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Abstract

The long tail phenomenon of word sense dis-
tribution in linguistics causes the Word Sense
Disambiguation (WSD) task to face a serious
polarization of word sense distribution, that is,
Most Frequent Senses (MFSs) with huge sam-
ple sizes and Long Tail Senses (LTSs) with
small sample sizes. The single matching mech-
anism model that does not distinguish between
the two senses will cause LTSs to be ignored
because LTSs are in a weak position. The
few-shot learning method that mainly focuses
on LTSs is not conducive to grasping the ad-
vantage of easy identification of MFSs. This
paper proposes a bi-matching mechanism to
serve the WSD model to deal with two kinds of
senses in a targeted manner, namely definition
matching and collocation feature matching.
The experiment is carried out under the eval-
uation framework of English all-words WSD
and is better than the baseline models. More-
over, state-of-the-art performance is achieved
through data enhancement.

1 Introduction

Word Sense Disambiguation (WSD) occupies an
important position in the field of Natural Language
Processing (NLP) (Bevilacqua et al., 2021), be-
cause the correct recognition of word senses has
a direct and far-reaching impact on subsequent se-
mantic understanding tasks, such as natural lan-
guage understanding (Dewadkar et al., 2010; Mills
and Bourbakis, 2014), machine translation (Neale
et al., 2016; Rios Gonzales et al., 2017), etc.
WSD is to assign the correct sense to the tar-
get word according to the given context (Raganato
et al., 2017b; Navigli, 2009). However, due to the
long tail phenomenon of word sense distribution
in linguistics, WSD models need to face the seri-
ous polarization of word sense distribution, that is,
Most Frequent Senses (MFSs) with huge sample
sizes and Long Tail Senses (LTSs) with small sam-
ple sizes (Li et al., 2021; Kumar et al., 2019). For

example, the verb form of Play' has 35 senses in
WordNet 3.1 (Miller, 1998), and most of the senses
used are "participate in games or sports". There
are a large number of LTSs that are rarely used,
such as "Princeton plays Yale this weekend", that
is, "contend against an opponent in a sport, game,
or battle".

Traditional methods employ a single matching
mechanism to complete WSD tasks. For exam-
ple, Blevins and Zettlemoyer (2020) trained the
glosses in WordNet as text embeddings to replace
the original labels, which employ the definitions
of the target word to match the most frequent and
long-tail senses consistently. See also (Bevilacqua
and Navigli, 2020; Scarlini et al., 2020b; Huang
et al., 2019). The methods that pay attention to
LTSs rely on MFSs to improve LTSs. For example,
Holla et al. (2020) proposed a meta-learning frame-
work for few-shot WSD, where the goal is to learn
features from labeled instances for disambiguation
of unseen words. See also (Du et al., 2021; Li et al.,
2021; Kumar et al., 2019).

The single matching mechanism model that does
not distinguish between the two senses will cause
LTSs to be ignored, because the sample size of
LTSs is at a disadvantage. The few-shot learning
method that mainly focuses on LTSs is not con-
ducive to grasping the advantages of easy identi-
fication of MFSs, and then affects the final effect.
Considering that LTSs often appear in the form
of fixed collocations, this paper proposes a collo-
cation feature matching mechanism for LTSs;
And considering that MFSs have clear definitions
and are not easy to cause ambiguity, this paper
proposes a definition matching mechanism for
MFSs. In fact, this judgment is in line with facts:

* MFSs can be widely adopted, not only be-
cause of their wide range of applications, but
also because of their clear definition and not
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easy to cause ambiguity.

* The fundamental reason for the scarcity of
LTS samples is their narrow scope of applica-
tion, that is, they often appear in the form of
fixed collocations.

To verify the effectiveness of the bi-matching
mechanism, we conduct experiments under the
evaluation framework of English all-words WSD,
and the result is better than the baseline models.
Moreover, to pursue better performance, we ob-
tain state-of-the-art performance through data en-
hancement methods, that is, expanding multilin-
gual datasets. The contributions of this article are
summarized as follows:

* Propose a bi-matching mechanism to improve
the recognition method of the WSD model
that does not distinguish between most fre-
quent and long-tail senses, and fill the gaps in
research in this area;

* Implement extensive experimental verifica-
tion and obtain state-of-the-art performance.

