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Abstract

Federated Graph Learning (FGL) offers a promising framework for collaboratively
training Graph Neural Networks (GNNs) while preserving data privacy. In resource-
constrained environments, One-shot Federated Learning (OFL) emerges as an
effective solution by limiting communication to a single round. Current OFL
approaches employing generative models have attracted considerable attention;
however, they face unresolved challenges: these methods are primarily designed for
traditional image data and fail to capture the fine-grained structural information of
local graph data. Consequently, they struggle to integrate the intricate correlations
necessary and transfer subtle structural insights from each client to the global
model. To address these issues, we introduce OASIS, an innovative one-shot
FGL framework. In OASIS, we propose a Synergy Graph Synthesizer designed
to generate informative synthetic graphs and introduce a Topological Codebook
to construct a structural latent space. Moreover, we propose the Wasserstein-
Enhanced Semantic Affinity Distillation (WESAD) to incorporate rich inter-class
relationships and the Wasserstein-Driven Structural Relation Distillation (WDSRD)
to facilitate the effective transfer of structural knowledge from the Topological
Codebook. Extensive experiments on real-world tasks demonstrate the superior
performance and generalization capability of OASIS, with an average improvement
of 15.81% over the baseline. The code is available for anonymous access at
https://github.com/JiaruQian/OASIS.

1 Introduction

Federated Learning (FL) [38, 19, 20] enables decentralized model training, allowing collaboration
across clients while preserving privacy. Many real-world applications involve non-Euclidean data
structures, such as graphs, where entities are interconnected through complex relationships. These
graph-structured data are common in various domains, including biological networks [69], urban
mobility systems [68], and online social platforms [47]. To learn from such structures from multiple
participants, Graph Neural Networks (GNNs) [25, 58] have been integrated with FL, leading to
Federated Graph Learning (FGL) [9, 31]. This approach combines both paradigms, ensuring privacy
while enabling efficient learning on distributed graph data.

Although most research in FGL has focused on personalized learning, where each client has a
tailored model [3, 73, 30], there is growing demand for a global model that can generalize across
diverse graph data from multiple clients [52]. This is especially important in scenarios with limited
data or where consistency between clients is necessary, such as in medical data analysis across
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hospitals or regional traffic network predictions [57, 7]. However, training a global model in
traditional FGL requires multiple rounds of communication, which can be burdensome for edge
devices with limited bandwidth and computational power [13, 2]. To address these challenges,
One-shot Federated Learning (OFL) has been proposed, restricting communication to a single
round [12, 34], thus reducing communication costs and potentially enhancing privacy [62]. However,
existing OFL methods are primarily designed for traditional data types like images and do not tackle
the unique challenges of graph-structured data. We define the task of Generalizable One-Shot
Federated Graph Learning as developing a global model capable of generalizing well for graphs
distributed across multiple clients using only one round of communication. A key research question is:
How to design a generalizable OFL framework, specifically tailored for graph-structured data?

Figure 1: Problem Illustration. For current one-shot
FGL scenarios: I) at the client stage, existing generative
methods fail to capture the fine-grained structural knowl-
edge of local graphs; II) at the server stage, conventional
KD techniques are unable to effectively transfer the sub-
tle structural characteristics from diverse clients, thereby
hindering the global model generalization.

Several OFL approaches have proposed using
public datasets to train a global model. However,
this approach may be impractical because of the
limited availability of suitable datasets or due
to stringent data sensitivity constraints [46, 36].
Consequently, generative methodologies have
emerged as compelling alternatives. For in-
stance, DENSE [66] employs a strategy in which
each client trains a generator to produce syn-
thetic data that reflects its distribution. In con-
trast, FedDEO [61] utilizes diffusion models as
generators, leveraging client-trained descriptors
to guide the server in training a global model.
Nevertheless, these methods are primarily de-
signed for image data and do not capture the
fine-grained structural information inherent in
nodes, particularly substructure variations such
as connectivity patterns and neighbor distribu-
tions, as illustrated in Figure 2. The direct ap-
plication of these generators fails to encapsulate
the spatial intricacies of graphs, thereby limit-
ing their effectiveness. This limitation raises
a critical question: I) How can client genera-
tors better capture the fine-grained structural
knowledge of local graphs?

After training the local generator, several methods have leveraged knowledge distillation (KD) on
the server to train the global model [16, 41]. For example, DENSE first ensembles local models and
then distills the resulting ensemble, while FedCVAE-KD [15] employs KD from local decoders to
train the server decoder. However, these distillation methods depend excessively on class-related
semantic signals when aggregating client knowledge, and the class space may not be sufficiently
expressive to represent the diverse local graph structures of nodes. Consequently, they fail to capture
the intricate correlations and struggle to transfer the clients’ structural awareness to the final global
model. This observation raises an important follow-up question: II) How can we effectively transfer
subtle structural knowledge during server distillation?

To address the aforementioned challenges, this paper presents the first systematic study on the problem
of generalizable one-shot FGL. We introduce the OASIS framework: One-Shot Federated GrAph
Learning via Wasserstein AsSISted Knowledge Integration. To address problem I), we introduce
the Synergy Graph Synthesizer, which is designed to generate informative synthetic graphs. This
approach is further refined by incorporating alignment constraints based on the Fused Gromov-
Wasserstein distance, which effectively harmonizes the reconstruction of both features and structures.
More importantly, inspired by [55, 64], we construct a novel structural latent space tailored for graph
data. This enables the learning of a structure-aware tokenizer that encodes each node along with its
substructure as a discrete code, thereby capturing its spatial characteristics. By utilizing the established
Topological Codebook, we can precisely characterize subtle structural variations, thereby enabling
the meticulous integration of fine-grained structural knowledge from client graphs. On the server
side, to address issue II), we first propose the Wasserstein-Enhanced Semantic Affinity Distillation,
which models the rich inter-class relationships by distilling logits from the teacher local model to the
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student global model, while learning more general structural differences. At the intra-class level, we
introduce the Wasserstein-Driven Structural Relation Distillation, which dynamically measures the
distance between samples and the discrete codes derived from the Topological Codebook, thereby
facilitating the sophisticated transfer of subtle structural knowledge. Our principal contributions are
summarized as follows:

❶ Problem Identification. We identify the key challenges in generalizable one-shot FGL: how to
effectively capture fine-grained structural knowledge of local graphs, and then how to transfer this
knowledge during distillation to enable global model generalization.

❷ Practical Solution. We propose a novel approach that integrates the Synergy Graph Synthesizer
with Topological Codebook capturing subtle structural variations, then we introduce hierarchical
Wasserstein-based distillation to skillfully transfer structural knowledge on server.

❸ Experimental Validation. We examine OASIS through extensive experiments on various graph
datasets, demonstrating superior generalization ability for one-shot FGL.

2 Preliminaries

2.1 Notations

Graph Neural Networks. Consider a graph G = (V, E), where V denotes the set of N nodes, and E
represents the edges. Each node vi is associated with an F -dimensional feature vector xi, and these
vectors collectively form the feature matrix X = {x1, x2, . . . , xN}⊤. The structure of G is encoded
in the adjacency matrix A ∈ RN×N , where the entries are defined such that A(i, j) = 1 if nodes i
and j are connected, and A(i, j) = 0 otherwise. Graph Neural Networks (GNNs) iteratively build
node representations by aggregating features from neighboring nodes and then applying an update
function. Specifically, the representation hl+1

i of node vi at layer l + 1 is computed as:

hl+1
i = Update

(
hl
i, Aggregate

(
{hl

j : vj ∈ N (vi)}
))

, (1)

where hl
i is the current representation at layer l, N (vi) denotes the set of neighbors of node vi,

Aggregate(·) combines the neighbor features, and Update(·, ·) updates the node’s representation.
Initially, h0

i = xi.

Problem Formulation. In a One-shot Federated Graph Learning framework, a central server
coordinates K clients (collectively denoted as C, where each client is indexed by k). Each client k
holds its own graph Gk = (Vk, Ek) with the corresponding adjacency matrix Ak. For every node
vi ∈ Vk, there exists an associated feature vector xk

i and a label yki , if it is available. Within this
setup, each client trains a model Fθk parameterized by θk and then transmits them to the server. The
objective is to minimize:

min
θ

K∑
k=1

Nk

N
Lk(ϕ). (2)

This is computed as the weighted sum of the K local nodes Nk, where N denotes the total number of
samples across all clients. The local objective Lk(·) is typically defined as the expected error over all
nodes from the local graph Gk, with the global model parameterized by ϕ. Unlike conventional FGL,
one-shot FGL restricts the exchange to a single communication round.

