
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERPLAY BETWEEN TASK LEARNING AND SKILL
DISCOVERY FOR AGILE LOCOMOTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Agile locomotion of legged robots, characterized by high momentum and frequent
contact changes, is a challenging task that demands precise motor control. There-
fore, the training process for such skills often relies on additional techniques, such
as reward engineering, expert demonstrations, and curriculum learning. However,
these requirements hinder the generalizability of methods because we may lack
sufficient prior knowledge or demonstration datasets for some tasks. In this work,
we consider the problem of automated learning agile motions using its intrinsic
motivation, which can greatly reduce the effort of a human engineer. Inspired by
unsupervised skill discovery, our learning framework encourages the agent to ex-
plore various skills to maximize the given task reward. Finally, we train a param-
eter to balance the two distinct rewards through a bi-level optimization process.
We demonstrate that our method can train quadrupeds to perform highly agile mo-
tions, ranging from crawling, jumping, and leaping to complex maneuvers such as
jumping off a perpendicular wall.

Figure 1: A figure showing highly agile behavior trained using our method. The quadruped is (1)
running toward the wall, (2) jumping off the ground and performing a front flip clockwise, and (3)
using its hind legs to kick the perpendicular wall, rotating counterclockwise, and landing on the
ground.

1 INTRODUCTION

Agile motor skills are challenging for both humans and robots to learn because they require com-
plex planning of full-body movements and precise motor control. For example, mastering advanced
gymnastics skills involves carefully coordinating the teaching and practice phases. Some unintu-
itive motor skills, such as the Fosbury flop in high jump or the Eurostep in basketball, took athletes
decades to discover. Similarly, developing controllers for agile skills remains one of the most diffi-
cult tasks in robotics, which makes an algorithm easily get stuck in local minima.

In recent years, legged robot locomotion, when combined with deep reinforcement learning (RL),
has reached a high level of agility (Tan et al., 2018; Lee et al., 2020b; Hwangbo et al., 2019; Xie
et al., 2021; Song et al., 2020; Haarnoja et al., 2018; Smith et al., 2023; Luo et al., 2024). However,
those algorithms often require additional techniques to learn challenging skills, such as reward en-
gineering based on domain expertise (Zhuang et al., 2023; Cheng et al., 2023; Yang et al., 2023b),
demonstration datasets (Bogdanovic et al., 2022; Kilinc & Montana, 2022; Li et al., 2023a; He

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: A robot must explore diverse strategies to overcome the obstacle from a simple task
description, such as jumping over (Left) or crawl under (Right).

et al., 2024), or carefully designed curriculum learning (Kumar et al., 2021). This paper’s goal is
to develop an automated learning algorithm that reduces manual engineering effort, which can learn
highly agile skills such as the wall-jump shown in Figure 1. However, developing an automated
learning framework for agile locomotion is not straightforward because the high momentum and
contact changes make an optimization ill-conditioned with multiple local minima.

In this work, we aim to design a learning algorithm to achieve the given difficult task by exploring a
diverse set of possible approaches. Consider a locomotion task with two types of obstacles, as shown
in Figure 2: the robot must jump over the obstacle in the left figure and crawl under the box in the
right figure. We want the robot to overcome both tasks based on a simple task description, such as
“moving forward.” However, the robot would struggle to solve these tasks because this description
does not provide enough incentive to explore different base heights. Therefore, our algorithm must
intrinsically motivate the robot to examine various gaits, especially when learning with the given
task reward becomes saturated.

In detail, our approach combines two objectives: solving the given task and finding diverse solutions.
Solving the task is represented by maximizing the task reward. The task reward should be kept
simple, such as following forward velocity commands to move toward task completion. On the
other hand, exploring diverse behaviors is achieved by maximizing a diversity reward, which is
derived from skill discovery methods. This encourages the agent to try various approaches to find
the desired height, orientation, velocity, or angular velocity needed to solve the task. However,
balancing two distinct objectives is not straightfoward and one may overpower the other. If the task
reward dominates, agents may not sufficiently explore diverse behaviors. Conversely, if the diversity
reward dominates, agents may spend too much time exploring, failing to solve the task. This is
analogous to the exploration-exploitation trade-off in RL (Sutton, 2018). To address this problem,
we introduce a learnable parameter λ to balance the two objectives. We train λ to automatically
adjust the weight of the diversity reward to maximize the task reward. Details of training λ will
be covered in Section 3.2. This approach enables the agent to effectively balance exploration and
exploitation.

