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Abstract

Understanding neural network training dynamics
at scale is an important open problem. Although
realistic model architectures, optimizers, and data
interact in complex ways that make predictive the-
ory challenging, we show that compute-optimally
trained models exhibit remarkably precise collec-
tive regularities. Specifically, loss curves from
models of varying sizes collapse onto a single
universal curve when training compute and loss
are normalized to unity at the end of training.
With learning rate decay, discrepancies between
normalized curves fall below the noise floor of
individual models’ loss curves across random
seeds, yielding an exceptionally tight collapse we
term “supercollapse.” We observe supercollapse
across learning rate schedules, datasets, and archi-
tectures, including transformers trained on next-
token prediction. This collapse breaks down when
hyperparameters are scaled suboptimally, provid-
ing a practical indicator of proper scaling. We ex-
plain these phenomena by connecting collapse to
the power-law structure in typical neural scaling
laws, and analyzing a simple but effective model
of SGD noise dynamics that accurately captures
how learning rate schedules deform loss curves
away from power laws while preserving univer-
sality, and why learning rate decay suppresses
variance to enable supercollapse.

1. Introduction
As machine-learning systems grow in parameters, data, and
compute, accurate predictive models of their training dy-
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namics become increasingly valuable—both for interpret-
ing costly experiments and for designing robust, efficient
training pipelines (Wortsman et al., 2023; Achiam et al.,
2023; Xiao, 2024). Yet the sheer complexity of modern
architectures, optimizers, and datasets often renders exact,
first-principles analyses intractable.

Nevertheless, recent work shows that key aspects of train-
ing become predictable when we shift focus from individ-
ual models to their collective scaling behaviour. Examples
include power-law relations among optimal loss, model
size, dataset size, and compute budget (Kaplan et al., 2020;
Sharma & Kaplan, 2022; Hoffmann et al., 2022), as well as
hyperparameter transfer from small to large models (Yang
et al., 2021; Bordelon et al., 2023; Everett et al., 2024; Bor-
delon et al., 2024c).

In this work, we push this line of inquiry further, showing
that the loss curve throughout training — not just the final
loss — follows remarkably precise scaling. Across archi-
tectures, datasets, and learning rate schedules, we show that
compute-optimal models of different sizes have loss curves
that collapse onto a single universal curve after a simple
normalization. Learning rate decay amplifies this effect dra-
matically, producing what we call supercollapse: collapse
so tight that cross-scale differences fall below the noise floor
of individual models’ loss due to random seeds. Beyond
its theoretical interest, supercollapse provides a practical
scaling diagnostic, as we find that deviations from collapse
can signal misconfigured scaling choices, from improper
learning rate scaling to suboptimal training horizons.

Our theoretical analysis reveals the key mechanisms behind
this precise collapse. We first prove that for loss curves
following typical neural scaling laws (sums of power laws),
collapse occurs precisely when models are trained for con-
stant multiples of their compute-optimal horizons. We then
analyze a simple theoretical model of the SGD noise dy-
namics that predicts how learning rate schedules transform
these curves, which explains two key observations: why
normalized curves retain universal form despite losing their
power-law structure, and how learning rate decay suppresses
variance to produce supercollapse.

We make our code available here.

1

https://github.com/shikaiqiu/supercollapse.git


Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks

103 104

Compute (PetaFLOPs)

3.16

3.17

3.18

3.19

3.20
L

os
s

L0 + ac−b

a = 0.178

b = 0.196

L0 = 3.134

102 103 104

Compute (PetaFLOPs)

0.650

0.675

0.700

0.725

0.750

L
os

s

L0 + ac−b

a = 0.341

b = 0.122

L0 = 0.549

103 104

Compute (PetaFLOPs)

3.16

3.17

3.18

3.19

L
os

s

L0 + ac−b

a = 0.154

b = 0.191

L0 = 3.132

102 103 104

Compute (PetaFLOPs)

0.650

0.675

0.700

0.725

0.750

L
os

s

L0 + ac−b

a = 0.328

b = 0.115

L0 = 0.542

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Compute

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

L
os

s

Width

768

896

1024

1152

1280

1536

1792

2048

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Compute

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

L
os

s

Width

768

896

1024

1152

1280

1536

1792

2048

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Compute

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

L
os

s

Width

768

896

1024

1152

1280

1536

1792

2048

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Compute

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

L
os

s

Width

768

896

1024

1152

1280

1536

1792

2048

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Compute

10−4

10−3

10−2

10−1

R
el

.
V

ar
ia

ti
on

Collapse tolerance ∆

Noise floor σ

(a) CIFAR-5M

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Compute

10−5

10−4

10−3

10−2

R
el

.
V

ar
ia

ti
on

Collapse tolerance ∆

Noise floor σ

(b) Chess

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Compute

10−4

10−3

10−2

10−1

R
el

.
V

ar
ia

ti
on

Collapse tolerance ∆

Noise floor σ

(c) CIFAR-5M (LR decay)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Compute