2.2 Motivation

This paper systematically explores the challenge of maximizing the generalization ability of the
global model in one-shot FGL. Traditional OFL approaches that rely on generative models such as
Variational Autoencoders or Generative Adversarial Networks—originally designed for image-based
data—fail to deliver competitive performance on graphs, as demonstrated in Sec. 4. The primary
issue is their inability to effectively capture the spatial and relational dynamics between nodes.
These models emphasize coarse, class-based semantic signals while overlooking the underlying
substructural variations among nodes. To better illustrate this, we present the t-SNE visualization of
the learned graph representation space after training the teacher GNN and the Topological Codebook.
(Detailed methods are illustrated in Sec. 3.3.)We select three categories with their representative
nodes and corresponding two-hop substructures. Results are shown in Figure 2, where nodes within
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the same class can exhibit significantly different connectivity patterns and neighbor distributions.
Consequently, the key objective in the local training stage of one-shot FGL is to identify a knowledge

repository that optimally encapsulates both local
semantics and fine-grained structural insights. We
formally define this pursuit as follows:

R⋆
φ = argmin

φ
EG∗∼Rφ(G⋆|X,A),

(X,A)∼G
Q(G∗;G), (3)

Here, R⋆
φ denotes the optimal knowledge repository

obtained by minimizing the expected distance Q be-
tween the generated graph G∗ and the original graph
G. In this formulation, Rφ is a parameterized func-
tion that produces G⋆ given the node features X and
the adjacency matrix A. After obtaining the power-
ful knowledge repository R⋆

φ, our goal is to integrate
these granular insights into the global model Fϕ dur-
ing the server distillation phase without erosion of
knowledge:

F⋆
ϕ = argmin

ϕ

K∑
k=1

EĜk∼Rk
φ
T
(
Fϕ(Ĝk); Fθk

(
Ĝk
))

.

(4)
For each client k, Rk

φ represents a specialized knowl-
edge repository. The global model Fϕ is trained
to align its outputs with those of the correspond-
ing client models, while T quantifies the knowl-
edge difference between them. Minimizing this ex-
pected transfer loss ensures that the ultimate global
model F⋆

ϕ effectively assimilates the granular infor-
mation encapsulated within the knowledge reposi-
tories. Based on these discussions, we present the
principle for designing the ideal Generalizable one-
shot FGL pipeline:

Figure 2: Motivation. In the t-SNE visualiza-
tion, nodes from different categories (colored in
red, yellow and green ) are scattered, representing
inter-class discrepancy. However, nodes within
the same category are also mapped to different
topological codebook tokens (We visualized three
for each color), indicating the intra-class discrep-
ancy in terms of connectivity patterns and neighbor
distributions. Please refer to Sec. 2.2 for details.

Generalizable One-shot FGL Design Principle: Communication Efficiency: Achieve robust
generalization via a single, streamlined communication round, thereby reducing overhead
without compromising performance. Knowledge Extraction: Precisely capture both local
semantic signals and fine-grained structural variations from graphs. Knowledge Integration:
Seamlessly integrate these granular insights into the global model, ensuring minimal knowledge
loss during the server distillation.

In following sections, we will elaborate on how OASIS adheres to these principles, encapsulates
fine-grained knowledge and then effectively distills it to the global model.

3 Methodology

3.1 Framework Overview

In this section, we present an overview of OASIS. On the client side, we perform Local Graph
Knowledge Extraction, where a synergy graph synthesizer and a topological codebook are con-
structed to capture fine-grained structural knowledge. After the one-shot communication, we employ
Wasserstein-Enhanced Semantic Affinity Distillation and Wasserstein-Driven Structural Relation
Distillation to transfer intricate topological knowledge during server distillation. The framework
illustration is provided in Figure 3.
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Figure 3: Architecture illustration of OASIS. (a) The left part shows the training process of Synergy Graph
Synthesizer and Topological Codebook on the client side. (b) The right part presents the knowledge integration
part on the server side. The communication round is limited to one, with codebooks and parameters of the local
GNN and Synthesizer uploaded. The far right section displays the legend. Zoom in for details.

3.2 Local Graph Knowledge Extraction

Synergy Graph Synthesizer. To construct high-fidelity graphs, we introduce a novel Synergy
Graph Synthesizer Qφ′ as part of the knowledge repository Rφ (omitting k for brevity), which
reconstructs both node features and graph topology in a structured manner. Given a graph G =
(V, E), for each node vi ∈ V , a synthetic feature vector is generated by mapping Gaussian noise ϵ
(sampled from a standard Gaussian distribution) and the corresponding label yi through the generator:
x̂i = Qφ′(ϵ; yi), where Qφ′ is parameterized by φ′. This process constructs the synthetic feature
matrix X̂ = [x̂1, x̂2, . . . , x̂N ]⊤ ∈ RN×F . Next, an activated similarity matrix is computed as
H = σ

(
X̂X̂⊤

)
, where σ denotes the sigmoid function. By applying a K-Nearest Neighbors strategy

to each row of H, we obtain the synthetic adjacency matrix Â:

Â(i, j) =

{
1, if j ∈ TopK

(
H(i)

)
,

0, otherwise.
(5)

Thus, the synthesized graph is denoted as Ĝ = (X̂, Â) while preserving the original labels
y = [y1, y2, . . . , yN ]⊤. We adopt a transductive setting, where some nodes in the local data are
unlabeled. Therefore, we utilize only the labeled nodes in the local training set to train the synthesizer.
Meanwhile, to ensure that the synthesized graph faithfully reflects both the distribution of node
features and intrinsic topological patterns of the original graph, we design a two-fold consistency
mechanism to compute the synthesizing objective Lsyn. Details can be found in Appendix B .

Topological Codebook. While the Synergy Graph Synthesizer effectively aligns global feature distri-
butions and preserves large-scale structural patterns, it inevitably smooths out nuanced distinctions
among fine-grained substructures. To address this limitation, we introduce a discrete structural latent
space—termed the Topological Codebook—to explicitly model subtle neighborhood variations. First,
each node vi ∈ V is mapped to a continuous embedding hi ∈ RD via an encoder. We then construct
a learnable codebook Eφ′′ = [e1, . . . , eM ] ∈ RM×D, where each code vector ej represents a distinct
local substructure pattern. For each node vi, the discrete token corresponding to its local substructure
is determined by quantizing its continuous embedding to the nearest code:

zi = arg min
j∈{1,...,M}

∥hi − ej∥22. (6)

This quantization process maps continuous embeddings into discrete tokens {z1, . . . , zN}, where
each node is assigned a token corresponding to its most similar local substructure. Using these
tokens, we derive the quantized representations Q = {ez1 , · · · , ezN } for all nodes. These discrete
representations enable the model to capture subtle variations in node neighborhoods more effectively.

Concurrent Optimization. To learn the Topological Codebook, we adapt the core principles of
Vector Quantized-Variational Autoencoders (VQ-VAE) for graph data. The model optimizes the
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following components: the reconstruction loss Lsyn and two additional losses: the consistency loss
and the discretization loss. The consistency loss ensures that the selected code ezi preserves original
node attributes and topology information. Specifically, we design two decoders pγ , pγ′ to separately
map the quantized representations to the original dimension: e′zi = pγ(ezi),Q

′ = pγ′(Q). Then, we
introduce our consistency loss:

Lcon =
1

N

N∑
i=1

||e′
zi − xi||22 + ||A− σ(Q′ ·Q′⊤))||22, (7)

where σ denotes the sigmoid function. Meanwhile, the discretization loss consists of three key
components: the codebook term, the commitment term, and the orthogonal term. The codebook term
ensures that the selected code ezi is aligned with the encoder output hi, maintaining the coherence
between continuous and discrete representations. The commitment term encourages the encoder
output to stay close to the chosen code, preventing excessive fluctuations between code vectors that
could destabilize the learning process. By stabilizing the encoding process, the commitment term
ensures that each node’s representation remains consistent with its assigned code. The orthogonal term
promotes diversity among codebook vectors by encouraging them to be independent and avoiding
convergence in the same direction:

Ldisc =
1

N

N∑
i=1

∥∥∥sg[hi]− ezi

∥∥∥2

2
+

η

N

N∑
i=1

∥∥∥sg[ezi ]− hi

∥∥∥2

2
+ λo(

1

M2

M∑
i,j

(
e⊤
i ej

||ei||ej ||
)2 − 1

M
), (8)

where sg[·] denotes the stop-gradient operator, and η, λo are hyperparameters controlling the strength
of each term. The overall optimization objective combines these losses with a negative log-likelihood
term LNLL

(
yi, ŷezi

)
to maintain node-label consistency with GNN Fθ predictions ŷezi

:
Loverall = Lsyn + LNLL(yi, ŷezi ) + Lcon + λcLdisc, (9)

where λc is a balancing hyperparameter. By jointly optimizing these terms, we obtain a Topological
Codebook Eφ′′ that captures a rich set of discrete tokens, each representing a unique local substructure.
This latent structural space empowers the model to integrate localized topological knowledge with
global graph structures. The concurrent optimization of the Synthesizer Qφ′ and the Topological
Codebook leads to the creation of a refined knowledge repository R⋆

φ = {Q⋆
φ′ ,E⋆

φ′′}, which
effectively synthesizes both micro- and macro-level graph information. In the subsequent section, we
explore how this extracted knowledge can be transferred to construct a generalizable global model.

