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Abstract
The factual knowledge of LLMs is typically001
evaluated using accuracy, yet this metric does002
not capture the vulnerability of LLMs to003
hallucination-inducing factors like prompt and004
context variability. How do we evaluate the005
capabilities of LLMs to consistently produce006
factually correct answers? In this paper, we pro-007
pose MOdel kNowledge relIabiliTy scORe008
(MONITOR), a novel metric designed to di-009
rectly measure LLMs’ factual reliability. MON-010
ITOR is designed to compute the distance be-011
tween the probability distributions of a valid012
output and its counterparts produced by the013
same LLM probing the same fact using dif-014
ferent styles of prompts and contexts. Experi-015
ments on a comprehensive range of 12 LLMs016
demonstrate the effectiveness of MONITOR017
in evaluating the factual reliability of LLMs018
while maintaining a low computational over-019
head. In addition, we will release the FKTC020
(Factual Knowledge Test Corpus) to foster re-021
search along this line.022

1 Introduction023

Recently, large pre-trained language models024

(LLMs) have been used as de facto storage for025

factual knowledge (Petroni et al., 2019). However,026

applying LLMs to real-world scenarios inevitably027

leads to language generation deviating from known028

facts (aka “factual hallucination” (Chang et al.,029

2023)) due to multiple causes. For example, Cao030

et al. (2021) argued that the performance of an031

LLM is over-estimated due to biased prompts over-032

fitting datasets (also referred to as the framing ef-033

fect in Jones and Steinhardt (2022)) and in-context034

information leakage.035

Given the variability of LLMs’ performance un-036

der different prompts and contexts, it becomes evi-037

dent that relying solely on accuracy as an evalua-038

tion metric is insufficient. We also need to gauge039

how robust LLMs are to variations in prompting.040

In Figure 1 we show examples of factual probes041

where either the framing of the prompt, or the con- 042

text to the prompt, is varied, leading to the issue of 043

“accuracy instability”. 044

(a) Prompt framing effect

(b) Effect of in-context interference

Figure 1: “Accuracy instability” during language gener-
ation under various prompts.

Prompt framing effect: An LLM generates dif- 045

ferent predictions depending on how prompts are 046

framed. Predictions are associated with prompts 047

instead of factual knowledge learned in LLMs. 048

As shown in Figure 1(a), for a fact represented 049

in a triplet <Cunter, is located in, Switzerland>, 050

the generated predictions for re-framed prompts 051

“Which country is Cunter situated?” and “Cunter 052

is located in Switzerland. True or False?” are 053

non-factual. 054

Effect of in-context interference: An LLM 055

leverages in-context information during its decod- 056

ing stage, but this information may negatively af- 057

fect an LLM’s prediction during knowledge prob- 058

ing. As shown in Figure 1(b), for the same fact, 059

when presented with a context “England.” concate- 060

nated with the prompting question “Which country 061

is the location of Cunter?”, an LLM generates a 062

non-factual prediction “England”. 063

How do we assess the reliability of factual 064

knowledge of LLMs under the effects of these 065

hallucination-inducing factors? Investigations into 066

the behaviors of language models during knowl- 067

edge probing (Petroni et al., 2019; Kassner and 068
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Schütze, 2020; Gupta, 2023) have mainly used met-069

rics like precision and accuracy to quantify errors070

under a specified factor like prompt framing (Jones071

and Steinhardt, 2022) or mis-primed information072

(Kassner and Schütze, 2020). Despite the insights073

gained by showing the instability of LLMs during074

knowledge probing, these studies are subject to two075

limitations:076

Figure 2: The same top-1 answer with different output
probabilities from two LLMs.

No Exploration of Uncertainty. Metrics like077

top-one accuracy may capture the ordering of pre-078

dictions in the output space, but they lack the reso-079

lution to reflect on the degree of factual knowledge080

being learned by LLMs. Figure 2 depicts an ex-081

ample where two LLMs (Models A and B) may082

produce the same result even though their output083

probabilities vary. By equating the performance of084

Model A with that of Model B, one introduces a085

level of approximation in representation, which086

can be regarded as a source of uncertainty. In087

this paper, we directly use the output probabilities088

and construct a high-resolution metric to perform089

knowledge assessment.090

Limited Scope. Previous works focus on under-091

standing the effect of variability of a specific type.092

We design experiments to investigate the combined093

effects of multiple causes of accuracy instability:094

prompt framing and in-context interference during095

knowledge assessment. In addition, few studies096

have experimented on LLMs with billions of pa-097

rameters. In contrast, we investigate the knowledge098

reliability of 12 freely downloadable LLMs with099

a range of parameter sizes and origins (with and100

without instruction fine-tuning).1101

In this paper, we propose a novel distance-102

based approach MOdel kNowledge relIabiliTy103

scORe (MONITOR) which captures the deviation104

of output probability distributions under contexts of105

prompting variance, interference from mispriming106

(Kassner and Schütze, 2020) and positively-primed107

1Only freely downloadable LLMs are used as we need to
access to the output probability distributions.

prompts. 108

We perform experiments on a comprehensive 109

set of knowledge probing tasks and investigate the 110

effectiveness of MONITOR in assessing LLMs’ 111

factual reliability. Through experiments with a 112

large variety of different facts, we show that a 113

lower-MONITOR LLM is less likely to suffer from 114

“accuracy instability” issue. Computing MON- 115

ITOR takes only one-third GPU hours of those 116

consumed by a comprehensive accuracy reliability 117

study, making MONITOR a low-cost metric for 118

assessing factual knowledge reliability of LLMs. 119

Our contributions are: 120

1. We propose a novel method to assess the 121

factual reliability of LLMs in the presence 122

of the prompt framing effect and in-context 123

interference. The proposed metric, MON- 124

ITOR, can be used in conjunction with an 125

end-to-end metric (i.e., accuracy) as part of a 126

multi-dimensional approach to LLM knowl- 127

edge evaluation. 128

2. We construct the FKTC (Factual Knowledge 129

Test Corpus) by developing question answer- 130

ing probing prompts (210,171 prompts in to- 131

tal) based on 16,167 triplets of 20 fact datasets 132

from T-REx corpus (Elsahar et al., 2018). We 133

will release FKTC to the public to foster re- 134

search works along this line. 135

2 Related Work 136

Petroni et al. (2019) demonstrated that factual 137

knowledge can be directly extracted from lan- 138

guage models without needing an external knowl- 139

edge source. However, extracting knowledge (aka 140

knowledge probing) from language models is error- 141

prone due to various biases. For example, Elazar 142

et al. (2021) showed that the consistency of knowl- 143

edge extracted is generally low when the same fact 144

is queried with different prompts. Many works 145

in prompt engineering attempt to automatically 146

construct prompts outperforming manual prompts 147

(Shin et al., 2020; Jiang et al., 2020; Zhou et al., 148

2023; Kojima et al., 2022). Cao et al. (2021) argued 149

that the decent performance of a language model is 150

ascribed mainly to the application of these biased 151

prompts, in other words “better” prompts are found 152

to over-fit the answer distribution of the test set in- 153

stead of reflecting on LLMs’ generalization ability 154

to predict factual knowledge. 155

LLMs are sensitive to in-context information. 156

Kassner and Schütze (2020); Gupta (2023) showed 157
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that language models fail on most negated probes158

