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ABSTRACT

It is impossible today to pretend that the practice of machine learning is compatible
with the idea that training and testing data follow the same distribution. Several
authors have recently used ensemble techniques to show how scenarios involving
multiple data distributions are best served by representations that are both richer
than those obtained by regularizing for the best in-distribution performance, and
richer than those obtained under the influence of the implicit sparsity bias of
common stochastic gradient procedures.
This contribution investigates the use of very high dropout rates instead of en-
sembles to obtain such rich representations. Although training a deep network
from scratch using such dropout rates is virtually impossible, fine-tuning a large
pre-trained model under such conditions is not only possible but also achieves
out-of-distribution performances that exceed those of both ensembles and weight
averaging methods such as model soups.
This result has practical significance because the importance of the fine-tuning sce-
nario has considerably grown in recent years. This result also provides interesting
insights on the nature of rich representations and on the intrinsically linear nature
of fine-tuning a large network using a comparatively small dataset.

1 INTRODUCTION

The practice of machine learning has been shaped by the assumption that training and testing examples
are independently drawn from the same unknown probability distribution. This is seldom the case
in modern settings, not only because this i.i.d. assumption breaks down for the problems of interest,
but also because it is often convenient to use multiple datasets that are known to follow different
distributions. For instance, we may pre-train a deep network on a large dataset, fine-tune it on a
smaller dataset specific to the task of interest, and test on a collection of tasks designed to benchmark
various aspects of the system.

Many of the tenets of machine learning should therefore be regarded with healthy suspicion. For
instance, under the i.i.d. assumption, favoring solutions with sparse representations has well-known
benefits on the generalization performance. Yet, several authors (Zhang et al., 2022; Zhang & Bottou,
2023; Chen et al., 2023) make the point that scenarios involving multiple distributions are best served
by “richer representations” that contain redundant features, that is, features that do not improve
the model performance on the training distribution, but could prove helpful when the distribution
changes.

It would be nice to construct such rich representations by merely optimizing the expectation of
a suitable loss function for a single training distribution, for instance using stochastic gradient
techniques. Alas, this hope is contradicted by the implicit sparsity bias of stochastic gradient
algorithms (Andriushchenko et al., 2023; Blanc et al., 2020). In a nutshell, a feature only survives
when it brings an incremental training error advantage relative to what can be achieved using all
the other features already present in the network. We slightly abuse the terminology and call them
“strongly relevant”. However, features that are not strongly relevant might nevertheless

(a) be incrementally useful when the data follows a different distributions of interest, or
(b) be useful under the training distribution when added to certain subsets of the other existing

features instead of all of them (“weakly relevant”).

1
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It is therefore tempting to “enrich" the representation with features of type (b), which can be found
using the training data, and hope that some of these will turn out to also be features of type (a) whose
inclusion helps when the data distribution changes.

The dropout technique (Srivastava et al., 2014) seems well suited to finding weakly relevant features
because randomly masking units of a representation layer during training amounts to forming random
subsets of all other available features. However, in order to form small subsets, one would have to
use very high levels of dropout. Unfortunately, training a sizable deep network from scratch with
such a large dropout is practically impossible. Instead, computationally demanding methods, such as
adversarial sampling (Zhang et al., 2022; Chen et al., 2023) and representation ensembles (Zhang &
Bottou, 2023), have been proposed to find weakly relevant features while training a network from
scratch.

There is however a practically meaningful scenario in which we can use an extremely aggressive
dropout: fine-tuning a pre-trained network using a comparatively small dataset. This is possible
because such a fine-tuning operation makes only modest changes to the network weights. For example,
several authors (Ramé et al., 2022b; Wortsman et al., 2022a) argue that fine-tuned networks remain
“linearly connected”, that is averaging the parameters of multiple fine-tuned networks approximate
the ensemble of these networks. Evci et al. (2022) even show that a linear classifier on top of the
union of internal-layer features of pre-trained residual networks can match or exceed the performance
of fine-tuning.

