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Abstract

Given a dataset of n i.i.d. samples from an unknown distribution P , we consider
the problem of generating a sample from a distribution that is close to P in total
variation distance, under the constraint of differential privacy (DP). We study the
problem when P is a multi-dimensional Gaussian distribution, under different
assumptions on the information available to the DP mechanism: known covariance,
unknown bounded covariance, and unknown unbounded covariance. We present
new DP sampling algorithms, and show that they achieve near-optimal sample
complexity in the first two settings. Moreover, when P is a product distribution on
the binary hypercube, we obtain a pure-DP algorithm whereas only an approximate-
DP algorithm (with slightly worse sample complexity) was previously known.

1 Introduction

Differential privacy (DP) [18, 16] is a strong and rigorous notion of privacy that has been increasingly
studied and deployed as protection against the leakage of personal data used to train ML models.

A basic setting widely studied in ML is distribution learning, where given samples drawn i.i.d. from
an unknown distribution P , we seek to output a distribution Q that is as close to P as possible
(formal definitions are given in Section 1.1). Recent works [27, 2, 29, 4] have studied DP distribution
learning, whereby the output distribution is guaranteed to stay roughly the same when a single
input sample is changed. A closely related setting is DP mean and covariance estimation studied
by [38, 21, 36, 30, 7, 8, 11, 15, 28, 25, 9, 26]. Motivated by the fact that tasks often require much fewer
samples than full-fledged learning, the very recent work of [35] studied the task of DP distribution
sampling, where the goal is to generate a sample from a distribution Q that is as close as possible to
the distribution P from which the input samples are drawn i.i.d. (In the non-private setting, variants
of the sampling task have also been studied, e.g., in the work on sample amplification by [5].)

In this work, we study DP distribution sampling, and the quantitative gap with respect to the a priori
more challenging task of DP distribution learning. For the case of multi-dimensional Gaussians,
we consider three natural settings: known covariance, unknown bounded covariance, and unknown
unbounded covariance; for the first two, we obtain near-tight bounds. This answers an open question
of [35]. Moreover, we obtain near-tight bounds on sampling in the case of product distributions on
{0, 1}d with pure-DP, also improving upon previous work.

∗This work was done while the author was visiting Google Research.
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Motivation. There are many natural settings where a sample from the underlying distribution would
be sufficient (as an alternative to the possibly more expensive task of learning the distribution).

For example, if one is implementing an algorithm that would run on sensitive user data, then, as part
of the usual software development cycle, unit tests [24] are important. Writing unit tests on real data
can violate users’ privacy (e.g., if the unit test code is public). On the other hand, (privately) learning
the distribution of the user data could be a significant overkill for this application. A private sample
of the underlying distribution would provide a sufficiently representative input for the unit testing
algorithm, and this input could be revealed publicly without compromising the privacy of the users.

A second motivation arises in distributed settings. Consider the situation where algorithms are being
developed on medical data provided by multiple hospitals. The algorithm designer would like a
synthetic dataset that would work well for the algorithm development process. Such a dataset could
be obtained if each hospital provides a few (private) samples from its underlying distribution.

Finally, we describe another distributed setting motivation where a central curator wishes to build
a synthetic dataset from multiple users, each contributing multiple items, under the constraint of
item-level DP (as opposed to user-level DP). A simple approach for generating such a synthetic
dataset is to let each user send to the curator a private sample (satisfying item-level DP).

1.1 Formulation

LetD be a class of distributions on some domain X . We consider a setting where there is an unknown
distribution D ∈ D and an algorithm has sample access to D. There are two natural problems that
can be posed in this setting. In the sampling problem, the goal is to design an algorithm that uses
samples from D (which is unknown) and outputs an element in X . We say that an algorithm A is an
α-accurate sampler forD iff dtv(D,QA,D) ≤ α for all D ∈ D, where QA,D denotes the distribution
of A(X) where X ∼ Dn and dtv(·, ·) denotes the total variation distance. Here n is said to be the
sample complexity of the sampler. In the learning problem, the goal is to design an algorithm that
outputs a distribution D′ ∈ D. We say that an algorithm A is an (α, β)-accurate learner for D if
PrX∼Dn,D′∼A(X)[dtv(D

′, D) ≤ α] ≥ 1− β for all D ∈ D; as before, n is the sample complexity
of the learner.

The DP version of the learning problem is well studied, e.g., [27, 4]; in this work we study the DP
version of the sampling problem. First, we recall the definition of DP. We consider the substitution
notion, i.e., two datasets are neighbors iff they have the same number of samples and we can transform
one to the other by changing a single sample.
Definition 1.1 (Differential Privacy [18, 16]). An algorithm M : Y → O is said to be (ϵ, δ)-
differentially private ((ϵ, δ)-DP) for ϵ > 0, δ ≥ 0 iff, for every S ⊆ O and every neighboring datasets
Y, Y ′ ∈ Y , we have Pr[M(Y ) ∈ S] ≤ eϵ · Pr[M(Y ′) ∈ S] + δ.

We abbreviate (ϵ, 0)-DP by ϵ-DP, aka, pure-DP; the δ ̸= 0 case is approximate-DP. We assume that
the privacy parameters satisfy ϵ ≤ 1, δ ≤ 1/2, and the accuracy parameter satisfies 0 < α ≤ 1/2.

1.2 Our Results for Gaussian Distributions in Rd

We focus on the d-dimensional Gaussian distribution, i.e., D = N(µ,Σ) with µ ∈ Rd,Σ ∈ Rd×d.
Recall that N(µ,Σ) is supported on Rd with fN(µ,Σ)(x) ∝ exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)
. We

study three cases that have been considered in the literature:

• Known Covariance: Σ is known, but µ is not. More formally, the class of distributions is
DN

Σ := {N(µ,Σ) | µ ∈ Rd}.
• Unknown Bounded Covariance: Both µ,Σ are unknown but with a promise that I ⪯ Σ ⪯ κ · I

for a known constant κ > 0, i.e., the class of distributions is DN
κ := {N(µ,Σ) | µ ∈ Rd,Σ ∈

Rd×d s.t. I ⪯ Σ ⪯ κ · I}.2
• Unknown Unbounded Covariance: Both µ,Σ are unknown, i.e., the class of distributions is
DN := {N(µ,Σ) | µ ∈ Rd,Σ ∈ Rd×d}.

A summary of our DP sampling results along with a comparison to known DP learning results is in
Table 1. Before we describe our results in more detail, we highlight the following. (i) In all cases,

2We write A ⪯ B to denote that B −A is positive semi-definite, for matrices A and B.
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the dependence of our algorithms on the accuracy parameter α is only polylogarithmic, whereas for
DP learning algorithms, this dependence is polynomial. (ii) In the case of known covariance and
unbounded known covariance, we obtain improvements over DP learning in terms of the dependence
on the dimension d. (iii) All of our algorithms run in polynomial time, although we do not explicitly
state the running time in the formal statements.

Known Covariance. While any DP learning algorithm requires Θ̃
(

d
α2 + d

αϵ

)
samples in this

setting [27], we show that, surprisingly, only Õ
(√

d/ϵ
)

samples suffice for DP sampling.

Theorem 1.2. There is an α-accurate (ϵ, δ)-DP sampler for Gaussian distributions with known

covariance with sample complexity O
(√

d
ϵ · polylog

(
d

δϵα

))
.

We also show that the
√
d dependence is necessary, i.e., that our algorithm’s sample complexity is

tight up to polylogarithmic factors.

Theorem 1.3. Any 0.1-accurate (ϵ, δ)-DP sampler for Gaussian distributions with known covariance
must have sample complexity Ω(

√
d/ϵ).

Unknown Bounded Covariance. In this setting, we obtain an algorithm with sample complexity of
Õκ

(
d
ϵ

)
; in contrast, the best known DP learning algorithm requires Θ̃κ

(
d2

α2 + d2

αϵ

)
samples [27, 29].

Theorem 1.4. There is an α-accurate (ϵ, δ)-DP sampler for Gaussian distributions with unknown
covariance, under the assumption I ⪯ Σ ⪯ κ·I , with sample complexity O

(
d
ϵ · κ

2 · polylog
(

d
δϵα

))
.

Similar to before, we can show that the sample complexity dependence on d, ϵ is near-optimal:

Theorem 1.5. Let α > 0 be a sufficiently small constant, and ϵ, δ be such that δ ≤ O
(

1
nd2

)
. Then,

any α-accurate (ϵ, δ)-DP sampler for Gaussian distributions with unknown covariance, under the

assumption I ⪯ Σ ⪯ 2I , must have sample complexity n = Ω
(

d
ϵ
√
log d

)
.

Unknown Unbounded Covariance. In this setting, the best known DP learning algorithm uses
Θ̃
(

d2

α2 + d2

αϵ

)
samples [4, 29, 28]. For DP sampling, we show that we can reduce the dependence on

α to polylogarithmic and the dependence on d to d1.5.

Theorem 1.6. There exists an α-accurate (ϵ, δ)-DP sampler for Gaussian distributions (without any

assumption) with sample complexity O
(

d1.5

ϵ polylog
(

d
αϵδ

))
.

Known Covariance Bounded Covariance Unbounded Covariance
Non-Private Learning

Θ
(

d
α2

)
Θ
(

d2

α2

)
Θ
(

d2

α2

)
(Folklore)

(ϵ, δ)-DP Learning Θ̃
(

d
α2 + d

αϵ

)
Θ̃
(

d2

α2 + d2

αϵ

)
Θ̃
(

d2

α2 + d2

αϵ

)
[27] [27, 28] [4, 28]

(ϵ, δ)-DP Sampling Θ̃
(√

d
ϵ

)
Θ̃
(
d
ϵ

)
Õ
(

d1.5

ϵ

)
(Our results) Theorems 1.2,1.3 Theorems 1.4, 1.5 Theorem 1.6

Table 1: Sample complexity of private learning and sampling for Gaussian distributions. Here, Õ, Θ̃
hide factors that are polylogarithmic in d, 1/ϵ, 1/δ, 1/α (and 1/β in the case of learning).

1.3 Our Results for Product Distributions on {0, 1}d

For p ∈ [0, 1], let Ber(p) be the Bernoulli distribution supported on {0, 1} with probability mass
function fBer(p)(0) = 1 − p and fBer(p)(1) = p. We consider product distributions Ber(p1) ⊗
· · · ⊗ Ber(pd) where p1, . . . , pd ∈ [0, 1] are unknown. (In other words, the class of distributions is
Dprod := {Ber(p1)⊗ · · · ⊗ Ber(pd) | p1, . . . , pd ∈ [0, 1]}.)
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Non-Private Learning Θ
(

d
α2

)
ϵ-DP Learning Θ̃

(
d
α2 + d

αϵ

)
[29, 27]

(ϵ, δ)-DP Sampling Θ̃
(

d
αϵ

)
[35]

ϵ-DP Sampling
Θ̃
(

d
αϵ

)
Theorem 1.7(Our result)

Table 2: Sample complexity for private learning
and sampling for product distributions on {0, 1}d.
Here, Θ̃ hides factors that are polylogarithmic in
d, 1/α (and 1/β in the case of learning).

We give a pure-DP sampler with sample com-
plexity Õ

(
d
αϵ

)
. Previously, only approximate-

DP sampler with similar sample complexity was
known from [35], which also provided a match-
ing lower bound. In comparison, DP learning
uses Θ̃

(
d
α2 + d

αϵ

)
samples [27, 10].

Theorem 1.7. There exists an α-accurate ϵ-DP
sampler for product distributions on {0, 1}d with

sample complexity O

(
d log( d

α )
αϵ +

d log2( d
α )

ϵ

)
.

We also note that our result above improves upon even the approximate-DP sampler in [35] by
logarithmic factors. Specifically, for α ≤ 1/ log d, our sample complexity is O

(
d log(d/α)

αϵ

)
whereas

theirs is O
(

d
√

log(1/δ)

αϵ

(
log9/4 d+ log5/4(1/α)

))
.