3.3 Server Graph Knowledge Integration

Wasserstein-Enhanced Semantic Affinity Distillation. After local training, each client uploads
its respective knowledge base Rk

φ = {Qk
φ′ , Ek

φ′′} and local GNN Fk
θ to the central server. At the

server, for each local model k, the local GNN model Fk
θ serves as the teacher, while the global GNN

model Fϕ acts as the student. Specifically, a proxy graph Ĝk is generated via Qk
φ′(ϵ; ŷuni), where ŷuni

denotes a class-balanced distribution. This proxy graph retains general information from the client
data distribution, thereby providing an effective signal for subsequent knowledge transfer.

A central challenge in this knowledge transfer process is minimizing the loss incurred between the
teacher and student models. Traditional distillation techniques based on Kullback-Leibler divergence
perform only category-to-category comparisons, failing to capture nuanced cross-category semantic
affinities. To address this limitation, we propose the Wasserstein-Enhanced Semantic Affinity Distilla-
tion (WESAD) method, which employs the discrete Wasserstein distance to achieve a comprehensive
alignment between the probability distributions of the teacher and student models. For the k-th teacher
GNN model, let pkT denote the class probability distribution produced by Fk

θ and pS the distribution
produced by Fϕ. These distributions are computed via the softmax function σ with temperature τ .
To measure their discrepancy, we define the discrete Wasserstein distance loss Dk

WESAD as follows:

Dk
WESAD(p

k
T , pS) = min

qab

∑
a,b

ckab qab + η qab log qab, (10)

where qab represents the mass transferred from the teacher’s category Ca to the student’s category
Cb, subject to the constraints:

qab ≥ 0,
∑
b

qab = pkT,a,
∑
a

qab = pkS,b. (11)
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Here, η is a hyperparameter controlling the entropy regularization term. A key component of this
formulation is the cost matrix ckab, which encapsulates the semantic dissimilarity between categories.
We convert the semantic affinity, denoted as SAk(Ca, Cb), into a distance metric by defining

SAk(Ca, Cb) = W k[Ca][:]⊗W k[Cb][:], (12)

where ⊗ denotes element-wise multiplication, and W k is the weight matrix of the teacher’s projection
head after l2 normalization. The term SAk(Ca, Cb) reflects the intrinsic semantic affinity between
categories in the local GNN teacher Fθk . We then compute the cost matrix ckab as

ckab = 1− κSAk(Ca, Cb), (13)

where κ controls the cost. When two categories are semantically similar, a higher SAk(Ca, Cb)
results in a lower ckab, thereby reducing the transportation cost between them; conversely, semantically
dissimilar categories incur a higher cost. This design ensures that probability mass is effectively
reallocated between semantically proximate categories during knowledge transfer, facilitating fine-
grained semantic alignment. By minimizing Dk

WESAD(p
k
T , pS), the global student model Fϕ is not

only aligned with the output distribution of each local teacher model Fk
θ but also benefits from the

incorporation of inter-class semantic correlations.

Wasserstein-Driven Structural Relation Distillation. Building upon the semantic knowledge
transfer described before, we now seek to integrate the fine-grained latent structural knowledge.
Unlike semantic alignment, which primarily focuses on matching class-level distributions, structural
distillation emphasizes the nuanced topological patterns underlying node interactions. We introduce a
Wasserstein-Driven Structural Relation Distillation (WDSRD) scheme that harmonizes the structural
articulations by leveraging the topological codebook Ek

φ′′ = [ek1 , . . . , e
k
M ], where each ekm ∈ RD is

a learnable structural token that represents a prototypical substructure. This codebook unifies latent
structural information for both local and global models. Concretely, for each generated proxy graph
Ĝk, we compute two sets of node-level representations:

Ĥk
local = Fk

θ

(
Ĝk) ∈ RN̂k×D, Ĥglobal = Fϕ

(
Ĝk) ∈ RN̂k×D, (14)

where N̂k denotes the number of nodes in Ĝk and D is the feature dimension. For each node vi, let
hk
i ∈ RD be its representation from the local model and hi ∈ RD from the global model. We then

compare each ĥk
i (or ĥi) against all M codes in Ek

φ′′ to derive a soft assignment distribution:

Bk
i = σ(Dist

(
ĥk
i , E

k
φ′′

)
/τ), B̃k

i = σ(Dist
(
ĥi, E

k
φ′′

)
/τ), (15)

where Dist : RD × RM×D −→ RM is a distance-based comparison function (e.g., Euclidean
distance) that assigns each node vi to every code em with a probability reflecting their similarity. We
then obtain structural code assignments B̃k

i from global GNN and Bk
i from local GNN over the M

structural codes from k-th topological codebook Ek
φ′′ . We first define the mean as the simple average

of the assignment vectors across all nodes. Specifically, the local and global means are given by:

µk
local =

1

N̂k

N̂k∑
i=1

Bk
i , µk

global =
1

N̂k

N̂k∑
i=1

B̃k
i . (16)

To characterize the dispersion of the assignments, we compute the covariance matrices as:

Σk
local =

1

N̂k

N̂k∑
i=1

(
Bk

i − µk
local

)(
Bk

i − µk
local

)⊤
,

Σk
global =

1

N̂k

N̂k∑
i=1

(
B̃k

i − µk
global

)(
B̃k

i − µk
global

)⊤
.

(17)

Thus, the local and global assignments for the agent graph are approximated by the Gaussian distribu-
tions: N

(
µk

local, Σ
k
local

)
,N
(
µk

global, Σ
k
global

)
. Inspired by the Wasserstein distance, we employ the

closed-form Wasserstein distance between two Gaussian distributions. For two Gaussians, N (µ1,Σ1)
and N (µ2,Σ2), the Wasserstein distance is decomposed into a term measuring the difference in
means and a term capturing the difference in covariances:

DWD (N (µ1,Σ1), N (µ2,Σ2)) = ∥µ1 − µ2∥2

+ tr
(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
.

(18)
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Table 1: Comparison with the state-of-the-art methods on eight real-world datasets. We report node
classification accuracies (%) for downstream task performance. Green arrows ↑ denote advancements in accuracy
metrics than FedAvg while red arrows ↓ indicate regressions. OOM means out-of-memory error. The best and
second results are highlighted with bold and underline, respectively.

Category Methods Cora CiteSeer PubMed Amz-Photo Coauthor-CS Actor Roman-Empire Obgn-Arxiv

FL

FedAvg [ASTAT17] 30.61 32.88 57.91 23.12 22.50 24.40 18.49 14.58

FedProx [MLSys20] 30.98↑0.37 35.73↑2.85 50.56↓7.35 24.16↑1.04 21.44↓1.06 23.75↓0.65 15.46↓3.03 13.99↓0.59

FedNova [NeurIPS20] 14.21↓16.40 18.58↓17.30 33.48↓24.43 6.15↓16.97 18.83↓3.67 20.04↓4.36 6.49↓12.00 1.17↓13.41

FedRCL [CVPR24] 17.60↓13.01 12.73↓20.15 28.12↓29.79 4.92↓18.20 14.75↓7.75 10.72↓13.68 11.47↓7.02 2.56↓12.02

FGL

FedPub [ICML23] 30.52↓0.09 34.91↑2.03 41.22↓16.69 21.91↓1.21 26.75↑4.25 22.17↓2.23 13.71↓4.78 10.02↓4.56

FGSSL [IJCAI23] 30.23↓0.38 21.95↓10.93 39.68↓18.23 13.06↓10.06 22.44↓0.06 22.19↓2.21 14.62↓1.87 9.24↓5.34

FedGTA [VLDB24] 14.02↓16.59 17.75↓15.13 31.45↓26.46 4.10↓19.02 10.80↓11.70 19.25↓5.15 4.55↓13.94 1.15↓13.43

FedTAD [IJCAI24] 30.43↓0.18 33.86↑0.98 39.32↓18.59 22.01↓1.11 14.09↓8.41 23.58↓0.82 14.40↓4.09 OOM−

OFL

DENSE [NeurIPS22] 12.92↓17.71 7.87↓25.01 20.84↓37.07 4.93↓18.19 3.96↓18.54 10.72↓13.68 3.90↓14.59 0.33↓14.25