10−5

10−4

10−3

10−2

R
el

.
V

ar
ia

ti
on

Collapse tolerance ∆

Noise floor σ

(d) Chess (LR decay)

Figure 1: Scaling collapse of compute-optimal loss curves for transformers on next-token prediction tasks. (Top) Compute-optimal
loss curves across different model sizes with fitted scaling laws for each task. (Middle) Normalized reducible loss curves, where both
final compute and reducible loss are normalized to unity. These curves collapse onto a single universal curve, independent of model size.
(Bottom) Quantification of collapse quality. We measure (i) the noise floor σ: relative variation in reducible loss across random seeds for
individual models, and (ii) the collapse tolerance ∆: relative variation in normalized reducible loss across all models and seeds. (a-b)
Without learning rate decay, normalized curves collapse with tolerance comparable to the noise floor. (c,d) With linear learning rate decay,
we observe “supercollapse”, where the collapse tolerance is significantly smaller than the noise floor for a substantial fraction of training.
In the top and middle rows, solid lines represent the estimated mean with 90% confidence interval shown in shaded regions.

2. Empirical Observations
In this section, we demonstrate the central empirical finding
of our work: loss curves from compute-optimally trained
models collapse to a single universal curve under appro-
priate affine rescaling, often with surprising precision. We
verify this phenomenon in transformer and MLP architec-
tures across multiple datasets with various learning rate
schedules. We then quantify the quality of this collapse and
identify the key conditions required to achieve it.

2.1. Experiment Setup

To study compute-optimal training dynamics, we need an
experimentally tractable scaling ladder — a procedure for
training a sequence of models with increasing compute,
with hyperparameters that promote compute-optimal per-
formance. We consider both Transformers on next-pixel
prediction tasks and MLPs on a synthetic regression task.
We scale the model size by increasing the width (embedding
dimension) and keeping depth fixed unless stated otherwise.
While our experiments are limited in scale, small-scale prox-
ies have been shown to capture training behaviors that gener-
alize to larger systems (Wortsman et al., 2023). We provide
complete data and architecture specifications and training

protocols in Appendix A.

Transformers Next-Token Prediction. We use decoder-
only Transformers with embedding dimensions ranging
from 768 to 2048, keeping the number of Transformer
blocks fixed at 3. This results in models with parameters
ranging from 12M to 79M, approximately log-uniformly
spaced. We train on next-token prediction tasks using two
datasets: 1) CIFAR-5M (Nakkiran et al., 2020), a dataset
of 6M generated CIFAR-like images, and 2) Lichess, a col-
lection of chess games recorded in algebraic chess notation.
All models use µP parameterization (Yang & Hu, 2021;
Yang et al., 2021) for initialization and learning rates, and
are trained with Adam (Diederik P. Kingma, 2015). We
include a depth-scaling experiment in Appendix B, finding
similar results.

MLPs on Power-Law Fourier Features. To investigate
other architectures and training objectives, we train MLP
models with varying widths from 512 to 4096 on a synthetic
regression task. The target function has a power-law Fourier
spectrum, designed to elicit the power-law scaling laws
observed in natural data. We count each example as 1 token.
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2.2. Notation and Scaling Law Estimation

Let L(t, p, ω) be the loss after t tokens (proportional to
steps) on a model with p parameters using random seed
ω. Denote L̄(t, p) = Eω[L(t, p, ω)] the seed-averaged ex-
pected curves. We estimate Eω[·] using 5 seeds throughout
this paper. We always report the test loss on heldout data.

We estimate the optimal number of tokens t⋆(p) for a p-
parameter model as t⋆(p) = (p/p0)

γ , where γ is the data
exponent, by extracting the Pareto frontier of expected loss
vs. compute under a constant learning rate schedule, follow-
ing a procedure similar to Approach 1 in Hoffmann et al.
(2022). We estimate compute as c = 6tp FLOPs (Kaplan
et al., 2020). We reuse the same t⋆(p) as the training hori-
zon for other learning rate schedules. For each task and
schedule, we fit the resulting compute-optimal scaling law
using the form L0 + ac−b (Figure 1, top row), for con-
stants L0, a, b ≥ 0. Following (Sharma & Kaplan, 2022;
Hoffmann et al., 2022), we refer to L0 as the estimated irre-
ducible loss. Using the best-fit L0, we define the reducible
loss curve L(t, p, ω) = L(t, p, ω) − L0 and its expected
value L̄(t, p) = Eω[L(t, p, ω)]. We detail the procedure for
fitting the compute-optimal training horizon in Appendix C.

