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Abstract

The long tail phenomenon of word sense dis-001
tribution in linguistics causes the Word Sense002
Disambiguation (WSD) task to face a serious003
polarization of word sense distribution, that is,004
Most Frequent Senses (MFSs) with huge sam-005
ple sizes and Long Tail Senses (LTSs) with006
small sample sizes. The single matching mech-007
anism model that does not distinguish between008
the two senses will cause LTSs to be ignored009
because LTSs are in a weak position. The010
few-shot learning method that mainly focuses011
on LTSs is not conducive to grasping the ad-012
vantage of easy identification of MFSs. This013
paper proposes a bi-matching mechanism to014
serve the WSD model to deal with two kinds of015
senses in a targeted manner, namely definition016
matching and collocation feature matching.017
The experiment is carried out under the eval-018
uation framework of English all-words WSD019
and is better than the baseline models. More-020
over, state-of-the-art performance is achieved021
through data enhancement.022

1 Introduction023

Word Sense Disambiguation (WSD) occupies an024

important position in the field of Natural Language025

Processing (NLP) (Bevilacqua et al., 2021), be-026

cause the correct recognition of word senses has027

a direct and far-reaching impact on subsequent se-028

mantic understanding tasks, such as natural lan-029

guage understanding (Dewadkar et al., 2010; Mills030

and Bourbakis, 2014), machine translation (Neale031

et al., 2016; Rios Gonzales et al., 2017), etc.032

WSD is to assign the correct sense to the tar-033

get word according to the given context (Raganato034

et al., 2017b; Navigli, 2009). However, due to the035

long tail phenomenon of word sense distribution036

in linguistics, WSD models need to face the seri-037

ous polarization of word sense distribution, that is,038

Most Frequent Senses (MFSs) with huge sample039

sizes and Long Tail Senses (LTSs) with small sam-040

ple sizes (Li et al., 2021; Kumar et al., 2019). For041

example, the verb form of Play1 has 35 senses in 042

WordNet 3.1 (Miller, 1998), and most of the senses 043

used are "participate in games or sports". There 044

are a large number of LTSs that are rarely used, 045

such as "Princeton plays Yale this weekend", that 046

is, "contend against an opponent in a sport, game, 047

or battle". 048

Traditional methods employ a single matching 049

mechanism to complete WSD tasks. For exam- 050

ple, Blevins and Zettlemoyer (2020) trained the 051

glosses in WordNet as text embeddings to replace 052

the original labels, which employ the definitions 053

of the target word to match the most frequent and 054

long-tail senses consistently. See also (Bevilacqua 055

and Navigli, 2020; Scarlini et al., 2020b; Huang 056

et al., 2019). The methods that pay attention to 057

LTSs rely on MFSs to improve LTSs. For example, 058

Holla et al. (2020) proposed a meta-learning frame- 059

work for few-shot WSD, where the goal is to learn 060

features from labeled instances for disambiguation 061

of unseen words. See also (Du et al., 2021; Li et al., 062

2021; Kumar et al., 2019). 063

The single matching mechanism model that does 064

not distinguish between the two senses will cause 065

LTSs to be ignored, because the sample size of 066

LTSs is at a disadvantage. The few-shot learning 067

method that mainly focuses on LTSs is not con- 068

ducive to grasping the advantages of easy identi- 069

fication of MFSs, and then affects the final effect. 070

Considering that LTSs often appear in the form 071

of fixed collocations, this paper proposes a collo- 072

cation feature matching mechanism for LTSs; 073

And considering that MFSs have clear definitions 074

and are not easy to cause ambiguity, this paper 075

proposes a definition matching mechanism for 076

MFSs. In fact, this judgment is in line with facts: 077

• MFSs can be widely adopted, not only be- 078

cause of their wide range of applications, but 079

also because of their clear definition and not 080

1http://wordnetweb.princeton.edu/perl/webwn?s=play
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easy to cause ambiguity.081