FedCVAE [ICLR23] 30.89↑0.28 34.76↑1.88 52.01↓5.90 31.62↑8.50 14.60↓7.90 19.38↓5.02 28.99↑10.50 13.71↓0.87

FedSD2C [NeruIPS24] 17.78↓12.83 29.96↓2.92 26.12↓31.79 8.73↓14.39 3.88↓18.62 18.83↓5.57 3.92↓14.57 0.76↓13.82

FENS [NeruIPS24] 31.43↑0.82 20.97↓11.91 49.07↓8.84 25.30↑2.18 22.54↑0.04 24.30↓0.10 13.96↓4.53 13.09↓1.49

OFGL OASIS 49.59↑18.98 45.69↑12.81 60.99↑3.08 63.73↑40.61 60.44↑37.94 25.42↑1.02 30.07↑11.58 15.05↑0.47

Accordingly, the DWDSRD between the local and global assignments for the entire agent graph is

Dk
WDSRD =

∥∥∥µk
local − µk

global

∥∥∥
2

+ tr
(
Σk

local +Σk
global − 2

((
Σk

local

) 1
2
Σk

global

(
Σk

local

) 1
2
) 1

2
)
,

(19)

where the first term quantifies the discrepancy between the local and global means, while the second
term reflects the differences in the distribution shapes as captured by the covariances. Minimizing
LWDSRD encourages the local and global GNNs to progressively align their output distributions
of structural assignments, thereby achieving an effective distillation of fine-grained topological
knowledge.

In our final server optimization, we integrate both the distillation losses into a single objective with
addition of NLL loss on the proxy graph:

Lserver =

K∑
k=1

N̂k

N̂
(Lk

NLL + λkD
k
WESAD + λsτ

2Dk
WDSRD), (20)

where N̂ denotes the overall size of all synthesized graphs and λk, λs balance each term. This unified
approach leverages the strengths of both methods: WESAD captures and aligns inter-class semantic
affinities to transfer rich semantic signals, while WDSRD preserves the fine-grained topological
structures inherent in local graphs. Minimizing this combined loss ensures that the global model
assimilates both semantic and structural knowledge from the local teachers, resulting in a more
generalizable global model.

4 Experiment

In this section, we comprehensively evaluate OASIS through four axes: Q1 (Superiority), Q2
(Effectiveness), Q3 (Sensitivity), Q4 (Pricacy). The answers of Q1-Q2 are illustrated in Sec. 4.2-
Sec. 4.3 and the analyses of Q3-Q4 can be found in Appendix K and Appendix L.

4.1 Experimental Setup

Datasets. To effectively evaluate the performance of our approach, we employed eight benchmark
graph datasets of various scales and distributions, including Cora [37], CiteSeer [10], PubMed [5],
Amazon-Photo, Coauthor-CS [45], Actor [42], Roman-empire [43] and Ogbn-Arxiv [17]. Detailed
descriptions and splits for these datasets can be found in Appendix D.

Counterparts. We compare OASIS against several traditional FL methods: (1) FedAvg [ASTAT17]
[38], (2) FedProx [MLSys20] [27], (3) FedNova [NeurIPS20] [54], (4) FedRCL [CVPR24] [44];
four popular FGL approaches: (5) FedPub [ICML23] [4], (6) FGSSL [IJCAI23] [18]; (7) FedTAD
[IJCAI24] [73], (8) FedGTA [VLDB24] [30]; four One-shot FL methods: (9) DENSE [NeurIPS22]
[66], (10) FedCVAE [ICLR23] [15], (11) FedSD2C [NeurIPS24] [67], (12) FENS [NeurIPS24] [1].
Detailed descriptions can be found in Appendix E.
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(a) Cora (b) CiteSeer (c) Analysis on η (d) Analysis on λo

Figure 4: Sensitivity Study of hyperparameters. In (a) and (b), we vary τ and λs on Cora and CiteSeer
respectively. In (c) and (d), we conduct sensitive study of η and λo on four datasets. Please refer to Appendix K
for further analysis.

Implementation Details. We adopt a two-layer GCN as the backbone, with a hidden layer size of
128. We set K = 10 clients and draw pk ∼ Dir(α) from a Dirichlet distribution [40] and assign a
fraction pck of class c to client k. Specifically, α is set as 0.05 to simulate a highly non-IID senario.
The codebook size is set in the range {26, 27, 28}. More implementation details and experiments on
various client numbers can be found in Appendix F and Appendix G.

4.2 Superiority

To address Q1, we analyze the superior performance of OASIS. We demonstrate the node classification
performance with various real-world graph datasets and summarize the generalized test accuracy in
Tab. 1. From the table, several key observations can be made (Obs.): Obs. ❶ OASIS consistently
outperforms other counterparts, with an average improvement of 15.81% over the baseline. By
capturing fine-grained structural information through our synthesizer and codebook, the global model
is able to acquire more intricate knowledge during distillation. Obs. ❷ Traditional FL and FGL
methods heavily depend on gradual local model updates over multiple rounds, and some are tailored
for personalized optimization, such as FedPub and FedGTA. Therefore, clients fail to efficiently share
generalized information within one communication round, leading to the poor model performance.
Obs. ❸ One-shot FL approaches such as FedCVAE and FedSD2C perform well in some small
graphs. However, they excessively rely on class-related semantic signals and overlook the structural
information, thus struggling with large-scale graphs.

4.3 Effectiveness

(a) Cora (b) Amazon Photo

Figure 5: Ablation Study of the Semantic Affin-
ity Distillation (WESAD) and Topological Codebook
(WESRD) on Cora and Amazon-Photo datasets. For an
in-depth analysis, please refer to Sec. 4.3.

To address Q2, we conduct an ablation study on
the key components in the Server Graph Knowl-
edge Integration part: Semantic Affinity Dis-
tillation (WESAD) and the Topological Code-
book (WESRD). The experimental results on
Cora and Amazon-Photo are shown in Figure 5.
From the bar chart, we can observe that both
components improve the model performance
significantly. WESAD employs the Wasserstein
distance to align the probability distribution be-
tween the teacher (local GNN) and the student
(global GNN), highlighting the incorporation of
inter-class semantic correlations. Meanwhile,
WDSRD integrates the fine-grained structural knowledge from the topological codebook. When
both WESAD and WDSRD are combined, the performance reaches its peak, with both semantic and
structural knowledge effectively distilled to the well-generalizable student global model.

5 Conclusion

In this paper, we introduce OASIS to address two key challenges in existing One-shot Federated
Learning approaches with generative models: weak awareness of fine-grained structural knowledge
and poor distillation capability from the topological aspect. We first establish a Synergy Graph
Synthesizer to capture complex structural knowledge and then construct a structural latent space by
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introducing the Topological Codebook. On the server side, we propose Wasserstein-Enhanced Se-
mantic Affinity Distillation to model inter-class relationships and build Wasserstein-Driven Structural
Relation Distillation to precisely transfer intricate topological knowledge from the codebook to the
global model. Extensive experiments on diverse datasets demonstrate the effectiveness of OASIS.
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A Notations

We present a comprehensive review of the commonly used notations and their definitions in Tab. 2.

Table 2: Notation and Definitions
Notation Definition
G Graph data.
V The node set of G.
E The edge set of G.
X The feature matrix of G.
A The adjacency matrix of G.
F The dimension of the node feature.
D The dimension of hidden embeddings and codebook tokens.
K The number of clients.
Ĝk The generated graph for client k.
X̂ The synthetic feature matrix.
H The activated similarity matrix.
Â The synthetic adjacency matrix.
vi Node i in V .
hl
i The representation of vi at the l-th layer of GNN.

N (vi) The set of neighbours of node vi.
Fθk The local model of client k.
θk The parameters of the local model Fθk of client k.
Fϕ The global model.
F⋆

ϕ The ultimate global model.
ϕ The parameters of the global model.
R⋆

φ The optimal knowledge repository.
Rk

φ The specialized knowledge repository of client k.
ϵ The Gaussian noise.
Ek

φ′′ The topological codebook of client k.
M The number of tokens in the codebook.
zi The discrete token index in the codebook.
Q The quantized representations.
Qk

φ′ The Synergy Graph Synthesizer of client k.
ŷuni The class-balanced distribution.
pkT The class probability distribution produced by Fθk .
pS The class probability distribution produced by Fϕ.
τ The temperature.
Ca The teacher’s category.
Cb The student’s category.
ckab The k-th cost matrix.
qab The mass transfered from Ca to Cb.
W k The weight matrix of the projection head of client k’s teacher GNN after l2 normalization.
Bk
i The structural code assignments from the teacher GNN.

B̃k
i The structural code assignments from the global GNN.

N̂k The size of the synthesized graph of client k.
N̂ The overall size of all synthesized graphs.
µk

local The local means of the assignment Bk
i .

