆1L
T and hence

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ 6

√
∆1L

T
.

Case 2: α =
(
∆1L
σ2T

) p
3p−2 . Plugging into (7) yields

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ 4σ
p

3p−2

(
∆1L

T

) p−1
3p−2

+ 2σ
p

3p−2

(
∆1L

T

) p−1
3p−2

= 6σ
p

3p−2

(
∆1L

T

) p−1
3p−2

.

Therefore we get

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ 6max

{√
∆1L

T
, σ

p
3p−2

(
∆1L

T

) p−1
3p−2

}
and hence the claim.

D.2. Proofs of Section 3.2

This subsection contains the proofs for our high-probability results. Similar to Proposition 11 we
start off with a unified result that allows the usage of different oracles and noise assumptions. The
proof hinges on the observation that ∇F (xt)

⊤gt
∥∇F (xt)∥∥gt∥ ∈ [−1, 1] is bounded and hence concentrates well.

This will allow us to apply Lemma 9 to get the mild log (1/δ) dependence. We would like to point
out that this proof technique for establishing the high probability result significantly deviates from
the existing high probability analysis of methods using gradient clipping.

Theorem 13 (High-Probability) Let σt ≥ 0 and δ ∈ (0, 1). Assume (Lower Boundedness), (L-
smoothness) and∞ > σt := E [∥gt −∇F (xt)∥ |Ft−1]. Additionally let ηmax

T := maxt∈[T ] ηt and
CT := maxt∈[T ] ηt

∑t−1
τ=1 ητ . Then, with probability at least 1− δ, the iterates generated by NSGD

satisfy
T∑
t=1

wt ∥∇F (xt)∥ ≤
2∆1 + L

∑T
t=1 η

2
t + 4

∑T
t=1 ηtσt∑T

τ=1 ητ
+

12(ηmax
T ∥∇F (x1)∥+ CTL) log (1/δ)∑T

τ=1 ητ
,

where wt :=
ηt∑T

τ=1 ητ
.
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We want to make some remarks on Theorem 13. Note that, as in Proposition 11, we did not
make any unbiasedness or decreasing stepsize assumptions. Furthermore, when comparing this
result with Proposition 11, the bound can be interpreted as a concentration inequality around the
expected value.
Proof Let ϕt :=

∇F (xt)
⊤gt

∥∇F (xt)∥∥gt∥ denote the angle between ∇F (xt) and gt. Then, by Lemma 10, we
have

T∑
t=1

ηtϕt ∥∇F (xt)∥ ≤ ∆1 +
L

2

T∑
t=1

η2t .

Next, we use the fact that ϕt is bounded and hence sharply concentrates around its (conditional)
expectation. Formally, let ψt := E [ϕt | Ft−1] and note that Dt := −ηt(ϕt − ψt) ∥∇F (xt)∥ is a
Martingale Difference Sequence with respect to (Ft)t∈N. Furthermore, noting that

exp

(
D2

t

4η2t ∥∇F (xt)∥
2

)
= exp

(
(ϕt − ψt)

2

4

)
≤ e

implies that we may apply Lemma 9 with σ2t = 4η2t ∥∇F (xt)∥
2. Doing so yields, for all λ > 0,

T∑
t=1

ηt(ψt − 3ληt ∥∇F (xt)∥) ∥∇F (xt)∥ ≤ ∆1 +
L

2

T∑
t=1

η2t +
1

λ
log (1/δ)

with probability at least 1−δ. Using (L-smoothness) we get ∥∇F (xt)∥ ≤ ∥∇F (x1)∥+L
∑t−1

τ=1 ητ
and hence choosing λ := 1

6(ηmax
T ∥∇F (x1)∥+CTL)

yields, with probability at least 1− δ,

T∑
t=1

ηt

(
ψt −

1

2

)
∥∇F (xt)∥ ≤ ∆1 +

L

2

T∑
t=1

η2t + 6(ηmax
T ∥∇F (x1)∥+ CTL) log (1/δ). (8)

Finally we are left with the challenge of guaranteeing that ψt is large enough. Therefore we use
Lemma 4 to get ψt ∥∇F (xt)∥ ≤ ∥∇F (xt)∥ − 2σt and hence

1

2

T∑
t=1

ηt ∥∇F (xt)∥ ≤ ∆1 +
L

2

T∑
t=1

η2t + 2
T∑
t=1

ηtσt + 6(ηmax
T ∥∇F (x1)∥+ CTL) log (1/δ).

Dividing by 1
2

∑T
τ=1 ητ yields the claim.

