
Scaling Collapse Reveals Universal Dynamics in
Compute-Optimally Trained Neural Networks

Shikai Qiu 1 † Lechao Xiao 2 Andrew Gordon Wilson 1 Jeffrey Pennington 2 Atish Agarwala 2

Abstract
What scaling limits govern neural network train-
ing dynamics when model size and training time
grow in tandem? We show that despite the com-
plex interactions between architecture, training
algorithms, and data, compute-optimally trained
models exhibit a remarkably precise universality.
Specifically, loss curves from models of varying
sizes collapse onto a single universal curve when
training compute and loss are normalized to unity
at the end of training. With learning rate decay,
the collapse becomes so tight that differences in
the normalized curves across models fall below
the noise floor of individual loss curves across
random seeds, a phenomenon we term supercol-
lapse. We observe supercollapse across learning
rate schedules, datasets, and architectures, includ-
ing transformers trained on next-token prediction,
and find it breaks down when hyperparameters
are scaled suboptimally, providing a precise and
practical indicator of good scaling. We explain
these phenomena by connecting collapse to the
power-law structure in typical neural scaling laws,
and analyzing a simple yet surprisingly effective
model of SGD noise dynamics that accurately
predicts loss curves across various learning rate
schedules and quantitatively explains the origin
of supercollapse.

1. Introduction
As machine learning systems grow in scale, accurate predic-
tive models of their training dynamics become increasingly
valuable, both for interpreting costly experiments and for de-
signing robust, efficient training pipelines (Wortsman et al.,
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2023; Achiam et al., 2023; Xiao, 2024). While the complex-
ity of modern architectures, optimizers, and datasets often
renders exact, first-principles analyses intractable for any
individual model, recent work shows that some key aspects
of training are predictable when we focus on their scal-
ing behavior across a family of models. Examples include
empirical power-law relations linking optimal final loss,
model size, dataset size, and compute budget under compute-
optimal training, known as neural scaling laws (Hestness
et al., 2017; Kaplan et al., 2020; Sharma & Kaplan, 2022;
Hoffmann et al., 2022), as well as hyperparameter transfer
from small to large models based on infinite-width or depth
limits of training dynamics (Yang et al., 2021; Bordelon
et al., 2023; Everett et al., 2024; Bordelon et al., 2024c).

In this work, we show the entire training process follows
highly predictable scaling, beyond final losses and optimal
hyperparameters. We find that the entire loss curves of
compute-optimally trained models exhibit a precise scaling
symmetry, collapsing onto a single universal curve across
models after a simple normalization. Learning rate decay
amplifies this effect dramatically, producing what we call
supercollapse: collapse so tight that cross-scale differences
fall below the noise floor of individual loss curves due to
random seeds. Figure 1 (a-d) summarizes these results.

These findings advance our understanding in two key ways.
First, while Kaplan et al. (2020, Figure 11) found the loss
curves roughly follow a sum of power laws, we identify
that loss curves follow a universal shape with far greater
precision. For typical learning rate schedules, this shape
deviates from simple power laws and may not admit any
obvious functional form. Second, our work provides com-
pelling empirical evidence for a well-defined joint scaling
limit where model size and training time grow together un-
der compute-optimal allocation. This limit contrasts with
traditional infinite-width or depth limits that fix training
duration (Yang & Hu, 2021; Bordelon & Pehlevan, 2022).
While these theories predict initial dynamical consistency,
accumulating finite-size effects lead to gradual divergence
as training progresses, as demonstrated by Vyas et al. (2023).
In contrast, the collapse we observe reveals a joint scaling
limit that preserves consistency throughout training, pre-
cisely the regime relevant for practical large-scale training.
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Figure 1: Scaling collapse of compute-optimal transformer loss curves and its explanation through a model of SGD noise dynamics.
(a) Compute-optimal loss curves and fitted scaling law on CIFAR-5M, using a linear learning rate decay schedule. (b) Normalized
reducible loss curves collapse onto a single universal curve independent of model size, with both final compute and reducible loss
normalized to unity. (c) Collapse deviation ∆ (cross-model variation of normalized loss) falls below per-model noise floor σ (variation of
reducible loss across random seeds) for much of training, a phenomenon we term supercollapse. (d) Supercollapse occurs during the
decay phase of various learning rate schedules, each producing its own universal curve. To explain these phenomena, we show that a
simple model of SGD noise dynamics (e) accurately predicts loss curves for different schedules across model scales (Section 3.2) and (f)
quantifies how learning rate decay improves the collapse due to the predicted scaling ∆ ∝

√
η(1− τ̂), where η is the instantaneous

learning rate and τ̂ is normalized gradient flow time (Section 3.3). We observe supercollapse in other arhitectures and datasets (Figure 4).

We provide an elementary theoretical analysis that reveals
the key mechanisms behind this precise collapse. We first
show that for loss curves following typical neural scaling
laws, collapse occurs precisely when models are trained for
constant multiples of their compute-optimal horizons (Sec-
tion 3.1). We then analyze a simple theoretical model of the
SGD noise dynamics that predicts loss curves under a vari-
ety of learning rate schedules remarkably well (Section 3.2),
and explains two key observations: why normalized curves
retain universal form despite losing their power-law struc-
ture, and how learning rate decay suppresses variance to
produce supercollapse (Section 3.3).

Beyond theoretical interest, supercollapse provides a prac-
tical scaling diagnostic, as we find that deviations from
collapse can signal misconfigured scaling choices, such
as suboptimal scaling of learning rate and data (Figure 4).
Overall, our results suggest supercollapse provides a novel,
powerful tool to study scaling. Our code can be found here.

2. Empirical Observations
We demonstrate our main empirical findings in this section,
independently on multiple tasks and architectures which can
be studied even in academic settings.

2.1. Experiment Setup

In each task, we train a sequence of models with increasing
compute, scaling hyperparameters such as data, initializa-
tion, and learning rate with the model. We refer to a se-
quence of training configurations as a scaling ladder. We
provide further experimental details in Appendix A. We fo-
cus on width scaling, where hyperparameter transfer is most
well-studied, but find scaling transformer depth leads to
similar results in Appendix B, suggesting our observations
may generalize to more general scaling ladders where width,
depth, batch size, weight decay, etc. can be co-scaled.

Transformers Next-Token Prediction. We consider two
next-token prediction tasks: 1) CIFAR-5M (Nakkiran et al.,
2020), a dataset of 6M generated CIFAR-like images, and
2) Lichess, a collection of chess games recorded in alge-
braic chess notation where the goal is to predict the next
move in the game. Our scaling ladder includes models with
about 10M to 80M parameters, approximately log-uniformly
spaced, by scaling the width (embedding dimensions) from
768 to 2048 and fixing the number of blocks to 3. All
models use µP (Yang & Hu, 2021; Yang et al., 2021) for
initialization and learning rates, and are trained with Adam.

MLPs on Power-Law Fourier Features. To investigate
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other architectures and training objectives, we train 7-layer
MLPs with varying widths from 384 to 2048 on a synthetic
regression task. The target function has a power-law Fourier
spectrum, designed to elicit the power-law scaling laws
observed in natural data. We count each example as 1 token.

2.2. Estimating Compute-Optimal Scaling Laws

Let L(t, p, ω) be the test loss after t tokens (proportional to
steps) for a model with p parameters trained with random
seed ω. We estimate the compute-optimal training hori-
zon in tokens for a p-parameter model as t⋆(p) = (p/p0)

γ ,
where γ is the data exponent, by extracting the Pareto fron-
tier of expected loss (estimated using 5 seeds) vs. compute
under a constant learning rate schedule, following a pro-
cedure similar to Approach 1 in Hoffmann et al. (2022),
with compute estimated as c = 6tp FLOPs (Kaplan et al.,
2020). We reuse the same t⋆(p) as the training horizon for
other learning rate schedules, which prior work suggests is
optimal up to a constant factor (Pearce & Song, 2024). For
each task and schedule, we fit the resulting compute-optimal
scaling law using the form L0 + ac−b (Figure 1a), for con-
stants L0, a, b ≥ 0. Following Sharma & Kaplan (2022) and
Hoffmann et al. (2022), we refer to L0 as the estimated irre-
ducible loss. Using the best-fit L0, we define the reducible
loss curve L(t, p, ω) = L(t, p, ω)− L0. We detail the pro-
cedure for fitting the compute-optimal training horizon in
Appendix C. “Compute-optimal” here primarily refers to
the choice of training horizon, not of all hyperparameters.

2.3. Scaling Collapse of Compute-Optimal Loss Curves

The loss curves for different model sizes cover varying
ranges of compute and loss values, but appear to follow
a consistent shape, which motivates us to affinely rescale
them to the normalized loss curve ℓ given by

ℓ(x, p, ω) =
L(xt⋆(p), p, ω)− L̂

L(t⋆(p), p, ω)− L̂
, x ∈ [0, 1], (1)
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Figure 2: Subtracting irreducible loss leads to the best collapse.
Setting L̂ to values far from L0 breaks the collapse on CIFAR-5M.
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Figure 3: Collapse with a constant LR schedule. (Left) Esti-
mated mean and 90% confidence interval (shaded) of the normal-
ized loss curves. (Right) ∆ is comparable to σ without LR decay.

for some offset L̂. We refer to x as the normalized compute.
Note the denominator uses the stochastic final loss value
specific to the random seed. We set L̂ = L0 to subtract the
estimated irreducible loss that bottlenecks the asymptotic
performance, leading to ℓ(x, p, ω) = L(xt⋆(p),p,ω)

L(t⋆(p),p,ω) .