In the present work, we adopt the out-of-distribution fine-tuning setup (three-distributions) of Ramé
et al. (2022b). In this framework, we have access to a model pre-trained using a large dataset for
a task weakly related to the task of interest. This pre-trained model is then fine-tuned on datasets
that illustrate the task of interest, and then tested on a dataset for the same task but with a different
distribution. However, instead of enriching the representations by constructing ensembles (Zhang &
Bottou, 2023) or averaging weights (Ramé et al., 2022b;a; Wortsman et al., 2022b), we simply fine-
tune using very large dropout levels, randomly masking above 90% of the units in the representation
layer. We find that this simple approach exceeds the performance of both ensemble and weight-
averaging methods. This result is not only practically meaningful, but also clarifies the idea of richer
representation.

2 RELATED WORK

Constructing versatile representations Reusing or transferring features across related tasks has
been commonplace for more than one decade (Collobert et al., 2011; Bottou, 2011; Sharif Razavian
et al., 2014) and plays a fundamental role in the appeal of foundational models (Bommasani et al.,
2021a). However, once the optimization process has identified a set of features that is sufficient
to achieve near-optimal performance on the training set, additional features are often discarded
because they do not bring an incremental benefit to the training error, despite the fact that they may
independently carry useful information (Zhang & Bottou, 2023).

Researchers have devised ways to obtain more versatile representations by engineering a diversity of
datasets, architectures, and even hyper-parameters (Chen et al., 2020; Wang et al., 2022; Dvornik
et al., 2020; Bilen & Vedaldi, 2017; Gontijo-Lopes et al., 2021; Li et al., 2021; 2022; Chowdhury
et al., 2021), as an alternative to the most popular approach which consists of simply using ever larger
datasets (Bommasani et al., 2021b).

Interesting results have also been obtained without engineering diversity and without increasing the
dataset sizes. Zhang et al. (2022) and Chen et al. (2023) propose to discover rich representation
through multiple training episodes that adversarially reweigh the training dataset to impede the use
of previously learned features. Zhang & Bottou (2023) show that surprisingly good results can be
obtained by concatenating the representations of multiple networks that are trained in exactly the
same way, save for the random seed used in the stochastic gradient process.

Fine-tuning as a near-linear process Although modern deep residual networks feature highly
complex nonconvex cost functions, several authors have shown that their final training phase remains
mostly confined to a nearly-convex attraction basin (Izmailov et al., 2018; Li et al., 2018; Frankle
et al., 2020). The same observation holds when fine-tuning a large pre-trained network using a dataset

2
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whose size is considerably smaller than the dataset size one would need to train such a large network
from scratch. As long as one starts from the same pre-trained model, Wortsman et al. (2022a) and
Ramé et al. (2022b;a) observe that averaging the weights of diverse fine-tuned models can reproduce
the i.i.d. and o.o.d. performances of the ensemble of these models, implying that fine-tuning is a
near-linear process.

Maddox et al. (2021) and Mu et al. (2019) propose instead to approximate the fine-tuning process
with a first-order Taylor expansion, obtaining a linear system operating on top of the NTK features.
Evci et al. (2022) match the performance of fine-tuning by merely learning a strongly regularized
linear model that takes all internal layer states as inputs. Meanwhile, Yu et al. (2023) efficiently
fine-tune large foundational language models by essentially restricting the weight updates to low
dimensional manifolds.

Fine-tuning with very large dropout Our contribution advocates using very large dropout in the
fine-tuning scenario in order to force the learning algorithm to create a redundant representation
without specifically engineering diversity. We do not seek to propose new dropout variations (Chu
et al., 2022), understand dropout from either an overfitting/underfitting perspective (Liu et al., 2023)
or from a Bayesian perspective (Gal & Ghahramani, 2016).

3 FINE-TUNING AND DROPOUT

3.1 THE THREE-DISTRIBUTIONS SETUP

The two-distributions setup is a commonly used for transfer learning. In this setup, features Ψ are
obtained by pre-training a network on a large training set associated with a first distribution Tp. These
features are then used to construct or initialize a new model ωd ◦ Ψ, which is then trained using a
smaller training set associated with a second distribution Td. The question is to determine which
pre-training approach is most likely to make the features Ψ useful for the transfer task Td.