2.3. Scaling Collapse of Compute-Optimal Loss Curves

The loss curves for different model sizes cover varying
ranges of compute and loss values, but appear to follow
a consistent shape, which motivates us to affinely rescale
them to the normalized loss curve ℓ given by

ℓ(x, p, ω) =
L(xt⋆(p), p, ω)− L̂

L(t⋆(p), p, ω)− L̂
, x ∈ [0, 1], (1)

for some offset L̂ > 0. We refer to x as the normalized
compute, as it measures the compute spent for training each
model, normalized by its total compute budget. Note that the
transformation depends on the random seed ω via the loss at
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Figure 2: Subtracting irreducible loss leads to the best collapse.
Setting L̂ to values far from L0 breaks the collapse on CIFAR-5M.
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Figure 3: Supercollapse occurs across a variety of learning rate
schedules. Each model is trained for the amount of compute that
is estimated to be optimal under a constant learning rate. The
universal curve is schedule-dependent, and collapse is best near
the endpoint and when the learning rate is decreasing.

compute optimality for the particular curve being rescaled.
We set L̂ = L0 to subtract the estimated irreducible loss
that bottlenecks the performance of large models, leading to
ℓ(x, p, ω) = L(xt⋆(p),p,ω)

L(t⋆(p),p,ω) .

Remarkably, we observe that the family of normalized loss
curves is nearly identical across p, revealing equal rates
of relative progress (Figure 1, middle row). We say these
curves collapse, as the phenomenon resembles the ubiq-
uitous scaling collapse found in statistical physics, where
observables from systems of different sizes collapse onto
a single curve after appropriate rescaling, e.g. the rescaled
magnetization-vs.-temperature curves of Ising lattices of
different sizes collapse near criticality (Binder, 1981). The
choice L̂ = L0 is in fact necessary for the collapse (Fig-
ure 2).

2.4. Quantifying the Collapse Quality

We quantify the quality of collapse using the collapse toler-
ance ∆, defined as:

∆(x) =
Vp,ω[ℓ(x, p, ω)]

1/2

Ep,ω[ℓ(x, p, ω)]
, (2)

where Ep,ω and Vp,ω denote the expectation and variance
over the random seed and the empirical distribution of model
size p in the scaling ladder (approximately log-uniformly
distributed). The collapse tolerance represents the typical
deviation between any two normalized loss curves for differ-
ent p. For perspective, we can compare ∆(x) to the relative
noise floor σ(x, p)

σ(x, p) =
Vω[L(xt⋆(p), p, ω)]1/2
Eω[L(xt⋆(p), p, ω)]

, (3)

which measures the relative fluctuation in the loss curve due
to the random seed for a fixed model size p.

By the definition of ℓ, the collapse tolerance is always 0 at
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Figure 4: Suboptimally scaling key hyperparameters breaks the collapse. Even changes that only lead to minor worsening in the
scaling law for small models can manifest as significant disruption to the collapse. (Top) Replacing µP with a constant learning rate cross
models for MLPs. (Bottom) Increasing the data exponent γ from estimated compute-optimal value 1.02 to 1.2. for Transformer trained
on chess. We perform a separate power-law fit to determine the value L0 for each scaling ladder.

x = 1. For a constant learning rate, ∆(x) (solid green line)
quickly rises to a level comparable to σ(x, p) (dashed lines)
(Figure 1(a-b), bottom row), and remains at that level for
most x. This shows that variations in the normalized curves
arise primarily from seed-to-seed fluctuations rather than
model-to-model differences, quantitatively demonstrating
that the observed collapse is non-trivial.

2.5. Supercollapse: Consistency Below the Noise Floor

Remarkably, for decaying learning rate schedules, we find
that the collapse tolerance is less than the noise floor for a
significant fraction of training; that is, ∆(x) < σ(x, p) for
x > 1− δ for some moderate δ as large as 0.5 (Figure 1 (b-
d), bottom row). We refer to this stronger form of collapse
as supercollapse. Supercollapse appears for any learning
rate schedule which decays to a small value at the end of
training (Figure 3).

When supercollapse occurs, self-normalized reducible loss
curves from different models collapse better than our ability
to predict any individual model’s loss. The key to supercol-
lapse is the fact that the normalization uses the final loss of
the specific loss curve, which leads to variance reduction
by exploiting correlations at different times along a single
optimization trajectory. We explain this phenomenon in
detail in Section 3.3.

2.6. Suboptimal Scaling Breaks Supercollapse

Supercollapse provides a practical method for comparing
inherently noisy training loss curves across model scales

with precision that exceeds naive noise floor estimates, with-
out the need for expensive multi-seed experiments typically
required to obtain equally clean signals. This comparison
can provide valuable diagnostic information about scaling
where the ability to distinguish small signal from noise is
often crucial (Xiao, 2024), which we now demonstrate.