In summary, our approach aims to adopt skill discovery methods to enhance the task-specific re-
ward by incorporating human priors. The primary contributions of this work are as follows: (1)
We propose a novel framework that combines RL and unsupervised skill discovery algorithms to
automatically learn agile locomotion skills. (2) We provide a thorough derivation of bi-level opti-
mization framework for training the balancing parameter λ. We also demonstrate that our approach
of adapting λ robustly finds the optimal value for a given task. (3) We evaluate our method on three
challenging locomotion tasks: jumping, leaping, and crawling. In these environments, we compare
our approach against exploration-based methods for utilizing human priors, showing that our method
outperforms the baselines. (4) We demonstrate that our method can train unprecedented levels of
agile behavior, such as accomplishing a wall-jump.

2 RELATED WORK

Unsupervised Skill Discovery. To establish an association between the skill z and the resulting
policy π(a|s, z), DIAYN (Rudin et al., 2022a) proposes maximizing the mutual information between
skills and states, I(z; s). However, a limitation of DIAYN is that its objective can be fully optimized

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

with only minor differences between states, as long as the discriminator can distinguish between the
skills, even if these differences are minimal.

To address this issue, LSD (Park et al., 2022) suggests an alternative objective that provides more
incentive to increase state differences. However, LSD measures state differences using Euclidean
distance, which leads to a focus on “easy change” within existing state dimensions. For example, in
manipulation tasks, changing the robot arm’s end-effector position is considered an easy-to-change
state, whereas altering the target object’s position is more challenging. To tackle this challenge,
CSD (Park et al., 2023a) introduced a different distance metric called “controllability-aware dis-
tance”. This metric assigns higher values to state transitions that are less likely to occur, thereby
encouraging the learning process to focus more on state changes that are rare.

It is worth noting that DIAYN, LSD, and CSD primarily address low-dimensional state spaces. ME-
TRA (Park et al., 2023b), on the other hand, tackles the skill discovery problem in high-dimensional
image inputs. METRA also incorporates the Wasserstein Dependency Measure, IWDM (Ozair et al.,
2019), between skill z and states, encouraging the agent to visit maximally different states for dif-
ferent skills, based on the given distance metric. We utilized METRA as our base skill discovery
algorithm.

Learning Agile Locomotion. Recently, learning-based methods have demonstrated highly agile
locomotion capabilities such as high-speed running (Margolis et al., 2022; Fu et al., 2021), jumping
(Li et al., 2023b; Yang et al., 2023a), and climbing (Rudin et al., 2022a; Lee et al., 2020a). Our
work aims to cover not only jumping, running, and leaping, but also wall-jumping, which involves a
parkour-style motion combining flipping and jumping using walls.

The work most related to ours is that of Zhuang et al. (2023), which used a manually designed
reward that penalizes the overlap between the robot and imaginary obstacles. They trained agents to
minimize these overlaps, resulting in the learning of agile behaviors. In contrast, we aim to train a
similar set of tasks without the need for extensive reward designs. Instead, we allow an unsupervised
reinforcement learning (RL) method to discover the skills required to solve these tasks.

3 METHOD

3.1 PROBLEM FORMULATION

We regard the problem of training a control module of a legged robot as a Markov Decision Process
(MDP) defined asM ≡ {S,A,R,P, γ}, where S is a state space, A is action space composed of
joint torques of the robot, R is a reward function, P is a transition probability, and γ is a discount
factor. When given a specific MDP, RL offers a way of obtaining an optimal policy π which max-
imizes the expected sum of the discounted reward J = Eπ

[∑∞
t=0 γ

trt

]
. π can be parameterized

with neural network θ, so here we denote policy as πθ.

3.2 OUR APPROACH

Overall, instead of a standard policy πθ(a|s), we train a skill-conditioned policy πθ(a|s, z), where
z is randomly sampled from a prior distribution, z ∼ p(z), for each episode and remains fixed
throughout the episode. Our objective is to find θ that optimizes the expected sum of both the task
reward rtask and the diversity reward rdiv.