and are easily misled by misprimes added to the159

probing context. On the other hand, Zhao et al.160

(2021); Si et al. (2023); Webson and Pavlick (2022)161

found the presence of context biases in few-shot162

probing results. The works mentioned above fo-163

cused on pinpointing issues affecting LLMs’ fac-164

tual prediction. Few studies were motivated to165

develop evaluation approaches insensitive to the166

hallucination-inducing causes. Recently, Raj et al.167

(2023) presented a framework for evaluating the168

consistency of LLMs based on accuracy. Zhu et al.169

(2023) designed a benchmark for assessing the ro-170

bustness of LLMs to adversarial instruction attacks,171

measuring the corresponding end-to-end perfor-172

mance drops. Dong et al. (2023) proposed a new173

metric to measure factual knowledge capability un-174

der the bias caused by aliases (alternative names for175

entities or relations) by reducing the effect of entity176

and relation aliases in the factual probing. Without177

tackling other factors like the prompt framing effect178

and in-context interference (and their interactions),179

the scope of the study is limited.180

3 LLMs in Hallucination181

In this section, we investigate LLMs’ accuracy un-182

der the influence of various hallucination-inducing183

causes mentioned above. We design five for-184

mats of prompts to demonstrate two categories of185

hallucination-inducing causes during knowledge186

probing (Table 1). Twelve LLMs with a wide range187

of parameter size (from 560 million to 30 billion pa-188

rameters) are covered in this study and experiments189

(in Section 5), including foundation language mod-190

els of OPT (Zhang et al., 2022), Galactica (Taylor191

et al., 2022), and instruction finetuned language192

model of BLOOMZ (Muennighoff et al., 2023),193

Vicuna (Zheng et al., 2023), Flan-T5 (Chung et al.,194

2022), WizardLM (Xu et al., 2023), Flan-UL2 (Tay,195

2023; Tay et al., 2023), LLaMa-30b-instruct-2048196

(upstage, 2023).197

3.1 Effect of Prompt Framing on Accuracy198

We design three probing templates to show the199

effect of prompt framing on LLMs, depicted be-200

low, and for each task, we use seven paraphrased201

prompts to ensure diversity:202

Word Prediction (WP) Template: Given the203

“subject” and the prompt template, LLMs perform204

word prediction to complete the sentence, e.g., the205

template (1) in Table 1.206

Prompt frames
(1) WP: [X] is located in _
(2) QA: Which country is [X] situated in?
(3) FC: Statement: [X] is located in [Y]. The statement is True of False?
In-context interference
(4) [Y]. Which country is the location of [X]?
(5) [Y_]. Which country is the location of [X]?

Table 1: Examples of designed probing task templates
extending the P17 (a fact dataset containing 931 subject-
object pairs with the “country” relation from T-REx
(Elsahar et al., 2018)). [Y] is the object wrt the subject
[X], [Y_] is an entity weakly related to [X].

Question-Answer (QA) Template: In the QA 207

template, question prompts are constructed from 208

paraphrasing templates in T-REx (Elsahar et al., 209

2018) targeting each fact. For example, a template 210

“[X] is located in [Y].” for a triplet <[X], is located 211

in, [Y]> can be paraphrased to “Which country is 212

[X] situated in?”. 213

Fact Checking (FC) Template: An FC prompt 214

is designed as a verification statement based on 215

a template in T-REx, e.g., “Statement: [X] is lo- 216

cated in [Y]. The statement is True or False?”. We 217

build the positive checking probe (FC-pos) and 218

negative checking probe (FC-neg) corresponding 219

to whether the statement is factual or not. For a 220

negative fact-checking prompt, we average the pre- 221

diction accuracy for five random entities chosen 222

from the same category. 223

The probing results are shown in Table 2 as accu- 224

racy in predicting P17 factual knowledge for each 225

involved LLM under prompting biases presented 226

in terms of WP, QA, and FC templates. The per- 227

formances of LLMs in predicting the fact test data 228

vary significantly under prompt variability. Abnor- 229

mal performances of LLMs between QA and WP 230

template-based probes (bold numbers of Vicuna- 231

7b) and between the FC probes for positive and neg- 232

ative interference (bold numbers of BLOOMZ-1b1) 233

are strong evidences of the prompt framing effect. 234

The fluctuation under WP, QA, and FC templates 235

shown as box plots in Figure 7 (Appendix A.1) fur- 236

ther demonstrates the effect of prompt framing on 237

the performances of LLMs. 238

3.2 Effect of In-context Interference 239

To explore the effect of in-context interference 240

bias, we add probes with misprimed (Kassner and 241

Schütze, 2020) interference by concatenating con- 242

texts in terms of factual/non-factual information 243

preceding the associated QA prompt (template (2) 244

in Table 1). Table 3 captures the accuracy of LLMs 245
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LLMs Size WP QA FC-
pos

FC-
neg

BLOOMZ-560m 0.56 14.73 26.09 28.77 73.78
BLOOMZ-1b1 1.1 14.96 28.29 0.11 99.89
Galactica-1b3 1.3 2.36 46.43 86.05 12.29
OPT-2b7 2.7 28.27 55.67 75.80 22.07
BLOOMZ-3b 3 20.46 30.69 58.29 81.95
Vicuna-7b 7 34.89 73.25 91.19 85.67
BLOOMZ-7b1 7.1 26.26 33.72 88.32 64.98
Flan-T5-XXL 11 51.47 31.01 88.05 78.78
Vicuna-13b 13 38.96 78.15 90.87 89.68
WizardLM-13b 13 34.66 78.55 87.71 93.89
Flan-UL2 20 21.57 46.44 79.51 73.58
LLaMa-30b-ins. 30 67.94 87.72 96.99 86.69

Table 2: Accuracy of various LLMs in predicting P17
fact dataset. The performances of LLMs have under-
gone significant variations for different prompting tem-
plates. The unit of “size” is billion.

LLMs × [Y] [Y_]
BLOOMZ-560m 25.91 66.17 (+40.26) 14.50 (-11.41)
BLOOMZ-1b1 27.74 64.02 (+36.28) 16.99 (-10.75)
Galactica-1b3 53.81 56.39 (+2.58) 10.42 (-43.39)
OPT-2b7 58.00 77.23 (+19.23) 19.83 (-38.17)
BLOOMZ-3b 35.38 79.05 (+43.67) 24.30 (-11.08)
Vicuna-7b 82.71 99.67 (+16.96) 16.71 (-66.00)
BLOOMZ-7b1 39.03 70.57 (+31.54) 26.40 (-12.63)
Flan-T5-XXL 37.85 42.53 (+4.68) 29.77 (-8.08)
Vicuna-13b 84.21 90.76 (+6.55) 44.58 (-39.63)
WizardLM-13b 85.61 55.75 (-29.86) 47.09 (-38.52)
Flan-UL2 33.44 47.58 (+14.14) 33.19 (-0.25)
LLaMa-30b-ins. 90.76 99.46 (+8.70) 47.78 (-42.98)