µk
global The global means of the assignment B̃k

i .
Σk

local The covariance matrix of Bk
i .

Σk
global The covariance matrix of B̃k

i .

14



B Alignment of the Synergy Graph Synthesizer

To ensure that the synthesized graph faithfully reflects both the statistical distribution of node
features and the intrinsic topological patterns of the original graph, we design a two-fold consistency
mechanism. First, to align the distributions of synthetic and original features, we introduce a
distribution convergence term:

Ldist =
1

|V|

|V|∑
i=1

F∑
f=1

si(f) log
si(f)

ŝi(f)
, (21)

where si = softmax(xi) and ŝi = softmax(x̂i) represent the normalized representations of the
original and synthetic features, respectively. Second, to enhance local feature consistency and
mitigate mode collapse, we incorporate a feature dispersion constraint:

Lspread = 1− 1

|V|

|V|∑
i=1

x̂i · xi

∥x̂i∥2 · ∥xi∥2
. (22)

Moreover, to simultaneously reconcile structural and feature discrepancies, we employ a fused
Gromov-Wasserstein loss that quantifies the differences between the original and synthetic graphs
within an optimal transport framework:

LFGW = min
Γ(µ,µ̂)

∑
i,j,u,v

(
a
(
A(i, j)− Â(u, v)

)2
+ (1− a)∥X(i)− X̂(u)∥22

)
Γi,uΓj,v,

(23)

where a ∈ [0, 1] regulates the relative importance of structural and feature fidelity, and the transport
plan Γ is determined under the assumption of uniform marginal distributions µ and µ̂. These
components are integrated into a unified synthesizing objective:

Lsyn = Lspread + λdLdist + λfLFGW, (24)

where hyperparameters λd and λf control the relative contributions of each term. By leveraging
the Synergy Graph Synthesizer, each client generates a refined synthetic graph. However, this
approach relies on a continuous latent space and employs techniques such as KNN-based adjacency
construction, which primarily capture global statistical trends and ensure overall structural consistency.
Consequently, these methods tend to aggregate partial connectivity patterns, inadvertently smoothing
fine-grained details and diminishing subtle local nuances.

C Related Work

Federated Graph Learning. Federated Graph Learning (FGL) extends Federated Learning (FL) to
graph-structured data, enabling decentralized training while preventing the exposure of raw graph
data, thus enhancing privacy protection [14? ? ]. Existing FGL methods can be categorized into
intra-graph FGL and inter-graph FGL [65]. Inter-graph FGL approaches such as GCFL+ [59] and
FedGNN [56] consider settings where clients possess disjoint graphs, such as molecular graphs or
independent social networks, and focus on training separate graph models for each client. In contrast,
intra-graph FGL assumes that each client holds a subgraph of a globally connected graph, with
methods such as FedSSP [50] and FGGP [52] aiming to aggregate local updates while maintaining
connectivity. However, these approaches struggle to capture fine-grained structural variations and
cross-client dependencies. Moreover, their dependence on iterative communication leads to high costs.
To address these issues, we propose a one-shot FGL approach that removes iterative communication
while preserving fine-grained structural knowledge through a novel hierarchical knowledge distillation
framework, thereby improving model generalization.

One-shot Federated Learning. One-shot Federated Learning (OFL) is a paradigm that reduces com-
munication overhead by limiting the number of communication rounds to one, making it particularly
advantageous for resource-constrained and privacy-sensitive environments [12, 34]. Unlike traditional
federated learning methods that require multiple iterative updates [38, 28], OFL eliminates prolonged
client-server interactions, significantly reducing latency and computational overhead. Several recent
methods seek to enhance OFL through generative modeling techniques, such as FedDEO [61] and
Dense [66], or ensemble-based strategies, such as FuseFL [51] and FENS [1]. Additionally, knowl-
edge distillation techniques have been introduced to facilitate more effective cross-client knowledge
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transfer in OFL, as seen in FedDF [33] and FedGEMS [6]. However, existing OFL methods fail to
effectively capture local semantics and fine-grained structural variations in federated graph learning.
Consequently, we introduce a Synergy Graph Synthesizer to align global features while preserving
large-scale structures and a Topological Codebook to model neighborhood variations, improving
graph representation in one-shot FGL.

Knowledge Distillation. Knowledge Distillation (KD) is widely utilized for model compression
and knowledge transfer [16], allowing smaller models to perform comparably to larger models while
reducing computational demands. In federated learning, methods such as FD-FAug [21, 60] extend
KD techniques to address non-independent and identically distributed (non-IID) data. Similarly, KD
has been leveraged in OFL, preserving knowledge transfer, where clients distill local knowledge into
a compact representation for global aggregation. Existing OFL distillation methods can be classified
into data-based and model-based distillation [34]. Data-based approaches, including DOSFL [71],
FedD3 [48], and FedSD2C [67], utilize synthetic data to transfer knowledge across clients. Conversely,
model-based distillation methods transfer knowledge through latent feature compressions, such as
Dense [66] and FedCVAE [15]. However, existing methods fail to preserve intricate graph structures,
while traditional KD techniques weaken inter-class semantic affinities, limiting their effectiveness
in heterogeneous FL. Thus, this study introduces a Hierarchical Wasserstein-based Distillation
framework that aligns semantic affinities and preserves structural dependencies, facilitating efficient
and privacy-preserving knowledge transfer.

D Dataset Details.

To assess the effectiveness of , we conduct experiments on eight real-world graph datasets: Cora,
CiteSeer, PubMed, Amazon-Photo, CoAuthor-CS, Actor, Roman-Empire, and Ogbn-Arxiv. Each
dataset is split into training, validation, and test sets in a fixed 20%/40%/40% ratio. The key statistics
of these datasets are summarized in Tab. 3. A detailed description is provided below:

• Cora, CiteSeer, and PubMed. These three citation network datasets are standard benchmarks in
graph-based machine learning, especially for tasks like node classification and link prediction. In
these datasets, nodes correspond to academic papers, while edges represent citation links. Each
node is assigned a class label, and its feature vector is constructed from textual information such as
words in the title or abstract. These datasets exhibit sparsity and high dimensionality, making them
well-suited for evaluating the effectiveness and scalability of graph neural networks (GNNs).

• Amazon-Photo. This dataset is built from the Amazon product catalog, where nodes represent
product images and edges indicate co-purchase relationships. Each photo is categorized into a
specific class, and node features are derived from image metadata. Amazon-Photo serves as a
benchmark for testing graph-based learning models in visual domains.

• CoAuthor-CS. This dataset represents a co-authorship network in the field of computer science,
where nodes correspond to research papers, and edges denote co-authorship relations. Each paper
is associated with a topic category, and features are extracted from the paper’s title and abstract.
This dataset is commonly used to evaluate node classification and community detection algorithms.

• Actor. The Actor dataset is a heterophilic graph where nodes represent actors, and edges indicate
their co-occurrence on the same Wikipedia page. Node features are derived from textual descrip-
tions, and classification is performed based on predefined actor categories. This dataset presents
unique challenges due to its structural differences from traditional citation networks.

• Roman-empire. The Roman-empire dataset captures historical relationships in an ancient setting,
where nodes correspond to different entities, and edges represent interactions between them.
The dataset is particularly useful for studying graph-based algorithms in non-traditional network
structures, offering a distinct perspective on real-world graph learning.

• Ogbn-Arxiv. This large-scale citation network is constructed from arXiv papers, where nodes
represent papers and edges capture citation links. Each paper belongs to a specific subject category,
including physics, computer science, and mathematics. Node features are extracted from paper
abstracts. Ogbn-Arxiv is widely used for benchmarking GNNs due to its diversity and scale.

E Counterpart Details.

This section provides a comprehensive overview of the baseline approaches employed in our study.
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Table 3: Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Classes #Features
Cora 2,708 5,278 7 1,433

Citeseer 3,327 4,552 6 3,703
Pubmed 19,717 44,324 3 500

Amz-Photo 7,650 287,326 8 745
Coauthor-CS 18,333 327,576 15 6,805

Actor 7600 30,019 5 932
Roman-empire 22,622 65,854 18 300

Obgn-Arxiv 169,343 1,166,243 40 128

• FedAvg [ASTAT17]. A foundational algorithm in Federated Learning, FedAvg operates by allowing
clients to independently train models on their local datasets and subsequently transmit their model
updates to a central server. The server performs a weighted aggregation of these updates to
refine the global model, which is then redistributed to the clients for further local training. By
transmitting only model parameters instead of raw data, FedAvg reduces communication costs and
enhances privacy. However, it struggles with performance degradation in scenarios where client
data distributions are highly non-IID [29, 39].