θ = argmax
θ

J task+div = argmax
θ

Eπθ

[∞∑
t=0

γt(rtask
t + λrdiv

t)
]

A learnable parameter λ determines the weight of rdiv, and we refer to it as the balancing parameter.
The task reward rtask

t specifies the goal of the task. It can be defined for each task and should be kept
simple, such as a velocity-following or forward-movement reward. Regardless of the value of λ, the
policy π is always conditioned on a particular z. Conditioning the policy on different values of z
results in different behaviors, so training a skill-conditioned policy with λ = 0 effectively means
we are training a group of different policies, all of which converge into a single behavior. When λ

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: A figure of bi-level optimization for πθ and λ. Task reward gives the gradient signal for
training λ, and sum of two sources of rewards provides the gradient signal for optimizing πθ.

becomes large, the diversity reward dominates, and each policy learns a distinct skill, but none of
them are capable of solving the task. Thus, determining the appropriate value of λ is crucial. In the
following section, we will explain how the balancing parameter λ is trained and how rdiv is defined.

Train Balancing Parameter As depicted in the Figure 3, we utilize a bi-level optimization
framework to train both policy π and a learnable balancing parameter λ, which is similar to
LIRPG (Zheng et al., 2018). While θ is trained to maximize J task+div, λ is trained to maximize
only J task = Eπθ

[∑∞
t=0 γ

trtask
t

]
. It is worth noting that our ultimate goal is to solve the external

task. So the intuitive meaning of training λ solely depending on the task reward is that we deter-
mine the degree of diversity reward only to maximize the task performance. Ideally, when diversity
reward helps solve the task, λ will be increased, and if it rather deters training, λ will be decreased.

More concretely,
λ = argmax

λ
J task (1)

The problem here is we cannot directly compute the gradient of J task against λ, so we use the chain
rule to compute the gradient of λ with respect to J task.

∇λJ task = ∇θ′J task∇λθ′ (2)

Here, we can compute the first term∇θ′J task using policy gradient theorem (Sutton et al., 1999)

∇θ′J task ≈ Atask∇θ′ log πθ′(a|s, z) (3)

where Atask and Adiv refers to the advantage value computed with rtask and rdiv respectively, and
corresponding value functions vtask

ψ1
and vdiv

ψ2
. To compute the second term∇λθ′, we first derive θ′.

θ′ = θ + α∇θJ task+div(θ)

= θ + αAtask+div∇θ log πθ(a|s, z) (4)

Then we can plug in this result to compute∇λθ′:
∇λθ′ = ∇λ(θ + αAtask+div∇θ log πθ(a|s, z))

= ∇λ(αAtask+div∇θ log πθ(a|s, z))
= ∇λ(αAtask + αλAdiv)∇θ log πθ(a|s, z)
= αAdiv∇θ log πθ(a|s, z) (5)

Finally, we can compute the value of∇λJ task by pluggin in the Eq. (3) and Eq. (5):

∇λJ task ≈ Atask∇θ′ log πθ′(a|s, z) ∗ αAdiv∇θ log πθ(a|s, z) (6)

We can compute this term using sample-based approximation. The difference between our approach
and Zheng et al. (2018) is that instead of training the intrinsic reward function itself, we fix the
intrinsic reward as the diversity reward, and we only train the balancing parameter λ to determine
the degree of it.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Diversity Reward For the diversity reward rdiv, we follow the formulation of METRA (Park et al.,
2023b). They train skills to maximize Wasserstein Dependency Measure (Ozair et al., 2019) IWDM =
IW (S;Z). Maximization of the IWDM can be translated into following objective:

sup
π,ϕ

EP (τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))T z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ 1,∀(s, s′) ∈ Sadj,

Here, ϕ : S → Z is a learnable representation function that maps state into latent skill space. Op-
timization of this term can be achieved by simply using the off-the-shelf RL algorithm to maximize
the reward rdiv = (ϕ(st+1)−ϕ(st))T z. To ensure that ϕ satisfies the constraint, we use dual gradient
descent with a Lagrange multiplier κ with a small margin ϵ > 0. Please refer to Park et al. (2023b)
for more details.

Skill Selection A typical unsupervised skill discovery method requires careful selection of the skill
vector z during the testing phase. However, we observed that as training progresses, an increasing
proportion of the learned skills exhibit successful behaviors, a phenomenon we refer to as ”positive
collapse” (Section 4.3). Therefore, in this work, we simply select a random skill z for reporting
performance, rather than selectively choosing it or training a high-level controller.