• The fundamental reason for the scarcity of082

LTS samples is their narrow scope of applica-083

tion, that is, they often appear in the form of084

fixed collocations.085

To verify the effectiveness of the bi-matching086

mechanism, we conduct experiments under the087

evaluation framework of English all-words WSD,088

and the result is better than the baseline models.089

Moreover, to pursue better performance, we ob-090

tain state-of-the-art performance through data en-091

hancement methods, that is, expanding multilin-092

gual datasets. The contributions of this article are093

summarized as follows:094

• Propose a bi-matching mechanism to improve095

the recognition method of the WSD model096

that does not distinguish between most fre-097

quent and long-tail senses, and fill the gaps in098

research in this area;099

• Implement extensive experimental verifica-100

tion and obtain state-of-the-art performance.101

Codes and pre-trained models are available at102

https://github.com/yboys0504/wsd.103

2 Related Work104

2.1 Models with Different Matching105

Mechanisms106

According to traditional classification meth-107

ods (Bevilacqua et al., 2021; Raganato et al.,108

2017b), WSD models can be roughly divided into109

two categories, namely, supervised technology110

models and knowledge-based models.111

Supervised technology models mainly employ112

a unified network structure to process all senses,113

and add a classifier at the end to calculate the prob-114

ability distribution of sense labels. For example,115

Recurrent Neural Networks (RNN) suitable for se-116

quence processing are often used as text process-117

ing networks, and use a normalized function to118

calculate the probability distribution in the output119

layer (Le et al., 2018; Kågebäck and Salomonsson,120

2016; Yuan et al., 2016; Raganato et al., 2017a).121

Including the subsequent pre-training models, they122

all employ a similar architecture when dealing123

with WSD tasks (Scarlini et al., 2020a; Wiede-124

mann et al., 2019; Hadiwinoto et al., 2019; Du125

et al., 2019; Huang et al., 2019). The advantage126

of such structures is that they can rely on the pow- 127

erful learning ability of neural networks, but the 128

disadvantage is that such data-driven models will 129

seriously underestimate the long tail senses of the 130

scarcity of sample sizes. 131

Knowledge-based models try to employ ex- 132

ternal knowledge to improve the recognition 133

rate of WSD models, such as dictionary knowl- 134

edge (Blevins and Zettlemoyer, 2020; Luo et al., 135

2018b), semantic network knowledge (Fernandez 136

et al., 2018; Dongsuk et al., 2018), and multilingual 137

knowledge (Pasini, 2020; Scarlini et al., 2020a). 138

One of the most commonly used methods is to 139

train text embeddings from the glosses in the dic- 140

tionary to replace the labels (Blevins and Zettle- 141

moyer, 2020; Scarlini et al., 2020b; Kumar et al., 142

2019). Such definition (or gloss) matching meth- 143

ods are good for identifying MFSs, but they are not 144

good for identifying LTSs. The fundamental rea- 145

son is that LTSs often appear in the form of fixed 146

collocations and they are difficult to give a clear 147

definition. 148

2.2 Models that Focus on Few-Shot 149

Subsequently, the researchers realized the impor- 150

tance of LTSs in the WSD task, and adopted some 151

targeted solutions for LTSs, such as meta-learning, 152

zero-shot learning, reinforcement learning, etc. 153

Holla et al. (2020) proposed a meta-learning frame- 154

work for few-shot WSD, where the goal is to learn 155

features from labeled instances to disambiguate un- 156

seen words. See also (Du et al., 2021; Chen et al., 157

2021). Blevins and Zettlemoyer (2020) noticed the 158

long-tail distribution of word sense in WSD tasks, 159

and proposed a dual encoder model, that is, one 160

Bert is used to extract the word embedding of the 161

target word with contextual information, and an- 162

other Bert is used to obtain the text embeddings 163

of the glosses. The innovation of this work is the 164

use of a dual-encoder joint training mechanism, but 165

it still uses a consistent matching method for the 166

most frequent and long-tail senses. 167

3 Methodology 168

In this section, we first explain the cognitive basis 169

of our model derived from children’s literacy be- 170

havior, then give a formal description of the WSD 171

task, and finally clarify the structure of our model 172

in formal language. 173

Masaru Ibuka (Ibuka, 1977), a Japanese educa- 174

tor, pointed out that children’s literacy behavior is 175
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Figure 1: Schematic diagram of the Bi-MWSD architecture, which illustrates the disambiguation process of the
target word Plant. � represents the dot product of the vector.