2 Technical Overview

2.1 Gaussian Distributions: Algorithms

Known Covariance. When Σ is known, we may assume w.l.o.g. that Σ = I; otherwise, we can
transform each sample X into Σ−1/2X . We start by using known algorithms [23, 40, 33] to find a
“rough” estimate for the mean. In particular, we find an estimate µ̂ such that ∥µ̂−µ∥2 ≤ R = Õ(

√
d/ϵ)

using n = Õ(
√
d/ϵ) samples. By appropriately shifting the subsequent samples, this is equivalent

to assuming that ∥µ∥2 ≤ R. We then focus on designing a DP sampler for this bounded mean case.
It turns out, surprisingly, that the Gaussian mechanism suffices here. Specifically, for a parameter
B > 0 (chosen later), we truncate each sample so that its ℓ2-norm is at most B. We then output their
average with a (spherical) Gaussian noise N(0, σ2I) added. The description is given in Algorithm 1.

Algorithm 1 SPHERICALGAUSSIANSAMPLER

Parameters: B, σ > 0, and n ∈ N.
Sample X1, . . . , Xn ∼ D
for i = 1, . . . , n do

X trunc
i = trunc2B(Xi) ▷ see (1)

Sample Z ∼ N(0, σ2I)
return Z + 1

n

∑
i∈[n] X

trunc
i

The analysis of the Gaussian mechanism [e.g., 20,
Appendix A] shows that the algorithm is (ϵ, δ)-DP
as long as we pick σ ≥ Õ

(
B
nϵ

)
.

As for the accuracy, observe that if there were no
truncation, then the output is exactly distributed
as N(µ, (σ2 + 1/n)I), which is precisely N(µ, I)
if we set σ2 = (n − 1)/n. Therefore, by setting
B = R + O(

√
d+ log(1/α)) so that the trunca-

tion does not occur with probability 1 − α, we
ensure that the sampler is α-accurate. The constraint that σ ≥ Õ

(
B
nϵ

)
from privacy implies that we

need n ≥ Õ(
√
d/ϵ) and hence yielding the sample complexity in Theorem 1.2.

Unknown Bounded Covariance. Recall that in this setting we know that I ⪯ Σ ⪯ κ · I . While it
might be tempting to use the above Gaussian mechanism for this setting as well, it turns out that this
approach results in sample complexity that depends polynomially on 1/α.3

To circumvent this, we first consider the case where µ = 0 (i.e., “centered” Gaussians). In this case,
our algorithm originates from the following attempt: output

∑
i∈[n] a[i]·Xi, where (a[1], . . . , a[n]) ∼

UniSn, the uniform distribution over points on the unit sphere in Rn. It follows from the 2-stability of
the Gaussian distribution [41] that, when X1, . . . , Xn ∼ N(0,Σ), this results4 in an output that is
distributed exactly as N(0,Σ).

Unfortunately, this algorithm is not DP: if X1 = · · · = Xn−1 = 0, then the output will reveal the
direction of Xn in the clear. To remedy this, we build on the intuition that, if X1, . . . , Xn “sufficiently
span all directions”, then there should be “enough noise” to make this algorithm DP. In particular,
using the bounded covariance property, we can show that if all the eigenvalues of

∑
i∈[n] XiX

T
i

3See Appendix C for a proof sketch of the sample complexity from such an approach.
4Note that this holds even for any fixed unit vector a ∈ Rd.
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are sufficiently large (and each Xi is truncated appropriately), then this algorithm is indeed “DP”.
This is perhaps the most technically challenging part of our work, as the noise is data-dependent and
therefore poses significant hurdles in the privacy analysis (Section 4.2). Note that this is also the
reason we need n ≥ Ω(d), as otherwise X1, . . . , Xn cannot “sufficiently span all directions” in Rd.

With the above, the last ingredient is a testing step (in the “propose-test-release” paradigm of [17]) that
checks this eigenvalue condition. When this condition fails, we return ⊥; otherwise

∑
i∈[n] a[i] ·Xi.

To handle the case where µ ̸= 0, we take an output to be the sum of the average of n1 samples and√
1− 1

n1
·(
∑

i∈[n2]
a[i] ·Ui), where each Ui is the difference between two fresh independent samples

divided by
√
2 and (a[1], . . . , a[n2]) ∼ UniSn2

. Notice here that each Ui ∼ N(0,Σ), while the average
over n1 samples is ∼ N(µ, 1

n1
· Σ); thus, the sum is ∼ N(µ,Σ) as desired. The full description is

presented in Algorithm 2; the parameter setting and analysis can be found in Appendix B.4.

Algorithm 2 BOUNDEDCOVGAUSSIANSAMPLER

Parameters: B,∆ > 0, and n1, n2 ∈ N.
Sample X1, . . . , Xn1

, Xn1+1, . . . , Xn1+2n2
∼ D

for i = 1, . . . , n1 + 2n2 do
X trunc

i = trunc2B(Xi) ▷ see (1)
for j = 1, . . . , n2 do

Ui =
1√
2
(X trunc

n1+2i−1 −X trunc
n1+2i)

Sample r ∼ STLap
(
ϵ
2 ,

δ
2 ,∆

)
▷ see Lemma 3.1

if λmin

(∑
i∈[n2]

UiU
T
i

)
+ r ≥ 0.75n2 then

return ⊥
Sample a ∼ UniSn2

return 1
n1

(∑
i∈[n1]

X trunc
i

)
+
√
1− 1

n1
·(
∑

i∈[n2]
a[i] ·Ui)

Unknown Unbounded Covariance.
We proceed by reducing this case to
the previous setting. We do so by
first applying the known DP “pre-
conditioner” algorithm for Gaussians
(with unknown unbounded covari-
ance) from the work of [9] in order
to obtain rough estimates µ̂, Σ̂ of µ,Σ
respectively. This allows us to trans-
form any subsequent sample X into
Σ̂−1/2(X − µ̂). This reduces us back
to DP sampling for N(Σ̂−1/2(µ −
µ̂), Σ̂1/2Σ−1Σ̂1/2). The guarantee of
the DP preconditioner ensures that
this Gaussian actually has bounded
covariance. Therefore, we can apply our previous algorithm. Note that a significant part of the sample
complexity is due to the DP preconditioner of the Gaussian; it turns out that the sample complexity
of this task is only Õϵ,α(d

3/2) (compared to Θ̃ϵ,α(d
2) for learning). Furthermore, since we only

need the preconditioner to be a rough estimate, we can set the accuracy parameter for the learning to
be Θ(1) and thus avoid the polynomial dependence on 1/α. (Note that private preconditioner is a
standard ingredient in the recipe for DP learning [e.g., 27].)

2.2 Gaussian Distributions: Lower Bounds

Known Covariance. Our lower bound in this setting builds on the following insight: if we take
a constant number of samples from N(µ, I) (using the DP sampler) and use them to estimate µ,
then we incur an expected ℓ22-error that is O(d). It turns out that known lower bounds for DP mean
estimation of Gaussians with known covariance [27] hold for this setting and give a lower bound of
Ω
(

d
γϵ

)
, where γ2 is the ℓ22-error. Plugging in γ =

√
d in our setting gives the desired lower bound

of Ω(
√
d/ϵ). In the actual proof, one complication stems from the fact that our DP sampler does not

output a sample exactly from N(µ, I). Nonetheless, we can quantify this in terms of the accuracy α.

Unknown Bounded Covariance. In this setting, we reduce from a lower bound on DP covariance
estimation [28]—rather than DP mean estimation earlier—of centered Gaussians. The challenge is
that Θ(1) samples from N(0,Σ) do not provide a sufficiently high accuracy estimate for Σ so that we
can apply the known lower bound5. Therefore, the above approach does not work directly.

To overcome this, we will have to use many samples to estimate the covariance. Recall that the sample
complexity lower bound of Ω(d2/ϵ) for covariance estimation requires the accuracy in the Frobenius
distance (or the Mahalanobis distance) to be constant [28]. Due to this accuracy requirement, we
need to use our DP sampler to generate L = Ω(d2) samples Y1, . . . , YL to achieve such an accuracy.
We can draw a fresh batch Xi

1, . . . , X
i
n of samples from the underlying distribution to generate each

5This high accuracy requirement is inherent in the known DP covariance estimation lower bound; see [28,
Remark 4.4] for more details.
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Yi. However, since L = Ω(d2), this would use Ln samples in total. The covariance estimation
lower bound would then yield Ln ≥ Ω(d2/ϵ), implying n ≥ Ω(1/ϵ)—even weaker than the mean
estimation lower bound!

Fortunately, it turns out this can be overcome by using advanced composition of DP [19]. In particular,
we may run our sampler L times on the same n samples to produce Y1, . . . , YL. In this case, the final
covariance estimation algorithm has privacy loss parameter Õ(

√
L · ϵ) = Õ(d · ϵ) due to advanced

composition (Theorem A.5). Therefore, we get a lower bound of Ω̃(d2/(d · ϵ)) = Ω̃(d/ϵ) as desired.

While the above overview seems intuitively plausible, there are certain difficulties that we need to
overcome. First, the samples Yi that our algorithm produces are not exactly drawn from N(0,Σ); to fix
this, we run an agnostic learner for Gaussians [e.g., 3] to recover the estimate of Σ. Second, since we
run our DP sampler on the same n samples, the produced Y1, . . . , YL are not independent. We fix this
by first drawing a larger number N of samples, and then produce each Yi using n-out-of-N random
samples; this reduces the correlation across the Yi’s. Furthermore, using amplification-by-sampling
of DP [6] gives us the desired privacy-vs-sample complexity lower bound guarantee.

2.3 Product Distributions: Algorithm

Our sampler follows the framework of [35], which is built upon the preconditioning procedure
proposed by [27] for DP learning.

We start with a private preconditioner, which obtains a crude estimate of each pj (up to a constant
multiplicative factor). This is similar to that of [27], except that we use Laplace noise instead of
Gaussian noise; this ensures that the resulting algorithm is pure-DP6. By suitably partitioning [0, 1]
into geometrically decreasing buckets in terms of d/α, the goal then is to estimate pj by placing it in
one of these buckets. This can be done by an appropriate thresholding and the Laplace mechanism.

The next step is to obtain a refined estimate of the pi’s using a fresh batch of samples. The algorithm
then returns a sample randomly drawn from the product distribution given by these estimates. The
earlier crude estimates are helpful in truncating and clipping the samples to make the produced
sample DP, without adding any noise to the refined estimate.

3 Preliminaries

For convenience, we use the notation truncpB(X) for “truncation” for all X ∈ Rd, B > 0, p ≥ 1:

truncpB(X) :=

{
X if ∥X∥p ≤ B,

X ·B/∥X∥p if ∥X∥p > B.
(1)

Let [k] denote {1, . . . , k}. For any X ∈ Rd, we use X[j] to denote the value of its jth coordinate.

3.1 Distributions and Tail Bounds

For a discrete distribution D, we use fD to denote its probability mass function (PMF); for a
continuous distribution D, we use fD to denote its probability density function (PDF). Let supp(D)
denote the support of D. We let Z ∼ D denote that the random variable Z is distributed according
to D; throughout, we may write the random variable in place of the distribution and vice versa
when convenient. Finally, when D1, . . . , Dd are distributions, we use D1 ⊗ · · · ⊗Dd as the product
distribution, i.e., the distribution of (Z1, . . . , Zd) where Z1 ∼ D1, . . . , Zd ∼ Dd are independent.

For a distribution D on Rd and v ∈ Rd, we write D + v as a shorthand for the distribution of X + v
where X ∼ D. Furthermore, for a distribution D and a (possibly randomized) function h, we write
h(D) to denote the distribution of h(X) where X ∼ D.