Codes and pre-trained models are available at
https://github.com/yboys0504/wsd.

2 Related Work

2.1 Models with Different Matching
Mechanisms

According to traditional classification meth-
ods (Bevilacqua et al., 2021; Raganato et al.,
2017b), WSD models can be roughly divided into
two categories, namely, supervised technology
models and knowledge-based models.

Supervised technology models mainly employ
a unified network structure to process all senses,
and add a classifier at the end to calculate the prob-
ability distribution of sense labels. For example,
Recurrent Neural Networks (RNN) suitable for se-
quence processing are often used as text process-
ing networks, and use a normalized function to
calculate the probability distribution in the output
layer (Le et al., 2018; Kéagebick and Salomonsson,
2016; Yuan et al., 2016; Raganato et al., 2017a).
Including the subsequent pre-training models, they
all employ a similar architecture when dealing
with WSD tasks (Scarlini et al., 2020a; Wiede-
mann et al., 2019; Hadiwinoto et al., 2019; Du
et al., 2019; Huang et al., 2019). The advantage

of such structures is that they can rely on the pow-
erful learning ability of neural networks, but the
disadvantage is that such data-driven models will
seriously underestimate the long tail senses of the
scarcity of sample sizes.

Knowledge-based models try to employ ex-
ternal knowledge to improve the recognition
rate of WSD models, such as dictionary knowl-
edge (Blevins and Zettlemoyer, 2020; Luo et al.,
2018b), semantic network knowledge (Fernandez
etal., 2018; Dongsuk et al., 2018), and multilingual
knowledge (Pasini, 2020; Scarlini et al., 2020a).
One of the most commonly used methods is to
train text embeddings from the glosses in the dic-
tionary to replace the labels (Blevins and Zettle-
moyer, 2020; Scarlini et al., 2020b; Kumar et al.,
2019). Such definition (or gloss) matching meth-
ods are good for identifying MFSs, but they are not
good for identifying LTSs. The fundamental rea-
son is that LTSs often appear in the form of fixed
collocations and they are difficult to give a clear
definition.

2.2 Models that Focus on Few-Shot

Subsequently, the researchers realized the impor-
tance of LTSs in the WSD task, and adopted some
targeted solutions for LTSs, such as meta-learning,
zero-shot learning, reinforcement learning, etc.
Holla et al. (2020) proposed a meta-learning frame-
work for few-shot WSD, where the goal is to learn
features from labeled instances to disambiguate un-
seen words. See also (Du et al., 2021; Chen et al.,
2021). Blevins and Zettlemoyer (2020) noticed the
long-tail distribution of word sense in WSD tasks,
and proposed a dual encoder model, that is, one
Bert is used to extract the word embedding of the
target word with contextual information, and an-
other Bert is used to obtain the text embeddings
of the glosses. The innovation of this work is the
use of a dual-encoder joint training mechanism, but
it still uses a consistent matching method for the
most frequent and long-tail senses.

3 Methodology

In this section, we first explain the cognitive basis
of our model derived from children’s literacy be-
havior, then give a formal description of the WSD
task, and finally clarify the structure of our model
in formal language.

Masaru Ibuka (Ibuka, 1977), a Japanese educa-
tor, pointed out that children’s literacy behavior is
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Figure 1: Schematic diagram of the Bi-MWSD architecture, which illustrates the disambiguation process of the
target word Plant. ® represents the dot product of the vector.

mainly based on mechanical memory and recogni-
tion ability in the early stage, and then gradually
develops concept-oriented memory and recognition
ability in the later stage. The mechanical method
rigidly remembers the structure of the word itself
and its application scenarios, such as collocation
features of the word. The concept-oriented method
establishes the relationship between the structure,
meaning, and usage of words through analysis and
comparison, such as the definitions given in the
dictionary.

For the WSD task, we should not only pay at-
tention to MFSs, but also LTSs, because LTSs are
an important bottleneck for the development of
WSD. For MFSs, it is reasonable to distinguish
senses through the definition system, because theo-
retically, the definition system of word senses can
clearly distinguish different MFSs. But for LTSs,
it is difficult to define a clear and non-confusing
definition system for each sense. For example, "go
to plant fish", where plant means "place into a
river". This meaning of Plant mostly appears in
such a collocation form. Therefore, considering
the characteristics of LTSs, the collocation feature
matching method is more suitable for identifying
LTSs.