mainly based on mechanical memory and recogni-176

tion ability in the early stage, and then gradually177

develops concept-oriented memory and recognition178

ability in the later stage. The mechanical method179

rigidly remembers the structure of the word itself180

and its application scenarios, such as collocation181

features of the word. The concept-oriented method182

establishes the relationship between the structure,183

meaning, and usage of words through analysis and184

comparison, such as the definitions given in the185

dictionary.186

For the WSD task, we should not only pay at-187

tention to MFSs, but also LTSs, because LTSs are188

an important bottleneck for the development of189

WSD. For MFSs, it is reasonable to distinguish190

senses through the definition system, because theo-191

retically, the definition system of word senses can192

clearly distinguish different MFSs. But for LTSs,193

it is difficult to define a clear and non-confusing194

definition system for each sense. For example, "go195

to plant fish", where plant means "place into a196

river". This meaning of Plant mostly appears in197

such a collocation form. Therefore, considering198

the characteristics of LTSs, the collocation feature199

matching method is more suitable for identifying200

LTSs.201

In this article, we propose a bi-matching mecha-202

nism model to complete the WSD task (called Bi-203

MWSD), namely the collocation feature match- 204

ing and the definition matching. We will give a 205

detailed description of the construction details and 206

operation process of Bi-MWSD in Sec. 3.2. 207

3.1 Word Sense Disambiguation 208

WSD is to predict the senses of the target word 209

in a given context. The formal definition can be 210

expressed as: predict the possible sense s ∈ Sŵ of 211

the target word ŵ in a given context Cŵ, which is 212

f(ŵ, Cŵ) = s ∈ Sŵ (1) 213

where Sŵ is the candidate list of the senses of ŵ, 214

and f refers to the WSD model. 215

All-words WSD is to predict all ambiguous 216

words in a given context. This means that the WSD 217

model may predict the noun, verb, adjective, and 218

adverb forms of ambiguous words. In this case, the 219

input and output of the WSD model are defined 220

as C = (..., wi, ...) and S = (..., sxwi
, ...), respec- 221

tively, where sxwi
represents the xth sense of the 222

target word wi. 223

3.2 Bi-Matching Mechanism for WSD 224

The architecture of Bi-MWSD is shown in Fig. 1. 225

Bi-MWSD uses two pre-trained models, that is, 226

Bert-base (Devlin et al., 2019), as text feature en- 227

coders. One encoder is used to extract the collo- 228

cation features of the target word in the training 229
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samples and the example sentences, which is called230