Model Parameterization. Carefully parameterizing the
model, i.e., scaling the initialization, learning rate, and pos-
sibly other hyperparameters as model size increases, is cru-
cial for achieving stable and efficient training at scale (Yang
et al., 2021; Bordelon et al., 2023; 2024c; Everett et al.,
2024). When models are trained in the wrong parameteri-
zation, we expect the loss curves not to collapse due to a
lack of consistent training dynamics across scales. Using
the MLP setup, we show that replacing µP with a constant
learning rate across widths breaks the collapse (Figure 4,
top row). Remarkably, the normalized loss curves exposes
inconsistent dynamics even in small models where the final
losses are virtually identical between constant and µP scal-
ing—demonstrating that collapse is a more sensitive probe
of scaling behavior than final performance alone.

Compute-Optimal Data Exponent. For language models,
Kaplan et al. (2020) showed that compute-optimal training
corresponds to training each model to a fixed multiple of
its converged loss. If this principle generalizes to our set-
ting, the data exponent γ should match the compute-optimal
value for collapse to occur. Indeed, when γ exceeds the
optimal value, larger models will make more rapid relative
initial progress but decelerate later as a function of nor-
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Figure 5: Scaling collapse from sum of power-law curves. (a) CIFAR-5M loss curves without learning rate decay agree well with the
sum-of-power-laws fit L(t, p) = L0 + t−µ + p−ν , a form commonly observed in natural data. We fit steps between 0.1× and 10×
the compute-optimal training horizon. (b) Simulated exact sum-of-power-laws loss curves show scaling collapse precisely when the
data exponent γ is the theoretical compute-optimal value γ⋆. Small variations of γ around γ⋆ lead to nearly negligible worsening in the
resulting scaling law but dramatically disrupt the collapse.

malized compute, causing their normalized curves to shift
downward. We indeed find this shift in Figure 4 (bottom
row). This sensitivity suggests a novel application: rather
than fitting power laws to sparse points on the Pareto frontier,
one could tune γ to maximize collapse quality, leveraging
the full statistical power of entire loss curves.

3. Explaining Loss Curve Scaling Collapse
In this section, we investigate theoretical explanations for
the scaling collapse of compute-optimal loss curves and
supercollapse. Our analysis starts with a simple observa-
tion: the numerator of the collapse tolerance ∆(x) can be
decomposed as:

Vp,ω[ℓ(x, p, ω)] = VpEω[ℓ(x, p, ω)] + EpVω[ℓ(x, p, ω)].
(4)

The first term corresponds to the variation between different
scales p after averaging over all sources of randomness. We
will first show how this term can be small:

• In Section 3.1, we prove that for a family of power-
law neural scaling laws, compute-optimal loss curves
indeed collapse after normalization. We show loss
curves in our experiments fall into this family when
using a constant learning rate schedule.

• In Section 3.2, we develop a simple theoretical model
that successfully predicts the empirical loss curves un-
der various learning rate schedules and explains why
they collapse despite deviating from power laws. Given
its effectiveness, we believe this model has value for
understanding learning rate schedules more broadly.

We then analyze the second term, which captures the loss
variance due to random seeds, averaged across model sizes:

• In Section 3.3, we show the same noise model enables
us to reason about the noise in the loss curves, and
quantitatively predict the variance reduction effect in
supercollapse.

Together these findings provide an initial theoretical expla-
nation for supercollapse, and uncover promising directions
for future theoretical work.

3.1. Scaling Collapse from Power-Law Scaling

In this section, we consider deterministic models of the loss
curves and assume all randomness has been averaged out.

Power-Law Pareto Frontier is Necessary. Given a family
of loss curves L(t, p), if L(t, p) is differentiable in both t
and p, the compute-optimal loss frontier after subtraction
of L̂ must be a power law in order for our affine transfor-
mation to induce scaling collapse (proof in Appendix D).
This motivates our choice L̂ = L0 since, by definition, L0

is the offset that best induces a power law Pareto frontier.
However, this is not sufficient to explain scaling collapse,
which requires a more explicit form of L(t, p).

Neural Scaling Laws. Motivated by empirical neural scal-
ing laws in natural data1 (Hestness et al., 2017; Kaplan et al.,
2020; Hoffmann et al., 2022), we consider expected loss
curves following a sum-of-power-laws scaling of the form

L(t, p) = L0 + t−µ + p−ν (5)

for constants L0 ≥ 0, µ, ν > 0, with potential constant
multipliers absorbed via an appropriate choice of units. In
Figure 5a, we show the CIFAR-5M loss curves are well-fit
by Equation (5) if trained under a constant learning rate

1Note in Hoffmann et al. (2022), this form is only shown to
hold for the loss at end of training.
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schedule (averaged across 5 seeds). We also find decent fits
in other datasets in Figure 11.