The three-distributions setup (Ramé et al., 2022b) views the pre-trained model as a base model that is
assumed very rich but whose training process is beyond our control (e.g., a fundational model). The
features Ψ of the pre-trained model are then incorporated into a new model ωd ◦Ψ that is fine-tuned
using a second distribution Td and eventually tested on a third distribution T̃d illustrating the same
general task as the second distribution (e.g., using the same classification labels.) The question is
then to determine which fine-tuning approach is most likely to produce a model that will perform
robustly under the eventual testing distribution T̃d.

3.2 METHOD

The key results described later in this paper have been obtained with a very simple method. The base
model is a deep learning network with residual connections trained on data Tp that is related to but
substantially larger than the datasets illustrating the task of interest. Some of these datasets (Td) are
used to fine-tune the base model. Performance is reported on both held-out data from the fine-tuning
datasets (i.i.d. performance on Td) and data from the remaining datasets (o.o.d. performance on T̃d).

We focus on residual networks because fine-tuning has been found to hardly change the inner layers
of non-residual networks (Raghu et al., 2019, fig 2). In contrast, skip connections in residual networks
expose the inner block features in such a manner that the fine-tuning process can utilize these features
in a near-linear way (Evci et al., 2022).

Fine-tuning is carried out with a standard stochastic learning procedure (e.g. SGD or ADAM) after
applying a very large dropout to the penultimate layer representation Φ. Unlike (Srivastava et al.,
2014), we only apply dropout on the penultimate layer representation Φ,1 because skip connections
in residual networks expose many inner-layer features to the last linear layer, as illustrated by the

1Except in Figure 6 in the appendix where we investigate the effect of dropping entire inner residual blocks
during fine-tuning.
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decomposition of residual networks proposed by Veit et al. (2016),

Φ(x) = x︸︷︷︸
ϕ0(x)

+ f1(x)︸ ︷︷ ︸
ϕ1(x)

+ f2(x+ f1(x))︸ ︷︷ ︸
ϕ2(x)

+ · · · =
∑

i∈[0,...,l]

ϕi(x) ∈ Rp , (1)

where fi represents the function implemented by the i-th residual block, and

Φdropout(x) =
m(λ)

1− λ
⊙ Φ(x) , (2)

where ⊙ represents the component-wise product and m(λ) is a vector of random Bernoulli vari-
ables equal to 0 with probability λ and 1 with probability 1 − λ. The additive decomposition of
Φ(x) in equation equation 1 makes clear that applying dropout to Φ(x) simultaneously blocks the
contributions ϕi(x) of all residual blocks.

4 EXPERIMENTS

We perform most experiments using PACS (Li et al., 2017), VLCS (Fang et al., 2013), OFFICE HOME
(Venkateswara et al., 2017), and TERRA INCOGNITA (Beery et al., 2018) datasets. These datasets
are part of the DOMAINBED suite which has been widely used for this kind of experiments.2 With
9, 991 to 24, 788 examples, they are substantially smaller than the pre-training dataset IMAGENET
with 1.2M examples. We also use the larger DOMAINNET dataset (Peng et al., 2019), 0.58M examples,
to show that linear connectivity breaks down when the fine-tuning dataset size becomes comparable
with the pre-training dataset size and justifies carrying out many more fine-tuning iterations.

Each of these datasets is divided into four sub-datasets that share the same target label categories but
follow a different distribution. For example, one sub-dataset of PACS contains simple sketch images
of ‘dog’ and ‘elephant’, while another sub-dataset contains real photos of ‘dog’ and ‘elephant’. This
makes it possible to conveniently evaluate o.o.d. performance by fine-tuning on three sub-datasets
and testing on the fourth one.

Fine-tuning experiments are carried out on two widely used residual architectures: convolutional
residual networks, RESNETs (He et al., 2016), and vision transformers, VITs (Dosovitskiy et al.,
2020). Unless otherwise stated, all convolutional residual network experiments are carried out using
the RESNET50 neural network pre-trained on IMAGENET with substantial data augmentations3 such
as TRIVIALAUGMENT (Müller & Hutter, 2021), CUTMIX (Yun et al., 2019), and RANDOM ERASINGS
(Zhong et al., 2020). These augmentations mimic the properties of large foundational models that
learn substantial diverse features using very large and diverse pre-training data. We refer to this
network as RESNET50 #2 as opposed to the original RESNET50 #1 recipe described by He et al.
(2016). Similarly, all visual transformer fine-tuning experiments leverage a IMAGENET pre-trained
VIT-L-16 model4 with 304M parameters.

