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Abstract—To ensure stable and safe grasping during fine
operations, it is required that the robot can accurately determine
the grasping states and infer safe operating force, especially when
grasping deformable objects. However, when grasping soft and
light objects, the tactile signal feedback is very weak, making it
difficult to classify the grasping states. Aiming to solve this prob-
lem, we introduce the optical flow information into tactile image
feature processing to capture subtle dynamic variations in tactile
data. A multimodal optical flow dataset, OFB-6 is constructed
to support feature-level fusion of visual and tactile modalities.
Further, an improved end-to-end transformer architecture is
proposed by integrating visual and tactile data for grasping states
classification and safe force prediction. Specifically, the k-NN
attention mechanism is employed to enhance grasp states classifi-
cation accuracy and then replacing multilayer perceptions(MLPs)
with KAN network for reducing computational complexity and
improving time efficiency.

Index Terms—Deformable Objects, Optical Flow, Grasping
States Classification, Safe Force Inference.

I. INTRODUCTION

Currently, fine robotic operations are mainly applied to
repetitive tasks in structured environments, where there is little
uncertainty or deformation of manipulated objects [1]. It is still
a research hotspot and challenging problem for operating soft
objects or deformable objects such as fruits, vegetables [2],
and bread since the prediction of appropriate operating force
is required. Insufficient force may lead to slippage, resulting
in the object falling, while excessive force could damage
the object. From grasping states feedback to estimating safe
and stable operating force is indispensable in these precision
robotic tasks. Unlike common tactile sensors, the Gelsight
visual-tactile sensor, with its internal camera, captures high-
resolution images of contact geometry. This study combines
data from the Gelsight sensor [3] and the external D435
camera to classify contact states of robotic fingertips and
predict the reasonable contact force(see Fig. 1).

Our contributions are summarized as follows:

(1) For soft and lightweight objects, we introduce optical flow
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Fig. 1.

The overall visual and tactile sensing system. Robot Setup: The
AUBO-i5 robot is equipped with a gripper, where both fingers are integrated
with Gelsight sensors. A Realsense D435 camera is positioned directly in
front of the experimental platform.

information into tactile images to guide the model’s learning
and make a bread optical flow dataset, OFB-6.

(2) An end-to-end visual-tactile fusion model is proposed for
grasping states classification and safe force inference. The
model integrates the tactile and visual images by a transformer
network, which is improved by incorporating the k-NN atten-
tion mechanism for enhancing the accuracy of grasping states
classification.

(3) We further replace the Multi-Layer Perceptron (MLP) with
the KAN neural network to improve the time efficiency of the
model and the success rate of the safe force inference.

II. RELATED WORK
A. Grasping States Classification

Grasping states are typically classified into stable and
unstable, with unstable states indicating imminent sliding.
Recent studies[4][5][6][7][8][9][10] have employed various
tactile sensing and machine learning techniques, including
deep learning and visual-tactile sensors, to detect and prevent
slip in robotic grasping, but most studies focused on rigid
objects, which do not require precise force control.

B. Visual-Tactile Robotic Learning

Human grasping involves both tactile sensation and vi-
sual observation to judge object slip states, with tac-



tile perception being the primary factor. Recent stud-
ies[11][12][13][14][15][16][17][18] have focused on integrat-
ing tactile and visual sensing through various deep learning
and multimodal frameworks to enhance slip detection and
grasp outcome prediction in robotic manipulation.

These studies highlight the advantages of visual-tactile
learning, though they primarily focus on offline grasp states
classification and lack exploration of online safe force ad-
justments. This paper aims to estimate safe grasping force
for deformable objects, improving grasp stability and success
rate.Yan et al. [19] proposed a transformer architecture for
object slippage and safe grasping force detection. In contrast,
this work focuses on softer, lighter objects, using a bread
optical flow dataset (OFB-6) and incorporating optical flow
information into tactile images. We propose the k-NNSformer
architecture, replacing MLP with the KAN neural network
for improved accuracy and efficiency. Additionally, our work
correlates safe grasping force with actual force values through
3D force calibration.