We will list a few distributions that will be useful for us.

6We remark that a similar analysis has also been done by [37], who uses such a pure-DP preconditioner to
give pure-DP algorithms for learning product distributions.
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(i) Shifted Truncated Discrete Laplace Distribution: For ∆ > 0, let s(ϵ, δ) = ⌈∆(1 + log(1/δ)/ϵ)⌉.
We define STLap(ϵ, δ,∆) to be the discrete distribution supported on [−2s(ϵ, δ), 0] such that
fSTLap(ϵ,δ,∆)(x) ∝ exp (−ϵ |x+ s(ϵ, δ)|).
It is known that adding STLap noise to a low-sensitivity function results in a DP estimate [e.g., 22].
Lemma 3.1. If g is a function with sensitivity ≤ ∆, then the algorithm that outputs g(X) +
STLap(ϵ, δ,∆) is (ϵ, δ)-DP.

(ii) Beta Distribution: For α, β > 0, Beta(α, β) has the PDF fBeta(α,β)(x) ∝ xα−1(1− x)β−1.

(iii) Uniform Distribution over Unit Sphere: For d ∈ N, let UniSd denote the distribution of a random
unit vector in Rd.

(iv) Projection of Uniform Distribution over Unit Sphere: For any d ∈ N and i ∈ [d] and z ∈ Rd,
let Π≤i(z) denote (z1, . . . , zi). Then, let UniSd,i denote the distribution of Π≤i(Z) where Z ∼ UniSd.
This distribution has the PDF (see, e.g., [34, Theorem 2]) given below.

fUniSd,i(z) ∝

{
(1− ∥z∥2) d−i

2 −1 if ∥z∥2 < 1

0 otherwise.
(2)

We need a tail bound on the ℓ2-norm of a Gaussian-distributed vector:
Lemma 3.2 ([42, Theorem 6.2]). There exists a constant c ≥ 1 such that, for any µ ∈ Rd, Σ ∈ Rd×d

where Σ ⪯ κ · I and any β ∈ (0, 1
2 ), Pr

X∼N(µ,Σ)

[
∥X − µ∥2 > c

√
κ
(√

d+
√

log(1/β)
)]
≤ β.

We also need a tail bound for the beta distribution:
Lemma 3.3 ([43], Theorem 8). There exists a constant c ∈ (0, 1) such that, for any 0 < α < β and

any x ≥ 0, we have Pr
Z∼Beta(α,β)

[
Z ≥ α

α+ β
+ x

]
≤ 2e

−c·min
{

β2x2

α ,βx
}
.

The following concentration bound on the empirical covariance will also be helpful.
Lemma 3.4 ([27, Fact 3.4]). There exists a constant c ≥ 1 such that for any Σ ⪰ I , let U1, . . . , Un ∼

N(0,Σ) and Σ̂ = 1
n

∑
i∈[n] UiU

T
i , we have Pr

[
Σ̂ ⪰

(
1− c

√
d+ log(1/β)

n

)
· I

]
≥ 1− β.

3.2 Differential Privacy

Hockey Stick Divergence. We also recall the definition of ϵ-hockey stick divergence between

two distributions P,Q: dϵ(P || Q) :=

∫
y∈supp(P )

[fP (y)− eϵfQ(y)]+dy, where [a]+ := max{a, 0}.

The following standard fact about the hockey stick divergence is often useful in proving DP guarantees
of algorithms [39, 31].
Lemma 3.5. For any ϵ ≥ 0 and distributions P,Q, dϵ(P || Q) ≤ Pry∼P [fP (y) > eϵfQ(y)].

It will be also useful to keep in mind the “post-processing” property of DP:
Lemma 3.6. For any distributions P,Q and any function h, we have dϵ(h(P ) || h(Q)) ≤ dϵ(P ||Q).

DP under Condition. Since we will use a “propose-test-release”-style algorithm [17], it will be
convenient to use the notion of “DP under condition” together with its composition properties. The
particular definition we use below is from [32]; similar notions have been used earlier, e.g., in [17].
Definition 3.7 (DP under Condition, [32]). Let Ψ : Y → {0, 1} be a predicate. An algorithm
M : Y → O is (ϵ, δ)-DP under condition Ψ for ϵ, δ > 0 iff, for every S ⊆ O and every neighboring
datasets Y, Y ′ ∈ Y both satisfying Ψ, we have Pr[M(Y ) ∈ S] ≤ eϵ · Pr[M(Y ′) ∈ S] + δ.

Lemma 3.8 (Composition for Algorithm with Halting, [32]). Let M1 : Y → O1 ∪ {⊥},M2 :
O1×Y → O2 be algorithms. Furthermore, letM denote the following algorithm: Let o1 =M1(Y )
and, if o1 =⊥, then halt and output ⊥ or else, output o2 =M2(o1, Y ).

Let Ψ be any condition such that, if Y does not satisfy Ψ, thenM1(Y ) always returns ⊥. Suppose
thatM1 is (ϵ1, δ1)-DP andM2 is (ϵ2, δ2)-DP under condition Ψ. Then,M is (ϵ1 + ϵ2, δ1 + δ2)-DP.
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4 Gaussian Distribution: Algorithms

Reduction to the Bounded Mean Case. As stated earlier, for the cases of known covariance and
bounded covariance, we will need a preprocessing step that computes a rough private estimate for the
mean. The properties of the reduction are stated below.
Lemma 4.1. Suppose that there is an α-accurate (ϵ, δ)-DP sampler for Gaussian distributions under
the assumption that I ⪯ Σ ⪯ κ · I, ∥µ∥ ≤ R with sample complexity nbm-sampler(α,R, ϵ, δ). Then,
there exists an α-accurate (ϵ, δ)-DP sampler for Gaussian distributions under the assumption that

I ⪯ Σ ⪯ κ · I with sample complexity Õ
(√

d
ϵ

)
+ nbm-sampler(α/2, O(κ

√
d), ϵ/2, δ/2).

4.1 Known Covariance

With the reduction in Lemma 4.1, we may assume that ∥Σ−1/2µ∥ ≤ R. When the covariance is
known, we give an algorithm with the following guarantees.

Theorem 4.2. Assuming Σ is known and ∥Σ−1/2µ∥ ≤ R, there is an α-accurate (ϵ, δ)-DP sampler

for Gaussian distributions with sample complexity O

((
R+

√
d+ log

(
log(1/δ)

αϵ

)) √
log(1/δ)

ϵ

)
.

We assume w.l.o.g. that Σ = I; otherwise, we can consider X ′i = Σ−1/2Xi. Before we describe the
algorithm, note that Theorem 4.2 together with Lemma 4.1 implies Theorem 1.2. As stated earlier,
the algorithm (Algorithm 1) is simple: take the average of the truncated input samples and add to it
(spherical) Gaussian noise.

Proof. Let C ≥ 1 be the constant from Lemma 3.2, B = R + 104C

√
d+ log

(
2 log(2/δ)

αϵ

)
, and

n = 1 + ⌈10B
√
log(2/δ)/ϵ⌉. Let A be Algorithm 1 with B,n as specified and σ =

√
(n− 1)/n.

Privacy Analysis. A is the Gaussian mechanism with noise multiplier nσ/B ≥ 10
√

log(2/δ)/ϵ;
therefore, A is (ϵ, δ)-DP, using [20, Appendix A].

Accuracy Analysis. Let D = N(µ, I) for some unknown µ. Consider the algorithm A′ where there
is no truncation, i.e., A′ simply outputs Y := Z + 1

n

∑
i∈[n] Xi. Via Lemma 3.2 and a union bound,

the truncation is not applied anyway in A (i.e., Xi = X trunc
i ,∀i ∈ [n]) with probability at least 1− α.

Therefore, dtv(QA,D, QA′,D) ≤ α. Note that A′ just outputs Y := Z + 1
n

∑
i∈[n] Xi, so we have

Y ∼ N(µ, I) = D, i.e., QA′,D = D. Combining these bounds yields dtv(QA,D, D) ≤ α.

4.2 Unknown Bounded Covariance

We now move on to the case where both µ,Σ are unknown but under the assumption I ⪯ Σ ⪯ κ · I .
The main result of this section is stated below7. Again, note that Theorem 4.3 and Lemma 4.1
immediately yield Theorem 1.4.
Theorem 4.3. Assuming I ⪯ Σ ⪯ κ · I for some κ > 0 and ∥µ∥ ≤ R,
there is an α-accurate (ϵ, δ)-DP sampler for Gaussian distributions with sample complexity

O
((

R2 + κ2
(
d+ log

(
log(1/δ)

αϵ

)))
· log(1/δ)ϵ

)
.

As stated in the overview, the main challenge lies in the privacy analysis. It will be proved in three
steps. First, in Section 4.2.1, we will show that if we add noise that is drawn from projection of
random unit vector to the first M coordinates to a low-(ℓ2-)sensitivity function, then it is DP. Then, in
Section 4.2.2, we use this to show that adding noise of the form

∑
i∈[n] a[i] ·wi (where a ∼ UniSn) to

a low-sensitivity function also suffices for privacy as long as the smallest eigenvalue of
∑

i∈[n] wiw
T
i

is sufficiently large. Here w1, . . . , wn are assumed to be fixed vectors given beforehand. Note that
the noises discussed so far are input independent. Finally, in Appendix B.4, we relate this to the

7The dependence on κ can be reduced to polylog(1/κ) by applying the private preconditioning in [27],
although this will increase the dependence on d to d1.5; it is an interesting question if this increase in the
dependence on d can be avoided.
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privacy of our algorithm—which is more intricate as these wi’s are now Xi’s, i.e., the noise is input
dependent. The accuracy analysis, which is simpler than the privacy analysis, is also in Appendix B.4.

4.2.1 Noise via Random Unit Vector Projection

We first show that adding noise drawn from UniSM,N to a function with low ℓ2-sensitivity ensures DP.

Lemma 4.4. Let M,N be any positive integers such that M ≥ max
{
2N, 104 log(10/δ)

cϵ

}
, where c is

the constant from Lemma 3.3. Furthermore, let τ ∈ (0, 0.01) be such that τ ≤ 10
√

log(10/δ)
cM . Then,

for any vector v such that ∥v∥ ≤ τ , we have dϵ(Uni
S
M,N || Uni

S
M,N + v) ≤ δ.

The proof of this lemma proceeds similarly to those of independent noise addition (e.g., the Gaussian
mechanism): using Lemma 3.5, it suffices to bound the probability that the privacy loss is large. We
achieve such a bound via concentration properties of the beta distribution.

4.2.2 Noise via Spherical Linear Combinations

Next, we relate the previous lemma to privacy in the case where the noise added is of the form∑
i∈[q] a[i] · wi, where w1, . . . , wq are fixed beforehand and a ∼ UniSq. The guarantee of such a

noise is stated below. The proof is based on a reduction argument to Lemma 4.4. For notational
convenience, for every matrix W ∈ Rd×q , let UniSW be the distribution of Wa where a ∼ UniSq .

Lemma 4.5. Let q, d ∈ N and τ0 ∈ (0, 1) be such that q ≥ max
{
2d, 104 log(10/δ)

cϵ

}
and τ0 ≤

5
√
log(10/δ)/c. For any w1, . . . , wq ∈ Rd such that 1

q

(∑q
i=1 wiw

T
i

)
⪰ 0.5I and any v ∈ Rd

such that ∥v∥ ≤ τ0, we have dϵ(Uni
S
W || Uni

S
W + v) ≤ δ, where w1, . . . , wq are the columns of

W ∈ Rd×q .

Proof. Let W+ ∈ Rd×q denote the pseudoinverse of W . Note that WWT =
∑q

i=1 wiw
T
i ⪰ 0.5qI .