Equivalence by Balance of Power Laws. As before, let
t⋆(p) denote the training horizon. We will examine con-
ditions under which t⋆(p) (a) is compute-optimal, and (b)
results in scaling collapse. We assume deterministic loss
curves for now and omit the argument ω. To find compute-
optimal t⋆(p), we fix c so that t(p) = c/(6p) and minimize
the loss L(t(p), p) = t(p)−µ + p−ν with respect to p by
setting dL/dp = 0:

∂L
∂t

dt

dp
+
∂L
∂p

= −µt−µ−1(−t/p)− νp−ν−1 = 0 (6)

⇐⇒ µt−µ = νp−ν (7)

which yields the relation t⋆(p) = r−1/µpν/µ, with r =
ν/µ. Under this scaling, the normalized loss curves are:

ℓ(x, p) =
(xt⋆)−µ + p−ν

(t⋆)−µ + p−ν
=
rx−µ

�
�p−ν +�

�p−ν

r�
�p−ν +�

�p−ν
=
rx−µ + 1

r + 1
.

(8)

All p dependences cancel, leaving the final expression inde-
pendent of p and giving us an exact collapse. Moreover, it is
clear that this is the unique choice for t⋆(p) up to a constant
multiplier that leads to such cancellation. This agreement is
not an accident: compute-optimal scaling requires balancing
the derivatives of two power laws, while collapse requires
balancing the power laws themselves. The properties of
power laws under differentiation make these two conditions
coincide, up to a multiplicative constant.

In Figure 5b, we numerically verify the agreement between
collapse and compute-optimal scaling. When the data expo-
nent γ deviates from the optimal value ν/µ, we observe a
suboptimal scaling law and no collapse. Note that the ab-
sence of an irreducible term in ℓ is also necessary. Had we
set L̂ = L0 +E for some E ̸= 0 in Equation (1), we would
instead have ℓ(x, p) = (xt⋆)−µ+p−ν+E

(t⋆)−µ+p−ν+E , where no t⋆(p) can
leave the numerator and denominator homogeneous in p.

In Appendix E, we study the more general form

L(t, p) = L0 +

m∑
i=1

ait
−µip−νi , (9)

which naturally arises in theoretical models of neural scaling
laws (Paquette et al., 2024b; Bordelon et al., 2024a;b), and
prove that compute-optimality implies scaling collapse by
balancing the two dominant terms, though with m > 2
the collapse is only exact asymptotically due to finite-size
effects.

Together with the close empirical fit in Figure 5a, this anal-
ysis provides a good explanation for scaling collapse in the

constant learning rate setting; however Equation (5) fails to
fit the empirical loss curves with most learning rate sched-
ules, as varying the learning rate breaks the power law form
of the individual loss curves, clearly shown in Figure 3,
though it does retain the power law Pareto frontier (Figure 1
(b-d)). In the next section we develop a model of the noise
dynamics in gradient descent that explains how collapses
under one schedule can transfer to other schedules.

3.2. Universality of Learning Rate Schedules

To understand why scaling collapse is robust across learning
rate schedules, we develop a quantitative model for how
learning rate schedules affect the loss curves. While an
exact theoretical model seems out of reach for the realis-
tic training setup, we show that a simple model based on
quadratic loss analysis proves surprisingly effective. Un-
der this model, we demonstrate that although learning rate
schedules deform the loss curves in a schedule-dependent
way, the deformation is approximately independent of p.
We consider stochastic effects that depend on the random
seed ω, but omit ω as an explicit argument for brevity.

3.2.1. A SIMPLE MODEL FOR LR SCHEDULES

Let w(t) and L(w(t)) denote the parameters and loss at
step t, we can model the dynamics of full-batch gradient
descent under a small learning rate η(t) with a gradient flow
dw
dt = −η(t)∇L(w(t)). To model stochastic effects, a noise

term is added to the gradient, leading to the SDE (Malladi
et al., 2022)

dw

dt
= −η(t)

(
∇L(w) + Σ1/2(w)ξ(t)

)
, (10)

where the mini-batch gradient noise Σ1/2(w)ξ(t) is inde-
pendent across t, satisfying E[ξ(t)ξ(t′)] = δ(t− t′)I, and
we allow its covariance (which depends on batch size) Σ(w)
to be a function of the parameters. In gradient flow time
τ(t) =

∫ t

0
η(s)ds, we have

dw

dτ
= −

(
∇L(w) + Σ1/2(w)ξ(τ)

)
, (11)

and E[ξ(τ)ξ(τ ′)] = δ(t− t′)I = η(τ)δ(τ − τ ′)I. For con-
venience, we overload the notation and use η(τ), w(τ), and
L(τ) to denote the evolution of these quantities in gradient
flow time.