III. PROPOSED METHOD

In this section, we illustrate the details of the presented
model for grasping states classification and safe force infer-
ence. In the subsection A, this paper innovatively integrates
optical flow information into visual and tactile images as
perceptual input to improve the effectiveness of feature extrac-
tion for grasping states classification. In the subsection B, we
propose the KAN-VIiT model by integrating k-NN attention
mechanism and KAN network into the transformer model.
Finally, the proposed model performs to estimate safe grasping
force after two exploratory actions on the target object, namely
pinching and lifting.

A. Visual and tactile sensing

The sensing information in this work is gathered from
three channels: visual images, tactile images, and optical flows
extracted from tactile images.

1) Visual images: Fig. 1 shows the configuration of the
visual and tactile sensing system. The blue oval box in Fig.
1 demonstrates the RealSense D435 visual camera mounted
at the front of the robotic arm, which is used to capture the
global state of the object.

2) Tactile images: A Gelsight mini visual-tactile sensor is
installed at each end of the parallel gripper to capture subtle
slip tendencies of the object. In fact, as shown in the red box
of Fig. 1, only one of the tactile sensor is utilized to construct
the minimum tactile perception system.

3) Optical flows: The optical flow can describe pixel mo-
tion in the image sequence by analyzing changes of pixel
brightness on the image, which effectively reflects the dynamic
motion of the object in contact.

B. Proposed grasping states classification and safe force
inference model

This subsection describes the proposed grasp states classi-
fication and safe force prediction framework in detail. The

framework shown in Fig. 2 is primarily composed of five
modules: KAN-VIT module, sensor fusion module, action
fusion module, force threshold module and prediction mod-
ule. (1) KAN-ViT Module: The image sequences from the
sensor modalities are passed through the transformer model,
producing vectors with size D. Therefore, for the two preset
exploratory actions pinching and lifting, four vectors are
generated: vl v WU Cand ol (2) Sen-

sor Fusion Module: After obtaining four vectors from the
two modalities, the sensor fusion module concatenates each
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A linear transformation is then applied to project it into a
low-dimensional space with an output size of NV, as described
by the linear transformation in Eq. 1.

vector vlused — {v v

qused _ ,Ufused X WT +b (1)

Here, Y/used ¢ RVX1 is the output vector, which represents
a fused physical feature embedding. W € RNM*4D is the
weight matrix, a learnable parameter in the framework used
to perform the linear mapping, and b € R¥*! is another
learnable bias, serving as the offset for the output.

(4) Force Threshold Module: GelSight is a vision-based
tactile sensor and lacks the capability to directly estimate
the grasping force. To address this issue, we conducted a 3D
force calibration experiment to build the mapping relationship
between the gel indentation depth and the corresponding
normal force.

(5) Prediction Module: This module is mainly utilized for
predicting suitable grasp force. The Prediction Module predicts
an optimal grasp force based on low-dimensional physical
embeddings from two exploratory actions and a force threshold
candidate. It samples various grasping force candidates and
inputs each threshold into the model, which predicts if the
grasp will be stable. If multiple thresholds predict stability,
their average is chosen. This process helps the robot select a
safe and stable grasping force, preventing object damage.

IV. CONCLUSION

In conclusion, this paper presents the KAN-ViT model, an
effective visual-tactile fusion learning approach for grasping
states classification and safe force inference. The model intro-
duces two innovations: 1) integrating optical flow into tactile
images to enhance weak sensing from soft objects and creating
a bread optical flow dataset, and 2) developing an end-to-end
visual-tactile fusion model for grasping states classification
and safe force inference.
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Fig. 2. The framework of the safety force inference for grasping bread.The robot first performs two explorative actions: 1). pinching the bread, 2). lifting
the bread. Each image sequence is processed by an individual transformer network into a vector of size D . The fusion models concatenate these vectors
and project them into a low-dimensional fused physical feature embeddings. Besides, the prediction model takes the same embedding and control parameter
(force threshold) as inputs and predicts the final grasping outcome. Through inference, a set of control parameters are first generated and then the parameters
with the safe grasping outcome is selected to perform online grasping, if there are multiple viable choices, we select the average value.
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