4.1 VERY LARGE DROPOUT YIELDS BETTER O.O.D. PERFORMANCE

Using these same datasets, Gulrajani & Lopez-Paz (2020) argue that plain Empirical Risk Minimiza-
tion (ERM) equals and often betters the o.o.d. performance of purposefully designed methods, such as
CORAL (Sun & Saenko, 2016), VREX (Krueger et al., 2021), and IRM (Arjovsky et al., 2019). More
recently, Arpit et al. (2022), Cha et al. (2021), Ramé et al. (2022b), and Ramé et al. (2022a) find
that ensemble and weight averaging methods consistently outperform the o.o.d. performance of ERM.
We now show that fine-tuning with very large dropout outperforms the o.o.d. performance of these
state-of-the-art methods.5

Following these earlier works, we focus on the o.o.d. performance of these methods because this
is the testing performance that matters for the practical situations that the three-distribution setup

2https://github.com/facebookresearch/DomainBed
3https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-t

orchvision-latest-primitives/
4https://github.com/pytorch/vision/tree/main/references/classification#

vit_l_16
5Code: https://anonymous.4open.science/r/verylarge_dropout-2BCB/

4
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Figure 1: o.o.d. performance comparison between very large dropout, ensembles, and weight averag-
ing methods on four DOMAINBED tasks and two backbones (RESNET50 and VIT-L-16). Baseline
results were obtained using plain fine-tuning with different hyperparameters. Weight averaging re-
sults either average the model weights collected every 300 iterations along each fine-tuning trajectory
or the final model weights of all fine-tuning trajectories as in (Ramé et al., 2022b). Ensemble results
average instead the model outputs. Finally, large dropout results were obtained like the baseline
results but using a 90% dropout rate on the penultimate layer. Each box summarizes the results
obtained with 1296 hyper-parameters combinations (no hyper-parameter selection).

Table 1: o.o.d. performance comparison between very large dropout, ensembles, and weight averaging
methods after hyperparameter selection. The hyperparameter is selected according to the best i.i.d.
performance.

dataset baseline weight avg
(single)

ensemble
(single)

large
dropout

weight avg
(multi)

ensemble
(multi)

VLCS 78.3 79.4 79.6 80.1 78.8 79.1
OFFICE HOME 71.4 72.2 72.3 73.6 71.3 71.3

R
E

S
N

E
T

PACS 87.3 86.9 87.3 88.5 87.0 87.1
TERRA INCOGNITA 51.0 53.1 52.3 53.9 52.0 52.5

Average 72.0 72.9 72.9 74.0 72.3 72.5

VLCS 78.1 78.1 77.9 79.0 78.4 78.4
OFFICE HOME 74.6 74.8 74.8 74.6 74.5 74.6

V
IT

-L
-1

6

PACS 85.0 84.2 84.3 86.0 84.7 84.8
TERRA INCOGNITA 44.4 45.1 44.8 45.8 44.1 44.0

Average 70.5 70.6 70.5 71.4 70.4 70.5
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targets. The i.i.d. performance must then be viewed as a secondary indicator, akin to the training
set performance, which could be used to cast a light on the training process but cannot be used as a
predictor of the system performance under its actual testing distribution.

Figure 1 reports the o.o.d. performances of the following approaches.

• Baseline results are obtained by fine-tuning our RESNET50 or VIT-L-16 using SGD with 0.9
momentum for 10, 000 iterations.6 A 10% learning rate decay is applied at 5000th iterations.
For each choice of three training sub-datasets, we repeat three experiments for each com-
bination of learning rate in {10−3, 5.10−4} and L2 weight decay in {10−4, 5.10−5, 10−5}.
We measure the i.i.d. performance using 20% examples held from the training data, and
we measure o.o.d. performance on the fourth sub-dataset. Each box summarizes the perfor-
mances obtained using two learning rate choices and three weight decay choices, for four
possible training dataset choices, resulting in (2× 3)4 = 1296 results. Following Gulrajani
& Lopez-Paz (2020), we prevent overfitting by early-stopping at the best i.i.d. performance.