Table 3: The effect of probing the P17 fact dataset with
QA templates (4) and (5) in Table 1, where “×” means
experimental results with the original QA templates,
“[Y]” means results using the factual information as in-
context information, and “[Y_]” refers to results using
non-factual in-context information of entities weakly
related to “[X]”.

in a comparative study using factual entity probes246

and misprimes consisting of weakly associated en-247

tities. We observe a strong interference effect from248

nonfactual antecedents for all 12 LLMs. A fac-249

tual entity (positive interference) can improve the250

accuracy by up to +43.67 while a weakly related251

entity (negative interference) reduces the accuracy252

by -66.00 at most.253

4 Methodology254

In this section, we introduce MONITOR, a255

distance-based score, to assess how the factual256

knowledge of LLMs is affected by the previously257

mentioned prompt framing and in-context interfer-258

ence.259

Firstly, we introduce a new variable (i) to rep-260

resent hallucination-inducing in-context informa-261

tion into the initial knowledge representation triplet262

<subject, relation, object>. The newly formed263

knowledge representation quadruple can be ex-264

pressed as < s, r, o, i >. The information i can265

be further categorized into two variables: we use a266

Figure 3: A primary anchor (in red font) corresponds to
its multiple foreign anchors with different output proba-
bilities (blue fonts) when an LLM is exposed to different
prompts and context interference. “PFD” and “IRD”
refer to the two distance measurements defined as the
prompt-framing degree and interference-relevance de-
gree.

factual object entity to implement a positive infor- 267

mation i+; and the negative information i− repre- 268

sents interference when predicting o. For example, 269

“England” is considered as an i− when acting as 270

a noisy condition to negatively affect an LLM in 271

predicting a desirable outcome <Switzerland> for 272

a fact <Cunter, is located in, Switzerland>. Corre- 273

sponding to an object, P (o|s, r, i) is the probability 274

of the model generating the object o with the con- 275

ditions of subject s, prompt framing expression r, 276

and the in-context information i. 277

To quantify the effect of i on LLMs, we establish 278

“anchor” as a reference point, which is the gold 279

answer with its probability in the output space. A 280

“primary anchor” (shown as the red font “Switzer- 281

land 0.9117” in Figure 3) is defined as an enforced- 282

accurate answer with its probability produced by an 283

LLM in response to a knowledge probe. A primary 284

anchor is produced by prompting an LLM with a 285

QA template prefixed with positive information i+ 286

(i.e. template (4) in Table 1). A primary anchor 287

has multiple foreign anchors with various output 288

probabilities (i.e., “Switzerland” in blue fonts in 289

Figure 3) when an LLM is exposed to different 290

prompts and in-context interference. Foreign an- 291

chors are generated using paraphrased Templates 292

(2)2 and (5)3 presented in Table 1. By calculat- 293

ing the distance (using the probability changes) 294

between a primary anchor and its corresponding 295

foreign anchors in the influenced output space, we 296

can measure how reliable an LLM is in predicting 297

facts in the test set. 298

MONITOR consists of two distance-based mea- 299

2QA template without in-context information
3QA template with negative in-context interference
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surement components: Prompt-framing Degree300