In this article, we propose a bi-matching mecha-
nism model to complete the WSD task (called Bi-

MWSD), namely the collocation feature match-
ing and the definition matching. We will give a
detailed description of the construction details and
operation process of Bi-MWSD in Sec. 3.2.

3.1 Word Sense Disambiguation

WSD is to predict the senses of the target word
in a given context. The formal definition can be
expressed as: predict the possible sense s € Sy; of
the target word w in a given context Cy;, which is

f(,Cy) = s € Sy (1)

where Sy is the candidate list of the senses of w,
and f refers to the WSD model.

All-words WSD is to predict all ambiguous
words in a given context. This means that the WSD
model may predict the noun, verb, adjective, and
adverb forms of ambiguous words. In this case, the
input and output of the WSD model are defined
as C' = (..., wj,...) and S = (..., s, ,...), respec-
tively, where sy, represents the z'h sense of the
target word w;.

3.2 Bi-Matching Mechanism for WSD

The architecture of Bi-MWSD is shown in Fig. 1.
Bi-MWSD uses two pre-trained models, that is,
Bert-base (Devlin et al., 2019), as text feature en-
coders. One encoder is used to extract the collo-
cation features of the target word in the training



samples and the example sentences, which is called
the collocation feature encoder. The other is used
to extract the definition system in the glosses of the
target word, which is called the definition encoder.
The example sentences and glosses come from the
examples and definitions corresponding to each
sense in WordNet. The last step is the matching
process of MFSs and LTSs, which is called match-
ing word senses.

3.2.1 Collocation Feature Encoder

The function of the collocation feature encoder is
to memorize the collocation features of the target
word, such as the structure and relationship be-
tween the target word and the collocation words,
and the entire application scenario. The encoder
will process two kinds of texts. One is the example
sentences corresponding to each sense of the target
word in WordNet, % = (..., ef, ...) where e}, rep-
resents the k' word of the example sentence E®
of the z*" sense of the target word. And the other
is the training samples containing the target word,
C = (...,w;, ...) where w; represents the ith word.
The text is encoded using Bert standard processing
rules, such as adding [C' LS| and [SE P] marks at
the beginning and end of the text respectively,

E* = ([CLS],...el,...[SEP]) (2

= (€gss s €l 0 Csep) - 3)

The encoder will encode each word (including
the added [CLS] and [SEP]) to obtain a corre-
sponding 768-dimensional vector. The processing
method of the training samples is also the same. In
WordNet 3.0, there are cases where multiple exam-
ple sentences are given for one sense, and for this,
we only choose the first one by default.

The reason why we use one encoder to process
two kinds of texts here is that both the example
sentences and the training samples contain the tar-
get word, which can all be considered that there
are collocation features of the target word. More-
over, the advantage of this processing is that the
training sample will truly reflect the frequency of
each sense of the target word, and the example
sentence can provide the collocation features of
LTSs. Processing them together can make up for
the lack of scene information of LFSs, but it will
not (seriously) change their frequency.

After processing by the collocation feature en-
coder, we can get the vector representation of the
target word in the sample, i.e., vy, and the vector

representation of the collocation features of each
sense x provided by the example sentences, i.e.,
VE=. Here we provide two calculation methods
for Vg=, namely, the overall text vector minus the
target word vector,

VEz = Vez, | — Vez “)

and the vectors except the target word vector are
added,

Vi = Z Ve — Vet . (5
%

Through experimental analysis of these two meth-
ods, we found that the first one is relatively better.
The possible reason is that it can not only charac-
terize the collocation features of the target word,
but also remember the entire text, that is, the appli-
cation scenario.