• Dropout results are obtained using the same protocol but using a 90% dropout rate on the
penultimate layer representation.

• Ensemble results are obtained in two ways, either using an ensemble of checkpoints
collected along each fine-tuning trajectory, or using the ensemble of the final checkpoints
collected along all fine-tuning trajectories with different hyper-parameters.

• Weight averaging results approximate the corresponding ensembling results by averaging
the model weights instead of averaging the model outputs.

As expected, both ensemble methods (Ueda & Nakano, 1996; Dietterich, 2000) and their weight
averaging approximation (Ramé et al., 2022b; Wortsman et al., 2022a) improve on the o.o.d. baseline
performance. However, fine-tuning with a very large dropout outperforms the o.o.d. performance
of both ensemble and weight averaging methods. There is even a large gap between the worst
dropout results and the best ensemble results for the OFFICE HOME and PACS datasets. Figure 7
in the Appendix shows that the i.i.d. performance of the large dropout method lags behind that of
ensembles, revealing that the o.o.d. performance improvement is not a secondary effect of some i.i.d.
performance improvement (i.e. the o.o.d. performance gaps in o.o.d. Figure 1 do not come from i.i.d.
overfitting/underfitting.).

The box plots in Figure 1 summarize the o.o.d. performance of all possible hyper-parameter combina-
tions. Following again Gulrajani & Lopez-Paz (2020), Table 1 features o.o.d. performances obtained
using the hyper-parameter combination that provides the best i.i.d. performance. Because RESNET50
produces a better performance than VIT-L-16 on these o.o.d. fine-tuning tasks, our experiments in
the following sections will be conducted on RESNET50.

4.1.1 OPTIMAL O.O.D. DROPOUT RATE

To the best of our knowledge, such large dropout rates (90% and above) are considered unsuitable for
training a network from scratch and have not been previously used for fine-tuning either. This section
illustrates how the optimal dropout rate can be very high in fine-tuning scenarios and falls to small
values when one gets closer to training the network from scratch.

Figure 2 compares various dropout rates on the four DOMAINBED tasks. A 90% dropout rate reliably
produces good o.o.d. performance on all four tasks. The optimal dropout rate for o.o.d. performance
ranges from 90% to 95% for VLCS and PACS task (with 10k examples). And becomes slightly smaller,
about 90%, for the slighlty larger datasets OFFICE HOME and TERRA INCOGNITA (with 15k to 25k
examples).

Increasing the fine-tuning dataset size to approach the pre-training dataset size The larger
the fine-tuning dataset, the more fine-tuning iterations we can make without overfitting. When the
fine-tuning dataset size approaches the pre-training dataset size, the difference between fine-tuning
and training from scratch becomes less clear, the linear connectivity property disappears, the linear
approximation perspective on fine-tuning no longer holds, and the optimal dropout rate falls sharply.

6We use a batch size 32 for all RESNET fine-tunings, and reduce the batch size to 16 for all VIT-L-16
fine-tunings due to the VRAM constraint.

6
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Figure 2: Effect of diverse dropout rates during fine-tuning. The best o.o.d. performances are attained
using rates around or above 90%. A large dropout rate (e.g. 90%) reliably produces good o.o.d.
performance on all four tasks.

Figure 3 illustrates this effect using the larger DOMAINNET dataset (Peng et al., 2019) that contains
586k examples (almost half as big as IMAGENET) and requires 30, 000 fine-tuning iterations.

Training from scratch on the fine-tuning dataset Figure 4 shows the effect of various dropout
rates when one trains a network on the VLCS task from scratch, that is starting from a randomly
initialized network without pretraining (i.e. the pretraining dataset size is zero). The optimal dropout
rate falls to about zero. Dropout rates higher than 50% have a negative impact on both the i.i.d. and
the o.o.d. performance of the network. This suggests again that high dropout rates make it difficult
to create new features (a nonlinear operation), but does not prevent leveraging existing features
that were possibly buried in the network inner layers (a linear operation). This is the idea of richer
representation we discussed in section 1. We will provide other fine-tuning experiments on the richer
representation idea in Section 4.3.
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Figure 3: Comparison of various dropout rates on
the larger DOMAINNET dataset (586K examples),
whose size approaches the pretraining dataset
size (IMAGENET, 1.2M examples). The optimal
dropout rate falls to about 50%, a value compara-
ble to the dropout rates traditionally used when
training from scratch.
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Figure 4: Comparison of dropout rates when
training a RESNET50 network from scratch on
the VLCS dataset. The optimal dropout rate falls
to about zero. Dropout rates greater than 50%
negatively impact both the i.i.d. and the o.o.d.
performances.