Remarkably, we observe that the family of normalized loss
curves is nearly identical across p, revealing equal rates of
relative progress (Figure 1b). We say these curves collapse,
as the phenomenon resembles the ubiquitous scaling col-
lapse found in statistical physics, theoretical biology, and
other sciences, where observables from systems of different
sizes collapse onto a single curve after appropriate rescaling
(see Appendix D for further discussion). We found setting
L̂ = L0 achieves the best collapse (Figure 2).

2.4. Quantifying the Collapse Quality

We quantify the quality of collapse using the collapse devia-
tion ∆, defined as:

∆(x) =
Vp,ω[ℓ(x, p, ω)]1/2

Ep,ω[ℓ(x, p, ω)]
, (2)

where Ep,ω and Vp,ω denote the expectation and variance
over the random seed and the empirical distribution of model
size p in the scaling ladder (approximately log-uniformly
distributed). The collapse deviation measures the relative
variation of the normalized curves across p. For perspective,
we compare it to the per-model (relative) noise floor:

σ(x, p) =
Vω[L(xt⋆(p), p, ω)]1/2
Eω[L(xt⋆(p), p, ω)]

, (3)

which measures the relative fluctuation in the reducible loss
curve for each model size p across random seeds.

By the definition of ℓ, ∆(1) = 0 always. As seen in Fig-
ure 3, for a constant learning rate, ∆(x) quickly rises to a
level comparable to σ(x, p), and remains at that level for
most x < 1. This observation shows that variations in the
normalized curves arise primarily from seed-to-seed fluctua-
tions rather than model-to-model differences, quantitatively
demonstrating that the observed collapse is non-trivial.
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(c) Constant LR (no collapse)

102 103 104

Compute (PetaFLOPs)

0.650

0.675

0.700

0.725

0.750

L
os

s

Over-trained

Optimal

(d) Transformer Optimal vs Over-trained

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Compute

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

L
os

s

Width

768

896

1024

1152

1280

1536

1792

2048

(e) Optimal (supercollapse)
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(f) Over-trained (no collapse)

Figure 4: Collapse provides a practical indicator of good scaling, as suboptimally scaling key hyperparameters breaks the collapse.
With the default setup, we observe supercollapse in MLP regression (b) and transformer trained on chess (e), but even changes that only
lead to minor worsening in the scaling law can manifest as significant disruption to the collapse. (Top) Replacing µP with a constant
learning rate cross models for MLPs. (Bottom) Increasing the data exponent γ from estimated compute-optimal value 1.02 to 1.2 for
Transformers trained on chess. We perform a separate power-law fit to determine the value L0 for each scaling ladder.

2.5. Supercollapse: Consistency Below the Noise Floor

Remarkably, with learning rate decay, we find that the col-
lapse deviation is less than the noise floor for a significant
fraction of training; that is, ∆(x) < σ(x, p) for x > 1− δ
for some moderate δ as large as 0.5 (Figure 1c). We refer to
this stronger form of collapse as supercollapse (in contrast
to the collapse in Figure 3). Supercollapse appears in the
decay phase of all tested learning rate schedules that decay
to zero (Figure 1d). All schedules are defined in terms of
relative training fraction, i.e., the learning rate is a fixed
function of the normalized compute x across model sizes.

Under supercollapse, self-normalized loss curves from dif-
ferent models collapse better than our ability to predict any
individual model’s loss. Normalizing by the final loss of the
particular realization of the stochastic loss curve is key to
supercollapse, which reduces variance by exploiting correla-
tions at different times along a single optimization trajectory.
We explain this mechanism in detail in Section 3.3.

2.6. Suboptimal Scaling Breaks Supercollapse

Supercollapse provides a practical method for comparing
inherently noisy training loss curves across model scales
with precision that exceeds naive noise floor estimates, with-
out the need for expensive multi-seed experiments typically
required to obtain equally clean signals. This comparison
can provide valuable diagnostic information about scaling
where the ability to distinguish small signal from noise is
often crucial (Xiao, 2024), which we now demonstrate.

Model Parameterization. Carefully parameterizing the
model, i.e., scaling the initialization, learning rate, and pos-
sibly other hyperparameters as model size increases, is cru-
cial for achieving stable and efficient training at scale (Yang
et al., 2021; Bordelon et al., 2023; 2024c; Everett et al.,
2024). When models are trained in the wrong parameteri-
zation, we expect the loss curves not to collapse due to a
lack of consistent training dynamics across scales. Using
the MLP setup, we show that replacing µP with a constant
learning rate across widths breaks the collapse (Figure 4,
top row). Remarkably, the normalized loss curves expose
inconsistent dynamics even at small scales where the fi-
nal losses are virtually identical between constant and µP
scaling, demonstrating that the collapse is a more sensitive
probe of scaling behavior than final performance alone.

Compute-Optimal Data Exponent. For language models,
Kaplan et al. (2020) showed that compute-optimal training
corresponds to training each model to a fixed multiple of
its converged loss. If this principle generalizes to our set-
ting, the data exponent γ should match the compute-optimal
value for collapse to occur. For example, when γ exceeds
the optimal value, larger models will make more rapid rel-
ative initial progress but decelerate later as a function of
normalized compute, causing their normalized curves to
shift downward. We indeed find this shift in Figure 4 (bot-
tom row). This sensitivity suggests a novel application:
rather than fitting power laws to sparse points on the Pareto
frontier, one could tune γ to maximize collapse quality,
leveraging the full statistical power of entire loss curves.
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(b) Exact Power Laws

Figure 5: Scaling collapse from sum of power-law curves. (a) CIFAR-5M expected loss curves (averaged over 5 seed) without learning
rate decay agree well with the sum-of-power-laws fit L(t, p) = L0 + t−µ + p−ν (constant multipliers not shown), a form commonly
observed in natural data. We omit the first 1B tokens to avoid fitting the early time transients. (b) Simulated exact sum-of-power-laws
loss curves show scaling collapse precisely when the data exponent γ is the theoretical compute-optimal value γ⋆. Small variations of γ
around γ⋆ lead to nearly negligible worsening in the resulting scaling law but dramatically disrupt the collapse.

3. Explaining Loss Curve Scaling Collapse
In this section, we investigate theoretical explanations for
the scaling collapse of compute-optimal loss curves and
supercollapse. Our analysis starts with a simple observa-
tion: the numerator of the collapse deviation ∆(x) can be
decomposed as:

Vp,ω[ℓ(x, p, ω)] = VpEω[ℓ(x, p, ω)] + EpVω[ℓ(x, p, ω)].
(4)

The first term corresponds to the variation between different
scales p after averaging over all sources of randomness. We
will first show how this term can be small:

• In Section 3.1, we prove that for a family of power-
law neural scaling laws, compute-optimal loss curves
indeed collapse after normalization. We show loss
curves in our experiments fall into this family when
using a constant learning rate schedule.

• In Section 3.2, we develop a simple theoretical model
that successfully predicts the empirical loss curves un-
der various learning rate schedules and explains why
they collapse despite deviating from power laws. Given
its effectiveness, we believe this model has value for
understanding learning rate schedules more broadly.

We then analyze the second term, which captures the loss
variance due to random seeds, averaged across model sizes:

• In Section 3.3, we show the same noise model enables
us to reason about the noise in the loss curves, and
quantitatively predict the variance reduction effect in
supercollapse.

Together these findings provide an initial theoretical expla-
nation for supercollapse, and uncover promising directions

for future theoretical work.

3.1. Scaling Collapse from Power-Law Scaling

In this section, we consider deterministic models of the loss
curves and assume all randomness has been averaged out.

Power-Law Pareto Frontier is Necessary. For a family
of differentiable loss curves L(t, p), the compute-optimal
loss frontier after subtracting L̂ must follow a power law for
our affine transformation to induce scaling collapse (proof
in Appendix E). The key insight is that collapse requires
the transformed loss curves to be related by multiplicative
scaling, equivalently translation in log-log space, where the
frontier must have constant log-log slope since it remains
tangent to shifted versions of the same curve. This motivates
choosing L̂ = L0, which by definition yields the best power-
law Pareto frontier. However, a sufficient condition for
scaling collapse requires an explicit form of L(t, p).

Neural Scaling Laws. Motivated by empirical neural scal-
ing laws in natural data (Hestness et al., 2017; Kaplan et al.,
2020; Hoffmann et al., 2022), we consider expected loss
curves following a sum-of-power-laws scaling of the form

L(t, p) = L0 + t−µ + p−ν (5)

for constants L0 ≥ 0, µ, ν > 0, with potential constant
multipliers absorbed via an appropriate choice of units. In
Figure 5a, we show the CIFAR-5M loss curves are well-fit
by Equation (5) if trained under a constant learning rate
schedule (averaged across 5 seeds). We also find decent fits
in other datasets in Figure 11.