• FedProx [MLSys20]. As an enhancement of FedAvg, FedProx is specifically designed to address
the challenges posed by statistical heterogeneity in federated learning. It introduces an additional
regularization term that constrains local updates, preventing excessive divergence from the global
model. This proximal term mitigates the impact of local data distribution shifts, leading to more
stable convergence. By ensuring consistency in updates across clients, FedProx demonstrates
improved robustness in non-IID settings.

• FedNova [NeurIPS20]. FedNova refines the FedAvg framework by introducing normalization to
local updates before aggregation. Unlike standard averaging methods, FedNova ensures that each
client’s contribution to the global model is proportional to the amount of data it possesses. This
approach addresses the issue of unequal client influence, leading to more balanced and efficient
convergence. FedNova is particularly beneficial in federated environments where data distributions
are skewed across clients.

• FedRCL [CVPR24]. FedRCL incorporates contrastive learning to improve federated learning
performance under data heterogeneity [63, 53]. It examines inconsistencies in gradient updates
across clients and attributes them to variations in feature distributions. To counteract this, FedRCL
employs a contrastive regularization strategy that penalizes overly similar samples within a class,
ensuring diverse and transferable feature representations. This approach enhances collaborative
learning among clients and leads to notable performance improvements.

• FedPub [ICML23]. Unlike traditional FL methods that focus on training a single global model, Fed-
Pub adopts a personalized approach by facilitating the interaction of local Graph Neural Networks
(GNNs). It employs functional embeddings to quantify similarity between client models, enabling
an adaptive weighted aggregation at the server. Furthermore, a sparse mask mechanism allows
clients to selectively update subgraph-relevant parameters, improving both privacy preservation
and learning efficiency in heterogeneous graph scenarios.

• FGSSL [IJCAI23]. FGSSL addresses local client distortion caused by both node-level semantics
and graph-level structures. It improves discrimination by contrasting nodes from different classes,
aligning local nodes with their global counterparts of the same class while pushing them away
from different classes. To handle structural information, it transforms adjacency relationships
into similarity distributions and distills relational knowledge from the global model into local
models. This approach preserves both structural integrity and discriminability, achieving superior
performance on multiple graph datasets.

• FedTAD [IJCAI24]. Designed to address subgraph heterogeneity in federated learning, FedTAD de-
composes variations in local graphs into differences in label distributions and structural homophily.
By analyzing these discrepancies, it prevents misleading model aggregation, which can occur
when local models contribute inconsistently. The framework enhances knowledge transfer through
topology-aware knowledge distillation, improving both reliability and aggregation efficiency in FL
settings.

• FedGTA [VLDB24]. FedGTA is tailored for large-scale graph federated learning, tackling issues of
slow convergence and suboptimal scalability. Unlike prior methods that focus on either optimization
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strategies or complex local models, FedGTA integrates topology-aware local smoothing with mixed
neighbor feature aggregation to improve learning efficiency [72]. By leveraging graph structures in
aggregation, it enhances scalability and performance in federated graph learning.

• DENSE [NeurIPS22]. A framework designed to overcome limitations of conventional one-shot FL,
DENSE eliminates the need for additional auxiliary datasets or model information by employing
a two-stage learning process. It first synthesizes data representations and then applies model
distillation to refine the global model. This approach ensures that a federated model can be
effectively trained in a single round of communication while accommodating heterogeneous client
architectures.

• FedCVAE [ICLR23]. A data-free one-shot FL method, FedCVAE utilizes a Conditional Varia-
tional Autoencoder (CVAE) [8, 24, 23] to improve generalization under statistical heterogeneity.
The approach reframes local learning objectives, allowing effective global aggregation despite
distribution disparities. An extended variant, FedCVAE-KD, incorporates knowledge distillation
[11] to consolidate local decoders into a unified global model. FedCVAE outperforms traditional
baselines, particularly in highly heterogeneous settings.

• FedSD2C [NeurIPS24]. FedSD2C is a novel one-shot FL framework that mitigates performance
degradation caused by data heterogeneity. It leverages a distillation-based strategy to synthesize
informative data representations directly from local distributions, bypassing the inconsistency
issues present in conventional model aggregation. By sharing distilled representations instead of
raw model updates, FedSD2C enhances knowledge transfer and ensures greater consistency across
federated clients.

• FENS [NeurIPS24]. FENS is a novel approach to OFL that aims to bridge the accuracy gap between
standard federated learning (FL) and OFL while maintaining high communication efficiency. FENS
employs a two-phase learning process: first, clients train local models and send them to the server,
as in OFL; second, clients collaboratively train a lightweight prediction aggregator using FL.
Extensive experiments demonstrate that FENS achieves performance close to FL while preserving
the efficiency of OFL.

F Implementation Details.

The experiments are conducted using NVIDIA GeForce RTX 3090 GPUs as the hardware platform,
coupled with Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz. The deep learning framework employed
was Pytorch, version 2.3.1, alongside CUDA version 12.1. We adopt a two-layer GCN as the
backbone, with a hidden layer size of 128. Moreover, we utilize 3 hidden linear layers and a
projection head as the synergic graph synthesizer which concats random noise and one-hot label as
the input and generates pseudo features as the output. We set K = 10 clients and draw pk ∼ Dir(α)
from a Dirichlet distribution [40] and assign a fraction pck of class c to client k. As for optimization
of the graph synthesizer, Adaptive Moment Estimation (Adam) was chosen, featuring a learning
rate of 5e − 3 and a weight decay of 4e − 4. The codebook size is set in the range {26, 27, 28},
with the same optimizer and learning parameter. At the local training phase, we set the training
epoch TS of the synthesizer to 100 and epoch TC of the teacher GNN and the codebook to 50. λd

and λf are determined through a grid search [32] within {0.01, 0.05, 0.1, 0.5} and {0.1, 0.2, 0.5, 1}
respectively. η, λo are set as 0.25, 0.01 and λc is set to 1. To make sure that LFGW is on the same
scale as other loss functions for Amz-Photo and Ogbn-Arxiv datasets, we set their λf scales to 1e− 5
and 1e− 7, respectively. We set a in LFGW as 0.5 to balance the feature part and the structure part.
The communication round is limited to one. At the server side, we determine the global distilling
epoch in the range {10, 20, 30} and adopt Adam as the optimizer for the global model with a learning
rate of 1e− 2 and a weight decay of 4e− 4. The synthesized graphs generated by the synthesizer
of each client have the same scale N̂k as the corresponding local subgraph. For the large graph
Ogbn-Arxiv, we set TC to 1 and N̂k to one-tenth of the local graph. Moreover, λk, κ is set to 0.01, 1
and λs is determined in range {1, 5, 10}. The distillation temperature τ is set to 3 for all datasets.

G Ablation Study on Different Numbers of Clients.

In this section, we vary the number of clients in {5, 10, 20} and conduct the node classification task
on CiteSeer, Amazon-Photo. Experimental Results are shown in Tab. 4. From the table, we can
observe that our OASIS outperforms all counterparts with different numbers of clients, demonstrating
the stability of OASIS across various data distributions and subgraph scales. As we simulate a highly
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Table 4: Comparison with the state-of-the-art methods with different numbers of clients. We report node
classification accuracies (%) for downstream task performance. Green arrows ↑ denote advancements in accuracy
metrics than FedAvg while red arrows ↓ indicate regressions. OOM means out-of-memory error. The best and
second results are highlighted with bold and underline, respectively.

Datasets (→) CiteSeer Amazon-Photo
Category Methods (↓) 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients

FL

FedAvg [ASTAT17] 35.43 32.88 38.13 49.93 23.12 21.79

FedProx [MLSys20] 40.32↑4.89 35.73↑2.85 39.39↑1.26 46.54↓3.39 24.16↑1.04 23.58↑1.79

FedNova [NeurIPS20] 18.43↓17.00 18.58↓14.30 16.17↓21.96 9.69↓40.24 6.15↓16.97 8.57↓13.22
FedRCL [CVPR24] 15.88↓19.55 12.73↓20.15 7.05↓31.08 21.80↓28.13 4.92↓18.20 10.69↓11.10

FGL

FedPub [ICML23] 20.07↓15.36 34.91↑2.03 32.27↓5.86 42.00↓7.93 21.91↓1.21 21.76↓0.03
FGSSL [IJCAI23] 20.82↓14.61 21.95↓10.93 34.79↓3.34 41.64↓8.29 13.06↓10.06 22.28↑0.49
FedGTA [VLDB24] 16.93↓18.50 17.75↓15.13 15.73↓22.40 5.39↓44.54 4.10↓19.02 6.17↓15.62
FedTAD [IJCAI24] 19.25↓16.18 33.86↑0.98 28.34↓9.79 25.29↓24.64 22.01↓1.11 21.57↓0.22

OFL

DENSE [NeurIPS22] 7.64↓27.79 7.87↓25.01 7.06↓31.07 4.96↓44.97 4.93↓18.19 4.90↓16.89
FedCVAE [ICLR23] 40.33↑4.90 34.76↑1.88 18.10↓20.03 52.39↑2.54 31.62↑8.50 24.87↑3.08

FedSD2C [NeruIPS24] 20.97↓14.46 29.96↓2.92 23.66↓14.47 11.75↓38.18 8.73↓14.39 23.38↑1.59
FENS [NeruIPS24] 21.50↓13.93 20.97↓11.91 17.95↓20.18 22.26↓27.67 25.30↑2.18 25.53↑3.74

OFGL OASIS 40.45↑5.02 45.69↑12.81 47.92↑9.79 71.18↑21.25 63.73↑40.61 54.11↑32.32

non-IID scenario using a Dirichlet distribution with a small concentration parameter α = 0.05,
increasing the number of clients may lead to situations where some clients possess very limited data
or even no training samples at all, which does not fully align with real-world settings. Nevertheless,
as shown in Tab. 4, OASIS consistently maintains a stable and effective performance trend, even
under the presence of a larger number of clients.