Quadratic Loss. For the moment, let us suppose the loss
function is quadratic L(w) = L0 +

1
2w

⊤Hw, where we as-
sume the minimum is at the origin without loss of generality.
Then ∇L(w) = Hw and the dynamics becomes a linear
system driven by noise Σ1/2(w)ξ(τ), with the solution

w(τ) = e−Hτw(0) +

∫ τ

0

ds e−H(τ−s)Σ1/2(w(s))ξ(s).

(12)
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Figure 6: A simple model predicts Transformer loss curves trained across learning rate schedules, model sizes p, and training
horizons T on CIFAR-5M. Dashed curves show the predicted loss as L̄′(τ) = L̄(τ) +α δη(τ)Tr(Σ′(τ)) (Equation (20)). α is the only
free parameter and is set to 0.42. Each curve is smoothed with an exponential moving average with half life equal to 1% of total steps.

Letting Σ̄(s) = E[Σ(w(s))], the expected loss is then given
by

L̄(τ) = L0 +
1

2
E
[
w(0)⊤He−2Hτw(0)

]
︸ ︷︷ ︸

F(τ)

+
1

2

∫ τ

0

ds η(s) Tr
(
Σ̄(s)He−2H(τ−s)

)
︸ ︷︷ ︸

E(τ)

. (13)

The first term F (τ) is the forcing function, equal to the
reducible loss curve in the deterministic limit ηΣ → 0 and
is independent of the learning rate schedule. The second
term E(τ) is the excess loss due to SGD noise, which is a
sum of exponential moving averages (up to normalization)
of the gradient variance scaled by the learning rate over each
eigenmode. Note that substituting in the specific Σ recovers
the convolutional Volterra equation for high-dimensional
linear regression analyzed in Paquette et al. (2021; 2024a).

If ηΣ̄ varies slowly compared to the timescale of the expo-
nential moving average, we can make the approximation
η(s)Σ̄(s) ≈ η(τ)Σ̄(τ) inside the integrand, giving us:

E(τ) ≈ 1

2
Tr

(
η(τ)Σ̄(τ)H

∫ τ

0

ds e−2H(τ−s)

)
(14)

=
1

4
Tr

(
η(τ)Σ̄(τ)

(
1− e−2Hτ

))
. (15)

For large τ the expected loss is then approximately

L̄(τ) ≈ L0 + F (τ) +
1

4
η(τ) Tr

(
Σ̄(τ)

)
. (16)

Given access to Tr
(
Σ̄(τ)

)
, we can derive a prediction for

how the loss changes as we change the learning rate schedule
without knowing F .

General Case. In Appendix F, we discuss how well these re-
sults generalize to more realistic setups. For non-quadratic

losses, we show via perturbation theory that, to first or-
der in ηΣ̄, one can make similar approximations to derive
Equation (16) given an additional assumption that the Hes-
sian is slowly varying, and with the forcing function F (τ)
no longer admitting a quadratic form. We also argue in
Appendix F that Σ should be the preconditioned gradient
covariance when using adaptive optimizers.

3.2.2. PREDICTING LOSS CURVES ACROSS SCHEDULES

We apply this simple model to predict empirical loss curves
in the CIFAR-5M experiments. We use a slightly different
experimental setup with a reduced context length of 128 to
reduce the experiment cost (see Appendix A for details). We
measure the trace of the preconditioned gradient covariance
on a fixed set of 2M tokens.

Let L̄, η, Σ̄ be a given reference trajectory and L̄′ = L̄ +
δL̄, η′ = η + δη, Σ̄′ = Σ̄ + δΣ̄ be the target trajectory,
Equation (16) allows us to predict the target loss via

δL̄(τ) ≈ 1

4
Tr

[
δ
(
η(τ)Σ̄(τ)

)]
, (17)
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Figure 7: Universality of gradient noise on CIFAR-5M. Fixing
a learning rate schedule, the ratio Tr

(
Σ̄
)
/L̄ is approximately a

function of normalized compute alone, independent of model size.
We show similar results with MLPs in Figure 14.
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where δ
(
η(τ)Σ̄(τ)

)
≡ η′(τ)Σ̄′(τ) − η′(τ)Σ̄(τ). We use

a constant learning rate for the reference trajectories and
various schedules sharing the same peak learning rate for the
target. Decomposing δ(ηΣ) = δηΣ′+ηδΣ, we find the first
term is typically 3 to 10 times larger than the second as the
learning rate decays, which can be attributed to how learning
rate interacts with curvature Figure 13a. In Figure 6, we
only keep the first term, and predict the target loss as

L̄′(τ) ≈ L̄(τ) + α δη(τ) Tr(Σ′(τ)), (18)

where α is a shared hyperparameter. We find a single
α = 0.42 fits the target loss curves surprisingly well
across schedules, model sizes, and training horizons. In
Appendix G, we show even better fits for MLPs in Fig-
ure 12, and find that including the second term sometimes
produces slightly worse fits.