Next we apply Theorem 13 to derive the high-probability result for tuned Batch-NSGD pre-
sented in the main paper.
Proof of Theorem 3 To shorten the notation we write ηt ≡ η and Bt ≡ B. We first note that

E [∥gt −∇F (xt)∥ |Ft−1] = E

[∥∥∥∥∥ 1B
B∑
i=1

(
∇f(xt, ξ(i)t )−∇F (xt)

)∥∥∥∥∥
∣∣∣∣∣Ft−1

]

≤ 1

B
E

[∥∥∥∥∥
B∑
i=1

(
∇f(xt, ξ(i)t )−∇F (xt)

)∥∥∥∥∥
p ∣∣∣∣∣Ft−1

]1/p

≤ 1

B
(2Bσp)

1/p ≤ 2B
1−p
p σ,

(9)
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where we applied Lemma 7 in the second inequality. Combining (9) with Theorem 13 now yields

1

T

T∑
t=1

∥∇F (xt)∥

≤ 2∆1

ηT
+ ηL+ 8σB

1−p
p + 12

(
∥∇F (x1)∥

T
+ ηL

)
log (1/δ)

= 2

√
∆1L

T
+

√
∆1L√
T

+ 8σB
1−p
p + 12

(
∥∇F (x1)∥

T
+

√
∆1L√
T

)
log (1/δ)

≤ (3 + 30 log (1/δ))

√
∆1L

T
+ 8σB

1−p
p ,

(10)

where we used ∥∇F (x1)∥ ≤
√
2∆1L in the last inequality. We now proceed with a case distinction.

Case 1: B = 1. This implies σ ≤
√

∆1L
T and hence

1

T

T∑
t=1

∥∇F (xt)∥ ≤ (11 + 30 log (1/δ))

√
∆1L

T
.

Case 2: B =
(

σ2T
∆1L

) p
2p−2 . In this case we have σB

1−p
p =

√
∆1L
T and plugging into (10) yields

1

T

T∑
t=1

∥∇F (xt)∥ ≤ (11 + 30 log (1/δ))

√
∆1L

T
.

This finishes the convergence result. To prove the oracle complexity, note that each iteration requires

1 and
(

σ2T
∆1L

) p
2p−2 oracle calls in Case 1 and 2 respectively. To reach an ε-stationary point, T ≥

∆1Lε
−2 iterations are required. Plugging into the oracle complexity per iteration yields the second

claim.

D.3. Remarks on Theorem 3

Our Theorems 1 and 2 hold for NSGD with either momentum or minibatches, as well as for time-
varying (t-dependent) and “constant” (T -dependent) parameters. Our choice to present the momen-
tum version with different types of parameters has the goal of showcasing different applications of
Proposition 11. For Theorem 3 on the other hand, while it still holds for time-varying and constant
parameters, we were not able to prove the result for NSGD with momentum. We shortly want to
discuss the technical difficulty of extending Theorem 3 to the momentum version.

Technical difficulty of proving Theorem 3 for NSGD with momentum. The proof of Theorem
13 hinges on two parts: Firstly, one shows that the angle ϕt sharply concentrates around its condi-
tional expectation ψt = E [ϕt | Ft−1]. This step only requires the boundedness of ϕt and is hence
applicable for both the minibatch and momentum version of NSGD. In the next step however, we
have to lower bound ψt. Our current proof technique — and to some extend intuition — tells us that
such lower bounds involves the term

E [∥gt −∇F (xt)∥ |Ft−1] . (11)
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In the case of minibatch NSGD, gt only depends on randomness sampled in iteration t, and (11)
can hence be upper bounded by a constant as seen in (9). However, in the case of NSGD with
momentum, gt consists of random samples from all previous iterations. This results in (11) being a
random variable instead, and it is not clear how to uniformly control it.

Appendix E. Mini-Batch NSGD

In this section we discuss the version of our results in Section 3.1 for NSGD with mini-batches
(minibatch-NSGD), i.e., NSGD with the gradient estimator

gt =
1

B

B∑
j=1

∇f
(
xt, ξ

(j)
t

)
, (12)

where ξ(1)t , . . . , ξ
(B)
t

i.i.d.∼ ξt are independent of all other random samples.

Proposition 14 (Mini-batch Version of Theorem 1) Assume (Lower Boundedness), (L-smoothness)
and (p-BCM) with p ∈ (1, 2]. Let η,B, q > 0 and r ∈ (0, 1). Then the iterates generated by
minibatch-NSGD with parameters ηt ≡ ηT−r and Bt ≡ ⌈max {1, BT q}⌉ satisfy

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
∆1

ηT 1−r
+

ηL

2T r
+

4σ

max {1, BT q}
p−1
p

,

In particular, the sample complexity is bounded by O
((

∆1
ε

) 1+q
1−r +

(
L
ε

) 1+q
r +

(
σ
ε

) p(1+q)
q(p−1)

)
.

When plugging B = q = 1, r = 1/2 into Proposition 14 we get the sample complexity

O
(
∆4

1 + L4

ε4
+
(σ
ε

) 2p
p−1

)
, (13)

which equals the complexity of Theorem 1.
Proof of Proposition 14. To shorten the notation we write η̄ := ηT−r and B̄ := ⌈max {1, BT q}⌉.
Remember, that we are considering the mini-batch gradient-estimator

gt =
1

B̄

B̄∑
j=1

∇f
(
xt, ξ

(j)
t

)
.