H Performance of OASIS under moderate or mild heterogeneity

To demonstrate the performance of OASIS under moderate or mild heterogeneity (or even i.i.d. data),
we have conducted additional experiments with varying levels of data heterogeneity. Specifically,
we evaluate the performance of OASIS under different values of the Dirichlet distribution parameter
α ∈ {1, 10, 100, 1000, 10000} to simulate a range of heterogeneity scenarios. These experiments are
performed on the Cora dataset, and we adopt FedAvg, FedPub, FedCVAE and FedGCN(1-hop &
2-hop) for comparison. Notably, when α=10000, the data distribution approximates an i.i.d. setting.

Table 5: Performance of OASIS under milder heterogeneity (or even i.i.d.) scenarios.
α 1 10 100 1000 10000
FedAvg 49.50 56.23 57.93 57.84 45.11
FedPub 39.87 44.96 60.13 52.70 58.55
FedCVAE 60.45 56.50 59.58 55.27 56.63
FedGCN (1-hop) 52.06 41.39 50.60 51.97 56.91
FedGCN (2-hop) 58.66 52.11 55.82 57.56 61.76
OASIS 63.15 75.64 76.35 69.11 68.44

As shown Tab. 5, OASIS consistently outperforms the existing methods across various heterogeneity
levels, including strong, moderate, mild, and even i.i.d. conditions. The advantage of OASIS remains
robust even as the heterogeneity decreases, demonstrating that its performance is not diminished by
a shift towards more homogeneous data. We will ensure that this additional experimental result is
included in the revision.

The reason we choose to focus on strong heterogeneity in our experiments is that, in real-world
scenarios, non-uniform data distribution is more prevalent and presents a greater challenge. We aim
to showcase that OASIS not only performs well in typical i.i.d. and mild heterogeneity settings but
also excels in more challenging scenarios with high heterogeneity.
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I Performance of OASIS on other prominent GNN models

To demonstrate the performance of OASIS on other GNN models, we conducted experiments on the
Cora and CiteSeer datasets using GAT and GraphSAGE respectively. We compare OASIS against
five baselines. Results are shown in Tab. 6.

Table 6: The performance of OASIS on GAT and GraphSAGE.
Methods Cora-GAT Cora-GraphSAGE CiteSeer-GAT CiteSeer-GraphSAGE
FedAvg 30.98 29.88 30.49 37.23
FedProx 31.71 29.97 27.94 39.40
FGSSL 29.79 27.45 20.52 20.22
FedCVAE 29.61 25.94 22.05 23.52
FENS 29.70 29.88 21.05 21.50
OASIS 42.62 39.96 38.73 44.87

From the table, we can observe that our OASIS consistently outperforms other baselines in both GAT
and GraphSAGE backbones, demonstrating the capability of OASIS to generalize to other prominent
GNN models.

J Mathematical Analysis of OASIS

Here we provide a thorough analysis on the mathematical bound on information retention of the
synthesizer and the impact of global distillation.

J.1 Mathematical Bound on Information Retention

Let Gl = (Vl, El, Xl) be the local graph, where Vl is the node set, El the edge set, and Xl ∈ R|Vl|×d

the node feature matrix. The synthesized graph is Gs = (Vs, Es, Xs), with Xs ∈ R|Vs|×d and
adjacency matrix As. The goal is to ensure that Gs preserves the critical information in Gl, including
node feature distributions and topological structures.

To quantify the retention of critical information, we derive a bound on the divergence between the
local graph Gl ∼ Dl and the synthesized graph Gs ∼ Ds, using the Synthesizer’s loss as a proxy. We
measure the divergence between their distributions using a combined metric that accounts for both
feature and topological differences.

Step 1: Feature Distribution Divergence. The KL divergence loss Ldist = DKL(PXs
∥PXl

) directly
measures the feature distribution mismatch. By Pinsker’s inequality, the total variation distance is
bounded by:

δTV(PXs , PXl
) ≤

√
1

2
DKL(PXs∥PXl

) =

√
1

2
Ldist.

Assuming Ldist ≤ ϵd, the feature distributions are close in total variation:

δTV(PXs , PXl
) ≤

√
ϵd
2
.

Step 2: Feature and Topological Alignment via FGW. The Fused Gromov-Wasserstein loss Lfgw
bounds the combined feature and topological mismatch. The FGW distance can be decomposed as:

Lfgw = FGW(Gl,Gs) = αW 2
2 (PXl

, PXs
) + (1− α)GW(Al, As),

where W 2
2 is the squared 2-Wasserstein distance between feature distributions, and GW is the

Gromov-Wasserstein distance between structures. Assuming Lfgw ≤ ϵf , we have:

αW 2
2 (PXl

, PXs
) + (1− α)GW(Al, As) ≤ ϵf .
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Since both terms are non-negative, we get:

W2(PXl
, PXs

) ≤
√

ϵf
α
, GW(Al, As) ≤

ϵf
1− α

.

The Wasserstein distance further bounds the feature distribution divergence, and the Gromov-
Wasserstein distance bounds the structural discrepancy.

Step 3: Feature Diversity. The cosine similarity loss Lspread ensures that the synthesized features do
not collapse. We assume Lspread ≥ −η, where η > 0 is a constant reflecting sufficient feature spread.
This prevents degenerate solutions where Xi

s ≈ Xj
s for all i, j.

Step 4: Combined Bound. To derive a bound on the overall divergence between Dl and Ds, we
consider a joint metric that combines feature and topological differences. Define a graph divergence
metric:

∆(Gl,Gs) = W2(PXl
, PXs

) + GW(Al, As).

From the FGW loss:

∆(Gl,Gs) ≤ W2(PXl
, PXs

) + GW(Al, As) ≤
√

ϵf
α

+
ϵf

1− α
= ϵf

(√
1

α
+

1

1− α

)
.

The KL divergence provides an additional constraint on features. Combining with Pinsker’s inequality,
the total variation distance on features is:

δTV(PXs
, PXl

) ≤
√

ϵd
2
.

Since Wasserstein and total variation distances are related (e.g., via transport inequalities in bounded
spaces), we focus on the FGW-based bound for simplicity, as it captures both features and topology.

Theorem 1. Assuming the Synthesizer’s loss is bounded as Lsyn ≤ ϵ, with Ldist ≤ ϵd, Lfgw ≤ ϵf , and
Lspread ≥ −η, the divergence between the local and synthesized graph distributions is bounded as:

∆(Dl,Ds) ≤ ϵf

(√
1

α
+

1

1− α

)
+

√
ϵd
2
,

where ∆(Dl,Ds) = EGl∼Dl,Gs∼Ds [W2(PXl
, PXs) + GW(Al, As)].

Proof. The total synthesis loss is:

Lsyn = Lspread + λdLdist + λfLfgw ≤ ϵ.

Since Lspread ≥ −η, we have:

λdLdist + λfLfgw ≤ ϵ+ η.

Assume Ldist ≤ ϵd, Lfgw ≤ ϵf , with λdϵd + λf ϵf ≤ ϵ + η. The feature divergence is bounded via
Pinsker’s inequality:

δTV(PXs , PXl
) ≤

√
ϵd
2
.

The FGW loss bounds the combined feature and topological divergence:

αW 2
2 (PXl

, PXs
) + (1− α)GW(Al, As) ≤ ϵf .
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Thus:

W2(PXl
, PXs

) ≤
√

ϵf
α
, GW(Al, As) ≤

ϵf
1− α

.

The total divergence is:

∆(Dl,Ds) ≤ E [W2(PXl
, PXs) + GW(Al, As)] ≤

√
ϵf
α

+
ϵf

1− α
.