Equivalence by Balance of Power Laws. As before, let
t⋆(p) denote the training horizon. We will examine con-
ditions under which t⋆(p) (a) is compute-optimal, and (b)
results in scaling collapse. We assume deterministic loss
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curves for now and omit the argument ω. To find compute-
optimal t⋆(p), we fix c so that t(p) = c/(6p) and minimize
the loss L(t(p), p) = t(p)−µ+ p−ν with respect to p by set-
ting 0 = dL

dp = ∂L
∂t

dt
dp +

∂L
∂p = −µt−µ−1(−t/p)− νp−ν−1

=⇒ µt−µ = νp−ν (6)

which yields t⋆(p) = r−1/µpν/µ, with r = ν/µ. Under this
scaling, the normalized loss curves are:

ℓ(x, p) =
(xt⋆)−µ + p−ν

(t⋆)−µ + p−ν
=
rx−µ�

�p−ν +�
�p−ν

r�
�p−ν +�

�p−ν
=
rx−µ + 1

r + 1
.

(7)

All p dependencies cancel, leaving the final expression inde-
pendent of p and giving us an exact collapse. Moreover, it is
clear that this is the unique choice for t⋆(p) up to a constant
multiplier that leads to such cancellation. This agreement is
not an accident: compute-optimal scaling requires balancing
the derivatives of two power laws, while collapse requires
balancing the power laws themselves. For power laws, these
two conditions coincide, up to a multiplicative constant.

In Figure 5b, we numerically verify the agreement between
collapse and compute-optimal scaling. When the data expo-
nent γ deviates from the optimal value ν/µ, we observe a
suboptimal scaling law and no collapse. Note that the ab-
sence of an irreducible term in ℓ is also necessary. Had we
set L̂ = L0 +E for some E ̸= 0 in Equation (1), we would
instead have ℓ(x, p) = (xt⋆)−µ+p−ν+E

(t⋆)−µ+p−ν+E , where no t⋆(p) can
leave the numerator and denominator homogeneous in p.

In Appendix F, we study the more general form

L(t, p) = L0 +

m∑
i=1

ait
−µip−νi , (8)

which naturally arises in theoretical models of neural scaling
laws (Paquette et al., 2024b; Bordelon et al., 2024a;b), and
show that compute-optimality implies scaling collapse by
balancing the two dominant terms, though with m > 2 the
collapse is only exact asymptotically.

Together with the close empirical fit in Figure 5a, this anal-
ysis explains scaling collapse in the constant learning rate
setting; however Equation (5) fails to fit the empirical loss
curves with most learning rate schedules, as varying the
learning rate can modulate the loss curve in quite arbitrary
ways, clearly shown in Figure 1d. Why, then, does the
collapse transfer to other schedules?

3.2. Universality of Learning Rate Schedules

To understand why scaling collapse is robust across learning
rate schedules, we develop a quantitative model for how
learning rate schedules affect the loss curves. While an

exact theoretical model seems out of reach for the realis-
tic training setup, we show that a simple model based on
quadratic loss analysis proves surprisingly effective. Un-
der this model, we demonstrate that although learning rate
schedules deform the loss curves in a schedule-dependent
way, the deformation is approximately independent of p.
We consider stochastic effects that depend on the random
seed ω, but omit ω as an explicit argument for brevity and
use bar to denote expectation over ω.

3.2.1. A SIMPLE MODEL FOR LR SCHEDULES

Let w(t) and L(w(t)) denote the parameters and loss at
step t, we can model the dynamics of full-batch gradi-
ent descent under a small learning rate η(t) with a gra-
dient flow dw

dt = −η(t)∇L(w(t)). To model stochastic
effects, a noise term is added to the gradient, leading to
the SDE dw

dt = −η(t)
(
∇L(w) + Σ1/2(w)ξ(t)

)
(Li et al.,

2017; Malladi et al., 2022), where the mini-batch gradient
noise Σ1/2(w)ξ(t) satisfies E[ξ(t)ξ(t′)] = δ(t − t′)I, and
we allow its covariance (which depends on batch size) Σ(w)
to be a function of the parameters. Prior works have used
the SDE model or discrete variants to study learning rate
schedules in analytically tractable problems (Zhang et al.,
2019; d’Ascoli et al., 2022; Wen et al., 2024), but we will
show it can make surprisingly accurate predictions in real
models. We work in gradient flow time τ(t) =

∫ t
0
η(s)ds,

where

dw

dτ
= −

(
∇L(w) + Σ1/2(w)ξ(τ)

)
, (9)

and E[ξ(τ)ξ(τ ′)] = δ(t− t′)I = η(τ)δ(τ − τ ′)I. We over-
load the notation and use η(τ), w(τ), and L(τ) to denote
the evolution of these quantities in gradient flow time.

Quadratic Loss. For the moment, let us suppose the loss
function is quadratic L(w) = 1

2w
⊤Hw, where we assume

the minimum is at the origin without loss of generality. Then
∇L(w) = Hw and standard calculation shows

w(τ) = e−Hτw(0)−
∫ τ

0

ds e−H(τ−s)Σ1/2(w(s))ξ(s).

(10)

Letting Σ̄(s) = E[Σ(w(s))], the expected loss is then

L̄(τ) =
1

2
E
[
∥e−Hτw(0)∥2H

]
︸ ︷︷ ︸

F(τ)

+
1

2

∫ τ

0

ds η(s) Tr
(
He−2H(τ−s)Σ̄(s)

)
︸ ︷︷ ︸

E(τ)

. (11)

The first term F (τ) is the forcing function, equal to the
expected loss curve in the noiseless limit ηΣ → 0 and is
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Figure 6: A simple model predicts Transformer loss curves trained across learning rate schedules, model sizes p, and training
horizons T on CIFAR-5M. Dashed curves show the predicted loss according to Equation (18), with α = 0.21, which closely match with
the true curves in solid. Each curve is smoothed with an exponential moving average with half-life equal to 1% of total steps.

independent of the learning rate schedule. The second term
E(τ) is the excess loss due to SGD noise, which is a sum
of exponential moving averages (up to normalization) of
the gradient variance scaled by the learning rate over each
eigenmode. Substituting in the specific forms for Σ recovers
the convolutional Volterra equation for linear regression ana-
lyzed in Paquette et al. (2021; 2024a), or the noisy quadratic
model in Zhang et al. (2019) for small learning rates.

If ηΣ̄ varies slowly compared to the timescale of the expo-
nential moving average, we can make the approximation
η(s)Σ̄(s) ≈ η(τ)Σ̄(τ) inside the integrand, giving us:

E(τ) ≈ 1

2
η(τ) Tr

(
Σ̄(τ)H

∫ τ

0

ds e−2H(τ−s)
)

(12)

=
1

4
η(τ) Tr

(
Σ̄(τ)

(
1− e−2Hτ

))
. (13)

For large τ the expected loss is then approximately

L̄(τ) ≈ F (τ) +
1

4
η(τ) Tr

(
Σ̄(τ)

)
. (14)

Given access to Tr
(
Σ̄(τ)

)
, we can derive a prediction for

how the loss changes as we change the learning rate schedule
without knowing F .

General Case. In Appendix G, we discuss how this analysis
can be generalized to more realistic setups. For general
loss functions, we show via perturbation theory that, to
first order in ηΣ̄, one can make similar approximations to
derive Equation (14) given an additional assumption that
the Hessian is slowly varying, and with the forcing function
F (τ) no longer admitting a quadratic form. We also show
in Appendix G that Σ should be the preconditioned gradient
covariance when using adaptive optimizers. We absorb the
layerwise, width-dependent learning rates in µP into the
preconditioner, similar to Noci et al. (2024), so η(t) ∈ [0, 1]
reflects only the schedule.

3.2.2. PREDICTING LOSS CURVES ACROSS SCHEDULES

We apply this simple model to predict empirical loss curves
in the CIFAR-5M experiments. We measure the trace of
the preconditioned gradient covariance on a fixed set of 2M
tokens (see Appendix A for experiment details).

Let L̄, η, Σ̄ be a given reference trajectory and L̄′ = L̄ +
δL̄, η′ = η + δη, Σ̄′ = Σ̄ + δΣ̄ be the target trajectory,
Equation (14) allows us to predict the target loss via

δL̄(τ) ≈ 1

4
Tr
[
δ
(
η(τ)Σ̄(τ)

)]
, (15)

where δ
(
η(τ)Σ̄(τ)

)
:= η′(τ)Σ̄′(τ) − η(τ)Σ̄(τ). We use

a constant learning rate for the reference trajectories and
various schedules sharing the same peak learning rate for the
target. Decomposing δ(ηΣ) = δηΣ′+ηδΣ, we find the first
term is typically 3 to 10 times larger than the second as the
learning rate decays, which can be attributed to how learning
rate interacts with curvature (Figure 13). In Figure 6, we
only keep the first term, and predict the target loss as

L′(τ) ≈ L(τ) + α δη(τ) Tr(Σ′(τ)), (16)

where α is a shared hyperparameter. We find a single
α = 0.21 fits the target loss curves surprisingly well
across schedules, model sizes, and training horizons. In
Appendix I, we show even better fits for MLPs, though
puzzlingly, including the second term can lead to worse fits.