the collocation feature encoder. The other is used231

to extract the definition system in the glosses of the232

target word, which is called the definition encoder.233

The example sentences and glosses come from the234

examples and definitions corresponding to each235

sense in WordNet. The last step is the matching236

process of MFSs and LTSs, which is called match-237

ing word senses.238

3.2.1 Collocation Feature Encoder239

The function of the collocation feature encoder is240

to memorize the collocation features of the target241

word, such as the structure and relationship be-242

tween the target word and the collocation words,243

and the entire application scenario. The encoder244

will process two kinds of texts. One is the example245

sentences corresponding to each sense of the target246

word in WordNet, Ex = (..., exk, ...) where exk rep-247

resents the kth word of the example sentence Ex248

of the xth sense of the target word. And the other249

is the training samples containing the target word,250

C = (..., wi, ...) where wi represents the ith word.251

The text is encoded using Bert standard processing252

rules, such as adding [CLS] and [SEP ] marks at253

the beginning and end of the text respectively,254

Ex = ([CLS], ..., exk, ..., [SEP ]) (2)255

= (excls, ..., e
x
k, ..., e

x
sep). (3)256

The encoder will encode each word (including257

the added [CLS] and [SEP ]) to obtain a corre-258

sponding 768-dimensional vector. The processing259

method of the training samples is also the same. In260

WordNet 3.0, there are cases where multiple exam-261

ple sentences are given for one sense, and for this,262

we only choose the first one by default.263

The reason why we use one encoder to process264

two kinds of texts here is that both the example265

sentences and the training samples contain the tar-266

get word, which can all be considered that there267

are collocation features of the target word. More-268

over, the advantage of this processing is that the269

training sample will truly reflect the frequency of270

each sense of the target word, and the example271

sentence can provide the collocation features of272

LTSs. Processing them together can make up for273

the lack of scene information of LFSs, but it will274

not (seriously) change their frequency.275

After processing by the collocation feature en-276

coder, we can get the vector representation of the277

target word in the sample, i.e., vŵ, and the vector278

representation of the collocation features of each 279

sense x provided by the example sentences, i.e., 280

VEx . Here we provide two calculation methods 281

for VEx , namely, the overall text vector minus the 282

target word vector, 283

VEx = vexcls − vexŵ , (4) 284

and the vectors except the target word vector are 285

added, 286

VEx =
∑
k

vexk − vexŵ . (5) 287

Through experimental analysis of these two meth- 288

ods, we found that the first one is relatively better. 289

The possible reason is that it can not only charac- 290

terize the collocation features of the target word, 291

but also remember the entire text, that is, the appli- 292

cation scenario. 293

3.2.2 Definition Encoder 294

The definition encoder constructs the definition sys- 295

tem of the target word by learning the glosses Gx 296

for each sense x in WordNet, Gx = (..., gxj , ...) 297

where gxj represents the jth word of the gloss text 298

of the xth sense of the target word. The gloss is a 299

simple and accurate summary of the word sense, 300

so it is suitable for refining the definition system of 301

the target word. What needs to be emphasized here 302

is that the target word itself is not included in the 303

gloss, i.e., ŵ /∈ Gx, so the collocation feature of 304

the target word cannot be extracted. The input of 305

the encoder is some gloss text. It is also necessary 306

to add [LCS] and [SEP ] marks to the gloss text 307

before encoding, 308

Gx = ([CLS], ..., gxj , ..., [SEP ]) (6) 309

= (gxcls, ..., g
x
j , ..., g

x
sep). (7) 310

The encoder will encode each word (including the 311

added [CLS] and [SEP ]) to obtain a correspond- 312

ing 768-dimensional vector. Here we choose the 313

output vector corresponding to [CLS], i.e., vgxcls , 314

to represent the entire gloss text, i.e., VGx = vgxcls . 315

This method is a common practice in the industry. 316

3.2.3 Matching Word Senses 317

At this point, we can calculate the score of each 318

sense of the target word ŵ in a given context C, 319

Score(ŵ|C) = F ({vŵ�(αVGx+βVEx)}x) (8) 320

where α and β respectively represent the proportion 321

of the definition matching method and the collo- 322

cation feature matching method. Here α and β 323

4



can be the weights learned by the model itself, or324

they can be the proportions of each sense provided325

by WordNet. Through experimental analysis, we326

found that they work best when they are set to the327

same value. F (·) can be a standard Softmax or328

other distribution function. When F (·) is selected329

as Softmax, Score(ŵ|C) is a probability distribu-330

tion of each sense of the target word in a given331

context. Finally, we can conclude that the one with332

the highest probability is the most likely sense.333

3.2.4 Parameter Optimization334

We use a cross-entropy loss on the scores of the can-335

didate senses of the target word to train Bi-MWSD.336

The loss function is337

Loss(Score, index) (9)338

= − log

(
exp(Score[index])∑
i=1 exp(Score

[i])