(PFD) and Interference-relevance Degree (IRD).301

4.1 Prompt-framing Degree302

The prompt-framing degree (PFD) is the mean dis-303

tance between the output probability distributions304

of a primary anchor (P (o|s, r, i+)) and those pro-305

duced by the same LLM using prompting frames306

rj probing the same fact without any add-on con-307

text (foreign anchors P (o|s, rj)). PFD evaluates308

the similarity of two output probabilities between309

prompting frame relation expressions r (the basic310

prompt framing) and rj . It is defined as:311

PFD =
1

R

R∑
j=1

1

Lc

Lc∑
l=1

|P (oc|sc, r, i+)l − P (oc|sc, rj)l| (1)312

where R is the count of prompt framing expres-313

sions for a subject, and the count of subject and314

object in a fact dataset is S, c ∈
{
1, ..., S

}
. Lc315

is the length of the anchor in terms of the number316

of subwords in the c-th object. PFD is a cumula-317

tive metric for assessing an LLM’s capability in318

producing output probability distributions sharing319

the same characteristics under various prompting320

frames. PFD has a value between 0 and 1. The321

smaller the value is, the more robust an LLM is322

under the effect of prompt framing.323

4.2 Interference-relevance Degree324

Interference-relevance Degree (IRD) is the distance325

between the output probability distributions of a326

primary anchor (P (o|s, r, i+)) and the probability327

distributions generated by the same LLM under328

the influence of in-context interference (foreign329

anchors P (o|s, r, i−)). IRD measures an LLM’s330

capability to predict factual knowledge under the331

effect of in-context interference.332

IRD =
1

M

M∑
m=1

1

Lc

Lc∑
l=1

|P (oc|sc, r, i+)l − P (oc|sc, r, i−m)l| (2)333

We define the count of positive and negative infor-334

mation as one and M , respectively, corresponding335

to an object. IRD has a value between 0 and 1. As336

positive contextual information likely leads to fac-337

tual knowledge generation, a smaller value of IRD338

indicates a lower level of effect from in-context339

interference biases.340

4.3 MONITOR341

The prompt-framing degree PFD and interference-342

relevance degree IRD are integrated to produce343

the proposed model knowledge reliability score 344

(MONITOR). MONITOR captures the quadratic 345

interaction of PFD and IRD, as illustrated in Eq 3 346

for a specified number of quadruples < s, r, o, i >, 347

where the count of subject and object is S. A set 348

of coefficients (α1−3) is introduced to quantify the 349

contributions from PFD, IRD, and their interaction 350

on MONITOR. In this experiment, we consider 351

an equal contribution scenario (α1 = α2 = α3 = 352

0.33). The smaller the value of MONITOR, the 353

less degree an LLM is influenced by hallucination- 354

induced factors when producing factual outputs. 355

Taking the average output probabilities of primary 356

anchors for an LLM as the denominator, MON- 357

ITOR captures the degree of knowledge learned 358

by an LLM when assessing its factual knowledge. 359

MONITOR measures the effect of prompt framing 360

and interference per unit of average primary anchor 361

probability, demonstrating the strength of anchor 362

representations. 363

LLMs are resource-hungry even during their in- 364

ference phases. It is essential to ensure that an as- 365

sessment metric is computation-efficient. Combin- 366

ing PFD, IRD, and their interaction in one metric 367

can reduce the computation cost when evaluating 368

factual reliability. Considering a fact dataset with 369

R prompt frames, M negative interference, and one 370

positive interference, there are R∗M combinations 371

required to compute the average accuracy (and ac- 372

curacy range). In comparison, we only require 373

R + (1 + M) combinations to compute MONI- 374

TOR. The computation complexity for calculating 375

MONITOR (O(R+M)) is considerably lower than 376

that of accuracy (O(R ∗M)). 377

MONITOR =

∑S
c

√
α1PFD2 + α2IRD2 + α3PFD ∗ IRD∑S

c
1

Lc

∑Lc
l=1

P (oc|sc, r, i+)l
(3) 378

5 Experiments and Results 379

In this section, we describe how to apply MON- 380

ITOR to assess the factual knowledge of the 12 381

LLMs as mentioned above. 382

5.1 Data Setting 383

In this section, we describe how we develop a test 384

corpus to accommodate prompts with various styles 385

and in-context interference. 386

Expanding Probing Prompt: Based on 16,167 387

<subject, relation, object> triplets from T-REx 388

(Elsahar et al., 2018), we develop QA probing 389

prompts. We expand the probing prompt dataset 390

by paraphrasing using GPT-4 (OpenAI, 2023) to 391
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LLMs MONITOR ↓ avg↑ max ↑ min ↑ probs ↑
BLOOMZ-560m 0.701 27.770 40.411 15.062 0.467
BLOOMZ-1b1 0.692 30.055 43.369 16.654 0.501
Galactica-1b3 0.747 22.936 39.414 9.427 0.637
OPT-2b7 0.637 25.599 37.117 11.347 0.360
BLOOMZ-3b 0.686 30.638 44.760 16.760 0.610
Vicuna-7b 0.504 38.194 59.727 18.361 0.884
BLOOMZ-7b1 0.632 36.232 49.328 22.870 0.613
Flan-T5-XXL 0.630 32.968 48.864 19.868 0.798
Vicuna-13b 0.484 44.882 65.499 26.967 0.862
WizardLM-13b 0.560 51.477 66.036 33.076 0.774
Flan-UL2 0.684 32.723 51.442 16.319 0.711
LLaMa-30b-ins. 0.479 50.798 71.188 30.516 0.909
Correlation Pearson p-value
r(MONITOR,avg acc) -0.846 0.001

Table 4: Results are evaluated on FKTC with “bold”
numbers indicating the best measurement over the same
column category. The “avg”, “max”, and “min” mean
the average, maximum, and minimum accuracy across
the 20 fact datasets. The “probs.” depicts the probabili-
ties of primary anchors. “↓” means a smaller measure-
ment wins.

create seven prompt frames for each triplet. In or-392

der to maintain diversity of prompts, we choose393

prompts with a similarity score (BLEU) below a394

threshold (0.7). Moreover, we manually check the395

paraphrased prompts to ensure validity.396

Adding In-context Interference: Based on the397

QA prompts constructed above, we create a test398

dataset to explore the effectiveness of MONITOR399

with in-context interference. The corpus FKTC400

stands for “Factual Knowledge Test Corpus”. Fol-401

lowing the template patterns (Templates 4 and 5) in402

Table 1, we concatenate interference information403

(in terms of positive and negative in-context infor-404

mation) with the probing question for each subject.405

The negative information is entities from the same406

category weakly related to the corresponding sub-407

ject, sampled from all objects that share the same408

relation. This process is applied to all expanded409

templates presented in Table 9 (Appendix A.2).410

After applying these two processes (expanding411

the probing prompts and adding in-context interfer-412

ence) we produce 210,171 prompts focusing on 20413

fact datasets.414

5.2 Results and Analysis415

5.2.1 Results on FKTC416

The results evaluated on FKTC are shown in Ta-417

ble 4, and the results of each fact dataset are shown418

in Table 10 (Appendix A.3), where MONITOR419

and the average accuracy (avg acc) are recorded420

for each LLM across the 20 fact datasets in our421

experiments. Each LLM’s minimal and maximal422

accuracy are also recorded to show the accuracy423

variability.424

As shown in Table 4, LLaMa-30b-ins. stands out425

as the most capable (with the smallest MONITOR 426

0.479) LLM, followed by Vicuna-13b (0.484) and 427

Vicuna-7b (0.504). Even though MONITOR is a 428

fundamentally different from an end-to-end met- 429

ric (like accuracy), it correlates significantly with 430

the average accuracy (0.846 Pearson coefficient). 431

MONITOR adds a dimension to a point-measured 432

metric (like accuracy) to show factual reliability of 433

LLMs under prompt and context variability. 434

As shown in Table 5 (bold italic fonts), 435

MONITOR can differentiate LLMs, for example, 436

BLOOMZ-3b and Vicuna-7b, with a similar aver- 437

age accuracy on P37, by considering distance and 438

probability information. We further discuss this in 439

Subsection 5.2.3. 440

We present a detailed view of the knowledge 441

assessment of LLMs by drilling down into specific 442

facts. Unlike the results mentioned above, showing 443

a general trend, the results disclosed here show 444

more detailed insights. As shown in Table 5, the 445

overall winning LLM (i.e., LLaMa-30b-ins.) can 446

lose its edge in predicting a particular fact (P37). 447

5.2.2 Accuracy Instability 448

We analyze the LLMs’ “accuracy instability” when 449

predicting P14124 with the results captured in Ta- 450

ble 6 and Figure 4. A variety of statistics, including 451

the base accuracy (“base acc”) and standard devi- 452

ation (“std”) of an LLM’s accuracy, are recorded 453

for comparisons. A significant correlation is ob- 454

served between accuracy standard deviation and 455

MONITOR (0.754), demonstrating that a lower- 456

MONITOR LLM is less likely to suffer from “accu- 457

racy instability” (Figure 8 in Appendix A.5). Fur- 458

thermore, as shown in Figure 4, an LLM with a 459

lower MONITOR has a smaller value of accuracy 460

standard deviation when two LLMs with equiva- 461

lent base accuracy are evaluated (bold fonts in Ta- 462

ble 8). From an accuracy stability viewpoint, one 463

may choose an LLM with a lower MONITOR. For 464

example, we prefer Vicuna-13b over WizardLM- 465

13b, as the MONITOR of Vicuna-13b is lower even 466

though they have similar accuracy. 467

5.2.3 Resolution Characteristics 468

It can be observed in Table 4 that the correlation 469

between MONITOR and average accuracy is sig- 470

nificant. How should one use MONITOR when 471

assessing the reliability of LLM knowledge? 472

4P1412: the fact dataset describing a relation of “languages
spoken, written, and signed”
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LLMs P178 P108 P37
MONITOR ↓ avg acc ↑ probs. ↑ MONITOR ↓ avg acc ↑ probs. ↑ MONITOR ↓ avg acc ↑ probs. ↑

BLOOMZ-560m 0.594 53.260 0.471 0.947 2.634 0.313 0.669 33.142 0.679
BLOOMZ-1b1 0.492 56.752 0.684 0.853 7.454 0.191 0.662 39.679 0.751
Galactica-1b3 0.595 27.763 0.543 0.876 0.686 0.393 0.639 42.444 0.703
OPT-2b7 0.470 64.119 0.348 0.739 12.420 0.343 0.471 52.866 0.419
BLOOMZ-3b 0.624 50.460 0.863 0.858 17.639 0.436 0.570 51.242 0.797
Vicuna-7b 0.339 64.575 0.969 0.620 32.756 0.969 0.432 51.384 0.931
BLOOMZ-7b1 0.492 60.865 0.865 0.770 31.340 0.443 0.462 61.114 0.827
FLAN-T5-XXL 0.368 67.065 0.852 0.676 29.968 0.855 0.650 34.773 0.865
Vicuna-13b 0.327 77.787 0.955 0.632 39.951 0.899 0.311 69.590 0.942
WizardLM-13b 0.411 84.878 0.850 0.626 54.735 0.769 0.467 69.907 0.856
Flan-UL2 0.613 49.968 0.792 0.844 23.942 0.836 0.575 56.731 0.738
LLaMa-30b-ins. 0.180 87.461 0.983 0.522 60.493 0.972 0.411 63.109 0.950

Table 5: Performance of various LLMs in predicting factual knowledge captured in the P178, P108, and P37 fact
datasets with “bold” numbers indicating the winning measurement over the same column category. P178, P108, and
P37 are fact datasets representing relations of “developer”, “employer” and “official language”, respectively. The
“bold and italic” fonts on P37 show how MONITOR can differentiate two LLMs (BLOOMZ-3b and Vicuna-7b)
with similar average accuracy.