Therefore, all singular values of W are at least
√
0.5q. This means that all singular values of W+ are

at most 1/
√
0.5q. This in turn implies that ∥W+v∥ ≤ ∥v∥/

√
0.5q ≤ τ0/

√
0.5q =: τ .

Since WTW ⪰ 0.5qI , WT is full rank and thus dim(im(W+)) = d. Since d < q, pick any
orthonormal basis b1, . . . , bd ∈ Rq for im(W+) and let Π : Rq → Rd be such that Π(z) =
(⟨z, b1⟩ , . . . , ⟨z, bd⟩).

Furthermore, let h : Rd → Rd be defined as h(x) :=
∑

i∈[d] x[i] · bi. Observe that, for any a ∈ Rq,
we have a1u1 + · · ·+ aquq = h(Π(a)) and a1u1 + · · ·+ aquq + v = h(Π(a) + Π(W+v)). Thus,

dϵ(Uni
S
W || Uni

S
W + v) = dϵ(h(Π(UniSq)) || h(Π(UniSq) + Π(W+v)))

Lemma 3.6
≤ dϵ(Π(UniSq) || Π(UniSq) + Π(W+v)).

Note that Π(UniSq) ∼ UniSq,d. So, Theorem 4.4 implies dϵ(Π(UniSq) || Π(UniSq)+Π(W+v)) ≤ δ.

5 Discussion and Open Questions

In this work, we give several algorithms for DP sampling. For Gaussian distributions, we demonstrate
that the dependence on the accuracy parameter α in the sample complexity can be only polylogarith-
mic in comparison to the polynomial dependence necessary in DP learning. Furthermore, we also
reduce the dependence on d in the case of known variance and unknown bounded variance; in both
cases, we show this dependence (of

√
d and d respectively) to be essentially tight. An immediate

open question is whether the dependence of d1.5 in the case of unknown unbounded variance is tight.
Lower bounds for Gaussian sampling in terms of α is also an interesting question. Another—more
general—direction is to extend the results to other families of distributions. In the case of DP learning,
this has been explored by several works. Our algorithms very specifically use the property of Gaussian
distributions (namely that a linear combination of Gaussians is another Gaussian); other distribution
families might need different techniques.

9



Acknowledgment. We thank Shyam Narayanan for pointing us to [9], which improves dependency
on d in the sample complexity for sampling Gaussians with unknown (unbounded) covariance from
d2 to d1.5.

References
[1] Martı́n Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal

Talwar, and Li Zhang. Deep learning with differential privacy. In CCS, pages 308–318, 2016.

[2] Ishaq Aden-Ali, Hassan Ashtiani, and Gautam Kamath. On the sample complexity of privately
learning unbounded high-dimensional Gaussians. In ALT, pages 185–216, 2021.

[3] Hassan Ashtiani, Shai Ben-David, and Abbas Mehrabian. Sample-efficient learning of mixtures.
In AAAI, pages 2679–2686, 2018.

[4] Hassan Ashtiani and Christopher Liaw. Private and polynomial time algorithms for learning
Gaussians and beyond. In COLT, pages 1075–1076, 2022.

[5] Brian Axelrod, Shivam Garg, Vatsal Sharan, and Gregory Valiant. Sample amplification:
Increasing dataset size even when learning is impossible. In ICML, pages 442–451, 2020.

[6] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
analyses via couplings and divergences. In NeurIPS, pages 6280–6290, 2018.

[7] Sourav Biswas, Yihe Dong, Gautam Kamath, and Jonathan R. Ullman. Coinpress: Practical
private mean and covariance estimation. In NeurIPS, 2020.

[8] Gavin Brown, Marco Gaboardi, Adam D. Smith, Jonathan R. Ullman, and Lydia Zakynthinou.
Covariance-aware private mean estimation without private covariance estimation. In NeurIPS,
pages 7950–7964, 2021.

[9] Gavin Brown, Samuel Hopkins, and Adam Smith. Fast, sample-efficient, affine-invariant private
mean and covariance estimation for subgaussian distributions. In COLT, pages 5578–5579,
2023.

[10] Mark Bun, Gautam Kamath, Thomas Steinke, and Zhiwei Steven Wu. Private hypothesis
selection. IEEE Trans. Inf. Theory, 67(3):1981–2000, 2021.

[11] T. Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence
for parameter estimation with differential privacy. Ann. Stat., 49(5):2825–2850, 2021.

[12] Damien Desfontaines, James Voss, Bryant Gipson, and Chinmoy Mandayam. Differentially
private partition selection. PETS, 2022(1):339–352, 2022.

[13] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between
high-dimensional Gaussians with the same mean. arXiv:1810.08693, 2018.

[14] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robust estimators in high-dimensions without the computational intractability. SIAM J. Comput.,
48(2):742–864, 2019.

[15] Wei Dong, Yuting Liang, and Ke Yi. Differentially private covariance revisited. In NeurIPS,
2022.

[16] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486–503,
2006.

[17] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In STOC, pages 371–380,
2009.

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284, 2006.

10



[19] Cynthia Dwork, Moni Naor, and Salil P. Vadhan. The privacy of the analyst and the power of
the state. In FOCS, pages 400–409, 2012.

[20] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

[21] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: Optimal
bounds for privacy-preserving principal component analysis. In STOC, pages 11–20, 2014.

[22] Badih Ghazi, Neel Kamal, Ravi Kumar, Pasin Manurangsi, and Annika Zhang. Private aggrega-
tion of trajectories. PETS, 2022(4):626–644, 2022.

[23] Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Differentially private clustering: Tight
approximation ratios. In NeurIPS, 2020.

[24] Paul Hamill. Unit Test Frameworks: Tools for High-Quality Software Development. ” O’Reilly
Media, Inc.”, 2004.

[25] Samuel B. Hopkins, Gautam Kamath, and Mahbod Majid. Efficient mean estimation with pure
differential privacy via a sum-of-squares exponential mechanism. In STOC, pages 1406–1417,
2022.

[26] Samuel B. Hopkins, Gautam Kamath, Mahbod Majid, and Shyam Narayanan. Robustness
implies privacy in statistical estimation. In STOC, pages 497–506, 2023.

[27] Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan R. Ullman. Privately learning high-
dimensional distributions. In COLT, pages 1853–1902, 2019.

[28] Gautam Kamath, Argyris Mouzakis, and Vikrant Singhal. New lower bounds for private
estimation and a generalized fingerprinting lemma. In NeurIPS, 2022.

[29] Gautam Kamath, Argyris Mouzakis, Vikrant Singhal, Thomas Steinke, and Jonathan R. Ullman.
A private and computationally-efficient estimator for unbounded Gaussians. In COLT, pages
544–572, 2022.

[30] Vishesh Karwa and Salil P. Vadhan. Finite sample differentially private confidence intervals. In
ITCS, pages 44:1–44:9, 2018.
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A Additional Preliminaries

We consider a generalization of the truncation (1) where there is a weight vector w ∈ Rd
≥0, and the

truncation is w.r.t. w:

truncpB,w(X) :=

{
X if ∥X ◦ w∥p ≤ B,

X ·B/∥X ◦ w∥p if ∥X ◦ w∥p > B,

where ◦ denotes the element-wise product. Clearly truncpB = truncpB,w when w is the all-ones vector.

For a, b ∈ R where a ≤ b, we also use clip(a,b) : R→ R to denote the function:

clip(a,b)(x) = max{a,min{b, x}}.

A.1 Total Variation Distance between Gaussians

For our proofs, it will be useful to state the total variation distance bounds for Gaussian distributions.
We will use the following notation:

Definition A.1. For any matrix A ∈ Rd×d and positive semi-definite matrix Σ ∈ Rd×d, we write
∥A∥Σ := ∥Σ−1/2AΣ−1/2∥F , where ∥ · ∥F denotes the Frobenius norm.

It is well known that when ∥Σ− Σ̂∥Σ ≤ O(1), the total variation distance between Gaussian with
covariance matrices Σ and Σ̂ and the same mean is Θ(∥Σ− Σ̂∥Σ), as stated more formally below.

Lemma A.2 ([13]). There exists a constant C ≥ 1 such that the following holds. For any Σ, Σ̂, if
dtv(N(0,Σ),N(0, Σ̂)) ≤ 0.001, then ∥Σ− Σ̂∥Σ ≤ C · dtv(N(0,Σ),N(0, Σ̂)).
Lemma A.3 (e.g., [14]). There exists a constant C > 0 such that the following holds. For any
Σ, Σ̂ ∈ Rd×d, we have dtv(N(0,Σ),N(0, Σ̂)) ≤ C · ∥Σ− Σ̂∥Σ.

A.2 Differential Privacy

A.2.1 Amplification by Subsampling

Suppose that we have as an input N samples, and we draw n < N subsamples (without replacement)
randomly from these N samples and run an (ϵ, δ)-DP algorithm on these n subsamples. Then, it is
known that this results in an (ϵ′, δ′)-DP algorithm for ϵ′ < ϵ, δ′ < δ. Such a phenomenon is called
amplification by subsampling and is often used in DP learning [e.g., 1]. We will use the following
version of this for our lower bound proof.

Theorem A.4 (Amplification by Subsampling, [6]). Suppose that A is an (ϵ, δ)-DP algorithm that
takes in n samples. Then, the algorithm that draws n subsamples randomly without replacement out
of N samples and runs A on the n subsamples is (ϵ′, δ′)-DP where

ϵ′ = ln(1 + (n/N)(eϵ − 1)), δ′ = (n/N) · δ.

A.3 Advanced Composition

We will also use the following advanced composition of DP.

Theorem A.5 (Advanced Composition, [19]). Let ϵ0 > 0 and δ0, δ1 ∈ (0, 1/2], and A be any
(ϵ0, δ0)-DP algorithm. Then, the algorithm that runs A a total of k times is (ϵ1, kδ0 + δ1)-DP where

ϵ1 =
(√

2k ln(1/δ1) + k(eϵ0 − 1)
)
ϵ0.

A.4 Lower Bounds for Mean and Covariance Estimations

As stated in our proof overview (Section 2), our lower bounds for Gaussian samplers (Theorems 1.3
and 1.5) are via reductions from previously known lower bounds for mean and covariance estima-
tions. We state them below, starting with the mean estimation lower bound (aka “fingerprinting for
Gaussian”) result due to [27]
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Theorem A.6 ([27]). For any ϵ, δ ∈ (0, 1] such that δ ≤ O

( √
d

n
√

log(n/d)

)
, if an (ϵ, δ)-DP algorithm

M that can take in N samples from D = N(µ, I) where8 −1 ≤ µ ≤ 1 and output an estimate
µ̂ ∈ Rd that satisfies

EX∼DN ,µ̂∼M(X)[∥µ̂− µ̂∥22] ≤ γ2 ≤ d/6,

then N ≥ Ω
(

d
γϵ

)
.

Next is a similar lower bound but for covariance estimation. Notice that the lower bound on the
sample complexity below is Ω(d2/ϵ2) whereas the lower bound above is only Ω(d/ϵ) (for constant
accuracy parameter γ).
Theorem A.7 ([28]). There exists a small constant ξ > 0 such that the following holds: for any
ϵ, δ ∈ (0, 1] such that δ ≤ O

(
min

{
1/n, d2/(n log n)

})
, if an (ϵ, δ)-DP algorithmM that can take

in N samples from D = N(0,Σ) where I ⪯ Σ ⪯ 2I and output an estimate Σ̂ ∈ Rd×d that satisfies

EX∼DN ,Σ̂∼M(X)[∥Σ̂− Σ∥2Σ] ≤ ξ2,

then N ≥ Ω
(
d2/ϵ

)
.

A.5 Agnostic Learner

In the main body of the paper, we considered the learner where the samples are drawn from D
which belongs to a certain class D. For our lower bound proofs, it will be convenient to consider the
agnostic setting where D is not assumed to be from D. The definition and accuracy guarantee of
agnostic learner is given below. We remark that the definition coincides with the learner definition
given earlier if we assume that D ∈ D. (Note that the constant 3 is required for Theorem A.8.)