)
(10)339

= −Score[index] + log
∑
i=1

exp(Score[i]) (11)340

where index is the index of the list of the candidate341

senses of the target word.342

Bi-MWSD employs Adam optimizer (Kingma343

and Ba, 2015) to update the parameters of the344

model, and the specific settings of the optimizer345

will be given in the experimental section.346

4 Experiments347

4.1 Datasets348

To evaluate Bi-MWSD comprehensively and objec-349

tively, we propose four evaluation settings:350

• Standard evaluation setting (S-setting), which351

is the standard evaluation framework pro-352

posed by Raganato et al. (2017b), that is, only353

SemCor2 is used as the training set;354

• High-end evaluation setting (H-setting),355

which extends OMSTI2 and multilingual356

datasets3 as training sets;357

• MFS evaluation setting (MFS-setting), which358

is based on the standard evaluation setting,359

modifying the number of LTSs in the training360

set to make them MFSs (here the number of361

samples is expanded in a repeated manner);362

2http://lcl.uniroma1.it/wsdeval/
training-data

3https://github.com/SapienzaNLP/
mwsd-datasets

• LTS evaluation setting (LTS-setting), which 363

is also to adjust the number of MFSs in the 364

training set to make them LTSs. For example, 365

let MFSs appear only 1, 2, 3, or 5 times like 366

LTSs. 367

It can be found that their main difference lies in the 368

different training sets. The development set and 369

test set are given below. In addition, we selected 370

all word senses in WordNet 3.0 as candidate senses 371

of the target word. 372

Following previous work (Luo et al., 2018a; 373

Huang et al., 2019; Blevins and Zettlemoyer, 374

2020), we employ SemEval-2007 (SE07; Prad- 375

han et al., 2007) as the development set, and 376

hold out Senseval-2 (SE2; Edmonds and Cotton, 377

2001), Senseval-3 (SE3; Snyder and Palmer, 2004), 378

SemEval-2013 (SE13; Navigli et al., 2013), and 379

SemEval-2015 (SE15; Moro and Navigli, 2015) as 380

test sets. The statistical information of each dataset 381

is shown in Tab. 1. 382

Dataset #Sens #Toks #Anns #Typs #Amb

SE07 3 3,201 455 375 8.5

SE2 3 5,766 2,282 1,335 5.4
SE3 3 5,541 1,850 1,167 6.8
SE13 13 8,391 1,644 827 4.9
SE15 4 2,604 1,022 659 5.5

Table 1: Statistics of the datasets: the number of
sentences (#Sens), tokens (#Toks), sense annotations
(#Anns), sense types covered (#Typs) in each dataset.
#Amb refers to the ambiguity level, which implies the
difficulty of a given dataset.

4.2 Baseline Models 383

To evaluate Bi-MWSD comprehensively and ob- 384

jectively, we compare classic methods and SOTA 385

models in recent years. 386

For the classic methods, we choose the classic 387

and representative knowledge-based method Ba- 388

belfy (Moro et al., 2014) and supervised method 389

IMS+emb (Iacobacci et al., 2016). Babelfy is an 390

entity linking algorithm based on the semantic net- 391

work BabelNet; IMS+emb is a supervised method 392

that integrates word embedding as features under 393

the IMS framework. In addition, Context2Vec and 394

BERT-base are also listed. The experimental re- 395

sults of Babelfy and IMS+emb are derived from 396

the original paper, and Context2Vec and BERT- 397

base are published by Loureiro and Jorge (2019) 398

and Blevins and Zettlemoyer (2020) respectively. 399
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For the related work of the past two400