Implementation Details We introduced two separate value networks, vtaskψ1 and vdivψ2, due to
the presence of two distinct reward sources: rtask and rdiv. Using a single value network to model
the value of rtask + λrdiv led to unstable training, as the scale of the rewards varied with changes in
λ. Pseudo-code for our algorithm is provided here.

Algorithm 1
1: Initialize skill-conditioned policy πθ(a|s, z), value functions vtask

ψ1
and vdiv

ψ2
, representation func-

tion ϕ(s), Lagrange multiplier κ, Balancing parameter λ, data buffer D
2: for i← 1 to # of epochs do
3: for j ← 1 to # of episodes per epoch do
4: Sample skill z ∼ N (0, I)
5: while episode not terminates do
6: Sample action a ∼ π(a|s, z)
7: Execute a and receive s′ and rtask

8: Compute rdiv = (ϕ(s′)− ϕ(s))T z
9: Add {s, a, rtask, rdiv, s′} to data buffer D

10: end while
11: end for
12: for {s, a, rtask, rdiv, s′} in D do
13: Update ϕ(s) to maximize E(s,z,s′)∼D

[
(ϕ(s′)− ϕ(s))T z + κ ·min(ϵ, 1− ∥ϕ(s)− ϕ(s′)∥22)

]
14: Update κ to minimize E(s,z,s′)∼D

[
κ ·min(ϵ, 1− ∥ϕ(s)− ϕ(s′)∥22)

]
15: Update θ using PPO with reward r = rtask + λ ∗ rdiv

16: Update ψ1 and ψ2 using rtask and rdiv respectively
17: Update λ using Eq. 6
18: end for
19: end for

4 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed framework by training policies on a set of agile locomotion
tasks. First, we examine three robot parkour learning tasks from Zhuang et al. (2023), including
climbing, crawling, and leaping, which require distinctive control strategies to overcome obstacles.
On these tasks, we experiment with how skill discovery methods can aid in learning agile behaviors
and evaluate our methods against baselines. Next, we investigate the effect of learning an adjustable
λ, and compare performance against trials with fixed value of λ value. We then show that all diverse
skills are converged to a single optimum skill. Finally, we push our method to its limits in terms of
agility to explore the most agile motions it can learn.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Leap (b) Climb (c) Crawl

Figure 4: Training curve of our methods against baseline algorithms on three different tasks. Our
method can solve all the tasks and exhibits better sample efficiency. Three different seeds were used.

Simulation Setup We use Isaac Gym (Makoviychuk et al., 2021) as a simulation engine. Our
codebase is developed based on the work of Rudin et al. (2022b). We use the Unitree A1 robot for
all our experiments. The observation space is detailed in Appendix A.1. We use Proximal Policy
Optimization (PPO) (Schulman et al., 2017) as our main RL algorithm. Our policies converge in
10k–20k iterations depending on the task, which takes 8–16 hours on an NVIDIA A40 GPU.

4.1 LEARNING AGILE LOCOMOTION SKILLS

We compared our method against the following baseline algorithms:

• Task-only: An RL baseline trained only with task specific rewards rtask.

• Div-only: An RL baseline trained using diversity reward rdiv only.

• RND (Burda et al., 2018): It combines rtask with an exploration reward instead of a diversity
reward.

We designed the same task reward across all baseline methods and tasks, with the primary goal of
incentivizing agents to move forward. Details of the task rewards are provided in Appendix A.2.
For both the diversity reward and exploration bonus in RND, we manually specify sub-dimensions
of the state space, ensuring that the learning process focuses on diversity within the specified sub-
dimensions. Specifically, we selected base heights for climbing and crawling tasks and forward
velocity for leaping. Additionally, to expedite the learning of the Div-only agent, we provided the
robot’s base x position as additional input to the skill discovery algorithm. This facilitated the
exploration of diverse x positions, ultimately helping the agent move forward.

Our method enables the effective learning of agile motions. We present the training curves of
our method and all baseline algorithms in Figure 4. We measured the number of obstacles passed in
each task, where each task contains three consecutive obstacles of same configuration. Our method
successfully learned the necessary motor skills for all tasks. Compared to the Task-only baseline, we
observed that incorporating diversity rewards helps in learning agile locomotion skills. However,
relying solely on diversity rewards (Div-only) fails to achieve meaningful skills, highlighting that a
balanced interplay between task and diversity rewards is critical for success. Additionally, a compar-
ison with RND shows that diversity-based approaches outperform exploration-based rewards. We
believe this is because exploration-based methods focus on ‘local’ exploration, incentivizing agents
to visit nearby unvisited states, making ‘global’ exploration challenging. In contrast, skill discovery
methods inherently facilitate global exploration, as they encourage skills to explore distinct sets of
states, allowing agents to transition to entirely new regions.