Agnostic Learning. Let D be a class of distribution. An algorithm A, which takes in n samples
and output a distribution P̂ ∈ D, is said to be an (α, β)-accurate agnostic learner for a class D of
distributions iff, for any distribution P , we have

Pr
X∼Pn,P̂←A(X)

[
dtv(P̂ , P ) ≤ 3 · min

P∈D
dtv(D,P ) + α

]
≥ 1− β.

We will use the following (well-known) result that the class of centered9 Gaussian distributions can
be learned with sample complexity O(d2/γ2). For a full proof, see e.g., [3].
Theorem A.8. For any γ, β ∈ (0, 1/2], there exists a (γ, β)-accurate agnostic learner for centered
Gaussian distributions in d dimensions with sample complexity

O

(
d2 +

√
log(1/β)

γ2

)
.

B Proofs for Section 4

B.1 Reduction to the Bounded Mean Case

The reduction will be done by applying a so-called “densest ball” algorithm; this is an algorithm that,
when there is a ball of radius r that contains the majority of the input, can find a ball of radius O(r)
containing the majority of the input. There are many algorithms known for this problem [23, 40, 33]
that give similar guarantees10. We state such a guarantee below.

8We write −1 ≤ µ ≤ 1 as a shorthand for −1 ≤ µ[j] ≤ 1 for all j ∈ [d].
9Recall that centered simply means that µ = 0.

10We note that our problem is in fact easier than those considered in the aforementioned work as we assume
that Σ ⪯ κ ·I and the problem can be solved “coordinate-by-coordinate”. This means that many other algorithms
e.g., truncated Laplace-based histogram [12] also work and give similar bounds. However, we note that some
other algorithms [e.g., 7] require prior bounds on ∥µ∥, whereas Theorem B.1 does not require any such bound.
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Theorem B.1 (e.g., [23]). For ndens(d, β, ϵ, δ) = Θ̃
(√

d
ϵ

)
, there exists an (ϵ, δ)-DP algorithm

Adens that takes in X1, . . . , Xn ∈ Rd together with a radius parameter r > 0 such that: if there is
an r-radius ball containing at least 2/3 fraction of the input points, then with probability 1− β, it
outputs a ball of radius O(r) that contains at least half of the input points.

We can now give a reduction of an arbitrary mean case to the bounded mean case by first using
Theorem B.1 to obtain a rough estimate of the mean and then shifting the remaining samples
accordingly.

Proof. The new sampler works as follows:

• Let n1 := max{ndens(d, α/4, ϵ/2, δ/2), 100 log(4/α)}, r = 10Cκ
√
d where C is the constant

from Lemma 3.2, and n2 := nbm-sampler(α/2, r, ϵ/2, δ/2).
• Rough Mean Estimator Stage:

– Run (ϵ/2, δ/2)-DP Adens from Theorem B.1 on n1 samples (with r as specified above) to get a
ball centered at c ∈ Rd.

• Sampling Stage:
– Draw n2 additional samples X1, . . . , Xn2

.
– Run (ϵ/2, δ/2)-DP (α/2)-accurate Abm-sampler with R = r on (X1 − c), . . . , (Xn2

− c); let Y
be its output.

– Output Y + c.

Privacy Analysis. Basic composition implies that the sampler is (ϵ, δ)-DP as desired.

Accuracy Analysis. Since Σ ⪯ κI , Lemma 3.2 implies that PrX∼N(µ,Σ)[∥X − µ∥2 ≥ r] ≤ 0.1.
Thus, using standard concentration inequality (e.g., Theorem E.1) and since n1 ≥ 100 log(4/α), the
probability that at least 2/3 of the n1 points sampled in the first stage contains in the ball B(µ, r)
is at least 1 − α/4. The guarantee of the densest ball algorithm then implies that with probability
1− α/2, we have ∥µ− c∥2 ≤ r.

Let us consider a fixed c and consider the output distribution Dc
Y of Y in the sampling stage and

Dc
Y+c of the final output Y + c. Notice that (X1 − c), . . . , (Xn2

− c) ∼ N(µ− c,Σ). Consequently,
when ∥µ− c∥2 ≤ r, we may apply the guarantee of Abm-sampler to yield

α/2 ≥ dtv(Dc
Y ,N(µ− c,Σ)) = dtv(Dc

Y+c,N(µ,Σ)).

Combining these arguments, the sampler is α-accurate as desired.

B.2 Unknown Bounded Covariance

Proof of Lemma 4.4. From Lemma 3.5, we have

dϵ(Uni
S
M,N || Uni

S
M,N + v) ≤ Pr

z∼UniSM,N

[fUniSM,N
(z) > eϵ · fUniSM,N

(z − v)].

For convenience, let us also define η = τ ·
(
10
√

log(10/δ)
cM

)
. Note that η ≤ 0.01.

For z such that ∥z∥ ≤ 0.9, | ⟨z, v⟩ | ≤ η, we also have ∥z − v∥2 ≤ 0.92 + 0.02 + 0.0001 < 0.9 and
thus

ln
UniSM,N (z)

UniSM,N (z − v)

(2)
=

(
M −N

2
− 1

)
ln

(
1− ∥z∥2

1− ∥z − v∥2

)
≤
(
M −N

2
− 1

)(
1− ∥z∥2

1− ∥z − v∥2
− 1

)
≤
(
M −N

2
− 1

)(
∥v∥2 − 2 ⟨z, v⟩
1− ∥z − v∥2

)
≤M

(
10(τ2 + 2η)

)
≤ ϵ,
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where the last inequality follows from our choice of parameters (i.e., M ≥ 104 log(10/δ)
cϵ ).

Combining the previous two bounds, we have

dϵ(Uni
S
M,N || Uni

S
M,N + v) ≤ Pr

z∼UniSM,N

[∥z∥ > 0.9 ∨ ⟨z, v⟩ > η]

≤ Pr
z∼UniSM,N

[∥z∥ > 0.9] + Pr
z∼UniSM,N

[⟨z, v⟩ > η]

≤ Pr
z∼UniSM,N

[∥z∥ > 0.9] + Pr
z∼UniSM,N

[〈
z,

v

∥v∥

〉
> 10

√
log(10/δ)

cM

]
.

Next, recall that when z ∼ UniSM,N , ∥z∥2 ∼ Beta(N/2, (M −N)/2).11 Thus, applying Lemma 3.3
and using the assumption that N ≤M/2, we can conclude that

Pr
z∼UniSM,N

[∥z∥ > 0.9] = Pr
Z∼Beta(N/2,(M−N)/2)

[Z2 > 0.81] ≤ 2 exp(−c · 0.01M) ≤ δ/2,

where the first inequality is from Lemma 3.3 and the last inequality follows from our assumption that
M ≥ 100c log(10/δ).

Recall also that when z ∼ UniSM,N ,
∣∣∣〈z, v

∥v∥

〉∣∣∣2 ∼ Beta(1/2, (M − 1)/2). Again, applying
Lemma 3.3 yields

Pr
z∼UniSM,N

[〈
z,

v

∥v∥

〉
> 10

√
log(10/δ)

cM

]
≤ Pr

Z∼Beta(1/2,(M−1)/2)

[
Z2 >

100 log(10/δ)

cM

]
≤ δ/2,

where the last inequality again follows from our choice of parameters.

Combining the three preceding inequalities, we can conclude that dϵ(UniSM,N || Uni
S
M,N + v) ≤ δ as

desired.

B.3 Unknown Covariance

Throughout this section, we assume the standard assumption that the covariance matrix Σ is full rank.
It is simple to extend the result to the more general case using an algorithm of [4], which can identify
the span of Σ with probability one, using O(d log(1/δ)/ϵ) samples.

As stated earlier, we will use DP preconditioner from [9]. We say that an algorithm is an (α, β)-
accurate preconditioner for Gaussian distributions iff, when the input X is drawn i.i.d. from N(µ,Σ)

(for any µ ∈ Rd,Σ ∈ Rd×d), the algorithm outputs µ̂, Σ̂ that satisfies the following with probability
at least 1− β: ∥Σ̂−1(µ̂− µ)∥2 ≤ α and12 ∥Σ−1/2Σ̂Σ−1/2 − I∥2 ≤ α. Below we provide a generic
reduction from the unbounded covariance case to the bounded covariance case using preconditioner.
Lemma B.2. Suppose that the following hold:

• There exists an (α, β)-accurate (ϵ, δ)-DP preconditioner Aprecnd for Gaussian distributions with
sample complexity nprecnd(α, β, ϵ, δ).

• There exists an α-accurate (ϵ, δ)-DP samplerAbc-sampler for Gaussian distributions with I ⪯ Σ ⪯
κ · I with sample complexity nbc-sampler(κ, α, ϵ, δ).

Then, there exists an α-accurate (ϵ, δ)-DP sampler for Gaussian (without any assumption) with
sample complexity

nprecnd(0.001, α/2, ϵ/2, δ/2) + nbc-sampler(4, α/2, ϵ/2, δ/2).

Proof of Lemma B.2. The sampler is as follows:

• Let n1 := nprecnd(0.001, α/2, ϵ/2, δ/2) and n2 := nbc-sampler(4, α/2, ϵ/2, δ/2).
• Estimation Stage:

11See, e.g., https://en.wikipedia.org/wiki/Beta_distribution
12The guarantee here is in the spectral norm, not Frobenius norm. However, this suffices for our purposes.

16

https://en.wikipedia.org/wiki/Beta_distribution


– Run (ϵ/2, δ/2)-DP (0.001, α/2)-accurate Aprecnd on n1 samples to get µ̂, Σ̂.
• Sampling Stage:

– Draw n2 additional samples X1, . . . , Xn2 .
– Run (ϵ/2, δ/2)-DP (α/2)-accurateAbc-sampler on 2Σ̂−1/2(X1− µ̂), . . . , 2Σ̂−1/2(Xn2 − µ̂); let

Y be its output.
– Output 0.5Σ̂1/2Y + µ̂.

Basic composition implies that the sampler is (ϵ, δ)-DP.

To see the accuracy guarantee, the guarantee of the learner implies that with probability 1 − α/2,
we have ∥Σ̂−1(µ̂ − µ)∥2 ≤ 0.001 and ∥Σ−1/2Σ̂Σ−1/2 − I∥2 ≤ 0.001. The latter implies that
all eigenvalues of Σ̂1/2Σ−1/2 lie in [0.998, 1.002]; in turn, this implies that the eigenvalues of
Σ̂−1/2Σ1/2 all lie in [0.996, 1.004]. Finally, this implies that ∥Σ1/2Σ̂−1Σ1/2 − I∥2 ≤ 0.01.

Let us consider a fixed Σ̂, µ̂ and consider the output distribution of the sampling stage. When the
above inequalities hold, the guarantee of Abc-sampler implies that

α/2 ≥ dtv(Y,N(2Σ̂
−1/2(µ− µ̂), 4Σ1/2Σ̂−1Σ1/2)) = dtv(0.5Σ̂

1/2Y + µ̂,N(µ,Σ)).

Combining the above arguments, the sampler is α-accurate as desired.

Combining the above reduction (Lemma B.2) together with a known result on DP preconditioner of
Gaussians (Theorem B.3 below), we immediately arrive at Theorem 1.6.
Theorem B.3 ([8]). There is an (α, β)-accurate (ϵ, δ)-DP preconditioner for Gaussian distributions

with sample complexity O
(

d
α2 + d3/2

αϵ · polylog
(

d
αβϵδ

))
.

B.4 Proof of Theorem 4.3

We use Algorithm 2 with the following parameters: B = R+104κ

√
d+ log

(
2 log(2/δ)

αϵ

)
, ∆ = 2B2,

and n1 = n2 =
⌈
104C2

(
B2 · log(10/δ)cϵ

)⌉
, where c, C are the constants from Lemmas 3.3 and 3.4.