years, the models with multilingual knowl-401

edge (ML) include SyntagRank (Scozzafava402

et al., 2020), SensEmBERTsup (Scarlini et al.,403

2020a) and ARES (Scarlini et al., 2020b); the404

models with knowledge graphs (KG) include405

EWISER (Bevilacqua and Navigli, 2020) and (Co-406

nia and Navigli, 2021); the models with glosses407

(GL) include EWISE (Kumar et al., 2019), Gloss-408

BERT (Huang et al., 2019), EWISER (Bevilacqua409

and Navigli, 2020), (Berend, 2020) and (Yap et al.,410

2020). The experimental results come from the411

values published in the original paper.412

4.3 Model Setting413

Bi-MWSD (under S-setting, H-setting, MFS-414

setting, and LTS-setting) is designed with Pytorch415

1.84 and uses Python 3.65. It uses two GPUs416

(Tesla P40) to load two encoders separately for417

joint training. The encoder version is bert-base-418

uncased (Devlin et al., 2019); the epoch is 20; the419

batch size of the target context is 4; the batch size420

of example sentences and glosses are both 256; the421

learning rate is 5e-6 and 1e-5. Bi-MWSD uses422

Adam (Kingma and Ba, 2015) as the optimizer to423

adjust the parameters.424

Other unlisted super-parameters are indicated in425

the published code.426

4.4 Experimental Results427

Tab. 2 shows the F1-score of the comparison mod-428

els and Bi-MWSD on the English all-words WSD429

task. It needs to be emphasized that the results are430

experimental results in the full senses, not in the431

most frequent senses.432

Under the classic methods, it can be seen from433

the results that the method of integrating Con-434

text2Vec or Word2Vec will significantly improve435

the overall effect; the method based on the pre-436

trained model does show strong advantages.437

Under S-setting, Bi-MWSD performs better438

than all baseline models; moreover, it can be seen439

that the pre-training model has a unified trend, and440

the model for mining dictionary knowledge and441

language knowledge has become the mainstream.442

The performance of Bi-MWSD also supports this443

point.444

Under H-setting, Bi-MWSD achieves state-445

of-the-art performance compared with other446

4https://pytorch.org/
5https://www.python.org/

Figure 2: The figure shows the results of ablation ex-
periments for each encoder, namely definition encoder
and collocation feature encoder. The experimental re-
sult is the overall result under all test sets, namely ALL
in Tab. 2.

knowledge-based methods that use pre-trained lan- 447

guage models. It proves that targeted processing of 448

the most frequent and long-tail senses is beneficial 449

to the final result. 450

Analysis of poor performance on indicators Adj. 451

and Adv. of Tab. 2: In linguistics, nouns and verbs 452

are words with a serious long-tail, and adjectives 453

and adverbs are relatively weaker. In other words, 454

there are fewer LTSs in adjectives and adverbs. For 455

datasets where the proportion of LTSs is not high, 456

the method of not distinguishing or ignoring LTSs 457

has advantages. 458

4.5 Ablation Study 459

Bi-MWSD uses a bi-matching mechanism to com- 460

plete the WSD task, that is, definition matching 461

and collocation feature matching. A detailed 462

analysis of the contribution of each part to the over- 463

all effect is necessary. Therefore, we will use the 464

method of ablation experiment to verify. 465

4.5.1 Ablation Study for Definition Matching 466

For the analysis of the definition matching mecha- 467

nism, we use the method of ablation function (i.e., 468

frozen the encoder) and ablation module (i.e., di- 469

rectly remove the encoder). The method of freez- 470

ing the encoder will prevent the encoder from fine- 471

tuning the parameters on the training set, that is, 472

preventing the encoder from learning more seman- 473

tic information on the training set. We know that 474

LTSs are marked in the training set. Preventing 475

the encoder from fine-tuning the parameters on 476

the training set will hinder the encoder’s ability 477

to recognize LTSs. Compared with the original 478

model, this method will directly reflect the con- 479

tribution of the defined encoder to solving LTSs. 480

The method of removing the encoder is more di- 481

rect, which directly reflects the contribution of the 482
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Model Dev Test Datasets Concatenation of all Datasets
SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

Classic Methods
KG Babelfy (2014) 51.6 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4

EM
IMS+emb (2016) 62.6 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1
Context2Vec (2016) 61.3 71.8 69.1 65.6 71.9 71.0 57.6 75.2 82.7 69.0