3.2.2 Definition Encoder

The definition encoder constructs the definition sys-
tem of the target word by learning the glosses G*
for each sense x in WordNet, G* = (...,gf, )
where g7 represents the 4t word of the gloss text
of the 2" sense of the target word. The gloss is a
simple and accurate summary of the word sense,
so it is suitable for refining the definition system of
the target word. What needs to be emphasized here
is that the target word itself is not included in the
gloss, i.e., w ¢ G*, so the collocation feature of
the target word cannot be extracted. The input of
the encoder is some gloss text. It is also necessary
to add [LC'S] and [SEP] marks to the gloss text
before encoding,

G = ([CLS), ....,q%, .. [SEP])  (6)
= (9(287""9?7"'79?6]3)' (7)

The encoder will encode each word (including the
added [C'LS] and [SEP]) to obtain a correspond-
ing 768-dimensional vector. Here we choose the
output vector corresponding to [CLS], i.e., vgz ,
to represent the entire gloss text, i.e., Vge = vy .

cls

This method is a common practice in the industry.

3.2.3 Matching Word Senses

At this point, we can calculate the score of each
sense of the target word w in a given context C,

Score(w|C) = F({vy © (Ve +BVe=)}) (8)

where o and [ respectively represent the proportion
of the definition matching method and the collo-
cation feature matching method. Here « and /3



can be the weights learned by the model itself, or
they can be the proportions of each sense provided
by WordNet. Through experimental analysis, we
found that they work best when they are set to the
same value. F'(-) can be a standard Softmax or
other distribution function. When F'(-) is selected
as Softmax, Score(w|C') is a probability distribu-
tion of each sense of the target word in a given
context. Finally, we can conclude that the one with
the highest probability is the most likely sense.

3.2.4 Parameter Optimization

We use a cross-entropy loss on the scores of the can-
didate senses of the target word to train Bi-MWSD.
The loss function is

Loss(Score, index) )
~ o exp(Scorelindes])
B & >i—q exp(Scoreld)

— —Scorelindez] | log Z exp(Score[i]) (11)
=1

(10)

where index is the index of the list of the candidate
senses of the target word.

Bi-MWSD employs Adam optimizer (Kingma
and Ba, 2015) to update the parameters of the
model, and the specific settings of the optimizer
will be given in the experimental section.

4 Experiments

4.1 Datasets

To evaluate Bi-MWSD comprehensively and objec-
tively, we propose four evaluation settings:

* Standard evaluation setting (S-setting), which
is the standard evaluation framework pro-
posed by Raganato et al. (2017b), that is, only
SemCor? is used as the training set;

e High-end evaluation setting (H-setting),
which extends OMSTI?> and multilingual
datasets? as training sets;

e MFS evaluation setting (MFS-setting), which
is based on the standard evaluation setting,
modifying the number of LTSs in the training
set to make them MFSs (here the number of
samples is expanded in a repeated manner);

nttp://lcl.uniromal.it/wsdeval/
training-data

‘https://github.com/SapienzaNLP/
mwsd—-datasets

* LTS evaluation setting (LTS-setting), which
is also to adjust the number of MFSs in the
training set to make them LTSs. For example,
let MFSs appear only 1, 2, 3, or 5 times like
LTSs.

It can be found that their main difference lies in the
different training sets. The development set and
test set are given below. In addition, we selected
all word senses in WordNet 3.0 as candidate senses
of the target word.

Following previous work (Luo et al., 2018a;
Huang et al.,, 2019; Blevins and Zettlemoyer,
2020), we employ SemEval-2007 (SE07; Prad-
han et al.,, 2007) as the development set, and
hold out Senseval-2 (SE2; Edmonds and Cotton,
2001), Senseval-3 (SE3; Snyder and Palmer, 2004),
SemEval-2013 (SE13; Navigli et al., 2013), and
SemEval-2015 (SE15; Moro and Navigli, 2015) as
test sets. The statistical information of each dataset
is shown in Tab. 1.

Dataset | #Sens #Toks #Anns #Typs #Amb
SE07 \ 3 3,201 455 375 8.5
SE2 3 5,766 2,282 1,335 5.4
SE3 3 5,541 1,850 1,167 6.8
SE13 13 8,391 1,644 827 49
SE15 4 2,604 1,022 659 55
Table 1: Statistics of the datasets: the number of

sentences (#Sens), tokens (#Toks), sense annotations
(#Anns), sense types covered (#Typs) in each dataset.
#Amb refers to the ambiguity level, which implies the
difficulty of a given dataset.