Recent works proposed more complex functional forms for
how learning rate schedules affect loss curves, derived pri-
marily from empirical observations (Tissue et al., 2024; Luo
et al., 2025). The accuracy of our simple model suggests it
captures the essential dynamics, and crucially, the correct
scaling of the excess loss through Tr(Σ′) so that a single
α is predictive across model sizes, schedules, and training
horizons. Notably, Luo et al. (2025) experimented with a
similar form to Equation (16) but with a constant Σ′, which
likely explains the reduced effectiveness they observed.
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Figure 7: Universality of gradient noise on CIFAR-5M. Fixing
a learning rate schedule, the ratio Tr(Σ)/L is approximately a
function of normalized compute alone, independent of model size.
We show similar results with MLP regression in Figure 14.

3.2.3. UNIVERSAL SCALING OF GRADIENT NOISE

For typical loss functions, the gradient covariance can be
related to the loss itself. For example, in noiseless high-
dimensional linear regression with Gaussian features drawn
from N (0,K), we have Tr(Σ) ≈ 2LTr(K) (Paquette et al.,
2021), an intuitive result since the gradient scales with both
the prediction error and the input. For non-linear regression,
K should be taken to be the time-varying Gauss-Newton
matrix for a first approximation. In this case, Tr(K) is
known to depend strongly with the learning rate (Agarwala
& Pennington, 2024), but we expect weak dependence on
model size given our models are trained with µP (see Noci
et al. (2024) for evidence that curvature statistics depend
weakly on model size in µP). Since the schedule is a function
of the normalized compute x = t/t⋆ alone, we hypothesize
there exists a schedule-dependent function h(x) such that

Tr(Σ(xt⋆(p)))/L(xt⋆(p)) ≈ h(x), (17)

which we verify in the regression (Figure 14) and next-token
prediction experiments (Figure 7).

Combining Equation (16) and Equation (17) and making
p-dependence explicit:

L̄′(τ, p) ≈ L̄(τ, p)(1− αh(x)δη(τ, p))−1, (18)

where x is the normalized compute at gradient flow time τ.
We leave to future work an explanation of why this relation
appears to hold for cross-entropy loss despite the presence of
non-negligible irreducible loss, as this setting is analogous
to regression with label noise, where the gradient covariance
should scale with the total loss rather than just the reducible
component, i.e., Tr(Σ) ≈ 2LTr(K).

Scaling Collapse Across Schedules. Combining our in-
sights so far, we can now understand why collapse happens
across schedules. Let ℓ̄(x, p) and ℓ̄′(x, p) be the expected

normalized loss curves under two schedules S and S′. Let
y(x) map the normalized compute under S′ to the normal-
ized compute under S at matching gradient flow time, where
y is independent of p for schedules defined in terms of the
normalized compute. Let δη̂(x) = δη(xt⋆(p), p) be the dif-
ference between the two schedules. Assuming small relative
fluctuations (E[L(x)/L(y)] ≈ E[L(x)]/E[L(y)]), we have:

ℓ̄′(x, p) ≈ L̄′(xt⋆(p), p)

L̄′(t⋆(p), p)
(19)

=
L̄(y(x)t⋆(p), p)(1− αh(x)δη̂(x))

−1

L̄(y(1)t⋆(p), p)(1− αh(1)δη̂(1))
−1 (20)

= ℓ̄(y(x), p)
1− αh(1)δη̂(1)

1− αh(x)δη̂(x)︸ ︷︷ ︸
independent of p

, (21)

which shows that, in expectation, collapse under one sched-
ule (e.g. constant) implies collapse under any other schedule,
provided we take Equation (18) to be exact. Since collapse
under a constant learning rate can be attributed to the sum-
of-power-laws scaling law, this result helps explain why we
also observe collapse in other schedules.

This analysis also suggests that collapse can serve as a filter
for identifying interventions that yield scalable improve-
ments: those that multiplicatively shift the reducible loss
curve by the same factor across all model sizes.

3.3. Supercollapse as Variance Reduction

Lastly, we turn to understanding the “super” in supercol-
lapse: why does learning rate decay significantly improve
the collapse, to the extent that the collapse deviation ∆(x)
drops below the per-model noise floor σ(x, p) for a substan-
tial fraction of training? Again, the simple quadratic model
provides quantitative insights into this phenomenon.

Recall ∆(x) =
Vp,ω [ℓ(x,p,ω)]1/2

Ep,ω [ℓ(x,p,ω)] , and the decomposition:

Vp,ω[ℓ(x, p)] = EpVω[ℓ(x, p)] + VpEω[ℓ(x, p)]. (22)

The first term measures variance due to the seed alone, aver-
aged over model sizes, while the second term measures vari-
ance due to varying the model size, having averaged over the
seeds first. Since we observed that variations in the normal-
ized curves primarily arise from seed-to-seed fluctuations
rather than model-to-model differences (Section 2.4) under
a constant schedule, and switching to other schedules does
not significantly increase the model-to-model differences
(Section 3.2), we will assume the first term EpVω[ℓ(x, p)]
dominates, which implies ∆2(x) ≈ Ep∆̃2(x, p), where
∆̃2(x, p) := Vω[ℓ(x, p)]/ℓ̄2(x, p) is the squared per-model
collapse deviation.

To simplify notation, we temporarily omit p-dependence
and write ℓ in terms of t instead of x. Letting L(t) =

8
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Figure 8: A quantitative explanation of how learning rate decay leads to supercollapse. Across schedules on CIFAR-5M, collapse
deviation at normalized gradient flow time τ̂ follows the predicted

√
η (1− τ̂) scaling, capturing the noise accumulated between that

point and end of training. A schedule that decays faster has a smaller η and (1− τ̂) at a fixed normalized compute or training step.

L̄(t)(1 +ψ(t)), where ψ is the relative fluctuation, we have
ℓ(t) = L̄(t)(1+ψ(t))

L̄(t⋆)(1+ψ(t⋆))
≈ ℓ̄(t)(1 + ψ(t)− ψ(t⋆)), assuming

ψ ≪ 1. Therefore,

∆̃2(t) ≈ E
[
(ψ(t)− ψ(t⋆))2

]
(23)

We see that what controls the relative variance in ℓ(t) is not
ψ(t) but the difference ψ(t) − ψ(t⋆), which roughly cap-
tures the amount of optimization noise accumulated between
time t and time t⋆. Since the optimization noise per step
scales with the instantaneous learning rate, decaying the
learning rate over time will precisely serve to decrease the
variance in ℓ. By contrast, the squared per-model noise floor
σ2(t) is simply E[ψ2(t)], which captures the total cumula-
tive optimization noise. Importantly, had we normalized
by the expected rather than the empirical final loss in ℓ,
∆̃(t) would reduce to σ(t). Normalizing by the stochastic
final loss is essential for supercollapse, where it acts as a
control-variate (Glasserman, 2004), leveraging the strong
time-correlation of stochastic fluctuations along the opti-
mization trajectory to cancel much of the shared noise and
thereby sharply reduce the variance of the collapsed curve.

Quantitatively, we can estimate ∆̃ under the quadratic model
in Section 3.2. Let ∆w(τ) and ∆L(τ) be the fluctuations
of the parameters and loss from their means. We have
∆w(τ) =

∫ τ
0
ds e−H(τ−s)Σ1/2(s)ξ(s), and ∆L(τ) =

g(τ)⊤∆w(τ) to first order in ∆w(τ), where g(τ) is the ex-
pected gradient. Close to the end of training, for τ = τ⋆−δτ
where τ⋆ is the final gradient flow time and δτ > 0 is small,
direct calculation shows (Appendix H)

∆̃2(τ) = L̄−2(τ)g(τ)⊤η(τ)Σ̄(τ)g(τ)δτ +O(δτ2), (24)

In linear regression, Σ ∝ L and g⊤g ∝ L , so we estimate
∆̃2(τ) ∝ η(τ)δτ to leading order. Since this relation holds
for each model size p, we predict ∆2(τ̂) ≈ Ep∆̃2(τ̂) ∝
η(τ̂)(1− τ̂), where τ̂ = τ/τ⋆ denotes the normalized gradi-
ent flow time. Figure 8 shows this form fits the observations
well, with ∆(τ̂)/

√
η(τ̂) approximately following the same√

1− τ̂ scaling across many schedules, quantitatively ex-
plaining how learning rate decay leads to supercollapse.

4. Discussion
Scale has enabled remarkable progress in machine learning,
but a thorough scientific understanding of scaling remains
elusive. Key open questions include identifying robust prin-
ciples that guide general hyperparameter transfer and char-
acterizing scaling limits under realistic scaling ladders. Our
discovery of supercollapse provides empirical evidence that
a model-size and data joint scaling limit generically exists in
the compute-optimal regime, and that the scale-invariance of
the training dynamics revealed by the collapse can diagnose
proper hyperparameter configuration. We believe further
investigation of these phenomena holds great potential for
advancing the science of scaling.