Bert BERT-base (2019) 68.6 75.9 74.4 70.6 75.2 75.7 63.7 78.0 85.8 73.7

Baseline Models under S-setting

ML
SyntagRank (2020) 59.3 71.6 72.0 72.2 75.8 - - - - 71.7
SensEmBERTsup (2020a) 60.2 72.2 69.9 78.7 75.0 80.5 50.3 74.3 80.9 72.8

KG
EWISER (2020) 71.0 77.5 77.9 76.4 77.8 79.9 66.4 79.0 85.5 77.0
Conia and Navigli (2021) 72.2 78.4 77.8 76.7 78.2 80.1 67.0 80.5 86.2 77.6

GL

EWISE (2019) 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8
GlossBERT (2019) 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0
Berend (2020) 68.8 77.9 77.8 76.1 77.5 - - - - 76.8
Bi-MWSD 75.2 78.4 77.9 78.8 80.8 81.0 68.7 78.5 85.5 78.5

SOTA Models under H-setting
ML ARES (2020b) 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9

KG
EWISER(2020) 75.2 80.8 79.0 80.7 81.8 82.9 69.4 82.9 87.6 80.1
Conia and Navigli (2021) 76.2 80.4 77.8 81.8 83.3 82.9 70.3 83.4 85.5 80.2

GL
Berend (2020) 73.0 79.6 77.3 79.4 71.3 - - - - 78.8
ESCHER(2021) 76.3 81.7 77.8 82.2 83.2 83.9 69.3 83.8 86.7 80.7

GL+ES
Yap et al. (2020) 73.6 79.4 76.8 77.4 81.5 80.6 67.9 82.2 87.3 78.2
Bi-MWSD 77.3 80.8 79.9 83.8 83.7 84.0 70.7 81.5 86.5 81.5

Table 2: F1-score (%) on the English all-words WSD task. ALL is the concatenation of all test sets and develop-
ment set; Dev refers to the development sets. The ones in bold are the best results among all the models. KG, EM,
Bert, ML, GL, and ES respectively refer to the knowledge graph, word or text embedding, Bert model, multilingual
knowledge, gloss, and example sentence used in the model.

definition matching method to the overall model.483

We separately freeze and remove the definition484

encoder on the original model, and adjust the hyper-485

parameters to get the best results. The experimental486

results are shown in Fig. 2.487

1. Comparing the original version and the frozen488

version, it can be seen that the definition en-489

coder can indeed learn new semantic knowl-490

edge by fine-tuning the parameters on the491

training set, and it can greatly improve the492

overall result.493

2. Comparing the original version and the re-494

moved version, it can be seen that the contri-495

bution of the definition encoder to the overall496

effect is huge. This result is in line with real-497

ity, because MFSs are indeed far greater than498

the usage rate of LTSs in life, and the function499

of the definition encoder is reflected in the500

recognition of MFSs. Similarly, comparing501

the frozen version with the removed version502

confirms this.503

4.5.2 Ablation Study for Collocation Feature 504

Matching 505

For the analysis of the collocation feature matching 506

mechanism, in addition to the ablation function 507

and ablation module, we also need to disassem- 508

ble the two functions of the collocation feature 509

encoder, that is, target word vectorization and ex- 510

ample sentence vectorization. It should be empha- 511

sized that the removed version here only removes 512

the example sentence learning function of the en- 513

coder. We fine-tune the hyperparameters of the 514

modified versions to obtain the best results. The 515

experimental results are shown in Fig. 2. 516

1. Comparing the original version and the frozen 517

version, it can be seen that the model will 518

show the worst case without fine-tuning the 519

parameters under the training set. The main 520

reason is that the encoder is responsible for 521

the learning of the target word vector. If there 522

is no good target word representation, it will 523

directly affect the overall result. 524

2. Comparing the original version with the re- 525

moved version, that is, removing collocation 526

feature matching, it can be seen that intro- 527
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ducing this matching mechanism can indeed528