3.2.3. UNIVERSAL SCALING OF NOISE

For typical loss functions like mean-squared-error and cross-
entropy, we expect some relation between the scale of the
gradient covariance and the loss. For example, in noiseless
high-dimensional linear regression with Gaussian features
drawn from N (0, Θ̂), we have Tr

(
Σ̄
)
≈ 2L̄Tr

(
Θ̂
)

(Pa-

quette et al., 2021). For non-linear regression, Θ̂ should be
taken to be the time-varying empirical neural tangent kernel
for a first approximation. In this case, Tr

(
Θ̂
)

is known to
depend strongly with the learning rate (Agarwala & Pen-
nington, 2024), but we should expect weak dependence on
model size given our models are trained with µP (see Noci
et al. (2024) for evidence that curvature statistics depend
weakly on model size in µP). Since in our experiments the
schedule is a function of the normalized compute x = t/t⋆

alone, we hypothesize the ratio between Tr
(
Σ̄
)

and the re-
ducible loss L̄ to be largely a function of x and independent
of p. That is, there exists a schedule-dependent function
h(x) such that

Tr
(
Σ̄(xt⋆(p))

)
/L̄(xt⋆(p)) ≈ h(x). (19)

Figure 7 confirms this hypothesis. As a result, combining
Equation (18) and Equation (19) and making p-dependence
explicit, we have

L̄′(τ, p) ≈ L̄(τ, p)(1− αh(x)δη(τ, p))−1, (20)

where x is the normalized compute at gradient flow time τ.
We leave to future work a rigorous explanation of why this
relation holds so well for cross-entropy loss, particularly the
fact that gradient noise scales with the reducible loss rather
than the total loss.

Scaling Collapse Across Schedules. Combining our in-
sights so far, we can now finally understand why scaling
collapse happens across schedules. Let ℓ̄(x, p) and ℓ̄′(x, p)

be the expected normalized loss curves under two sched-
ules S and S′. Let y(x) map the normalized compute under
S′ to the normalized compute under S at matching gradi-
ent flow time, where y is independent of p if the sched-
ules are defined in terms of the normalized compute. Let
δη̂(x) = δη(xt⋆(p), p) be the difference between the two
schedules measured in normalized compute. We have2

ℓ̄′(x, p) =
L̄′(xt⋆(p), p)

L̄′(t⋆(p), p)
(21)

=
L̄(y(x)t⋆(p), p)(1 + αδη̂(y(x)))

−1

L̄(y(1)t⋆(p), p)(1 + αδη̂(y(1)))
−1 (22)

= ℓ̄(y(x), p)
1 + αδη̂(y(1))

1 + αδη̂(y(x)))︸ ︷︷ ︸
independent of p

, (23)

which shows that, in expectation, collapse under one sched-
ule (e.g. constant) implies collapse under any other schedule,
provided we take Equation (20) to be exact. Since collapse
under a constant learning rate can be attributed to the sum-
of-power-laws scaling law, this result helps explain why we
also observe collapse in other schedules.

Recent works have proposed more complex and empirically-
driven models for how learning rate schedules affect loss
curves (Tissue et al., 2024; Luo et al., 2025). Yet the surpris-
ing accuracy of our simple model (Equation (20)) suggests
it captures the essential dynamics—and crucially, its trans-
parent form reveals why collapse persists across schedules,
providing theoretical insight beyond empirical curve-fitting.

3.3. Supercollapse as Variance Reduction

Finally, we turn to understanding the “super” in supercol-
lapse: why does decaying the learning rate make averaging
over multiple seeds unnecessary for collapse, and why is
the collapse tolerance ∆(x) significantly smaller than the
relative noise floor {σ(x, p)}p for a substantial fraction of
training under learning rate decay? We can understand as-
pects of the phenomenon again using gradient flow time and
the quadratic loss noise model.

Recall the variance in the collapsed curves can be decom-
posed as (omitting ω argument)

Vp,ω[ℓ(x, p)] = EpVω[ℓ(x, p)] + VpEω[ℓ(x, p)]. (24)

The second term is the variation we would get had we av-
eraged over multiple seeds, while the first term is the extra
expected variation due to using a single seed. Since, empir-
ically, variations in the normalized curves primarily arise
from seed-to-seed fluctuations rather than model-to-model
differences (Section 2.4) under a constant schedule, and

2Assuming relative fluctuation in L is small so
E[L(x)/L(y)] ≈ E[L(x)]/E[L(y)].
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Figure 8: Collapse tolerance follows the predicted
√

η(1− τ̂)
scaling across schedules, explaining the variance reduction in
supercollapse from learning rate decay.