Skill discovery enables high level exploration. We also provide qualitative evidence demonstrat-
ing how skill discovery methods enhance exploration. Figure 5 illustrates example behaviors of our
method using two different skills for each task based on an actual model checkpoint from training.
To observe the behaviors of different skills, we kept the model fixed and fed different skill vectors

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Leap - success (b) Leap - failure

(c) Climb - success (d) Climb - failure

(e) Crawl - success (f) Crawl - failure

Figure 5: Visualization of the diverse skills explored by the robot during training. For each task, we
used the same model checkpoint but applied different skills to generate rollouts for both successful
and failed cases.

(a) Training curve (b) Corresponding curve of λ

Figure 6: Our method outperforms all the baseline rewards with fixed value of lambda.

to the policy. As a result, both successful and unsuccessful episodes were generated from the same
policy, using different skill vectors. In the crawling task, some skills successfully navigated past
the obstacle, while others crashed and lost balance. Similarly, in the leaping task, certain skills al-
lowed the agent to jump over the gap, whereas others failed and fell. The climbing task shows a
similar variation. These examples confirm that the agent explores diverse behaviors; some of which
solve the task while others do not. When a particular skill starts solving the task, the task reward in-
creases, leading to successful task completion. In this sense, skill discovery functions as a high-level
exploration module.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Leap Climb Crawl
1k 2k 3k 12k 15k 20k 2k 7k 15k

29.9±5.2 99.1±0.9 99.4±0.8 49.4±7.2 71±9.3 68.7±11 22.3±3.1 31.7±3.8 40±2.8

Table 1: Ratio of successful skill vectors z for each checkpoint (%)

4.2 LEARNING BALANCING PARAMETER λ

Selecting the appropriate value for λ is crucial, as the scale of both the task reward and diversity
reward is difficult to determine a priori. If either the task reward or the diversity reward dominates,
the agent’s learning process can be significantly hindered. In this section, we demonstrate how our
algorithm effectively adjusts λ during training. We compare our adaptive approach to fixed values of
λ, using four different settings: 0.01, 0.1, 1, 10. These experiments were conducted on the crawling
tasks from the previous section, with each method trained using three different random seeds. We
measured performance based on the number of obstacles passed.

Our method outperforms fixed λ values. Figure 6(a) shows that our adaptive method outper-
forms all fixed-value experiments. Training with fixed λ values of 0.01, 0.1, and 10 failed to pass
a single obstacle, while both our method and the fixed λ of 1.0 successfully solved the task. How-
ever, our approach demonstrated superior sample efficiency compared to λ = 1.0. Figure 6(b)
illustrates how the learned λ values evolve during training. The value starts at 0 and gradually in-
creases, suggesting that our algorithm learned that increasing λ helps maximize task rewards over
time. Additionally, Appendix Figure 8 shows the evolution of λ for all three parkour tasks. The re-
sults indicate that some tasks require a gradual increase in λ, while others benefit from maintaining
a steady value in the range of [0.2, 0.4].

It is also important to note that our method does not correspond to a single fixed λ value through-
out training. In other words, there may not exist a single value of λ that could yield an identical
training curve. Our approach adjusts λ dynamically, resulting in different values at different stages
of training, which allows the agent to achieve an appropriate balance of diversity and task reward
throughout the learning process.

4.3 CONVERGENCE OF DIFFERENT SKILLS INTO A NARROW SOLUTION SPACE

One potential challenge of incorporating a skill discovery module into the learning process is the
difficulty of selecting the exact skill that solves the task after training, especially if only a small
portion of the skill space is effective. However, we observed that as training progresses, a growing
number of skill vectors z ∼ N (0, I) become capable of solving the task. To demonstrate this,
we selected model checkpoints at various stages of training and measured the success rate using
100 randomly sampled skills. This experiment was repeated ten times to determine the standard
deviation.