improve the effectiveness of the model. Al-529

though there is only two percentage point im-530

provement, considering the difficulty of LTS531

recognition, it also shows that our model does532

contribute to the recognition of LTSs.533

3. Regarding whether the training process of534

merging the target word and the collocation535

feature can improve the overall effect of the536

model, we can compare the results of the orig-537

inal version and the split version. An improve-538

ment of close to 3% proves that this design539

is reasonable. Example sentences of LTSs540

in the dictionary improve the ability of the541

pre-trained model to represent low-tail target542

words.543

5 Evaluation for LTSs and MFSs544

Compared with the ablation experiments, the signif-545

icance of this section is more to test the potential of546

Bi-MWSD in terms of MFSs and LTSs. The LTS-547

setting is equivalent to evaluating the performance548

of the model in few-shot WSD; the MFS-setting is549

equivalent to testing the performance of the model550

in practical scenarios.551

To compare science, we chose two models that552

are similar to our model as the baseline, that is,553

GlossBERT (Huang et al., 2019) and BEM (Blevins554

and Zettlemoyer, 2020). Similar to our model, both555

GlossBERT and BEM employ Bert-base to extract556

text features of glosses in the dictionary; BEM557

also uses two pre-trained models as dual encoder558

models.559

5.1 Bi-MWSD under LTS-setting560

Under LTS-setting, the experimental results of561

GlossBert, BEM and Bi-MWSD are shown in562

Tab. 3. Experimental results show that the bi-563

matching mechanism is indeed conducive to the564

recognition of LTSs, indicating that the recognition565

or evaluation of word senses from multiple angles566

can improve the recognition rate. The inspiration567

of this result for few-shot research is that few-shot568

tasks can be completed from the perspective of569

multi-angle evaluation.570

5.2 Bi-MWSD under MFS-setting571

Under MFS-setting, the experimental results on572

BEM, GlossBERT, and Bi-MWSD are shown in573

Tab. 4. According to the experimental results, our574

model performs best, but its advantages are small.575

Model
ALL

1-shot 2-shot 3-shot 5-shot

GlossBERT 56.8 55.9 62.1 67.7
BEM 68.7 68.7 70.4 70.5
Bi-MWSD 67.3 71.3 72.0 73.0

Table 3: The experimental results of GlossBERT, BEM
and Bi-MWSD under LTS-setting.

It shows that the contribution of the bi-matching 576

mechanism to MFSs that is easy to identify is lim- 577

ited. It also proves from the side that the definition 578

(gloss) is directly and effective in terms of MFSs, 579

and the advantages of collocation features are not 580

obvious compared with the definition. 581

Model Dev ALL

GlossBERT (2019) 74.7 78.0
BEM (2020) 74.5 79.0
Bi-MWSD 74.3 79.1

Table 4: The experimental results of GlossBERT, BEM
and Bi-MWSD under MFS-setting.

6 Conclusion 582

By analyzing the characteristics of most frequent 583

and long-tail senses, we respectively propose tar- 584

geted matching methods, namely, using definition 585

matching mechanism for MFSs and collocation fea- 586

ture matching mechanism for LTSs. This method 587

achieves the purpose of identifying the most fre- 588

quent and long-tail senses at the same time with 589

the same model. Compared with early models 590

that mainly focused on MFSs, our model does 591

not ignore the value of LTSs; compared with few- 592

shot learning or meta-learning methods, our model 593

can capture the advantage of easy identification of 594

MFSs. The main contribution of this paper is to fill 595

the gaps in the multi-matching mechanism in the 596

task of WSD. 597

The experimental results show that designing 598

targeted recognition methods for different word 599

sense types is effective for improving the overall 600

performance of the WSD task. In future research, 601

we will design the more targeted multi-matching 602

mechanism models. Moreover, we will also try to 603

use the multi-matching mechanism in other few- 604

shot tasks. 605
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