Privacy Analysis. To analyze the privacy constraint, we first notice that the sensitivity of
λmin

(∑
i∈[n2]

UiU
T
i

)
is at most ∆ = (

√
2 ·B)2 and Lemma 3.1 ensures that the check, which only

uses λmin

(∑
i∈[n2]

UiU
T
i

)
+ r, is (ϵ/2, δ/2)-DP. Passing this check ensures that

λmin ·

 ∑
i∈[n2]

UiU
T
i

 ≥ 0.75n2. (3)

From Lemma 3.8, it suffices to show that the output of the algorithm is DP, under (3). Let X =
X1, . . . , Xn1+2n2

.

To do this, it will be more convenient to define Vi =
√
1− 1

n1
· Ui. Condition (3) implies that

λmin

 ∑
i∈[n2]

ViV
T
i

 ≥ 0.5n2 +∆. (4)

LetM(X) = 1
n1

(∑
i∈[n1]

X trunc
i

)
+
(∑

i∈[n2]
a[i] · Vi

)
. Consider any neighboring inputs X and

X̃ that satisfy the condition. There are two cases, based on where they differ.

(i) Case I: X, X̃ differ on the first n1 samples. Let v = 1
n1

∑
i∈[n1]

(X̃ trunc
i − Xi); notice that

∥v∥ ≤ 2B
n1

. Furthermore, (4) implies that 1
n2

(∑
i∈[n2]

ViV
T
i

)
⪰ 0.5I . Letting W denote the matrix

whose columns are V1, . . . , Vn2 , d ϵ
2

(
M(X) || M(X̃)

)
= d ϵ

2

(
UniSW || Uni

S
W + v

)
≤ δ/2, where

the inequality follows from Lemma 4.5.
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(ii) Case II: X, X̃ differ on the last n2 samples; assume w.l.o.g. Xn1+2n2 ̸= X̃n1+2n2 . Let
w = V ′n2

− Vn2 and W denote the matrix whose columns are V1, . . . , Vn2−1. Furthermore, let a, a′

be independent samples from UniSq .

d ϵ
2

(
M(X) || M(X̃)

)
= d ϵ

2

(
a[n2] · Vn2

+
∑

i∈[n2−1]

a[i] · Vi

∣∣∣∣∣
∣∣∣∣∣ a′[n2] · V ′n2

+
∑

i∈[n2−1]

a′[i] · Vi

)

≤
∫
y

d ϵ
2

(
UniSW

∣∣∣∣∣
∣∣∣∣∣ y · w√

1− y2
+ UniSW

)
UniSn2,1(y)dy, (5)

where the inequality follows from the coupling a[n2] = a′[n2] = y, a[n2] ∼ UniSn2,1 and the

observation that
(

a[1]√
1−y2

, . . . , a[n2−1]√
1−y2

)
and

(
a′[1]√
1−y2

, . . . , a′[n2−1]√
1−y2

)
are independently distributed

as UniSn2−1.

When |y| ≤
√

10 log(10/δ)
cn2

, we have

∥∥∥∥∥ y · w√
1− y2

∥∥∥∥∥ ≤
√

20 log(10/δ)

cn2
·
√
2 ·B ≤ 20

√
log(10/δ)

c
.

Furthermore, (4) implies that 1
n2

(∑
i∈[n2−1] ViV

T
i

)
⪰ 0.5I . Thus, Lemma 4.5 implies

dϵ/2

(
UniSW

∣∣∣∣∣
∣∣∣∣∣ y · w√

1− y2
+ UniSW

)
≤ δ/4.

Combining this with (5), we arrive at dϵ/2

(
M(X) || M(X̃)

)
≤ δ/4 +

Pry∼UniSn2,1

[
|y| >

√
10 log(10/δ)

cn2

]
. Since y2 ∼ Beta(1/2, (n2 − 1)/2), we may apply the

tail bound (Lemma 3.3) to get

Pr

[
y2 >

10 log(10/δ)

cn2

]
≤ δ/4.

Thus, dϵ/2
(
M(X) || M(X̃)

)
≤ δ/4 + δ/4 = δ/2.

In both cases, we have dϵ/2

(
M(X) || M(X̃)

)
≤ δ/2 under (3). This concludes our privacy proof.

Accuracy Analysis. Let D = N(µ,Σ) for some unknown µ,Σ. Consider the algorithm A′ where
there is no truncation and no halting. Since I ⪯ Σ ⪯ κ·I , standard concentration bounds (Lemmas 3.2
and 3.4) imply that the truncation and halting are not applied in A with probability at least 1− α/2.
Therefore, we have dtv(QA,D, QA′,D) ≤ α/2.

Now, notice that the algorithmA′ just outputs Y := 1
n1

(∑
i∈[n1]

Xi

)
+
√

1− 1
n1
·
(∑

i∈[n2]
aiUi

)
;

this output Y ∼ N(µ,Σ). In other words, we have QA′,D = N(µ,Σ). Combining these, we can
conclude that A is α-accurate.

C A Simpler but Worse Algorithm for Unknown Bounded Covariance

In this section, we give a simpler algorithm for the unknown bounded covariance setting. Its sample
complexity bound of Õ

(
d3/2

αϵ2

)
is worse than the one in Algorithm 2 and Theorem 4.3, but is still

better than Ω
(

d2

α2 + d2

αϵ

)
for DP learning [27] for constant ϵ > 0.

The simpler sampler is given in Algorithm 3 and its guarantee is given in the theorem below. Note
that this algorithm is once again just a form of (scaled) Gaussian mechanism, whereas the algorithm
in the main body (Algorithm 2) adds noise that is input dependent.
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Theorem C.1. Assume that I ⪯ Σ ⪯ κ · I for some κ > 0 and that ∥µ∥ ≤ R, there is an α-accurate
(ϵ, δ)-DP sampler with sample complexity

n = O

((
R2 + κ2d

(
log

(
d

αϵ

)
+ log log(1/δ)

))
· d

1/2

α
· log(1/δ)

ϵ2

)
.

Algorithm 3 BOUNDEDCOVARIANCEGAUSSIANSAMPLER

Parameters: B, σ > 0, and n1, n2 ∈ N.
Sample X1, . . . , Xn1 , Xn1+1, . . . , Xn1+2n2 ∼ D
for i = 1, . . . , n1 + 2n2 do

Xi = trunc2B(Xi)
Sample Z ∼ N(0, σ2I)

return 1
n1

(∑
i∈[n1]

Xi

)
+
√

1−1/n1

2n2

(∑
i∈[n2]

(Xn1+2i−1 −Xn1+2i)
)
+ Z

Proof Sketch of Theorem C.1. Let B = R + 104κ
√

d
(
log
(
2d
αϵ

)
+ log log(2/δ)

)
, σ =

√
α

2d1/4 and

n1, n2 be such that n1 = n2 ≥ 100B2 log(2/δ)
σ2ϵ2 . Let A denote Algorithm 3 with parameters B,n, σ as

specified.

Privacy Analysis. A is the Gaussian mechanism with noise multiplier σ

B·
√

1−1/n1
2n2

≥ 10
√

log(2/δ)/ϵ

by the setting of our parameters; therefore, A is (ϵ, δ)-DP.

Accuracy Analysis. To understand the accuracy guarantee, let D = N(µ,Σ) for some unknown
µ,Σ where I ⪯ Σ ⪯ κ · I . Let us consider the algorithm A′ where there is no truncation. Again, a
standard concentration bound implies that the truncation is not applied anyway in A with probability
at least 1− α/2. Therefore, we have

dtv(QA,P , QA′,P ) ≤ α/2.

Now, notice that in algorithm A′, we just output

Y :=
1

n1

 ∑
i∈[n1]

Xi

+

√
1− 1/n1

2n2

 ∑
i∈[n2]

(Xn1+2i−1 −Xn1+2i)

+ Z.

Without truncation, this output Y has identical distribution as N(µ,Σ + σ2I). In other words, we
have

dtv(QA′,P ,N(µ,Σ)) = dtv(N(µ,Σ+ σ2I),N(µ,Σ)) ≤ ∥σ2I∥Σ ≤ ∥σ2I∥F = σ2 ·
√
d ≤ α/2,

where the first inequality follows from Lemma A.3 and the last inequality follows from our parameter
selection. Combining the above two inequalities, we can conclude that the sampler is α-accurate as
desired.

D Gaussian Distributions: Lower Bounds

D.1 Known Covariance

In this section, we prove a lower bound of Ω(
√
d/ϵ) that holds even for the simplest case of known

covariance (Theorem 1.3), showing that the dependence on d in our sampler (Theorem 4.2) is nearly
optimal.

We prove this by using a DP sampler to draw a large, but constant, number of samples and the use
them to perform mean estimation; the lower bound for mean estimation (Theorem A.6) then gives the
desired lower bound for the sample complexity of DP sampler.

Proof of Theorem 1.3. Given an α-accurate (ϵ, δ)-DP sampler A, we construct an algorithmM for
mean estimation as follows:
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• For i = 1, . . . , 106:
– Run A on n fresh samples from D to get Yi.

• Output µ̂ ∈ Rd with µ̂[j] := clip−1,1(median(Y1[j], . . . , Y106 [j]))

Since A is α-accurate, each Yi is sampled from a distribution D′ that is α-close (in total variation
distance) to D = N(µ, I). For α = 0.1, this means that

Pr[Yi(j) ≤ µ− 0.3] ≤ Φ(−0.3) + α ≤ 0.49,

and similarly,

Pr[Yi(j) ≥ µ+ 0.3] ≤ (1− Φ(0.3)) + α ≤ 0.49.

As a result, standard concentration bounds (e.g., Theorem E.1) imply that

Pr[median(Y1(j), . . . , Y106(j)) ∈ [µ− 0.3, µ+ 0.3]] > 0.99.

This in turn implies that

EX∼DN ,µ̂∼M(X)[∥µ̂− µ∥22] ≤ d ·
(
0.01 · 22 + 0.99 · 0.32

)
≤ d/6.

Applying Theorem A.6 with γ =
√
d/6, we can conclude that the sample complexity ofM (which

is equal to 106n) must be at least Ω
(

d

ϵ
√

d/6

)
= Ω(

√
d/ϵ). Thus, we must have n ≥ Ω(

√
d/ϵ) as

claimed.

D.2 Unknown Bounded Covariance

Next, we will prove the lower bound for the unknown bounded covariance case (Theorem 1.5).

D.2.1 Reduction to Covariance Estimation

Algorithm 4 COVARIANCEESTIMATOR

Parameters: N,n, L ∈ N, sampler Asampler, agnostic learner Alearner for centered Gaussians
Sample X1, . . . , XN ∼ P
for ℓ = 1, . . . , L do

Randomly draw n subsamples Xiℓ1
, . . . , Xiℓn

without replacement from X1, . . . , XN

Yℓ ← Asampler(Xiℓ1
, . . . , Xiℓn

)

N(0, Σ̂)← Alearner(Y1, . . . , YL)

if 0.5I ⪯ Σ̂ ⪯ 2.5I then
Σ̂′ ← Σ̂

else
Σ̂′ ← I

return Σ̂′

As stated earlier in Section 2, we will prove this lower bound by reducing to covariance estimation
(Theorem A.7). This is done by first taking N ≫ n samples, and then generating each Yℓ by
subsampling the input to n samples and running our DP sampler. These Yℓ’s are then feed into the
agnostic learner to produce an estimate Σ̂ for Σ. The full reduction is given in Algorithm 4. Note that
here Asampler will be the (ϵ, δ)-DP sampler and Alearner will be the learner from Theorem A.8.