We see many exciting extensions to this work. Empirically,
our small-scale experiments provide a proof-of-concept.
While small-scale proxies capture certain behaviors in larger
systems (Wortsman et al., 2023), validating at larger scales
and with practical scaling ladders, where width, depth, batch
size, and weight decay are co-scaled (McCandlish et al.,
2018; Wang & Aitchison, 2024; Dey et al., 2025; Bergsma
et al., 2025), is important and may yield new insights into
optimal scaling and hyperparameter transfer. Scaling col-
lapse beyond the form we studied here can be a general tool
to study other scaling relations (Tamai et al., 2023).

While we have identified the key ingredients underly-
ing supercollapse—power-law scaling and learning rate-
dependent noise dynamics—our analysis relies on multiple
approximations and takes power-law scaling as given, sug-
gesting deeper theoretical principles may be at work. Taking
collapse as a starting point instead may provide an alterna-
tive route to understanding scaling laws, analogous to how in
physics the renormalization group was developed to provide
a unified set of principles explaining both universality and
its associated power laws (Wilson, 1971). Finally, it would
be interesting to understand why our simple noise model
predicts the impact of learning rate schedules on real models
so effectively, compare it with alternative models such as
Schaipp et al. (2025), and to test its predictive power for
optimizing schedules, learning rates, and training horizons.
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A. Experiment Details
Transformer Architecture. We use GeLU activations (Hendrycks & Gimpel, 2016), RMSNorm (Zhang & Sennrich, 2019),
and learned positional embeddings. We untie the embedding matrix from the output head and do not use bias anywhere.
The readout layer is always zero-initialized, as suggested by Yang et al. (2021) . We denote the embedding dimension with
D. We set the intermediate dimension in the feedforward layers to D instead of the usual 4D, which enables us to explore
larger widths more efficiently. The head dimension is set to 64.

CIFAR-5M. We use the CIFAR-5M dataset (Nakkiran et al., 2020) of 6 million CIFAR-like images. We convert the
32 × 32 × 3 images to greyscale and flatten them into sequences of length 1024. The model autoregressively predicts
the pixel intensities in raster-scan order. The vocabulary is the set of pixel intensities {0, . . . , 255}. Following µP we
parameterize the learning rate for each weight matrix as η = ηbase/D where d is the model dimension, except for the
embedding matrix which has η = ηbase. We use a parameter multiplier a on the embedding matrix. We use ηbase = 4 and
a = 0.1 as they led to good performance in our early experiments. We initialize the embedding matrix as W emb

ij ∼ N (0, 1),

the output head as W head = 0, all other non-readout matrices W as Wij ∼ N (0, 1/D). These hyperparameters were
determined with a small amount of tuning in early experiments. We use a batch size of 256 images. We use a linear warmup
for 1000 steps.

For the experiments in Section 3.2.2, we used a slightly different setup due to switching to a new codebase in the middle of
the research project. We use µP where the base embedding dimension is 128 and base learning rate is 0.01. We initialize the
embedding matrix with a standard deviation (std) of 0.1 and multiply its learning rate by 10 relative to the base learning
rate. The output projection of the feedforward and attention layers are zero-initialized. All other non-readout matrices are
initialized with std 1/

√
D. We use a batch size of 65536 tokens or 64 images. We use a linear warmup for 10M tokens.

Chess. We run our experiments on the Lichess dataset available on Hugging Face at https://huggingface.co/
datasets/Lichess/standard-chess-games. We used character-level tokenization and a context length of 128.
We use µP where the base embedding dimension is 128 and base learning rate is 0.01. We initialize the embedding matrix
with std 0.1 and multiply its learning rate by 10 relative to the base learning rate. The output projection of the feedforward
and attention layers are zero-initialized. All other matrices are initialized with std 1/

√
D. We use a batch size of 65536

tokens. We use a linear warmup for 10M tokens.

MLP Experiments. Our MLP architecture is identical to the transformer with attention layers removed and the token and
position embedding layers replaced by a linear layer. We use µP where the base width is 128 and base learning rate is 0.001.
The output projection of the feedforward layers are zero-initialized. All non-readout matrices are initialized with std 1/

√
D.

We use a batch size of 4096 examples. We do not use warmup.

The target function is defiend as ϕ(x) =
∑M
i=1 wi

√
2 cos

(
2πk⊤i x+ bi

)
, with x ∈ R8, wi ∼ N (0, 1), bi ∼

π
2Bernoulli(0.5), ki = round(sivi) where si is a scalar sampled from a power law with support [1,∞) and exponent
−2, vi is a random unit vector, and round rounds to the nearest point in Z8. During training, x is sampled uniformly
from [−0.5, 0.5]8, making the Fourier features orthonormal over the data distribution. We suspect the details here are not
necessary for generating power-law scaling laws beyond the power-law spectrum.

For Figure 4a, the constant learning rate scaling ladder matches the µP learning rate at D = 384 (smallest model).

Measuring Gradient Covariance Trace. As mentioned in Section 3.2.1, we use the preconditioned gradient covariance
Σ̃ instead of the raw gradient covariance due to the use of Adam (and µP). Σ̃ is defined as P−1/2ΣP−1/2 where Σ is the
raw (mini-batch) gradient covariance, and P is the preconditioner. See an explanation for this definition in Appendix G.
Since µP uses layerwise learning rate, the preconditioner is defined as P−1 = diag

(
η0√
v2+ϵ

)
, where η0 is the vector of

per-parameter learning rate (peak learning rate, before applying the schedule), v2 is the Adam second-moment, and ϵ is the
Adam ϵ. As the peak learning rate is absorbed into the preconditioner, any occurrence of the instantaneous learning rate η(t)
or η(τ) in Section 3.2.2 reflects only the schedule and takes on values in [0, 1]. This definition mirrors what is done in Noci
et al. (2024); Cohen et al. (2024).

Training for More than One Epoch. The CIFAR-5M dataset, tokenized as 32× 32 greyscale images, has about 5B tokens.
Therefore, most models needed to be trained for more than 1 epoch to reach the compute-optimal training horizon. Up to the
scales we tested, we did not observe a significant difference between the train and test loss. The chess dataset has about 20B
tokens, which also led to data reuse for some models, but did not lead to significant overfitting. As we only processed a
subset of the full Lichess dataset, this can be avoided by processing a larger subset if desired.
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On Random Seeds. In the CIFAR-5M experiments in Figure 1, the random seed controls both the initialization and
data ordering. In the other experiments (Transformer on chess and MLP regression), the random seed only controls the
initialization while data ordering is held fixed, as is often done in practice. Fixing the data ordering (no shuffling) had the
advantage of speeding up data loading. We found that supercollapse occurs regardless of whether seeds affect data ordering.
This makes sense: even with fixed ordering, different model sizes process different data due to varying training horizons.
More fundamentally, supercollapse should be robust to which training components are randomized, as the variance reduction
arises from strong noise correlations along individual trajectories rather than specific noise sources (Section 3.3).

B. Scaling Collapse Across Transformer Depths
For scaling depth, we additionally apply a branch multiplier of 3/depth on the output of every feedforward and attention
layer, as suggested by Bordelon et al. (2024c). We find a decent degree of collapse in Figure 9 when training on chess data.
There is a small shift in the normalized curves, though we are unsure if it is simply a finite-size effect.
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Figure 9: Depthwise scaling collapse for transformers trained on chess.

C. Estimating Compute-Optimal Training Horizon
To estimate the optimal compute for training each model, we perform the following steps in each experiment:

• We trained each model without learning rate decay but keeping the initial warmup. We chose a large enough number of
steps so that the largest model could reach the compute-optimal loss frontier. We average the loss curves from 5 seeds.

• We numerically computed the compute-loss Pareto frontier to obtain an estimate of c⋆(p) - the optimal compute for
each model size p. We use logarithmically spaced points for c and find the p that achieves the best loss given c training
FLOPs.

• We fit a power law c⋆(p) = κp1+γ where κ and γ are fit parameters. The optimal number of training tokens is then
t⋆(p) = c⋆(p)/(6p), which scales as pγ . We remove outliers in this fit by dropping points from the smallest and largest
model.

Using a constant learning rate schedule allows us to measure the loss of one model at different token budgets with a single
training run, an approach also used in McLeish et al. (2025), rather than one training run per token budget as origianlly done
in Hoffmann et al. (2022). Figure 10 illustrates this procedure.
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Figure 10: Estimating compute-optimal data exponent in the MLP regression and Transformer CIFAR-5M experiments.

D. Universality and Scaling Collapse in Other Sciences
The simplest versions of collapse come from statistics and probability, where entire distributions of random variables
show universal behavior between systems of different types and scales. The most well known is the central limit theorem
which predicts a universal Gaussian form for the sums of random variables with appropriately bounded moments (and Levy
distributions for heavy tailed distributions). In random matrix theory, there are similar effects when studying the limiting
empirical distribution of spectra, most famously the Marcenko-Pastur distribution of Wishart matrices (Marchenko & Pastur,
1967). In all of these examples, showing universal behavior of a single moment is analogous to showing predictability of the
Pareto frontier in our work, while showing the universality of the whole distribution is analogous to our statements about the
entire loss curves (where e.g. the CDFs of different problems are converging).