The results are presented in Table 1. For the leap task, initially, only 30% of the skills were success-
ful, but this number eventually approached nearly 100%. Similarly, for the climb and crawl tasks,
the proportion of successful skills increased steadily. This suggests that once a viable solution is
discovered, different skill vectors converge into similar behaviors with the solution, especially when
the solution space is narrow for the given task. This contrasts with a typical skill discovery scenario
where only a small subset of skills solves the task. Instead, in our case, the proportion of successful
skills increased significantly over time.

This indicates that the resulting behavior of π(a|s, z) can converge to a similar behavior despite us-
ing different skill vectors z. Intuitively, the training process involves an initial phase of exploration,
followed by convergence to a solution. We observe that this phenomenon of later convergence is
facilitated by task rewards: when a skill finds a successful solution, the corresponding trajectory
receives higher rewards, which results in the increased probability of the actions taken. Because all
skills share the same policy network, this learning propagates to other skill-conditioned behaviors,
leading to what we term a “positive collapse” of skills. Initially diverse behaviors converge to a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Red dots - Human drawn guidelines (b) Task-only make robots crash

(c) Ours1- A robot run and front-flip to kick wall (d) Ours2- using wall, perform back-flip and land

(e) Training curves (f) λ curve

Figure 7: Our method enables robots solve wall-jump task.

common, successful strategy, which is beneficial as it maximizes task rewards and eliminates the
need to manually select the right skill.

4.4 WALL-JUMP : LEARNING SUPER AGILE TASKS

Lastly, we pushed our method to its limits. We introduced a new task named wall-jump, which re-
quires the robot to perform a sequence of highly agile motions, including running, jumping, flipping,
and landing in a specific order. To make this feasible, we devised a guideline-based reward that is
widely adopted in robotics(Tang et al., 2021; Gu et al., 2023). The reward encourages the agent to
follow the guideline specified by a user. We used this reward as rtask. More details about the reward
design can be found in Appendix C. The exact guideline used is shown in Figure 7(a). Note that the
guideline only provides the target trajectory for the root position while not offering any information
about orientation.

However, providing the guideline alone was not sufficient for the agent to successfully perform the
wall-jump. Figure 7(b) shows the resulting behavior of the agent trained solely with rtask. The robot
was able to follow the guideline up until it reached the perpendicular wall, but then crashed its back
against the wall. The cumulative reward for this episode was about 5.0, as shown by the blue curve
in Figure 7(e). We observe that the robot needs to acquire a specific orientation to kick off the wall
and land safely.

Therefore, we provided the robot’s base’s roll, pitch, and yaw as input to the skill discovery
algorithm, allowing our method to explore and learn diverse orientations of the robot when needed.
Figures 7(c) and (d) show the resulting behavior. Our method was able to acquire the specific

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

orientation needed to kick off the wall. As a result, our approach achieved a much higher task
return, with a value of 9.5 as indicated by the green curve in Figure 7(e).

Notably, as shown in Figure 7(f), λ remained at 0 until reaching 0.5k steps and then gradually
increased from 0 to 1 during the interval from 0.5k to 3k steps. In this experiment, λ was capped
at 1, which it eventually reached. Looking at the green training curves around the 3k step mark, the
agent achieved a return of 5.0, indicating that it had reached the wall and needed to learn to kick
off with its hind legs. If λ had remained at 0, it would not have been able to achieve the necessary
rotation, demonstrating that adjusting λ has led to the acquisition of the specific orientation needed
to kick off the wall.

5 CONCLUSION

In this work, we presented a novel framework that integrates unsupervised skill discovery with task-
specific reinforcement learning to enable legged robots to learn highly agile locomotion behaviors
with minimal manual intervention. By balancing exploration and task rewards through a bi-level
optimization process, our method allows robots to discover diverse strategies and refine them to
achieve complex tasks such as crawling, jumping, leaping, and performing agile maneuvers like
wall-jumping.

We demonstrated that the incorporation of skill discovery methods not only facilitates the explo-
ration of diverse behaviors but also enhances sample efficiency compared to traditional exploration-
based techniques. We also showed that our method outperforms pure exploration-based baselines in
various tasks, and the learned skills consistently converge to an optimal solution, ensuring the ro-
bustness and reproducibility of the learned behaviors. Furthermore, we pushed the boundary of agile
locomotion learning with the successful implementation of the challenging wall-jump task, show-
casing the potential of our method to handle even the most demanding dynamic behaviors. Future
work could extend this approach to more diverse environments, exploring its potential in real-world
robotic applications.