LLMs MONITOR ↓ base acc ↑ std ↓
Flan-T5-XXL 0.772 51.713 31.023
OPT-2b7 0.536 64.027 12.087
Flan-UL2 0.706 67.029 33.981
BLOOMZ-560m 0.490 70.888 17.253
BLOOMZ-1b1 0.426 71.932 11.891
Galactica-1b3 0.659 74.086 26.576
BLOOMZ-7b 0.472 78.922 19.252
BLOOMZ-3b 0.456 79.143 18.016
Vicuna-7b 0.427 82.086 27.585
LLaMa-30b-ins. 0.543 85.340 34.131
WizardLM-13b 0.425 91.960 8.978
Vicuna-13b 0.190 93.099 5.768
Correlation Pearson p-value
r(MONITOR,std) 0.754 0.001

Table 6: LLMs with lower MONITOR are strongly cor-
related with smaller values of accuracy standard devia-
tion, indicating less influence from prompt and context
variability. “base acc” is the accuracy associated with
the base prompt evaluated on the P1412 fact dataset.

Base Prompt What language is the official language of Haiti?

effect input output
BLOOMZ/Vicuna

prob.
BLOOMZ/Vicuna

pos. context French.{base} French/French 0.761/0.928
neg. context Irish.{base} French/French 0.411/0.622
framing {base} French/French 0.527/0.849

Table 7: Vicuna-7b outperforms BLOOMZ-3b in MON-
ITOR when evaluated on the P37 fact dataset by pro-
ducing correct answers with higher output probabilities
in response to positive, negative in-context interference
and prompt framing effect. {base} refers to the base
prompt.

We regard MONITOR as a high-resolution met-473

ric because it directly uses output probabilities and474

their changes (in terms of anchored distance) in-475

duced by hallucination factors. MONITOR con-476

siders both the output (nominal or qualitative data)477

and the probability of the output (quantitative infor-478

mation). Comparatively, assessing LLMs’ knowl-479

edge with an end-to-end metric, such as accuracy, is480

purely reliant on a nominal output from the softmax481

layer of a transformer. It is shown in Table 5 that482

Figure 4: MONITOR can be used to differentiate LLMs’
factual knowledge reliability when models with an
equivalent base accuracy are evaluated. The box plots
show the related distributions of accuracy when testing
on P1412 fact dataset.

two LLMs (BLOOMZ-3b vs. Vicuna-7b) with al- 483

most identical average accuracy on P37 fact dataset 484

have two distinctive values of MONITOR (0.570 485

vs 0.432). Delving into the log file of the inference 486

task, we gain in-depth insights into why Vicuna-7b 487

outperforms BLOOMZ-3b in the reliability score. 488

As shown in Table 7, despite their similarities in 489

the accuracy measurement, Vicuna-7b has much 490

higher output probabilities than those of BLOOMZ- 491

3b, contributing to the discrepancies in MONITOR. 492

Additionally, we plot out the probability distribu- 493

tion of the above two LLMs with almost identical 494

average accuracy but very distinctive MONITOR 495

(Figure 9 in Appendix A.6). It can be observed that 496

a more reliable LLM based on MONITOR, Vicuna- 497

7b, has a much higher percentage of solid output 498
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probability (i.e., ≥ 0.8) than those of a volatile499

LLM (BLOOMZ-3b). It is recommended to adopt500

MONITOR when using accuracy alone cannot dif-501

ferentiate LLMs’ knowledge reliability.502

Cost MONITOR Average Accuracy MONITOR-saved
GPU hours 14.4 42.7 2.97X

Table 8: GPU hours consumed calculating MONITOR
and average accuracy on P1412 fact dataset for LLaMa-
30b-ins.“MONITOR-saved” denotes that GPU hours
saved from using MONITOR compared to accuracy.

5.2.4 Lower Computation Cost503

We compare the GPU hours consumed by LLaMa-504

30b-ins. in producing MONITOR and a full-scale505

accuracy reliability score (average accuracy). The506

experiment is to test the model on a specific fact507

dataset (P1412) using 8 NVIDIA V100 GPUs. It508

can be observed in Table 8 that using MONITOR509

leads to a 2.97-fold resource saving in GPU hours510

compared to applying an accuracy metric to a fac-511

tual reliability evaluation. MONITOR is an eco-512

nomical method to add a dimension to LLM knowl-513

edge assessment when performing a full-scale reli-514

ability study on accuracy is not an option.515

6 Discussion516

Figure 5: Visualizing model behaviors of BLOOMZ-3b
and OPT-2b7 under the influence of an input with mis-
primed in-context interference. The input is “Danish.
What language is the official language of Sotkamo?”.

6.1 Attribution of In-Context Interference517

To demonstrate the resilience of LLMs with differ-518

ent MONITOR, we conduct an additional exper-519

iment by applying the Integrated Gradients (Sun-520

dararajan et al., 2017) technique implemented in521

Sarti et al. (2023). By examining and visualizing522

the attribution of input features to the model’s out-523

puts, we can infer the reliability of LLMs with dif-524

ferent MONITOR. We study the behaviors of two525

LLMs (OPT-2b7 vs. BLOOMZ-3b) with distinc-526

tive values of MONITOR (0.471 vs. 0.570). The527

heat map shown in Figure 5 illustrates that a more 528

reliable model with a lower MONITOR, OPT-2b7, 529

is less influenced by in-context interference. 530

Figure 6: Significant correlation of MONITOR between
the 7-prompt group and the 4-prompt group when assess-
ing the reliability of 12 LLMs in the P178 fact dataset.

6.2 Prompt Ablation 531

We design an ablation study to investigate the con- 532

sistency of MONITOR across different prompt 533

settings by analyzing the MONITOR in the 534

P178 fact dataset. The MONITOR from an ex- 535

panded prompts group setting (consisting of seven 536

prompts) and a sub-sampled group with four 537

prompts are captured in Figure 6. We observe a 538

strong linear correlation between MONITOR of the 539

expanded group and those from the sub-sampled 540

group, indicating the scalability of MONITOR 541

across prompt settings. Additionally, it is noted 542

that MONITOR ranks LLMs in a consistent order 543

for different prompt settings as show in Figure 10 544

(Appendix A.7). 545

7 Conclusion 546

In this paper, we show that large language models 547

are subject to the influence of various hallucination- 548

inducing causes. We propose a novel distance- 549

based metric, directly computing the output proba- 550

bilities and their changes to address “accuracy in- 551

stability” caused by the prompt framing effect and 552

in-context interference. A comprehensive set of 553

experiments demonstrates that the proposed MON- 554

ITOR is a high-resolution economic method suit- 555

able for evaluating the reliability of large language 556

model knowledge. MONITOR can be used in con- 557

junction with an end-to-end metric (i.e., accuracy) 558

as part of a multi-dimensional approach to LLM 559

knowledge evaluation. The constructed FKTC, con- 560

sisting of 210,171 question answering prompts on 561

20 fact datasets, will be made available to the pub- 562

lic to foster research along this line. 563
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Limitations564