Scaling collapse is ubiquitous in physics as well. There are again distributional collapses like the famed Maxwell Boltzmann
distribution first used to describe idealized gasses, but also functional relationships like the universal magnetization-
temperature curves of near-critical Ising lattices of different sizes (Binder, 1981). In the Ising example, changes to the lattice
topology can change the magnetization-temperature curves, similar to how different datasets, architecture, and training
algorithms lead to different universal curves in our study. A more general theory unifying and explaining the existence of
universality in physics arises from the renormalization group (Wilson, 1971).

More recently, scaling collapse has been used to describe dynamical systems in biological contexts. Advances in genomics
have led to the rise of experimental microbial evolution with rapid timecourse data (Levy et al., 2015; Venkataram et al.,
2016). Analysis of this data relies on quantitative modeling of evolutionary dynamics. Most of these models show universal
scaling dynamics, in situations from rapid evolutions of diverse populations (Fisher, 2013), populations evolving under
changing fitness conditions (Agarwala & Fisher, 2019), and populations expanding in space (Hallatschek & Fisher, 2014). In
these settings the timecourse of key observables can be described with dynamical curves which can be rescaled to universal
forms with transformations depending on population size, mutation frequency, and statistics of the fitness landscape. In
ecology, the ubiquity of fine-scale diversity and the seemingly universal, power-law nature of species rank-abundance curves
(Rosen et al., 2015; Ser-Giacomi et al., 2018) can be explained using dynamical models which themselves show universal
scaling behavior over ecosystems of different sizes (Pearce et al., 2020).

Scaling collapse has been used to study certain scaling relations in machine learning. Kaplan et al. (2020) identified universal
scaling of overfitting, showing a collapse of the rescaled excess loss vs rescaled parameter count across dataset sizes. Tamai
et al. (2023) used scaling collapse to establish universal scaling laws in the forward signal propagation dynamics of MLPs
near the order-to-chaos transition.

E. Power-Law Pareto Frontier is Necessary for Collapse
Recall t⋆(p) is the optimal training horizon for model size p, i.e. L(t⋆(p), p) = mint′,p′:t′p′=t⋆(p)p L(t

′, p′). Let c⋆(p) =
6t⋆(p)p be the optimal compute for p. In what follows, rather than writing L(t, p), we will find it convenient to express the
loss curves in terms of compute and model size. Letting L(c, p) be the loss curves expressed this way, we have the following
theorem:

Theorem E.1. Let L(c, p) be C1 for all positive c, p and let c⋆(p) denote the compute-optimal budget for model size p.
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Write L(c, p) = L(c, p)− L̂ for some offset L̂ (e.g., L̂ = L0 the irreducible loss). Define the normalized loss curve

ℓ(x, p) =
L(xc⋆(p), p)
L(c⋆(p), p) , x ∈ [0, 1]. (25)

Then,

1. Necessity. If ℓ is independent of p (collapse), then the Pareto frontier of {L(c, p)}c,p

L⋆(c) := min
p

L(c, p) = L(c⋆(p), p) (26)

is a power law L⋆(c) = ac−δ for some constants a, δ.

2. Sufficiency at first order. Conversely, suppose L⋆(c) = ac−δ , then

dℓ(x, p)

dx

∣∣∣∣
x=1

= −δ, (27)

independent of p. Hence all curves share the same first-order behavior around x = 1, i.e., they collapse to first order around
x = 1.

Proof. First, we have the following identity for log-derivatives for a general differentiable function u(v)

d log u

d log v
=
v

u

du

dv
. (28)

Applying this to our normalized curve from Equation (25) and using the chain rule:

dℓ(x, p)

dx

∣∣∣∣
x=1

=
c⋆

L(c⋆, p)
∂L(c, p)
∂c

∣∣∣∣
c=c⋆

(29)

=
∂ logL(c, p)
∂ log c

∣∣∣∣
c=c⋆

, (30)

where the second equality follows from Equation (28).

Necessity. If ℓ is independent of p (collapse), then dℓ(x,p)
dx

∣∣
x=1

is the same for all p. Set this common value to −δ. By
Equation (30),

∂ logL(c, p)
∂ log c

∣∣∣∣
c=c⋆(p)

= −δ for every p. (31)

Since (c⋆(p), p) lies on the Pareto frontier and L is C1, the envelope theorem states

dL⋆(c)
dc

∣∣∣∣
c=c⋆(p)

=
∂L(c, p)
∂c

∣∣∣∣
c=c⋆(p)

, (32)

i.e. the loss curve is tangent to the Pareto frontier at the compute-optimal point. Applying Equation (28) to the frontier
L⋆(c):

d logL⋆(c)
d log c

∣∣∣∣
c=c⋆(p)

=
c⋆(p)

L⋆(c⋆(p))
dL⋆(c)
dc

∣∣∣∣
c=c⋆(p)

(33)

=
c⋆(p)

L(c⋆(p), p)
∂L(c, p)
∂c

∣∣∣∣
c=c⋆(p)

(34)

=
∂ logL(c, p)
∂ log c

∣∣∣∣
c=c⋆(p)

(35)

= −δ, (36)
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where we used Equation (32) and Equation (31). This means the log-log slope of the frontier is constant, which means it is a
power law L⋆(c) = ac−δ .

Sufficiency at first order. Assume L⋆(c) = ac−δ . For any model size p, the envelope theorem gives the tangency condition
at c = c⋆(p):

∂L(c, p)
∂c

∣∣∣∣
c=c⋆

=
dL⋆(c)
dc

∣∣∣∣
c=c⋆

= −δa(c⋆)−δ−1. (37)

Applying Equation (30):

dℓ(x, p)

dx

∣∣∣∣
x=1

=
∂ logL(c, p)
∂ log c

∣∣∣∣
c=c⋆(p)

(38)

= −δ. (39)

Therefore, all curves collapse to first order around x = 1 as in Equation (27).

Remark. A power-law Pareto frontier is not only necessary for full collapse but also already enforces a weaker, first–order
form of collapse. Theorem E.1 assumes the compute–optimal point lies in the interior of each loss curve. This condition can
fail for learning rate schedules that reach η = 0 after finitely many steps, because the optimum may then coincide with the
boundary of the curve, where the envelope theorem tangency no longer applies. Such schedules are used throughout our
experiments and are common in practice. Extension of the proof to handle these boundary-optimal schedules would be
interesting.

F. Collapse for General Sum-of-Power-Laws Loss Curves
Theorem F.1. Suppose the loss curve is given by

L(t, p) = L0 +

m∑
i=1

ait
−µip−νi , ai > 0, µi, νi ≥ 0, (40)

with at least one of µi, νi positive for every i (else absorb the term into L0). Let t⋆(p) = κpγ with κ > 0, γ > 0 be the
asymptotic compute-optimal training horizon, and define the total exponent βi := µiγ + νi and bi := aiκ

−µi . Without loss
of generality, assume βi’s are sorted in non-decreasing order. Then,

1. Compute-optimality forces a tie. At least two βi’s share the minimum:

β1 = β2 = · · · = βk < βk+1 ≤ · · · ≤ βm, k ≥ 2. (41)

2. Asymptotic collapse. The normalized loss curve

ℓ(x, p) :=
L(xt⋆(p), p)− L0

L(t⋆(p), p)− L0
. (42)

is given by

ℓ(x, p) =

∑k
i=1 bix

−µi∑k
i=1 bi

+O
(
p−ϵ
)
, ϵ := βk+1 − β1 > 0, (43)

independent of p up to finite-size error that decays as O(p−ϵ). If k = m, ϵ is taken to be ∞ (perfect finite-size collapse).

3. Locally fastest decay of finite-size error. Locally, γ is the data exponent that achieves the fastest decay of the finite-size
error as measured by ϵ. In particular, ϵ = O(|δ|) for any other data exponent γ′ = γ+ δ with δ ̸= 0, leading to more slowly
decaying finite-size error and therefore a worse collapse.

4. Compute-optimality up to a constant suffices. Any training horizon that is a constant multiple of t⋆(p) preserves the
collapse, only changing the constants bi in Equation (43).
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Proof. Compute-optimality forces a tie. Fix the compute budget c := 6tp and note t(p) = c/(6p) so that dt
dp = −t/p.