4.2 POPULAR FINE-TUNING TECHNIQUES DO NOT SUBSTANTIALLY IMPROVE THE O.O.D.
PERFORMANCE OF LARGE DROPOUTS

Various fine-tuning techniques have been proposed to improve the fine-tuning ability to leverage
the representations learned by a pre-trained model, such as using a larger learning rate on the last
layer (Caron et al., 2020; Bardes et al., 2021; Kumar et al., 2022) or, as discussed above, using
weight averaging and ensemble methods (Ramé et al., 2022b;a; Arpit et al., 2022). We show in this
section that using these techniques in addition to very large dropout rates do not yield much o.o.d.
performance improvements over using large dropout rates alone. Note that we still expect some
incremental benefits because both weight averaging and ensembles reduce the stochastic optimization
noise and accelerate training in general (Polyak & Juditsky, 1992).
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dataset baseline baseline
+ 10× last-layer lr

baseline
+ large dropout

baseline
+ large dropout

+ 10× last-layer lr

VLCS 78.3 79.9 (+1.6) 80.1 (+1.8) 80.5 (+2.2)
OFFICE HOME 71.4 71.8 (+0.4) 73.6 (+2.2) 73.3 (+1.9)

PACS 87.3 87.0 (-0.3) 88.5 (+1.2) 88.3 (+1.0)

TERRA INCOGNITA 51.0 52.2 (+1.2) 53.9 (+2.9) 54.9 (+3.9)

Average 72.00 72.73 74.03 74.25

Table 2: Incremental benefits achieved by applying a 10× larger learning rate in the last layer. The
first two columns show that this 10× last-layer learning rate is helpful to baseline. Then the middle
two columns show that using a large dropout rate vastly improves the o.o.d. performance of merely
using the increased learning rate (∼1.3%). The last two columns reveals that using this 10× larger
last-layer training rate yields small or zero incremental improvements over only using a large dropout
rate (∼0.2%).

4.2.1 LARGE LEARNING RATES FOR THE LAST LAYER

Several authors routinely use a larger training rate on the last layer on the intuition that fine-tuning
a pre-trained deep network on a different target task entails training a new last layer from scratch
(Caron et al., 2020; Bardes et al., 2021; Kumar et al., 2022).

Table 2 follows a similar fine-tuning process as in Table 1 but uses a 10× larger training rate for the
last layer classifier. Comparing the last two columns in Table 2 shows that using this 10× larger last
layer training rate yields small or zero incremental improvements over only using a large dropout rate
(∼0.2%). Comparing the middle two columns further shows that using a large dropout rate vastly
improves the o.o.d. performance of merely using the increased learning rate (∼1.3%).

4.2.2 ENSEMBLE AND WEIGHT AVERAGING
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Figure 5: Incremental benefits achieved by constructing ensembles or by averaging the weights of
models fine-tuned with very large dropouts. The baseline and dropout results are the same as those
reported in Figure 7. In contrast, the ensemble and weight averaging results are now obtained by
averaging the output or the weights of models fine-tuned with large dropouts. Ensemble and weight
averaging techniques provide a marginal o.o.d. performance improvement on VLCS or OFFICE HOME
and a negligible o.o.d. performance improvement on PACS or TERRA INCOGNITA.