We focus on proposing MONITOR to assess the565

reliability of factual knowledge of LLMs during566

knowledge probing. Whether MONITOR can be567

generalized to a wider scope of tasks (e.g., sum-568

marization) warrants a future study. Additionally,569

the initial setup of contribution coefficients of PFD,570

IRD, and their interaction on MONITOR should571

be further investigated to establish an empirical572

benchmark. Currently MONITOR applies exact573

matching to obtain anchors to measure the reliabil-574

ity of LLM knowledge. Extending the automatic575

evaluation to anchors consisting of sentences is576

challenging. Our approach needs to access to the577

output probability distributions of an LLM, there-578

fore is not applicable to SOTA commercialized579

LLMs such as GPT4. Additionally, FKTC is devel-580

oped based on the latest version of T-REx bench-581

mark dataset. The quality of the factual knowledge582

contents in FKTC is reliant on the alignment accu-583

racy of T-REx. Even though we could argue that584

FKTC has already accommodated over 210 thou-585

sands prompts in the gold dataset to successfully586

support MONITOR in assessing LLMs behaviors587

under prompt and context variability. It can still be588

extended to host more knowledge categories.589

Licensing and Intended Use590

FKTC is based on a widely adopted T-REx bench-591

mark dataset, which is publicly available under a592

Creative Commons Attribution-ShareAlike 4.0 In-593

ternational License. FKTC will be released to the594

public under the same license, consistent with the595

original intended use.596

References597

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-598
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021.599
Knowledgeable or educated guess? revisiting lan-600
guage models as knowledge bases. In Proceedings601
of the 59th Annual Meeting of the Association for602
Computational Linguistics and the 11th International603
Joint Conference on Natural Language Processing,604
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual605
Event, August 1-6, 2021, pages 1860–1874. Associa-606
tion for Computational Linguistics.607

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,608
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,609
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,610
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.611
2023. A survey on evaluation of large language mod-612
els. CoRR, abs/2307.03109.613

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 614
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, 615
Mostafa Dehghani, Siddhartha Brahma, Albert Web- 616
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz- 617
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan 618
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, 619
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav 620
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam 621
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 622
2022. Scaling instruction-finetuned language models. 623
CoRR, abs/2210.11416. 624

Qingxiu Dong, Jingjing Xu, Lingpeng Kong, Zhifang 625
Sui, and Lei Li. 2023. Statistical knowledge as- 626
sessment for generative language models. CoRR, 627
abs/2305.10519. 628

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi- 629
lasha Ravichander, Eduard Hovy, Hinrich Schütze, 630
and Yoav Goldberg. 2021. Measuring and improving 631
consistency in pretrained language models. Transac- 632
tions of the Association for Computational Linguis- 633
tics, 9:1012–1031. 634

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci, 635
Christophe Gravier, Jonathon S. Hare, Frédérique 636
Laforest, and Elena Simperl. 2018. T-REx: A Large 637
Scale Alignment of Natural Language with Knowl- 638
edge Base Triples. In Proceedings of the Eleventh 639
International Conference on Language Resources 640
and Evaluation, LREC 2018, Miyazaki, Japan, May 641
7-12, 2018. European Language Resources Associa- 642
tion (ELRA). 643

Akshat Gupta. 2023. Probing quantifier comprehension 644
in large language models. CoRR, abs/2306.07384. 645

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham 646
Neubig. 2020. How can we know what language 647
models know. Trans. Assoc. Comput. Linguistics, 648
8:423–438. 649

Erik Jones and Jacob Steinhardt. 2022. Capturing fail- 650
ures of large language models via human cognitive 651
biases. In NeurIPS. 652

Nora Kassner and Hinrich Schütze. 2020. Negated and 653
misprimed probes for pretrained language models: 654
Birds can talk, but cannot fly. In Proceedings of the 655
58th Annual Meeting of the Association for Compu- 656
tational Linguistics, ACL 2020, Online, July 5-10, 657
2020, pages 7811–7818. Association for Computa- 658
tional Linguistics. 659

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 660
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 661
guage models are zero-shot reasoners. In NeurIPS. 662

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, 663
Adam Roberts, Stella Biderman, Teven Le Scao, 664
M. Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai- 665
ley Schoelkopf, Xiangru Tang, Dragomir Radev, 666
Alham Fikri Aji, Khalid Almubarak, Samuel Al- 667
banie, Zaid Alyafeai, Albert Webson, Edward Raff, 668
and Colin Raffel. 2023. Crosslingual generaliza- 669
tion through multitask finetuning. In Proceedings 670

9

https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.48550/arXiv.2307.03109
https://doi.org/10.48550/arXiv.2307.03109
https://doi.org/10.48550/arXiv.2307.03109
https://doi.org/10.48550/arXiv.2210.11416
https://doi.org/10.48550/arXiv.2305.10519
https://doi.org/10.48550/arXiv.2305.10519
https://doi.org/10.48550/arXiv.2305.10519
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
http://www.lrec-conf.org/proceedings/lrec2018/summaries/632.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/632.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/632.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/632.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/632.html
https://doi.org/10.48550/arXiv.2306.07384
https://doi.org/10.48550/arXiv.2306.07384
https://doi.org/10.48550/arXiv.2306.07384
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
http://papers.nips.cc/paper_files/paper/2022/hash/4d13b2d99519c5415661dad44ab7edcd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/4d13b2d99519c5415661dad44ab7edcd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/4d13b2d99519c5415661dad44ab7edcd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/4d13b2d99519c5415661dad44ab7edcd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/4d13b2d99519c5415661dad44ab7edcd-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://aclanthology.org/2023.acl-long.891
https://aclanthology.org/2023.acl-long.891
https://aclanthology.org/2023.acl-long.891


of the 61st Annual Meeting of the Association for671
Computational Linguistics (Volume 1: Long Papers),672
ACL 2023, Toronto, Canada, July 9-14, 2023, pages673
15991–16111. Association for Computational Lin-674
guistics.675

OpenAI. 2023. GPT-4 technical report. CoRR,676
abs/2303.08774.677

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,678
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,679
and Alexander H. Miller. 2019. Language mod-680
els as knowledge bases? In Proceedings of the681
2019 Conference on Empirical Methods in Natu-682
ral Language Processing and the 9th International683
Joint Conference on Natural Language Processing,684
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-685
ber 3-7, 2019, pages 2463–2473. Association for686
Computational Linguistics.687

Harsh Raj, Vipul Gupta, Domenic Rosati, and Sub-688
habrata Majumdar. 2023. Semantic consistency for689
assuring reliability of large language models. CoRR,690
abs/2308.09138.691

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, and Os-692
kar van der Wal. 2023. Inseq: An interpretability693
toolkit for sequence generation models. In Proceed-694
ings of the 61st Annual Meeting of the Association for695
Computational Linguistics: System Demonstrations,696
ACL 2023, Toronto, Canada, July 10-12, 2023, pages697
421–435. Association for Computational Linguistics.698