With βi := µiγ + νi and bi := aiκ
−µi ,

dL

dp
=

m∑
i=1

ai

(
∂

∂p
+
dt

dp

∂

∂t

)
t−µip−νi (44)

=

m∑
i=1

ai

(
−νi
p

+
t

p

µi
t

)
t−µip−νi (45)

=
1

p

m∑
i=1

ai(µi − νi)t
−µip−νi (46)

=
1

p

m∑
i=1

bi(µi − νi)p
−βi . (47)

If β1 < β2, the leading term b1(µ1−ν1)p−β1 cannot cancel the rest for asymtotically large p, contradicting dL
dp = 0 required

by compute-optimality. Hence at least two indices share the minimum exponent, yielding Equation (41).1

Asymptotic collapse. We compute ℓ(x, p) explicitly. First, evaluate the loss at the optimal horizon:

L(t⋆(p), p)− L0 =

m∑
i=1

ai(t
⋆(p))−µip−νi =

m∑
i=1

ai(κp
γ)−µip−νi (48)

=

m∑
i=1

aiκ
−µip−µiγ−νi =

m∑
i=1

bip
−βi . (49)

Since β1 = β2 = · · · = βk < βk+1 ≤ · · · ≤ βm, we can factor out p−β1 :

L(t⋆(p), p)− L0 = p−β1

(
k∑
i=1

bi +

m∑
i=k+1

bip
−(βi−β1)

)
(50)

= p−β1

(
k∑
i=1

bi

)(
1 +O

(
p−(βk+1−β1)

))
. (51)

Similarly, for t = xt⋆(p):

L(xt⋆(p), p)− L0 =

m∑
i=1

ai(xt
⋆(p))−µip−νi =

m∑
i=1

aix
−µi(t⋆(p))−µip−νi (52)

=

m∑
i=1

bix
−µip−βi = p−β1

(
k∑
i=1

bix
−µi

)(
1 +O

(
p−(βk+1−β1)

))
. (53)

Taking the ratio gives:

ℓ(x, p) =
p−β1

(∑k
i=1 bix

−µi

)(
1 +O

(
p−(βk+1−β1)

))
p−β1

(∑k
i=1 bi

)(
1 +O

(
p−(βk+1−β1)

)) =

∑k
i=1 bix

−µi∑k
i=1 bi

+O
(
p−(βk+1−β1)

)
. (54)

This produces Equation (43) with ϵ = βk+1 − β1 > 0.

Locally fastest decay of finite-size error. Let γ be the optimal data exponent and perturb it by δ, writing γ′ = γ + δ. For a
small enough |δ| > 0, the previously tied lowest exponents β1, . . . , βk split into distinct values β′

1, . . . , β
′
k, which remain

1Here we assumed not all µi − νi ̸= 0 for i = 1, . . . , k, else these terms would not affect dL/dp. If this is not true, then the loss
L(t, p) is not interesting because the it would asymptotically be a function of compute c = 6tp alone, independent of how we allocate c
between t and p.
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the lowest k exponents (since δ is small), and the gap between the lowest and second-lowest grows as O(|δ|), which is
strictly smaller than the previous gap ϵ = βk+1 − β1 > 0 for sufficiently small δ. Therefore, locally γ maximizes the decay
exponent of the finite-size error, i.e., it gives the best collapse locally.

Compute-optimality up to a constant suffices. Replacing t⋆ by λt⋆ multiplies each bi by λ−µi and leaves the rest of the
proof unchanged.

Remarks.

1. Compute-optimal data exponent implies asymptotic collapse, but the converse is not necessarily true when m ≥ 3,
since there can be multiple choices of γ that lead to balanced dominant power laws, which imply collapse, but only one
of them can be compute-optimal.

2. In general, when m > 2, asymptotic instead of exact collapse is the best we can hope for. But an asymptotic collapse
alone is not that interesting, since under any choice of the data exponent γ only the terms with the lowest βi enter the
asymptotic normalized loss curve. For example, if L(t, p) = t−µ + p−ν , any γ > ν/µ will cause only the p−ν term
to dominate, leading to ℓ(x, p) → 1, whereas any γ < ν/µ will cause t−µ to dominate, leading to ℓ(x, p) → x−µ.
The latter case is similar to the infinite-width limit in neural networks, where under t = Θ(1), the loss curves become
bottlenecked by training time alone and not model size (Vyas et al., 2023; Bordelon & Pehlevan, 2022; Yang & Littwin,
2023). What is interesting about the collapse that happens under compute-optimal training is that γ is tuned (to ν/µ in
this example) so that more than one such term exists, so the collapse reflects a balanced scaling of both training time
and model size. This fine balance is also why minor perturbations to γ from the optimal value can significantly disrupt
the collapse, which is not true if there is only one dominant power law.
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Figure 11: Sum-of-power-laws fit on additional datasets. Both tasks have loss curves that can be approximated by the sum of two
power laws when using a constant learning rate schedule. Fitted constant multipliers are not shown in the legend. To not fit to early-time
transients, we fit all steps after the first 0.1B tokens for MLPs, and all steps after the first 0.1× the compute-optimal horizon for chess.
The fit for chess is worse than the other datasets.

G. A Perturbative Model of Learning Rate Schedules
Let w′ denote the parameter trajectory under the influence of gradient noise. The dynamics of stochastic gradient descent in
gradient flow time are given by

dw′

dτ
= −

(
∇L(w′) + Σ1/2(w′)ξ(τ)

)
, (55)

with noise correlation E[ξ(τ)ξ(τ ′)⊤] = η(τ)δ(τ − τ ′). For convenience, we rewrite this using ξ(τ) = η1/2(τ)ξ̃(τ) so that

dw′

dτ
= −

(
∇L(w′) + η1/2(τ)Σ1/2(w′)ξ̃(τ)

)
, (56)

where now E[ξ̃(τ)ξ̃(τ ′)⊤] = δ(τ − τ ′).
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Our strategy is to solve w′(τ) as w(τ) + δw(τ) where w(τ) is the deterministic trajectory satisfying dw
dτ = −∇L(w), up to

leading order in the gradient noise scale ηΣ.

Letting δw := w′ − w, g := ∇L and taking the difference of the two differential equations:

d(δw)

dτ
= −

(
g(w′)− g(w) + η1/2(τ)Σ1/2(w′)ξ̃(τ)

)
. (57)

At first order,

g(w′) ≈ g(w) +H(w)δw (58)

where H(w) = ∇2L(w) is the Hessian.

Our SDE for δw becomes:

d(δw)

dτ
= −H(w)δw − (ηΣ)1/2ξ̃(τ) (59)

We define the propagator G(τ, s) that satisfies:

dG(τ, s)

dτ
= −H(w(τ))G(τ, s) (60)

with G(s, s) = I .

For time-dependent H(w(τ)), the propagator is:

G(τ, s) = T exp

(
−
∫ τ

s

dλH(w(λ))

)
(61)

where T denotes time-ordering.

Assuming the initial perturbation δw(0) = 0, the solution for δw is:

δw(τ) = −
∫ τ

0

dsG(τ, s)(ηΣ)1/2(s)ξ̃(s). (62)

Now expanding L(w′) = L(w + δw) to second order in δw gives

δL(τ) = L(w′(τ))− L(w(τ))

≈ g(w(τ))
⊤
δw(τ) +

1

2
δw(τ)⊤H(w(τ)) δw(τ). (63)

Since E[ξ̃(s)] = 0 and δw is linear in ξ̃, E[δw(τ)] = 0, so

E
[
g(w(τ))⊤δw(τ)

]
= 0. (64)

Thus the leading non-vanishing contribution to the expected loss shift comes from the quadratic term.

Using the solution for δw,

δw(τ) δw(τ)⊤ =

∫ τ

0

ds

∫ τ

0

du G(τ, s)(ηΣ)1/2(s)ξ̃(s)ξ̃(u)⊤(ηΣ)1/2(u)G(τ, u)⊤. (65)

Taking the expectation with E[ξ̃(s)ξ̃(u)⊤] = δ(s− u) I gives

E
[
δw(τ) δw(τ)⊤

]
= E

[∫ τ

0

ds G(τ, s) η(s)Σ(w′(s))G(τ, s)⊤
]
. (66)
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Substituting this into the quadratic term gives

E[δL(τ)] =
1

2
E
[∫ τ

0

ds Tr
[
H(w(τ))G(τ, s) η(s)Σ(w′(s))G(τ, s)⊤

]]
. (67)

Using Tr[ABC] = Tr[CAB],

E[δL(τ)] =
1

2
E
[∫ τ

0

ds Tr
[
G(τ, s)⊤H(w(τ))G(τ, s)η(s)Σ(w′(s))

]]
. (68)

This equation is the exact leading-order expression for the noise-induced change in expected loss, which is the equivalent
of E(τ) in Equation (10). The deterministic loss L(w(τ)) now plays the role of F(τ) in Equation (14). Conceptually, the
derivation shows that—although the full dynamics are non-linear and the loss is not assumed quadratic—the perturbation
generated by small gradient noises behaves in a simple, linear-quadratic fashion: the weight perturbation δw is linear in the
injected noise, and the resulting loss shift δL is quadratic in that perturbation.

Consequently the derivation and final formula completely mirrors the familiar quadratic-loss result, the only difference
being that the constant Hessian H is now replaced by the time-dependent Hessian H(w(τ)) carried along the deterministic
trajectory. In other words, small gradient noise “sees” the network through an instantaneous linearization, so all schedule
effects enter through the propagator G(τ, s), the local Hessian, and the noise covariance, exactly as in the linear case.

Relation to Stochastic Asymptotic Expansion. Li et al. (2017) used stochastic asymptotic expansion to expand the
dynamics in orders of η1/2, but they treat the gradient-noise covariance differently. The stochastic asymptotic expansion in
Li et al. (2017) first expands the diffusion term along the deterministic path, so Σ can be propagated analytically order by
order. Our derivation instead keeps the exact Σ(w′(s)) inside the leading-order integral, allowing an empirically measured
covariance to be inserted without further approximation, at the cost of analytic closure.