Incorporating the feature distribution bound from Ldist, we add the total variation term for complete-
ness, yielding:

∆(Dl,Ds) ≤ ϵf

(√
1

α
+

1

1− α

)
+

√
ϵd
2
.

This bound quantifies the retention of critical information: a small ϵf and ϵd ensure that the synthe-
sized graph’s feature and topological distributions are close to those of the local graph.

The divergence between the local and synthesized graph distributions is bounded by:

∆(Dl,Ds) ≤ ϵf

(√
1

α
+

1

1− α

)
+

√
ϵd
2
,

where ∆(Dl,Ds) combines feature and topological differences. This bound rigorously quantifies the
retention of critical information, ensuring that the synthesized graph effectively captures the local
graph’s semantic and structural properties when ϵd and ϵf are small.

J.2 Impact on Global Model Generalization

The retention of critical information and the distillation mechanisms directly influence the generaliza-
tion performance of the global model. Our OASIS employs two distillation mechanisms to transfer
local knowledge to the global model:

• WESAD: Transfers inter-class semantic relationships.
• WDSRD: Transfers fine-grained topological structures.

Generalization Bound. To quantify the impact on generalization, we derive a bound on the global
model’s expected error using the Rademacher complexity framework, adapted for federated graph
learning.

Let Dl denote the local data distribution for client l, and Ds the distribution of the synthesized data.
The global model fg ∈ F (a hypothesis class of graph neural networks) is trained on synthesized
data to minimize the empirical risk:

R̂s(fg) = EDs [ℓ(fg(Gs), y)],

where ℓ is the loss function (e.g., cross-entropy), and y is the label. The true risk is:

R(fg) = EDl
[ℓ(fg(Gl), y)].

The generalization gap is R(fg)−R̂s(fg). Assuming the synthesized graph retains critical information
(i.e., W1(Dl,Ds) ≤ ϵ), we bound the generalization error using the Wasserstein distance and
Rademacher complexity.

Theorem 2. For a hypothesis class F with Rademacher complexity Rn(F) over n samples, and
assuming the loss function ℓ is L-Lipschitz, the expected generalization error of the global model is
bounded as:
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E[R(fg)] ≤ R̂s(fg) + 2LRn(F) + Lϵ+ C

√
log(1/δ)

n
,

with probability at least 1− δ, where ϵ = W1(Dl,Ds) is the Wasserstein distance between local and
synthesized distributions, and C is a constant.

The term Lϵ quantifies the impact of information retention: if ϵ is small (i.e., the synthesized graph
closely matches the local graph), the generalization error is tightly bounded.

Proof. By the Wasserstein distance property, the difference in expected loss is bounded:

|EDl
[ℓ(fg(Gl), y)]− EDs [ℓ(fg(Gs), y)]| ≤ LW1(Dl,Ds) = Lϵ.

Using standard generalization bounds for empirical risk minimization:

E[R(fg)] ≤ R̂s(fg) + 2Rn(F) + C

√
log(1/δ)

n
.

Combining these, we obtain:

E[R(fg)] ≤ R̂s(fg) + 2LRn(F) + Lϵ+ C

√
log(1/δ)

n
.

K Sensitivity

To address Q3, we conduct analyses on hyperparameters of OASIS. Specifically, we compare the
model performance under different values of temperature τ and λc. We vary τ and λc in range [1, 4]
and [0.25, 1] with 1 and 0.25 as the step size respectively. Moreover, as for the Topology Codebook,
we vary η and λo in range [0.2, 0.4] and [0.01, 0.05] with 0.05 and 0.01 as the step size. Results
shown in Figure 4 demonstrate that the performance of OASIS stays consolidated under different
hyperparameter values, proving the robustness of OASIS.

L Privacy Security

L.1 How to prevent malicious attackers from stealing communication data?

Privacy security plays a crucial role in FGL systems. In Sec. 3.2, we propose a novel Synergy Graph
Synthesizer Qφ′ to generate powerful synthesized graphs with labels and Gaussian noise ϵ. For
simplicity, a standard normal distribution is typically utilized, where the center Ω is set to 0. However,
we introduce a shift ς to the center Ω at the client side and communicate ς to the server either offline
or through encryption methods [15, 70]. We consider the worst-case scenario where an eavesdropping
attacker intercepts all the parameters. However, without knowledge of the specific shift ς , the attacker
can only utilize the original center Ω̂, which is distant from the true center (Ω + ς). Alternatively, the
attacker might attempt to overlap the center using a wide uniform distribution.

To simulate these situations, we first set the original noise distribution center Ω = 0 with shift ς
varies in {30, 60, 90} while the attacker still takes Ω̂ = 0. We conduct all experiments here on the
node classification task with the knowledge distillation part excluded to explicitly demonstrate the
influence of the generated data. Results are shown in Figure 6a. From the bar chart, we can observe
that the model performance sharply declined by 60%, proving that the data generated with center Ω̂
are totally different from local data. Moreover, to simulate the overlapping attempt, we set Ω+ ς = 0
and the overlap range in {U(−100, 100),U(−200, 200),U(−300, 300)} and conduct the experiment
in the same setting. Results are shown in Figure 6b, with the same phenomenon observed. Therefore,
we prove the security of data privacy of our OASIS.
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(a) Shifted Center (b) Overlap Attempt
Figure 6: Privacy Study of OASIS. Original here means the server generates the graphs with the same
distribution center as clients. For an in-depth analysis, please refer to Appendix L.1.

L.2 How to prevent a curious server from inspecting client privacy?

Although we design an encrypted shift ς for the distribution center Ω, a curious server can still utilize
the correct distribution to synthesize data. However, the true local data information remains protected
and is not exposed to the server, due to the following reasons:

(1) Discrepancy in Label Distributions. In practical FGL scenarios, the label distribution across
clients is typically highly non-identical. In our experiments, we simulate an extremely non-IID setting
by sampling labels from a Dirichlet distribution with concentration parameter α = 0.05. Importantly,
clients do not transmit their actual label distribution to the server. Instead, the data synthesis is
conducted under the assumption of a uniform label distribution ŷuni (Sec. 3.3). Consequently, the
overall label distribution of the synthesized graph on the server deviates significantly from that of any
individual client, thereby mitigating the risk of direct data leakage.

(2) Structural Dissimilarity of Nodes. Even for synthesized nodes that share the same label as
some local data, their structural context (e.g., neighborhood connectivity) is distinct. As described
in Equation (5), each node in the synthesized graph is connected to its five most similar nodes
based on feature similarity. This fixed K-nearest-neighbor (KNN) construction introduces structural
differences compared to the true graph topology of local data. Although our alignment module
(Appendix B) encourages the preservation of structural semantics via LFGW, it does not enforce strict
local topological isomorphism. Therefore, structural privacy is preserved to a considerable degree.

(3) Feature Perturbation via Two-Fold Consistency Mechanism. The synthesizer is trained with a
two-fold consistency objective Lsyn involving both feature and structure alignments (Equation (24)).
This objective steers the optimization away from directly replicating raw node features. As a result,
even nodes with the same labels as in local data will exhibit distinct feature representations in the
synthesized graph.

In summary, privacy preservation in our framework is inherently balanced with the learning objectives
of the Synergy Graph Synthesizer. Through the structural regularization from the KNN construction
and the two-fold consistency mechanism, we ensure that the synthesized data avoids leaking sensitive
client information, while still capturing high-level latent knowledge required for effective global
model learning. This design satisfies the fundamental goals of federated graph learning.

M Discussion on Limitations.

While OASIS achieves notable success in efficiently capturing fine-grained structural knowledge of
local graphs and effectively transfer the knowledge during server distillation in the one-shot scenario,
it still has inherent limitations as a sythesizer-based method [49]. In particular, the presence of noise
in local data [22] can impair the ability of the synthesizer to effectively extract and learn local-specific
patterns, which may in turn impede the distillation module. Improving the robustness of the Synergy
Graph Synthesizer against such noise interference [35, 26] remains a promising direction for future
work.

N Discussion on Broader Impacts

Our proposed OASIS framework contributes to the broader field of FGL by enabling more efficient
and privacy-preserving collaboration across decentralized graph datasets, especially under stringent
communication constraints. By introducing domain-specific generative strategies and novel structural
distillation techniques, OASIS opens new possibilities for applying OFL to graph-structured data such
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as social networks, biomedical graphs, and knowledge graphs, where data are inherently sensitive
and dispersed. This advancement can benefit applications involving privacy-critical domains like
healthcare, finance, and cybersecurity, empowering institutions to jointly learn high-quality models
without exposing private graph data. As FL technologies become more widely adopted, continued
attention to the ethical implications of synthetic data generation and the interpretability of structural
knowledge transfer will be essential to fostering responsible AI deployment.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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