4.2 Baseline Models

To evaluate Bi-MWSD comprehensively and ob-
jectively, we compare classic methods and SOTA
models in recent years.

For the classic methods, we choose the classic
and representative knowledge-based method Ba-
belfy (Moro et al., 2014) and supervised method
IMS+emb (Iacobacci et al., 2016). Babelfy is an
entity linking algorithm based on the semantic net-
work BabelNet; IMS+emb is a supervised method
that integrates word embedding as features under
the IMS framework. In addition, Context2Vec and
BERT-base are also listed. The experimental re-
sults of Babelfy and IMS+emb are derived from
the original paper, and Context2Vec and BERT-
base are published by Loureiro and Jorge (2019)
and Blevins and Zettlemoyer (2020) respectively.
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For the related work of the past two
years, the models with multilingual knowl-
edge (ML) include SyntagRank (Scozzafava
et al., 2020), SensEmBERT;,, (Scarlini et al.,
2020a) and ARES (Scarlini et al., 2020b); the
models with knowledge graphs (KG) include
EWISER (Bevilacqua and Navigli, 2020) and (Co-
nia and Navigli, 2021); the models with glosses
(GL) include EWISE (Kumar et al., 2019), Gloss-
BERT (Huang et al., 2019), EWISER (Bevilacqua
and Navigli, 2020), (Berend, 2020) and (Yap et al.,
2020). The experimental results come from the
values published in the original paper.

4.3 Model Setting

Bi-MWSD (under S-setting, H-setting, MFS-
setting, and LTS-setting) is designed with Pytorch
1.8* and uses Python 3.6°. It uses two GPUs
(Tesla P40) to load two encoders separately for
joint training. The encoder version is bert-base-
uncased (Devlin et al., 2019); the epoch is 20; the
batch size of the target context is 4; the batch size
of example sentences and glosses are both 256; the
learning rate is 5e-6 and le-5. Bi-MWSD uses
Adam (Kingma and Ba, 2015) as the optimizer to
adjust the parameters.

Other unlisted super-parameters are indicated in
the published code.

4.4 Experimental Results

Tab. 2 shows the F1-score of the comparison mod-
els and Bi-MWSD on the English all-words WSD
task. It needs to be emphasized that the results are
experimental results in the full senses, not in the
most frequent senses.

Under the classic methods, it can be seen from
the results that the method of integrating Con-
text2Vec or Word2Vec will significantly improve
the overall effect; the method based on the pre-
trained model does show strong advantages.

Under S-setting, Bi-MWSD performs better
than all baseline models; moreover, it can be seen
that the pre-training model has a unified trend, and
the model for mining dictionary knowledge and
language knowledge has become the mainstream.
The performance of Bi-MWSD also supports this
point.

Under H-setting, Bi-MWSD achieves state-
of-the-art performance compared with other

*https://pytorch.org/
Shttps://www.python.org/

Definition Encoder Collocation Feature Encoder

Figure 2: The figure shows the results of ablation ex-
periments for each encoder, namely definition encoder
and collocation feature encoder. The experimental re-
sult is the overall result under all test sets, namely ALL
in Tab. 2.

knowledge-based methods that use pre-trained lan-
guage models. It proves that targeted processing of
the most frequent and long-tail senses is beneficial
to the final result.

Analysis of poor performance on indicators Adj.
and Adv. of Tab. 2: In linguistics, nouns and verbs
are words with a serious long-tail, and adjectives
and adverbs are relatively weaker. In other words,
there are fewer LTSs in adjectives and adverbs. For
datasets where the proportion of LTSs is not high,
the method of not distinguishing or ignoring LTSs
has advantages.

4.5 Ablation Study

Bi-MWSD uses a bi-matching mechanism to com-
plete the WSD task, that is, definition matching
and collocation feature matching. A detailed
analysis of the contribution of each part to the over-
all effect is necessary. Therefore, we will use the
method of ablation experiment to verify.