Slow-Variation and Late-Time Limit. As in the quadratic loss case, we can simplify the result under an adiabatic
approximation where the Hessian, schedule, and noise covariance changes slowly compared to the time-scale set by the
instantaneous Hessian. Specifically, if H(w(t)) ≈ H(w(τ)) := H over the support of G(τ, s)⊤H(w(τ))G(τ, s), then
G(τ, s) ≈ e−H(τ−s) and G(τ, s)⊤HG(τ, s) ≈ H e−2H(τ−s). Assuming the exponential decay is fast compared to the
variation of the noise scale ηΣ, and taking τ → ∞, we have

E[δL(τ)] ≈ 1

4
Tr
[
η(τ)Σ̄(w′(τ))

]
, (69)

which agrees with the expression for E(τ) in Equation (14) for the quadratic loss setting.

Adaptive Optimizers. When using adaptive optimizers with a preconditioner P (t), the SDE becomes

dw′

dt
= −η(t)P−1(t)

(
∇L(w′) + Σ1/2(w′)ξ(t)

)
. (70)

The gradient flow time SDE in Equation (56) becomes

dw′

dτ
= −P−1(τ)

(
∇L(w′) + η1/2(τ)Σ′1/2ξ̃(τ)

)
, (71)

where we abbreviated Σ(w′) as Σ′. If the preconditioner varies slowly, the dynamics can be treated as if there is no
preconditioner, but in a transformed coordinate system:

w̃′(t) = P 1/2(t)w′(t). (72)

Differentiating and neglecting the O(Ṗ ) term gives

dw̃′

dτ
= P 1/2 dw

′

dτ
= −P−1/2

(
∇L(w′) + η1/2Σ′1/2ξ̃

)
(73)

= −g̃(w̃′)− (ηP−1Σ′)1/2ξ̃︸ ︷︷ ︸
noise

. (74)
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The deterministic trajectory in this coordinate system (w̃(t) = P 1/2(t)w(t)) satisfies

dw̃

dτ
= −g̃(w̃). (75)

To dervie the SDE for δw̃ := w̃′ − w, at first order, we have

g̃(w̃′)− g̃(w̃) = P−1/2Hδw = P−1/2HP−1/2δw̃ := H̃δw̃, (76)

where H̃ is the preconditioned Hessian. Therefore,

dδw̃

dτ
= −H̃δw̃ − (ηP−1Σ′)1/2ξ̃, (77)

It is also easy to show that the preconditioned Hessian indeed governs the leading order perturbation to the expected loss in
the transformed coordinates

E[δL] ≈ 1

2
E[δw̃⊤H̃δw̃]. (78)

Given Equation (77) and Equation (78), all steps in the previous derivation now applies after swapping H → H̃ and
Σ′ → P−1/2Σ′P−1/2 := Σ̃′. The final result for the noise-induced loss perturbation in the slow-variation and late-time
limit is

E[δL(τ)] ≈ 1

4
Tr
[
η(τ) ¯̃Σ(w′(τ))

]
. (79)

Limitations. It is worth highlighting some limitations of our analysis. First, due to the non-linear nature of neural networks,
it is known that gradient flow can fail to model full-batch gradient descent with a finite step size, which exhibits effects such
as the Edge of Stability (Cohen et al., 2021; 2022; 2024). Similarly, in the stochastic case, there is a strong coupling between
learning rate, batch size, and the Hessian spectrum (Agarwala & Pennington, 2024). These phenomena suggest that it is
unlikely that we can fully model the effect of a time-varying learning rate schedule simply as injecting a schedule-dependent
noise component on top of the deterministic trajectory that is itself independent of the schedule, as changing the learning
rate also pushes the model into different regions of the parameter space based on curvature (though it is possible that the
leading-order perturbation theory can already capture this effect to some extent).

Second, when dealing with adaptive optimizers, we assumed the preconditioner stays the same (as a function of τ ) between
the deterministic and stochastic trajectories. For typical optimizers, such as Adam (Diederik P. Kingma, 2015), this
assumption is not correct as P depends on the gradient covariance, which can differ between the two trajectories, i.e.,
Σ(w(τ)) ̸= Σ(w′(τ)). This can introduce an additional term in the SDE for δw̃, present even at first order, which we did
not model.

The empirical effectiveness of our model for predicting the loss curves under different schedules suggests it is nevertheless on
the right track, and that there may be other ways to derive similar or improved predictions with more accurate assumptions.

H. Computing ∆̃ to Leading Order

Let ψ(τ) = L(τ)−L̄(τ)
L̄(τ)

and define

∆̃2(τ) = E
[
(ψ(τ)− ψ(τ⋆))2

]
(80)

with τ⋆ = τ + δτ and 0 < δτ ≪ 1. Because L̄(τ⋆)−1 = L̄(τ)−1 +O(δτ),

∆̃2(τ) = L̄−2(τ)E
[
(∆L(τ)−∆L(τ⋆))2

]
+O(δτ2), (81)

where ∆L(τ) = L(τ)− L̄(τ). For the quadratic model,

∆L(τ) = g(τ)⊤∆w(τ) (82)
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to first order in

∆w(τ) =

∫ τ

0

ds e−H(τ−s)Σ1/2(s) ξ(s) (83)

with

E[ξ(s)ξ(s′)] = η(s)δ(s− s′)I. (84)

Splitting the upper limit at τ and expanding g(τ⋆) = g(τ) +O(δτ) gives

∆L(τ)−∆L(τ⋆) = g(τ)⊤
∫ τ⋆

τ

ds e−H(τ⋆−s)Σ1/2(s) ξ(s)︸ ︷︷ ︸
O(δτ1/2)

+O(δτ) (85)

where the remainder collects two subleading O(δτ) contributions:

R1 := g(τ)⊤
∫ τ

0

ds
[
e−H(τ⋆−s) − e−H(τ−s)

]
Σ1/2(s) ξ(s), (86)

R2 := [g(τ⋆)− g(τ)]
⊤
∆w(τ) = ġ(τ)⊤∆w(τ) δτ +O(δτ2). (87)

Using e−H(τ⋆−s) = I +O(δτ), η(s) = η(τ) +O(δτ), and Σ̄(s) = Σ̄(τ) +O(δτ) inside the leading-order integral,

E
[
(∆L(τ)−∆L(τ⋆))2

]
= g(τ)⊤

∫ τ⋆

τ

ds η(s) e−2H(τ⋆−s)Σ̄(s)g(τ) +O(δτ2) (88)

= g(τ)⊤η(τ)Σ̄(τ)g(τ) δτ +O(δτ2). (89)

Substituting this into the expression for ∆̃2(τ) yields the desired result

∆̃2(τ) = L̄−2(τ) g(τ)⊤η(τ)Σ̄(τ)g(τ) δτ +O(δτ2). (90)

I. Additional Results on Learning Rate Schedules
MLP fits. Figure 12 shows our predictions for MLP loss curves. With a single α = 0.26 (very close to 1/4), we obtain
excellent fits across schedules, model sizes, and training horizons.
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Figure 12: A simple model predicts MLP loss curves trained across learning rate schedules, model sizes p, and training horizons T
on the synthetictic regression task. Dashed curves show the predicted loss as L′(τ) = L(τ) + α δη(τ)Tr(Σ′(τ)) (Equation (18)). α is
the only free parameter and is set to 0.26. Each curve is smoothed with an exponential moving average with half life equal to 1% of total
steps.

Effect of Dropping ηTr(δΣ). Figure 13 (top row) shows δηTr(Σ′) is typically 3 to 10 times than ηTr(δΣ) in absolute
value in both CIFAR-5M transformer and MLP regression experiments. Since we decay the learning rate to zero (δη is
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comparable η), this means the gradient covariance does not change much between the constant learning rate and other
schedules, which can happen if the Hessian trace does not change much. The fact that this ratio is only moderately large
shows that the gradient covariance or the Hessian trace did change considerably due to decaying the learning rate, which is
what we expect due to a generically inverse relation between learning rate and Hessian eigenvalues (Cohen et al., 2021;
Agarwala & Pennington, 2024). However, somewhat puzzlingly, we found that including the smaller term ηTr(δΣ) can
produce worse fits, particularly for the slow oscillatory schedule (0.5 cos(3πx)), and makes the optimal constant α more
schedule-dependent.
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Figure 13: Out of the two terms that make up Tr(δ(ηΣ)), the term ηTr(δΣ) is typically 3 to 10 times smaller than δηTr(Σ′) (top row).
Moreover, including it sometimes produces a worse fit and make the optimal α vary more across schedules (bottom row). We determine α
for each schedule by matching the prediction with the observation at the end point.
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Figure 14: Universality of gradient noise in MLPs. Fixing a learning rate schedule, the ratio Tr(Σ)/L is approximately a function of
normalized compute alone, independent of model size. On this regression task, the estimated irreducible loss is negligible so L ≈ L.
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