Privacy Analysis. The privacy guarantee of Algorithm 4 follows easily from the amplification by
subsampling and advanced composition of DP. This is formalized below.
Lemma D.1. For any ϵ∗ ∈ (0, 1], δ∗ ∈ (0, 1), if Asampler is (ϵ, δ)-DP for ϵ ≤

min

{
1, ϵ∗N

4n
√

L ln(2/δ∗)

}
, δ ≤

(
0.5N
Ln

)
δ∗, then Algorithm 4 is (ϵ∗, δ∗)-DP.

Proof. First, we apply Theorem A.4 which means that computing a single Yℓ is (ϵ′, δ′)-DP where

ϵ′ = ln(1 + (n/N)(eϵ − 1)), δ′ = (n/N) · δ.
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Then, applying Theorem A.5 with δ1 = 0.5δ∗ implies that all (Y1, . . . , YL) together is (ϵ1, Lδ′+ δ1)-
DP where

ϵ1 =
(√

2L ln(1/δ1) + L(eϵ
′
− 1)

)
ϵ′.

Combining the above expressions, we have

ϵ1 =
(√

2L ln(2/δ∗) + L(n/N)(eϵ − 1)
)
ln(1 + (n/N)(eϵ − 1))

(from ϵ ≤ 1) ≤
(√

2L ln(2/δ∗) + L(n/N)(2ϵ)
)
ln(1 + (n/N)(2ϵ))

≤
(√

2L ln(2/δ∗) + L(n/N)(2ϵ)
)
· ((n/N)(2ϵ))(

from ϵ ≤ ϵ∗N

4n
√
L ln(2/δ∗)

)
≤ ϵ∗,

and Lδ′ + δ1 ≤ δ∗/2 + δ∗/2 ≤ δ∗. In other words, (Y1, . . . , YL) together is (ϵ∗, δ∗)-DP. Finally,
applying Alearner on (Y1, . . . , YL) is simply a post-processing step. Thus, the entire algorithm is
(ϵ∗, δ∗)-DP as desired.

D.2.2 Accuracy Analysis

Next, we argue that the accuracy of the covariance estimation algorithm, assuming the accuracy of
the sampler and the agnostic learner.

Lemma D.2. Let ξ ∈ (0, 0.01] and n,N,L ∈ N be such that N ≥
(

10nLd
ξ

)2
, and suppose that

I ⪯ Σ ⪯ 2I . Furthermore, suppose that

• Asampler is an
(

ξ
10C

)
-accurate sampler for the class of Gaussians under the assumption I ⪯ Σ ⪯

2I , and
• Alearner is an

(
ξ

10C , ξ2

200d2

)
-accurate agnostic learner for the class of centered Gaussians,

where C is the constant in Lemma A.2. Then, E[∥Σ̂′ − Σ∥2Σ] ≤ ξ2 where Σ̂′ denotes the output of
Algorithm 3.

Proof. Let D = N(0,Σ) denote the underlying distribution and for notational convenience, let
ζ :=

(
ξ

10C

)
. Let Edisjoint denote the event that i11, . . . , i

L
n are all different. Note that we have

Pr[¬Edisjoint] ≤
∑

ℓ ̸=ℓ′∈[L],j,j′∈[n]

Pr[iℓj = iℓ
′

j′ ] =
∑

ℓ̸=ℓ′∈[L],j,j′∈[n]

1

N2
≤ L2n2

2N
≤ ξ2

200d2
,

where the last inequality follows from our choice of parameters.

Next, suppose that Edisjoint holds. Then, we have that Y1, . . . , YL are independently sampled from
QAsampler,D. Applying the agnostic learning guarantee of Alearner, with probability 1− ξ2

200d2 , we
get

dtv(N(0, Σ̂), QAsampler,D) ≤ 3 · dtv(N(0,Σ), QAsampler,D) + ζ.

Recall also from the accuracy guarantee of the sampler that dtv(N(0,Σ), QAsampler,D) ≤ ζ.

Combining all of these together we have

Pr[dtv(N(0, Σ̂), QAsampler,D) > 4ζ] ≤ 1− ξ2

100d2
.

Applying Lemma A.2, we get

Pr[∥Σ̂− Σ∥Σ > ξ/2] ≤ 1− ξ2

100d2
.

Notice that if ∥Σ̂− Σ∥Σ ≤ ξ/2, then we have Σ̂′ = Σ̂. Furthermore, I ⪯ Σ ⪯ 2I and 0.5I ⪯ Σ̂′ ⪯
2.5I imply that ∥Σ̂′ − Σ∥Σ ≤ 6d. Thus, we have

E[∥Σ̂′ − Σ∥2Σ] ≤ (ξ/2)2 + (6d)2 · Pr[∥Σ̂− Σ∥Σ > ξ/2] ≤ (ξ/2)2 + (6d)2 · ξ2

100d2
≤ ξ2.
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D.2.3 Putting Things Together

Combing the privacy and accuracy guarantees and plugging in the appropriate parameters immediately
yields Theorem 1.5.

Proof of Theorem 1.5. Let α = ξ/(10C) where ξ is as in Theorem A.7 and C is as in Lemma A.2.
Suppose for the sake of contradiction that there exists an (ϵ, δ)-DP α-accurate sampler with sample
complexity n = o

(
d

ϵ
√
log d

)
under the assumption I ⪯ Σ ⪯ 2I . Then, let us select the parameters as

follows:

• L ≤ O
(
d2
)

denote the sample complexity of the
(

ξ
10C , ξ2

200d2

)
-accurate agnostic learner for the

class of centered Gaussians as given by Theorem A.8.

• N =

⌈(
10nLd

ξ

)2⌉
≤ O

(
n2d2 log d

)
.

• δ∗ = O
(
min

{
1/N, d2/(N logN)

})
. Note that, when the constant in big-O notation is sufficiently

large, our choice of parameters implies that δ ≤
(
0.5N
Ln

)
δ∗.

• ϵ∗ =
4nϵ
√

L ln(2/δ∗)

N = o(d2/N).

By Lemma D.2, we have that E[∥Σ̂′ − Σ∥2Σ] ≤ ξ2. Furthermore, by Lemma D.1, we have that the
algorithm COVARIANCEESTIMATOR is (ϵ∗, δ∗)-DP. However, we also have N = o(d2/ϵ∗), which
contradicts Theorem A.7.

E Product Distributions on {0, 1}d

In this section, we describe and analyze our sampler for product distributions on {0, 1}d (Theorem
1.7). We may assume w.l.o.g. that p1, . . . , pd ≤ 3/4. (Otherwise, we first privately estimate pi using,
e.g., the Laplace mechanism, and flip the ith bit in all samples if the estimate is more than 3/4.)

Given a dataset element Xi ∈ {0, 1}d, we use Xi[j] to denote its jth coordinate, and Xi[S] =
(Xi[j])j∈S to denote the vector Xi restricted to the subset S ⊆ [d] of coordinates.

E.1 Additional Preliminaries

Here we list a few concentration inequalities that are useful. We start with the following version of
the Bernstein inequality [see, e.g., 42, Theorem 2.8.4]:

Theorem E.1 (Bernstein’s inequality). Let Y1, . . . , Yn be independent real-valued random variables
such that, with probability 1, Yi ∈ [0, C] for all i ∈ [n]. Let V =

∑
i∈[n] var(Yi). Then, for any

∆ ≥ 0, we have

Pr

∣∣∣∣∣∣
∑
i∈[n]

Yi −
∑
i∈[n]

E[Yi]

∣∣∣∣∣∣ > ∆

 ≤ 2 exp

(
−∆2

2V + C∆

)
.

We now list a couple of versions of this inequality, which will be more useful in our setting.

Corollary E.2. Let P be a product distribution on {0, 1}d. For any β, γ ∈ (0, 1
2 ), let n > 50

γ log d
β

and X1, . . . , Xn ∼ P . Let X := 1
n

∑
i∈[n] Xi. Then, we have

Pr
[
∀j ∈ [d], X[j] ∈ [0.9pj − γ, 1.1pj + γ]

]
≥ 1− β.

Proof. For each j ∈ [d], applying Theorem E.1 with ∆ = max{γ, 0.1pj} · n and using pj ≤ 3/4,
we obtain

Pr
[
|X[j]− pj | ≤ max{γ, 0.1pj}

]
≤ 2 exp

(
−∆2

2npj +∆

)
≤ 2 exp

(
−∆

21

)
≤ β

d
.

Taking a union bound over all j ∈ [d] completes the proof.
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Corollary E.3. Let P be a product distribution on {0, 1}d. For any β, γ ∈ (0, 1
2 ), let n > 50

γ log d
β

and X1, . . . , Xn ∼ P . Then, we have

Pr

∀i ∈ [n],
∑
j∈[d]

Xi[j]

max{pj , γ}
≤ 3d+

4

γ
log

n

β

 ≥ 1− β.

Proof. Denote Yj = Xi[j]/max{pj , γ} for all j ∈ [d]. Here we have E[Yj ] = pj/max{pj , γ} ≤ 1
and var(Yj) ≤ pj/max{pj , γ}2 ≤ 1/γ. Moreover, with probability 1, we have Yj ≤ 1/γ. As a
result, we can apply Theorem E.1 with ∆ = 2d+ 4 log(n/β)/γ, which gives

Pr

∣∣∣∣∣∣
∑
j∈[d]

Xi[j]

max{pj , γ}
− d

∣∣∣∣∣∣ > ∆

 ≤ 2 exp

(
−t2

2d/γ + t/γ

)
≤ 2 exp(−0.5∆γ) ≤ β

n
.

Taking a union bound over all i ∈ [n] completes the proof.

E.2 Private Preconditioner

We start with the following private preconditioner, which estimates each pj up to a constant factor.
This preconditioner is similar to that of [27], except that we add noise from the Laplace distribution13

(instead of Gaussian noise) to achieve pure-DP and that we are looking for a coarser guarantee
compared to [27].
Lemma E.4. There exists an ϵ-DP algorithm that takes

O

(d log( d

α

)
+

d

α

) log
(

d
αβ

)
ϵ

 ,

samples as input and output integers ℓ1, . . . , ℓd ∈ {0, . . . , ⌈log( 2dα )⌉} such that, with probability
1− β, the following hold for all j ∈ [d]:

• if ℓj ̸= ⌈log( 2dα )⌉, then pj ∈ [1/4 · 2−ℓj , 3/4 · 2−ℓj ], and
• if ℓj = ⌈log( 2dα )⌉, then pj ≤ α/2d.

In the remaining of this section, we will focus on the proof of Lemma E.4 and Algorithm 5.

Sample Complexity. From Algorithm 5, the total sample complexity can be bounded by

∑
ℓ∈[L]

nℓ = O

∑
ℓ∈[L]

(
d+ 2ℓ

) log ( d
αβ

)
ϵ

 = O

(d log( d

α

)
+

d

α

) log
(

d
αβ

)
ϵ

 ,

as desired.

Privacy Analysis. In each iteration ℓ ∈ [L], the samples Xℓ
1, . . . , X

ℓ
nℓ

, after truncation, are noised
with a Laplace distribution; by the privacy guarantee of the Laplace mechanism, each iteration is
thus ϵ-DP. Furthermore, since each iteration uses a fresh set of samples, by the parallel composition
property of DP, the entire algorithm is ϵ-DP as desired.

Accuracy Analysis. We will prove this by induction. Specifically, let S↑ℓ := {j ∈ [d] | pj ≤ 3/4·2−ℓ}
and S↓ℓ := {j ∈ [d] | pj ≤ 1/4 · 2−ℓ}. We will show that

Pr
[
∀ℓ ∈ {0, . . . , t}, S↓ℓ−1 ⊆ Sℓ ⊆ S↑ℓ

]
≥ 1− tβ

L
, (6)

for all t ∈ [L] by an induction on t. Observe that this statement implies the desired accuracy claim in
the lemma because j gets assigned ℓj = ℓ if and only if j ∈ Sℓ \ Sℓ+1. (Here we use the convention
that SL+1 = ∅.)