Reproducibility Statement We have made efforts to ensure the reproducibility of our work across
various aspects.

• We provide detailed information about the observations, rewards coefficients, and hyper-
parameters used in our experiments in Appendix A.

• A comprehensive pseudo-code of our algorithm is available in Section 3.2.

• A thorough derivation of our method is presented in Section 3.2.

• Visualizations of the learned behaviors are presented in both Figure 5 and 7

• We present a video of our agents solving diverse tasks in supplementary material.

• We will also open-source the code if accepted.

REFERENCES

Miroslav Bogdanovic, Majid Khadiv, and Ludovic Righetti. Model-free reinforcement learning for
robust locomotion using demonstrations from trajectory optimization. Frontiers in Robotics and
AI, 9:854212, 2022.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak Pathak. Extreme parkour with legged
robots. arXiv preprint arXiv:2309.14341, 2023.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Zipeng Fu, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Minimizing energy consumption
leads to the emergence of gaits in legged robots. arXiv preprint arXiv:2111.01674, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al. Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches. arXiv preprint arXiv:2311.01977, 2023.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning
to walk via deep reinforcement learning. arXiv preprint arXiv:1812.11103, 2018.

Zhengmao He, Kun Lei, Yanjie Ze, Koushil Sreenath, Zhongyu Li, and Huazhe Xu. Learning visual
quadrupedal loco-manipulation from demonstrations. arXiv preprint arXiv:2403.20328, 2024.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Ozsel Kilinc and Giovanni Montana. Reinforcement learning for robotic manipulation using simu-
lated locomotion demonstrations. Machine Learning, pp. 1–22, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. arXiv preprint arXiv:2107.04034, 2021.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020a.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020b.

Chenhao Li, Marin Vlastelica, Sebastian Blaes, Jonas Frey, Felix Grimminger, and Georg Martius.
Learning agile skills via adversarial imitation of rough partial demonstrations. In Conference on
Robot Learning, pp. 342–352. PMLR, 2023a.

Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, and Koushil Sreenath.
Robust and versatile bipedal jumping control through multi-task reinforcement learning. arXiv
preprint arXiv:2302.09450, 2023b.

Shixin Luo, Songbo Li, Ruiqi Yu, Zhicheng Wang, Jun Wu, and Qiuguo Zhu. Pie: Parkour with
implicit-explicit learning framework for legged robots. IEEE Robotics and Automation Letters,
2024.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance gpu-based physics simulation for robot learning, 2021.

Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via
reinforcement learning. arXiv preprint arXiv:2205.02824, 2022.

Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aaron Van den Oord, Sergey Levine, and Pierre Ser-
manet. Wasserstein dependency measure for representation learning. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery. arXiv preprint arXiv:2202.00914, 2022.

Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsupervised
skill discovery. arXiv preprint arXiv:2302.05103, 2023a.

Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
abstraction. arXiv preprint arXiv:2310.08887, 2023b.

Nikita Rudin, David Hoeller, Marko Bjelonic, and Marco Hutter. Advanced skills by learning loco-
motion and local navigation end-to-end. In 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2497–2503. IEEE, 2022a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on Robot Learning, pp. 91–100.
PMLR, 2022b.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Laura Smith, J Chase Kew, Tianyu Li, Linda Luu, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey
Levine. Learning and adapting agile locomotion skills by transferring experience. arXiv preprint
arXiv:2304.09834, 2023.

Xingyou Song, Yuxiang Yang, Krzysztof Choromanski, Ken Caluwaerts, Wenbo Gao, Chelsea Finn,
and Jie Tan. Rapidly adaptable legged robots via evolutionary meta-learning. pp. 3769–3776,
2020.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

Zuoxin Tang, Donghyun Kim, and Sehoon Ha. Learning agile motor skills on quadrupedal robots
using curriculum learning. In International Conference on Robot Intelligence Technology and
Applications, volume 3, 2021.

Zhaoming Xie, Xingye Da, Michiel Van de Panne, Buck Babich, and Animesh Garg. Dynamics
randomization revisited: A case study for quadrupedal locomotion. pp. 4955–4961, 2021.

Yuxiang Yang, Xiangyun Meng, Wenhao Yu, Tingnan Zhang, Jie Tan, and Byron Boots. Contin-
uous versatile jumping using learned action residuals. In Learning for Dynamics and Control
Conference, pp. 770–782. PMLR, 2023a.