4.5.1 Ablation Study for Definition Matching

For the analysis of the definition matching mecha-
nism, we use the method of ablation function (i.e.,
frozen the encoder) and ablation module (i.e., di-
rectly remove the encoder). The method of freez-
ing the encoder will prevent the encoder from fine-
tuning the parameters on the training set, that is,
preventing the encoder from learning more seman-
tic information on the training set. We know that
LTSs are marked in the training set. Preventing
the encoder from fine-tuning the parameters on
the training set will hinder the encoder’s ability
to recognize LTSs. Compared with the original
model, this method will directly reflect the con-
tribution of the defined encoder to solving LTSs.
The method of removing the encoder is more di-
rect, which directly reflects the contribution of the
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Model Dev Test Datasets Concatenation 0f" all Datasets
SE07 || SE2 SE3 SEI3 SEI5 || Nouns Verbs Adj. Adv. [ ALL
Classic Methods
KG Babelfy (2014) 51.6 67.0 635 664 70.3 68.9 50.7 732 798 | 66.4
o IMS+emb (2016) 62.6 722 704 659 71.5 71.9 56.6 759 847 | 70.1
Context2Vec (2016) 61.3 71.8 69.1 65.6 71.9 71.0 57.6 752 827 | 69.0
Bert BERT-base (2019) 68.6 759 744 70.6 75.2 75.7 63.7 780 858 | 73.7
Baseline Models under S-setting
L SyntagRank (2020) 59.3 716 720 722 75.8 - - - - 71.7
SensEmBERT,, (2020a) 60.2 722 699 787 75.0 80.5 50.3 743 809 | 72.8
» EWISER (2020) 71.0 7715 719 764 77.8 79.9 66.4 79.0 855 | 77.0
Conia and Navigli (2021) 72.2 784 718 76.7 78.2 80.1 67.0 80.5 862 | 77.6
EWISE (2019) 67.3 73.8 71.1 694 74.5 74.0 60.2 780 8211 | 71.8
GlossBERT (2019) 72.5 717 752  76.1 80.4 79.8 67.1 796 874 | 77.0
oL Berend (2020) 68.8 779 778 76.1 77.5 - - - - 76.8
Bi-MWSD 75.2 784 779 788 80.8 81.0 68.7 785 855 | 785
SOTA Models under H-setting
ML ARES (2020b) 71.0 780 77.1 713 83.2 80.6 68.3 80.5 83,5 | 779
< EWISER(2020) 75.2 80.8 79.0 80.7 81.8 82.9 69.4 829 87.6 | 80.1
Conia and Navigli (2021) 76.2 804 77.8 8I.8 83.3 82.9 70.3 83.4 855 ] 80.2
Berend (2020) 73.0 796 773 794 71.3 - - - - 78.8
oL ESCHER(2021) 76.3 81.7 778 822 83.2 83.9 69.3 838 86.7 | 80.7
GLeES Yap et al. (2020) 73.6 794 768 774 81.5 80.6 67.9 822 873 | 782
Bi-MWSD 71.3 80.8 799 838 83.7 84.0 70.7 81.5 86.5 | 81.5

Table 2: Fl-score (%) on the English all-words WSD task. ALL is the concatenation of all test sets and develop-
ment set; Dev refers to the development sets. The ones in bold are the best results among all the models. KG, EM,
Bert, ML, GL, and ES respectively refer to the knowledge graph, word or text embedding, Bert model, multilingual
knowledge, gloss, and example sentence used in the model.

definition matching method to the overall model.

We separately freeze and remove the definition
encoder on the original model, and adjust the hyper-
parameters to get the best results. The experimental
results are shown in Fig. 2.

1. Comparing the original version and the frozen
version, it can be seen that the definition en-
coder can indeed learn new semantic knowl-
edge by fine-tuning the parameters on the
training set, and it can greatly improve the
overall result.

2. Comparing the original version and the re-
moved version, it can be seen that the contri-
bution of the definition encoder to the overall
effect is huge. This result is in line with real-
ity, because MFSs are indeed far greater than
the usage rate of LTSs in life, and the function
of the definition encoder is reflected in the
recognition of MFSs. Similarly, comparing
the frozen version with the removed version
confirms this.

4.5.2 Ablation Study for Collocation Feature
Matching

For the analysis of the collocation feature matching
mechanism, in addition to the ablation function
and ablation module, we also need to disassem-
ble the two functions of the collocation feature
encoder, that is, target word vectorization and ex-
ample sentence vectorization. It should be empha-
sized that the removed version here only removes
the example sentence learning function of the en-
coder. We fine-tune the hyperparameters of the
modified versions to obtain the best results. The
experimental results are shown in Fig. 2.