Figure 5 similarly explores the incremental benefits achieved by constructing ensembles or by
averaging the weights of models fine-tuned with very large dropouts. The incremental improvements
in o.o.d. performance achieved by these methods, if any, are much smaller than the improvement
achieved by large dropout rates alone. Comparing Figures 7 and 5 also shows that in contrast,
fine-tuning with large dropout rates before computing ensembles or averaging model weights brings
large o.o.d. performance improvements over fine-tuning without dropout.
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dataset RESNET #1
naive fine-tune

RESNET #1
advance fine-tune

RESNET #2
naive fine-tune

RESNET #2
advance fine-tune

VLCS 76.7 79.5 78.3 81.0
OFFICE HOME 68.9 71.8 71.4 74.3

PACS 86.2 87.5 87.3 89.2
TERRA INCOGNITA 48.2 49.7 51.0 55.8

Average 69.0 72.1 72.0 75.1

Table 3: Comparison of the o.o.d. performances obtained after fine-tuning two pre-trained networks:
RESNET #1 and RESNET #2. Hyperparameters are selected according to the best i.i.d. performance.
Compared with RESNET #1 (He et al., 2016), RESNET #2 was pre-trained with the vast array of
data augmentation techniques. For each of these two pre-trained networks, we follow two fine-
tuning approaches: 1) naive fine-tuning; 2) advanced fine-tuning including various tricks intended to
improve the o.o.d. performance, e.g. large dropout (90%), weight averaging, and increased last-layer
learning rate, using hyper-parameters are selected according to the i.i.d. performance. Despite all
this technology, advanced fine-tuning of a pretrained RESNET #1 (2nd column) barely matches the
performance of naive fine-tuning on RESNET #2 (3rd column).

4.3 RICHER PRE-TRAINING BEATS SOPHISTICATED FINE-TUNING

We have demonstrated that the very-large dropout method delivers consistently better o.o.d. perfor-
mance than computing ensembles or weight-averages of models fine-tuned without dropout. However
we also have argued that fine-tuning does not create new representations but merely exploits the
representations already present in the pre-trained model. Therefore the final o.o.d. performance of
this fine-tuning process must strongly depend on the quality and the diversity of the features present
in the pre-trained network (richer representation), even if these features are not exploited by the
pre-trained network but buried in its hidden layers.

To validate this assertion, we compare the i.i.d. and o.o.d. performance obtained by various methods
applied to RESNET50 networks pre-trained using the same IMAGENET data but using different data
augmentation schemes. As explained in the first paragraphs of section 4, the results reported so far
use a network pre-trained using a broad array of data augmentation techniques, termed RESNET #2.
We now compare its fine-tuning properties with network termed RESNET #1 pre-trained using the
simpler protocol described in He et al. (2016).

Figure 3 compares the o.o.d. performances of both networks after regular fine-tuning and after fine-
tuning with all the available tricks, that is, with dropout, with 10× larger last layer learning rate, and
after averaging the weights of checkpoints collected along the fine-tuning trajectory. This comparison
makes clear that the quality of the pre-trained representation matters more than the sophistication of
the fine-tuning techniques. This is consistent with the idea that fine-tuning only leverages the existing
features of the pre-trained network and does not create new ones.

5 DISCUSSION

The o.o.d. performance of fine-tuning with very large dropout consistently exceeds that achieved
by popular techniques such as ensemble and by more recent techniques such as weight averaging.
Furthermore, ensemble and weight averaging techniques only bring a small incremental improvement
when applied on top of fine-tuning with large dropout rates. This suggests that very large dropout
implements a key factor that favors o.o.d. performance, which we believe is related to seeking features
of type (a) among features of type (b) as explained in the introduction.

Both ensemble and weight-averaging techniques can be used for training a network from scratch or
for fine-tuning a pre-trained network. In contrast, very large dropout rates cannot be realistically used
when training a network from scratch. We argue that they work for fine-tuning because fine-tuning
is well approximated as a linear process that can leverage their existing or buried features of a
pre-trained network but cannot create new ones. Using large dropout rates is akin to a form of L2
regularization, expressing a richer set of features even if redundant.
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This result also illustrates how the i.i.d. and o.o.d. scenarios can call for very different techniques. It is
well known that sparse representations can be very helpful in the i.i.d. scenario, and it is increasingly
clear that rich representations are preferable in the o.o.d. scenario (Zhang et al., 2022; Zhang &
Bottou, 2023; Chen et al., 2023). There are no reasons to expect that the many techniques designed
for the i.i.d. scenarios will systematically help o.o.d. generalization. The very-large dropout case is
one of many such examples.
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Fine-tuning with Very Large Dropout
Supplementary Material