13The Laplace distribution Lap(b) is given by the PDF fLap(b)(x) ∝ exp(−|x|/b).
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Algorithm 5 PRECONDITIONERPRODUCTDIST

Input: An unknown product distribution P over {0, 1}d, privacy parameter ϵ, accuracy parameter α,
failure probability parameter β
Output: ℓ1, . . . , ℓd ∈ {0, 1, . . . , ⌈log( 2dα )⌉}
L← ⌈log( 2dα )⌉
ℓj ← 0 for every j ∈ [d]
S0 ← [d]
foreach ℓ = 0, 1, . . . , L− 1 do

Bℓ ← 1000(d · 2−ℓ + 1)

nℓ ← 1000
ϵ ·Bℓ · 2ℓ · log

(
d
αβ

)
Sample Xℓ

1, . . . , X
ℓ
nℓ
∼ P

Sℓ+1 ← ∅

qℓ[Sℓ]←
1

nℓ

Lap
(
Bℓ

ϵ

)
+
∑
i∈[nℓ]

trunc1Bℓ
(Xℓ

i [Sℓ])


foreach j ∈ Sℓ do

if qℓ[j] ≤ 0.57 · 2−ℓ then
Add j to Sℓ+1

else
ℓj ← ℓ

foreach j ∈ SL do
ℓj ← L

return ℓ1, . . . , ℓd

Base Case. (2) trivially holds for t = 0 as S↑0 = S0 = [d].

Inductive Step. Suppose that (6) holds for t− 1 for some t ∈ N. We will also show that it also holds
for t. From a union bound, it suffices to show

Pr
[
S↓t−1 ⊆ St ⊆ S↑t | St−1 ⊆ S↑t−1

]
≥ 1− β

L
.

To show this, we need the following claim:
Claim 1. Assume St−1 ⊆ S↑t−1. For each j ∈ St, with probability 1− 0.5β

Ld , we have

1

nt

∑
i∈[nt]

trunc1Bt
(Xt

i [St])


j

∈
[
0.8pj − 0.01 · 2−t, 1.1pj + 0.01 · 2−t

]
.

Before we prove Claim 1, let us see how to use it to finish the proof. Let Zt ∼ Lap (Bt/ϵ) be the
Laplace noise added. First, by a standard concentration bound for the Laplace distribution, we have

Pr

[
|Zt

j | <
Bt

ϵ
log

(
4Ld

β

)]
≥ 1− 0.5β

Ld
.

Note also that by our choice of parameters, we have Bt/ϵ · log (4Ld/β) ≤ 0.01 · 2−t · nt.

Hence, by a union bound, we have that with probability 1− β/L for all j ∈ St,

qt[j] ∈ [0.8pj − 0.02 · 2−t, 1.1pj + 0.02 · 2−t].

Consider any j ∈ St \ S↑t . Since pj ≥ 0.75 · 2−t, we have qt[j] ≥ 0.58 · 2−t > τt. Hence, j will not
be included in St, coming to a contradiction. In other words, St \ S↑t = ∅, i.e., St ⊆ S↑t . Similarly,
consider any j ∈ S↓t−1. Since pj ≤ 0.25 · 2−t+1, we have qt[j] ≤ 0.57 · 2−t = τt. By Algorithm 5,
j will be included in St. Hence, S↓t−1 ⊆ St. These conclude the inductive step.

We are now left to prove Claim 1.
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Proof of Claim 1. Let Yi =
(
trunc1Bt

(Xt
i [St])

)
j
.

First note that
∑
i∈[nt]

Yi ≤
∑
i∈[nt]

Xt
i [j]. Therefore, we may apply Corollary E.2, which gives

Pr

 1

nt
·
∑
i∈[nt]

Yi ≤ 1.1pj + 0.01 · 2−t
 > 1− 0.25β

Ld
.

Next, to give a lower bound on Yi, we also observe that

Pr[Yi = 1] = Pr
[
Xt

i [j] = 1 and ∥Xℓ
i [St]∥1 ≤ Bt

]
≥ Pr[Xt

i [j] = 1 and ∥Xt
i [St \ {j}]∥1 ≤ Bt − 1]

= Pr[Xt
i [j] = 1] · Pr[∥Xt

i [St \ {j}]∥1 ≤ Bt − 1]

= pj · Pr[∥Xt
i [St \ {j}]∥1 ≤ Bt − 1],

and

E[∥Xt
i [St \ {j}]∥1] =

∑
j′∈St\{j}

pj′ .

We note that St ⊆ St−1 holds by Algorithm 5 and St−1 ⊆ S↑t−1 follows the assumption. Hence,
pj′ < 0.75 · 2−(t−1) for every j′ ∈ S↑t−1. Moreover, |S↑t−1| ≤ d. Putting everything together, we can
further bound

E[∥Xt
i [St \ {j}]∥1] =

∑
j′∈St\{j}

pj′ ≤
∑

j′∈S↑
t−1

pj′ ≤ d · 0.75 · 2−(t−1) ≤ 0.1(Bt − 1).

Therefore, by Markov’s inequality, we have

Pr[∥Xt
i [St \ {j}]∥1 ≤ Bt − 1] ≥ 0.9.

Combining with the above, we have Pr[Yi = 1] ≥ 0.9pj . Notice also that Y1, . . . , Ynt
are i.i.d. and

always lie between [0, 1]. Thus, we can apply Theorem E.1 with ∆ = (0.1pj + 0.01 · 2−t)nt to
obtain

Pr

 1

nt
·
∑
i∈[nt]

Yi < 0.8pj − 0.01 · 2−t
 ≤ 2 exp

(
∆2

2pjnt +∆

)
≤ 2 exp

(
∆2

21∆

)
≤ 0.25β

Ld
.

Applying a union bound then yields the claim.

E.3 Sampler

Next, we give a DP sampler for an unknown product distribution, assuming that a rough estimate of
each pj is already computed via the private preconditioner in Section E.2. The exact guarantee is
given below; combining this with Lemma E.4, we immediately arrive at Theorem 1.7.

Lemma E.5. Suppose that ℓ1, . . . , ℓd satisfy the conditions in Lemma E.4. Then, there is an ϵ-DP
algorithm taking ℓ1, . . . , ℓd as input, that is an α-accurate sampler and has a sample complexity of

O

(
d log(d/α)

αϵ

)
.
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Algorithm 6 PRODUCTDISTSAMPLER

Input: An unknown product distribution P over {0, 1}d, privacy parameter ϵ, accuracy parameter α,
and ℓ1, . . . , ℓd ∈ N satisfy the conditions in Lemma E.4
Output: A random sample that is α-accurate for P
B ← 1000(d/α) · log(d/α)
n← ⌈16B/ϵ⌉
Sample X1, . . . , Xn ∼ P
w ← (2ℓ1 , . . . , 2ℓd)
q ← 1

n ·
∑

i∈[n] trunc1B,w(Xi)

for j = 1, . . . , d do
p̃j ← clip 1

8wj
, 7
8wj

(qj)

Sample Z ∼ Ber(p̃1)⊗ · · · ⊗ Ber(p̃d)
return Z

In the following, we will focus on the proof of Lemma E.5 with Algorithm 6.

Privacy Analysis. Consider any pair X,X′ of neighboring datasets. We may assume w.l.o.g. that
the two datasets agree except for Xn and X ′n. We write q′, p̃′ to denote the values of q, p̃ computed
for X′. Now, consider any possible output y ∈ {0, 1}d. For each j ∈ [d], we claim that

Pr[A(X′)j = yj ]

Pr[A(X)j = yj ]
≤ 1 + 8wj |p̃′j − p̃j |. (7)

To show this, we first mention two facts:

•
Pr[A(X′)j = 0]

Pr[A(X)j = 0]
=

1− p̃′j
1− p̃j

≤ 1 +
|p̃′j − p̃j |
1− p̃j

;

•
Pr[A(X′)j = 1]

Pr[A(X)j = 1]
=

p̃′j
p̃j
≤ 1 +

|p̃′j − p̃j |
p̃j

.

It suffices to show 1/(8wj) ≤ p̃j ≤ 1 − 1/(8wj) to prove (7). This follows since wj > 1 and
1/(8wj) ≤ p̃j ≤ 7/(8wj) due to clipping.

We also note the following useful property:

∥w ◦ (q′ − q)∥1 =
1

n
· ∥w ◦ (trunc1B,w(X

′
n)− trunc1B,w(Xn))∥1

≤ 1

n
· ∥w ◦ (trunc1B,w(X

′
n) + trunc1B,w(Xn))∥1 ≤

2B

n
. (8)

Finally, we are ready to prove the privacy guarantee:

Pr[A(X′) = y]

Pr[A(X) = y]
=
∏
j∈[d]

Pr[A(X′)j = yj ]

Pr[A(X)j = yj ]
≤
∏
j∈[d]

(
1 + 8wj · |p̃′j − p̃j |

)
≤
∏
j∈[d]

exp
(
8wj · |p̃′j − p̃j |

)
= exp (8w ◦ |p̃′ − p̃|)

≤ exp (8w ◦ |q′ − q|) ≤ exp

(
16B

n

)
= exp(ϵ),

where the third inequality is due to clipping, the penultimate step follows (8), and the last step follows
from our choice of parameters. Thus, the algorithm is ϵ-DP as claimed.

Accuracy Analysis. Let S = {j ∈ [d] | pj < 2−L}. We first consider the version ofA (Algorithm 6),
where there is no truncation at all and there is no clipping for any j /∈ S, denoted as A′. Let
QA′,P = Ber(p∗1) ⊗ · · · ⊗ Ber(p∗d). Fix β = α/12d < α/4. We define the event E as “no Xi is
truncated for any i ∈ [n] and no pj is clipped for any j /∈ S by Algorithm 6”. By concentration
results (Corollaries E.2 and E.3 with γ = 2−L−1) and our selection of parameters, we can conclude
that E happens with probability at least 1− β, and therefore

dtv(QA′,P , QA,P ) = dtv(QA′,P , QA,P | E) · Pr[E ] + dtv(QA′,P , QA,P | Ē) · Pr[Ē ]
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= 0 · (1− β) + 1 · β ≤ α/2.

Furthermore, we can see that E[p∗j ] = pj if j /∈ S. For j ∈ S, clipping ensures us that p∗j ≤ 2−L,
hence E[p∗j ] ≤ 2−L. Together, we have

dtv(QA′,P , P ) =
∑
j∈[d]

|E[p∗j ]− pj | =
∑
j∈S
|E[p∗j ]− pj | ≤

∑
j∈S

2−L ≤ d · 2−L ≤ α/2.

Combining the above two inequalities yields the α-accuracy guarantee of A:

dtv(QA,P , P ) ≤ dtv(QA,P , QA′,P ) + dtv(QA′,P , P ) ≤ α/2 + α/2 = α.

Proof of Theorem 1.7. Finally, we are ready to prove Theorem 1.7. For simplicity, let α′ be the target
accuracy parameter. Set α = α′/2 and β = α/12d < α′/2. We define the event E as “Algorithm 5
returns ℓ1, . . . , ℓd satisfying the properties in Lemma E.4”. If E holds, then the error of our sampler is
at most α′/2, which is implied by Lemma E.5. If E fails, the error is at most 1, but this event happens
with probability at most β < α′/2. Together, the error of our sampler is

α′/2 · (1− β) + 1 · β < α′/2 + α′/2 = α′,

and the sampling complexity is (with β = α′/24d)

O

(d log( d

α′

)
+

d

α′

) log
(

d
α′β

)
ϵ

+
d

α′ϵ
log

(
d

α′

) = O

(
d

ϵ
log2

(
d

α′

)
+

d

α′ϵ
log

(
d

α′

))
,

as desired.
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