1. Comparing the original version and the frozen
version, it can be seen that the model will
show the worst case without fine-tuning the
parameters under the training set. The main
reason is that the encoder is responsible for
the learning of the target word vector. If there
is no good target word representation, it will
directly affect the overall result.

2. Comparing the original version with the re-
moved version, that is, removing collocation
feature matching, it can be seen that intro-



ducing this matching mechanism can indeed
improve the effectiveness of the model. Al-
though there is only two percentage point im-
provement, considering the difficulty of LTS
recognition, it also shows that our model does
contribute to the recognition of LTSs.

3. Regarding whether the training process of
merging the target word and the collocation
feature can improve the overall effect of the
model, we can compare the results of the orig-
inal version and the split version. An improve-
ment of close to 3% proves that this design
is reasonable. Example sentences of LTSs
in the dictionary improve the ability of the
pre-trained model to represent low-tail target
words.

5 Evaluation for LTSs and MFSs

Compared with the ablation experiments, the signif-
icance of this section is more to test the potential of
Bi-MWSD in terms of MFSs and LTSs. The LTS-
setting is equivalent to evaluating the performance
of the model in few-shot WSD; the MFS-setting is
equivalent to testing the performance of the model
in practical scenarios.

To compare science, we chose two models that
are similar to our model as the baseline, that is,
GlossBERT (Huang et al., 2019) and BEM (Blevins
and Zettlemoyer, 2020). Similar to our model, both
GlossBERT and BEM employ Bert-base to extract
text features of glosses in the dictionary; BEM
also uses two pre-trained models as dual encoder
models.

5.1 Bi-MWSD under LTS-setting

Under LTS-setting, the experimental results of
GlossBert, BEM and Bi-MWSD are shown in
Tab. 3. Experimental results show that the bi-
matching mechanism is indeed conducive to the
recognition of LTSs, indicating that the recognition
or evaluation of word senses from multiple angles
can improve the recognition rate. The inspiration
of this result for few-shot research is that few-shot
tasks can be completed from the perspective of
multi-angle evaluation.

5.2 Bi-MWSD under MFS-setting

Under MFS-setting, the experimental results on
BEM, GlossBERT, and Bi-MWSD are shown in
Tab. 4. According to the experimental results, our
model performs best, but its advantages are small.

ALL
Model 1-shot \ 2-shot \ 3-shot \ 5-shot
GlossBERT | 56.8 55.9 62.1 67.7
BEM 68.7 68.7 70.4 70.5
Bi-MWSD | 673 | 713 | 72.0 | 73.0

Table 3: The experimental results of GlossBERT, BEM
and Bi-MWSD under LTS-setting.

It shows that the contribution of the bi-matching
mechanism to MFSs that is easy to identify is lim-
ited. It also proves from the side that the definition
(gloss) is directly and effective in terms of MFSs,
and the advantages of collocation features are not
obvious compared with the definition.

Model ‘ Dev ‘ ALL
GlossBERT (2019) | 74.7 | 78.0
BEM (2020) 74.5 | 79.0
Bi-MWSD | 743 | 791

Table 4: The experimental results of GlossBERT, BEM
and Bi-MWSD under MFS-setting.

6 Conclusion

By analyzing the characteristics of most frequent
and long-tail senses, we respectively propose tar-
geted matching methods, namely, using definition
matching mechanism for MFSs and collocation fea-
ture matching mechanism for LTSs. This method
achieves the purpose of identifying the most fre-
quent and long-tail senses at the same time with
the same model. Compared with early models
that mainly focused on MFSs, our model does
not ignore the value of LTSs; compared with few-
shot learning or meta-learning methods, our model
can capture the advantage of easy identification of
MESs. The main contribution of this paper is to fill
the gaps in the multi-matching mechanism in the
task of WSD.

The experimental results show that designing
targeted recognition methods for different word
sense types is effective for improving the overall
performance of the WSD task. In future research,
we will design the more targeted multi-matching
mechanism models. Moreover, we will also try to
use the multi-matching mechanism in other few-
shot tasks.
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