A EXPERIMENT DETAILS

A.1 FINE-TUNING DOMAINNET IN FIGURE 3

The DOMAINNET o.o.d. fine-tuning experiment in Figure 3 follows the same pipeline as other o.o.d.
fine-tuning experiments on VLCS, PACS, OFFICE HOME, and TERRA INCOGNITA datasets. Due to
the larger size of DOMAINNET dataset, we use larger learning rates {3.10−3, 5.10−3} and a longer
training iteration 30, 000 with a 10% learning rate decay at 15, 000 and 25, 000.

A.2 TRAINING FROM SCRATCH IN FIGURE 4

The VLCS scratch training experiment in Figure 4 follows the same pipeline as o.o.d. fine-tuning
experiments. But it uses larger learning rates {5.10−3, 10−2} on a random initialized RESNET50
network (all weights are trainable).

A.3 COMPUTE RESOURCES

All experiments are done on V100 GPUs with Intel(R) Xeon(R) Gold 6230 CPUs. One V100 GPU
and less than 32GB RAM are enough to fine-tune one Domainbed dataset within a few hours.

B ADDITIONAL RESULTS

B.1 RESIDUAL BLOCK DROPOUT (STOCHASTIC DEPTH) IN O.O.D. FINE-TUNING

Huang et al. (2016) shows dropping a residual block at random with probability p helps train very
deep residual neural networks from scratch. Dropping a residual block, for example f1(x), in Φ(x)
blinds the feature ϕ1(x) but also changes the input of successive layers:

Φ′(x) = x︸︷︷︸
ϕ0(x)

+ f1(x)︸ ︷︷ ︸
ϕ1(x)

+ f2(x+ f1(x))︸ ︷︷ ︸
ϕ′
2(x)

+ . . .

So an aggressive residual block dropout heavily disturbs the input of high residual blocks, hurts the
fine-tuning process. Figure 6 showcase the effect of redisual block dropout in o.o.d. fine-tuning.
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Figure 6: Residual block dropout (stochastic depth) and penultimate layer representation dropout com-
parison. Residual block dropout random drops a residual block with probability ∈ {0.1, 0.2, 0.3}.
Mild residual block dropouts (0.1) provides some o.o.d. improvements (●), but lags behind dropout
(◆) on VLCS, OFFICE HOME, and TERRA INCOGNITA. Aggressive residual block dropouts hurt fine-
tuning (e.g. ≥ 0.3 on OFFICE HOME and TERRA INCOGNITA), because dropping a residual block
change the input of successive layers. Likewise the comparison of ensemble, weight averaging,
and large last-layer learning rate in section 4.2, a proper residual block dropout helps fine-tuning in
general, but is still a secondary factor compared with dropout.

B.2 O.O.D. PERFORMANCE IMPROVEMENT IS NOT A SECONDARY EFFECT OF SOME I.I.D.
PERFORMANCE IMPROVEMENT

Figure 7 provides both i.i.d. and o.o.d. performance of very large dropout, ensembles and weight
averaging methods. The very large dropout method outperforms other methods on o.o.d. performance
without any advantage on i.i.d. performance. It reveals that the o.o.d. performance gaps of different
methods in Figure 7 and Figure 1 do not come from the i.i.d. overfitting/underfitting.
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Figure 7: Performance comparison between very large dropout, ensembles, and weight averaging
methods on four DOMAINBED tasks and RESNET50 #2 backbone. The horizontal axis denotes the
i.i.d. performance and the vertical axis the o.o.d. performance. Baseline results were obtained using
plain fine-tuning with different hyperparameters (1296×●). Weight averaging results either average
the model weights collected every 300 iterations along each fine-tuning trajectory (1296×⋆) or
the final model weights of all fine-tuning trajectories (1×⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆) as in (Ramé et al., 2022b). Ensemble
results average instead the model outputs (1296×▲ and 1×▲▲▲▲▲▲▲▲▲▲▲). Finally, large dropout results were
obtained like the baseline results but using a 90% dropout rate on the penultimate layer (1296×◆).
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