We start by controlling the (conditional) expected deviation of gt from ∇F (xt) using Lemma 7.
Let x ∈ Rd and define Xj(x) := ∇f

(
x, ξ

(j)
t

)
− ∇F (x) for all j ∈

[
B̄
]
. Now note that

X1(x), . . . , XB̄(x) are independent random variables with mean zero and hence a Martingale Dif-
ference Sequence (MDS). Furthermore note that E [∥Xj(x)∥p] ≤ σp by (p-BCM) and we can hence
apply Lemma 7 to get

g(x) := E

∥∥∥∥∥∥
B̄∑
j=1

Xj(x)

∥∥∥∥∥∥
p ≤ 2

B̄∑
j=1

E [∥Xj(x)∥p] ≤ 2B̄σp. (14)
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Next we calculate

E [∥gt −∇F (xt)∥ |xt] = E

∥∥∥∥∥∥ 1B̄
B̄∑
j=1

(
∇f(xt, ξ(j)t )−∇F (xt)

)∥∥∥∥∥∥
∣∣∣∣∣∣xt


≤ 1

B̄
E

∥∥∥∥∥∥
B̄∑
j=1

(
∇f(xt, ξ(j)t )−∇F (xt)

)∥∥∥∥∥∥
p ∣∣∣∣∣∣xt

1/p (15)

where we applied Jensen in the last inequality. Next define

Y =

(
ξ
(1)
t , . . . , ξ

(B̄)
t

)
and h(xt, Y ) =

∥∥∥∥∥∥
B̄∑
j=1

(
∇f(xt, ξ(j)t )−∇F (xt)

)∥∥∥∥∥∥
p

.

and note that xt and Y are independent. Hence we may apply Lemma 8 which yields

E [∥gt −∇F (xt)∥ |xt]
(15)
≤ 1

B̄
E [h(xt, Y ) |xt]

1/p Lem. 8
=

1

B̄
g(xt)

1/p
(14)
≤ 2

σ

B̄
p−1
p

(16)

almost surely. By the tower property we get E [∥gt −∇F (xt)∥] = E [E [∥gt −∇F (xt)∥ |xt]] ≤
2σB̄

− p−1
p and plugging into (3) yields

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
∆1

η̄T
+
η̄L

2
+

4σ

B̄
p−1
p

.

Using the definitions of η̄ and B̄ we get

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
∆1

ηT 1−r
+

ηL

2T r
+

4σ

⌈max {1, BT q}⌉
p−1
p

≤ ∆1

ηT 1−r
+

ηL

2T r
+

4σ

max {1, BT q}
p−1
p

This implies an iteration complexity of

O

((
∆1

ηε

) 1
1−r

+

(
ηL

ε

) 1
r

+
1

B1/q

(σ
ε

) p
q(p−1)

)
and hence a sample complexity of

O

((
∆1

ηε

) 1
1−r

+

(
ηL

ε

) 1
r

+B

(
∆1

ηε

) 1+q
1−r

+B

(
ηL

ε

) 1+q
r

+
1

B
1
q

(σ
ε

) p(1+q)
q(p−1)

)
. (17)

This completes the proof.

Lastly we will provide the mini-batch version of Theorem 2.

Corollary 15 (Mini-batch Version of Theorem 2) Assume (Lower Boundedness), (L-smoothness)
and (p-BCM) with p ∈ (1, 2]. Then the iterates generated by minibatch-NSGD with parameters

ηt ≡
√

∆1/LT and Bt ≡
⌈
max

{
1,
(

σ2T
∆1L

) p
2p−2

}⌉
satisfy

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ 6

√
∆1L√
T

.
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In particular the sample complexity is bounded by O
(
∆1L
ε2

+ ∆1L
ε2

(
σ
ε

) p
p−1

)
.

Proof of Corollary 15. Applying Proposition 14 to our choice of parameters yields

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ 2

√
∆1L√
T

+
4σ

max

{
1,
(

σ2T
∆1L

) p
2p−2

} p−1
p

.

We proceed with a case distinction.
Case 1: σ2T

∆1L
≤ 1. In this case we get σ ≤

√
∆1L√
T

and hence

4σ

(
max

{
1,

(
σ2T

∆1L

) p
2p−2

})− p−1
p

= 4σ ≤ 4

√
∆1L√
T

.

Case 2: σ2T
∆1L

> 1. We calculate

4σ

(
max

{
1,

(
σ2T

∆1L

) p
2p−2

})− p−1
p

= 4σ

(
σ2T

∆1L

)− 1
2

= 4

√
∆1L√
T

.

This implies an iteration complexity of O
(
∆1Lε

−2
)

and hence a sample complexity of

O

(
∆1Lε

−2 ·

⌈
max

{
1,

(
σ2

ε2

) p
2p−2

}⌉)
= O

(
∆1L

ε2
+

∆1L

ε2

(σ
ε

) p
p−1

)
.
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