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,699
Eric Wallace, and Sameer Singh. 2020. Autoprompt:700
Eliciting knowledge from language models with au-701
tomatically generated prompts. In Proceedings of the702
2020 Conference on Empirical Methods in Natural703
Language Processing, EMNLP 2020, Online, Novem-704
ber 16-20, 2020, pages 4222–4235. Association for705
Computational Linguistics.706

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang707
Wang, Jianfeng Wang, Jordan L. Boyd-Graber, and708
Lijuan Wang. 2023. Prompting GPT-3 to be reliable.709
In The Eleventh International Conference on Learn-710
ing Representations, ICLR 2023, Kigali, Rwanda,711
May 1-5, 2023. OpenReview.net.712

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.713
Axiomatic attribution for deep networks. In Proceed-714
ings of the 34th International Conference on Machine715
Learning, ICML 2017, Sydney, NSW, Australia, 6-11716
August 2017, volume 70 of Proceedings of Machine717
Learning Research, pages 3319–3328. PMLR.718

Yi Tay. 2023. A New Open Source Flan 20B with UL2.719
https://www.yitay.net/blog/flan-ul2-20b.720

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Gar-721
cia, Jason Wei, Xuezhi Wang, Hyung Won Chung,722
Dara Bahri, Tal Schuster, Huaixiu Steven Zheng,723
Denny Zhou, Neil Houlsby, and Donald Metzler.724
2023. UL2: unifying language learning paradigms.725
In The Eleventh International Conference on Learn-726
ing Representations, ICLR 2023, Kigali, Rwanda,727
May 1-5, 2023. OpenReview.net.728

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas 729
Scialom, Anthony Hartshorn, Elvis Saravia, An- 730
drew Poulton, Viktor Kerkez, and Robert Stojnic. 731
2022. Galactica: A large language model for science. 732
CoRR, abs/2211.09085. 733

upstage. 2023. LLaMa-30b-instruct-2048. 734
https://huggingface.co/upstage/ 735
llama-30b-instruct-2048. 736

Albert Webson and Ellie Pavlick. 2022. Do prompt- 737
based models really understand the meaning of their 738
prompts? In Proceedings of the 2022 Conference of 739
the North American Chapter of the Association for 740
Computational Linguistics: Human Language Tech- 741
nologies, NAACL 2022, Seattle, WA, United States, 742
July 10-15, 2022, pages 2300–2344. Association for 743
Computational Linguistics. 744

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 745
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 746
Jiang. 2023. Wizardlm: Empowering large lan- 747
guage models to follow complex instructions. arXiv 748
preprint arXiv:2304.12244. 749

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 750
Artetxe, Moya Chen, Shuohui Chen, Christopher 751
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, 752
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus- 753
ter, Daniel Simig, Punit Singh Koura, Anjali Srid- 754
har, Tianlu Wang, and Luke Zettlemoyer. 2022. 755
OPT: open pre-trained transformer language mod- 756
els. CoRR, abs/2205.01068. 757

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and 758
Sameer Singh. 2021. Calibrate before use: Improv- 759
ing few-shot performance of language models. In 760
Proceedings of the 38th International Conference on 761
Machine Learning, ICML 2021, 18-24 July 2021, Vir- 762
tual Event, volume 139 of Proceedings of Machine 763
Learning Research, pages 12697–12706. PMLR. 764

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 765
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 766
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, 767
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg- 768
ing llm-as-a-judge with mt-bench and chatbot arena. 769
CoRR, abs/2306.05685. 770

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, 771
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy 772
Ba. 2023. Large language models are human-level 773
prompt engineers. In The Eleventh International 774
Conference on Learning Representations, ICLR 2023, 775
Kigali, Rwanda, May 1-5, 2023. OpenReview.net. 776

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, 777
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, 778
Neil Zhenqiang Gong, Yue Zhang, and Xing Xie. 779
2023. Promptbench: Towards evaluating the robust- 780
ness of large language models on adversarial prompts. 781
CoRR, abs/2306.04528. 782

10

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.48550/arXiv.2308.09138
https://doi.org/10.48550/arXiv.2308.09138
https://doi.org/10.48550/arXiv.2308.09138
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://openreview.net/pdf?id=98p5x51L5af
http://proceedings.mlr.press/v70/sundararajan17a.html
https://www.yitay.net/blog/flan-ul2-20b
https://openreview.net/pdf?id=6ruVLB727MC
https://doi.org/10.48550/arXiv.2211.09085
https://huggingface.co/upstage/llama-30b-instruct-2048
https://huggingface.co/upstage/llama-30b-instruct-2048
https://huggingface.co/upstage/llama-30b-instruct-2048
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://openreview.net/pdf?id=92gvk82DE-
https://openreview.net/pdf?id=92gvk82DE-
https://openreview.net/pdf?id=92gvk82DE-
https://doi.org/10.48550/arXiv.2306.04528
https://doi.org/10.48550/arXiv.2306.04528
https://doi.org/10.48550/arXiv.2306.04528


A Appendix783

A.1 Prompt Framing Effect784

We paraphrase each fact dataset in three prompting785

templates (WP, QA, and FC) so that each template786

can be used to produce seven prompts. For exam-787

ple, the template “Which country is the location788

of [X]?” could be paraphrased as: “Which country789

is [X] situated in?”, “Which country can [X] be790

found?”, “Which country is the geographical posi-791

tion of [X]?”, “Which country is the site of [X]?”,792

“In Which country is [X] situated?”, “Whereabouts793

is [X] located?”. In this way, context diversity and794

semantic invariance are guaranteed. Figure 7 shows795

the “accuracy instability” of LLMs under the effect796

of prompt framing in predicting P17 facts based on797

three tasks (WP, QA, and FC).798

A.2 Templates Examples799

Table 9 shows all templates and corresponding800

prompts on 20 fact datasets.801

A.3 MONITOR for All LLMs Experimented802

on FKTC803

Table 10 shows the results of various LLMs evalu-804

ated on each fact dataset from FKTC.805

A.4 Correlation between MONITOR and806

Accuracy807

Table 11 shows the Pearson correlation between808

MONITOR and average accuracy, evaluated on the809

20 fact datasets from FKTC corpus.810

A.5 Correlation between MONITOR and811

Accuracy Standard Deviation812

Figure 8 shows a lower-MONITOR LLM is less813

likely to suffer from “accuracy instability”.814

A.6 Probability Distribution815

Figure 9 shows the probability distribution of two816

LLMs (BLOOMZ-3b and Vicuna-7b) with almost817

identical average accuracy but very distinctive818

MONITOR.819

A.7 Consistency across Different Prompts820

Settings821

Figure 10 shows a consistent order in ranking822

LLMs across different prompt settings (7-prompts823

group VS. 4-prompts group).824

A.8 Analysis on LLMs Scale 825

To further verify if MONITOR of LLMs follows 826

the law of scaling, where larger LLMs are more 827

knowledge-reliable, we present how MONITOR 828

changes across BLOOMZ series for each specific 829

fact dataset (shown in Figure 11). While MON- 830

ITOR of LLMs may not conform to the scaling 831

law at the granularity of each fact, their aggregated 832

values in a comprehensive scope of experiments do 833

follow the rule of scale (shown in Figures 11-12). 834
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(a) QA (b) WP

(c) FC-pos (d) FC-neg

Figure 7: Box plots show the “accuracy instability” of LLMs under the effect of prompt framing in predicting P17
based on three tasks (WP, QA, and FC).