Yuxiang Yang, Guanya Shi, Xiangyun Meng, Wenhao Yu, Tingnan Zhang, Jie Tan, and Byron
Boots. Cajun: Continuous adaptive jumping using a learned centroidal controller. arXiv preprint
arXiv:2306.09557, 2023b.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in Neural Information Processing Systems, 31, 2018.

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher Atkeson, Sören Schwertfeger, Chelsea Finn,
and Hang Zhao. Robot parkour learning. In Conference on Robot Learning (CoRL), 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAIL

A.1 OBSERVATION SPACE

Table 2: A1 Robot Observations
Name Description Dimension

Base position x,y,z position of the robot’s base 3
Base rotation Yaw, Pitch, Roll of robot’s base 3
Base velocity velocity of robot’s base in x,y,z direction 3
Base angvel angular velocity of robot’s base 3
Gravity projection Vector indicates direction of the gravity 3
Velocity command Velocity command given by users 3
DOF position Current angle of each DOF 12
DOF velocity Angular velocity of each DOF 12
Previous action Action executed in previous step 12
Distance to obstacle Distance to obstacle 1
Sidewall distance Distance to side wall 2
Sampled Skill Sampled skill for current episode 2

Sum 59

A.2 TASK REWARD DETAIL

Table 3: Task rewards
Name Mathematical Expression Coefficients value

Tracking angular velocity e−|wyaw| 0.05
Tracking linear velocity |vx − vtargetx | -1
Alive - 2
Torque squared

∑
j∈joints

|τj q̇j |2 -1e-6

Exceed dof pos limits
∑

j∈joints
max(|dofj | − doflim, 0) -0.1

Exceed torque limits
∑

j∈joints
max(|τj | − τlim, 0) -0.2

The first three terms about tracking commands specifies the goal of the task, while other three terms
regularize unrealistic, infeasible motions.

A.3 HYPERPARAMETERS

B λ CURVE FROM THREE PARKOUR LEARNING TASKS

(a) Leap (b) Climb (c) Crawl

Figure 8: Different tasks yield different curve of λ.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameters of our method
Name Value

Learning rate 0.0005
Optimizer Adam(Kingma & Ba, 2014)
PPO clip threshold 0.2
PPO number of epochs 5
GAE λ (Schulman et al., 2015) 0.95
Discount factor γ 0.99
Horizon length 24
Entropy coefficient 0.001
Policy network π MLP with [512, 256, 128],
Activaion of π ELU(Clevert et al., 2015)
Value network v MLP with [512, 256, 128]
Activaion of v ELU(Clevert et al., 2015)
Representation function ϕ from Metra MLP with [256, 256, 256]
Activaion of ϕ ReLU
Initial Lagrange coefficient κ from Metra 30

For the climbing and crawling tasks, λ gradually increases throughout training, reaching approxi-
mately 0.8 for climbing and 0.5 for crawling. In contrast, for the leaping task, λ remains within the
range of [0.2, 0.4] without further increase. 3 different seeds were used.

C DETAILS OF THE GUIDELINE FOLLOWING REWARD

For the wall-jump task, we defined a special task reward, rtask, based on a guideline provided by a
human. The guideline consists of a sequence of n points:

gi=0,1,...,n−1 ∈ R3

Let the robot’s base position in global 3D space be denoted as x ∈ R3. At each time step, the robot
has a target point gi, starting with g0. When the robot reaches the current target, it moves on to the
next target, gi+1. A target is considered reached when the distance between x and gi falls below a
threshold h ∈ R, i.e., ||x− gi||2 < h.

Then, the reward can be defined as follows:

rt = e−||x−gi||2

This term has the desirable property of being bounded between 0 and 1. It approaches 0 when the
robot is infinitely far from the current target and becomes 1 when the robot exactly reaches the target.
This property contributes to stability during the learning process. We optimized this reward using
reinforcement learning (RL) to train the agent to follow the given guideline.

14

	Introduction
	Related Work
	Method
	Problem Formulation
	Our Approach

	Experimental Results
	Learning Agile Locomotion Skills
	Learning balancing parameter
	Convergence of different skills into a narrow solution space
	Wall-jump : learning super agile tasks

	Conclusion
	Implementation Detail
	Observation space
	Task reward detail
	Hyperparameters

	 curve from three parkour learning tasks
	Details of the guideline following reward