Figure 8: A significant correlation between MONI-
TOR and accuracy standard deviation when testing
the 12 LLMs on P1412 fact dataset, indicating lower-
MONITOR models are less likely to suffer from the
“accuracy instability” issue.

Figure 9: A comparison of the probability distribution of
anchors between BLOOMZ-3b and Vicuna-7b on P37.
The population percentages with a solid probability (i.e.,
≥ 0.8) are 59% and 85% for BLOOMZ-3b and Vicuna-
7b, respectively.
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Fact Relation Object Type Template Prompt example Count
P17 country sovereign state [X] is located in [Y]. Which country is the location of [X]? 12,103
P19 place of birth city [X] was born in [Y]. Where was [X] born? 12,272
P20 place of death city [X] died in [Y]. In what place did [X] pass away? 12,389
P27 country of citizenship sovereign state [X] is [Y] citizen. What country is [X] a citizen of? 12,558
P30 continent continent [X] is located in [Y]. Which continent is [X] located in? 12,675
P37 official language language The official language of [X] is [Y]. What language is the official language of [X]? 12,558
P101 field of work organization [X] works in the field of [Y]. What is [X]’s area of expertise? 9,048
P103 native language Indo-European languages The native language of [X] is [Y]. What is the native language of [X]? 12,701
P108 employer business [X] works for [Y]. Which organization does [X] work for? 4,979
P127 owned by company [X] is owned by[Y]. Which company is the owner of [X]? 7,059
P159 headquarters location sovereign state The headquarter of [X] is in [Y] . In what city is [X] headquartered? 12,571
P176 manufacturer manufacturer or producer [X] is produced by [Y]. What is the manufacturer of [X]? 12,766
P178 developer organisation [X] is developed by [Y] Which company is the creator of [X]? 7,696
P264 record label record label [X] is represented by music label [Y]. What is the record label for [X]? 5,577
P276 location sovereign state [X] is located in [Y]. What is the location of[X]? 12,467
P364 original language of film or TV show Nostratic languages The original language of [X] is [Y]. What is the native language of [X]? 11,128
P495 country of origin sovereign state [X] was created in [Y]. Which country was [X] created in? 11,817
P740 location of formation sovereign state [X] was founded in [Y]. Which city was [X] founded in? 12,168
P1376 capital of country [X] is the capital of [Y]. Which country’s capital is [X]? 3,042
P1412 languages spoken, written or signed Indo-European languages [X] used to communicate in [Y]. What language did [X] previously speak to communicate? 12,597

Table 9: Examples of template for different fact datasets and the corresponding prompts we build in this work.

Fact Dataset BLOOMZ
-560m

BLOOMZ
-1b1

Galactica
-1b3

OPT
-2b7

BLOOMZ
-3b

Vicuna
-7b

BLOOMZ
-7b1

Flan-T5
-XXL

Vicuna
-13b

WizardLM
-13b

Flan
-UL2

LLaMa-
30b-ins.

P17 0.782 0.780 0.852 0.541 0.785 0.523 0.714 0.690 0.544 0.602 0.788 0.395
P19 0.866 0.927 0.914 0.858 0.898 0.719 0.873 0.882 0.629 0.752 0.918 0.817
P20 0.810 0.926 0.942 0.849 0.921 0.671 0.873 0.888 0.667 0.725 0.893 0.803
P27 0.704 0.746 0.868 0.597 0.706 0.460 0.724 0.674 0.489 0.573 0.786 0.490
P30 0.809 0.839 0.801 0.748 0.887 0.652 0.546 0.670 0.611 0.680 0.815 0.617
P37 0.669 0.662 0.639 0.471 0.570 0.432 0.462 0.650 0.311 0.467 0.575 0.411
P101 0.899 0.822 0.919 0.888 0.877 0.816 0.838 0.879 0.823 0.927 0.858 0.857
P103 0.512 0.515 0.671 0.468 0.457 0.424 0.451 0.599 0.296 0.506 0.561 0.410
P108 0.947 0.853 0.876 0.739 0.858 0.620 0.770 0.676 0.632 0.626 0.844 0.522
P127 0.522 0.613 0.676 0.627 0.712 0.547 0.545 0.437 0.382 0.438 0.621 0.346
P159 0.829 0.851 0.858 0.755 0.800 0.523 0.751 0.731 0.478 0.479 0.758 0.454
P176 0.684 0.461 0.457 0.527 0.609 0.244 0.632 0.290 0.437 0.467 0.518 0.322
P178 0.594 0.492 0.595 0.470 0.624 0.339 0.492 0.368 0.327 0.411 0.613 0.180
P264 0.887 0.923 0.916 0.863 0.748 0.678 0.887 0.883 0.606 0.661 0.799 0.560
P276 0.707 0.699 0.751 0.650 0.737 0.535 0.674 0.639 0.489 0.557 0.664 0.515
P364 0.756 0.762 0.850 0.662 0.780 0.576 0.751 0.786 0.619 0.714 0.774 0.599
P495 0.802 0.834 0.868 0.661 0.695 0.413 0.715 0.716 0.476 0.530 0.790 0.499
P740 0.941 0.961 0.961 0.858 0.931 0.689 0.905 0.837 0.646 0.669 0.882 0.647
P1376 0.505 0.451 0.606 0.602 0.352 0.299 0.202 0.158 0.501 0.555 0.202 0.079
P1412 0.490 0.426 0.659 0.536 0.456 0.427 0.472 0.772 0.190 0.425 0.706 0.543

Table 10: MONITOR for all involved LLMs experimented on FKTC corpus.

Figure 10: The consistency of MONITOR when assess-
ing LLM’s factual reliability in predicting P178 facts
across different prompts settings.

Figure 11: The BLOOMZ series adheres to the scale law
for the specific facts with smaller MONITOR for bigger
models. The horizontal axis represents the model’s size
in billions, and the vertical axis represents the results of
MONITOR.
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Pearson P17 P19 P20 P27 P30 P37 P101 P103 P108 P127
correlation -0.579 -0.709 -0.685 -0.826 -0.648 -0.867 -0.474 -0.767 -0.889 -0.926
p-value 0.048 0.009 0.013 0.001 0.023 0.001 0.119 0.004 0.001 0.001

P159 P176 P178 P264 P276 P364 P495 P740 P1376 P1412
correlation -0.941 -0.941 -0.828 -0.950 -0.703 -0.740 -0.899 -0.919 -0.872 -0.900
p-value 0.001 0.001 0.001 0.001 0.011 0.006 0.001 0.001 0.001 0.001

Table 11: Pearson correlation between MONITOR and the average accuracy, evaluated on FKTC corpus.

Figure 12: The BLOOMZ and Vicuna series adhere to
the scale law based on the overall MONITOR results
obtained from experiments on 20 fact datasets. The hori-
zontal axis represents the size of a model in billions, and
the vertical axis represents the results of MONITOR.
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