switching to other schedules does not significantly increase
the model-to-model differences (Section 3.2), we will as-
sume the first term of Vp,ω[ℓ(x, p)] dominates. We will ana-
lyze Vω[ℓ(x, p)] for a fixed p. To simplify notation, we tem-
porarily omit p-dependence and write ℓ in terms of t instead
of x. Decomposing the reducible loss as its mean plus the
relative fluctuation from the mean: L(t) = L̄(t)(1 + ψ(t))
and assuming ψ ≪ 1, we have

ℓ(t) =
L̄(t)(1 + ψ(t))

L̄(t⋆)(1 + ψ(t⋆))
≈ ℓ̄(t)(1 + ψ(t)− ψ(t⋆)),

(25)

Vω[ℓ(t)/ℓ̄(t)] ≈ E[(ψ(t)− ψ(t⋆))2] (26)

We see it is the difference ψ(t) − ψ(t⋆) rather than ψ(t)
itself that controls the relative variance in ℓ(t). This vari-
ance depends only on the amount of noise accumulated
between time t and time t⋆. Since the optimization noise per
step scales with the instantaneous learning rate, decaying
the learning rate over time will precisely serve to decrease
the variance in ℓ. By contrast, the noise floor σ2(x, p) nor-
malizes by the expected final loss, and therefore scales as
E[ψ2(t)].

We can compute this variance under the quadratic model
in Section 3.2. Let ∆w(τ) and ∆L(τ) be the fluctuations
of the parameters and reducible loss from their means in
gradient flow time. To first order in ∆w(τ), we have
∆L(τ) = g(τ)⊤∆w(τ) where g(τ) is the expected gra-
dient, and

∆w(τ) =

∫ τ

0

ds e−H(τ−s)Σ1/2(s)ξ(s). (27)

Close to the end of training, for τ = τ⋆ − δτ where τ⋆

is the final gradient flow time and δτ > 0 is small, let us
approximate L̄(τ⋆) ≈ L̄(τ), g(τ⋆) ≈ g(τ), then

E[(ψ(τ)− ψ(τ⋆))2]

≈ L̄−2(τ)g(τ)⊤
∫ τ⋆

τ

ds e−2H(τ⋆−s)η(s)Σ̄(s)g(τ) (28)

= L̄−2(τ)g(τ)⊤η(τ)Σ̄(τ)g(τ)δτ +O(δτ2), (29)

where the last step follows from Taylor expanding the in-
tegrand around s = τ. Dropping O(δτ2) terms and not-
ing the combination of g⊤Σ̄g ∼ L2, we have E[(ψ(τ) −

ψ(τ⋆))2] ∼ η(τ)δτ. Since this relation holds for each model
size p, by taking expectation over p and recall the term
EpVω[ℓ(x, p)] is assumed to be dominant in Vp,ω[ℓ(x, p)],
we predict ∆2(τ̂) ≈ EpVω[ℓ(τ̂ , p)/ℓ̄(τ̂ , p)] ∝ η(τ̂)(1− τ̂),
where τ̂ = τ/τ⋆ denotes the normalized gradient flow time.

In Figure 8, we show this prediction indeed tracks our mea-
surement for ∆(x), with ∆(τ̂)/

√
η(τ̂) approximately fol-

lowing the same
√
1− τ̂ scaling across many schedules,

and explains why decaying the learning rate improves the
collapse – by moving more slowly in gradient flow time and
having a lower instantaneous learning rate that scales the
noise.

Normalizing by the stochastic final loss is essential for su-
percollapse, where it acts as a control-variate (Glasserman,
2004): by leveraging the strong time-correlation of stochas-
tic fluctuations along the loss trajectory, it cancels much of
the shared noise and thereby sharply reduces the variance of
the collapsed curve, beating the naive noise floor σ where
normalization is done using the expected final loss.

4. Discussion
While deep learning theory has traditionally lagged behind
empirical advances, recent work on neural network scaling
limits has begun yielding practical insights, notably enabling
hyperparameter transfer across model sizes. However, these
frameworks typically consider limits where only the model
size approaches infinity. To fully bridge the theory-practice
gap, we must understand scaling limits where other quan-
tities, particularly training duration, grow jointly—a sig-
nificantly more challenging theoretical problem that better
reflects how models are actually scaled in practice.

Our discovery that compute-optimal loss curves exhibit pre-
cise scaling collapse provides compelling empirical evi-
dence that such a joint scaling limit exists under compute-
optimal training and provides a practical procedure to mea-
sure it. Moreover, we found the quality of collapse can
reveal information about whether hyperparameters are prop-
erly configured in a scaling ladder, suggesting a potentially
valuable application.

Although we have identified the key ingredients underlying
supercollapse—power-law scaling laws and learning rate-
dependent noise dynamics—our analysis contains many
approximations and is far from fully rigorous, suggesting
deeper theoretical principles may be at work. In addition,
both the power-law structure of loss curves and the scaling
relationship between gradient noise and reducible loss are
themselves observed regularities that demand explanations.
Overall, we believe further investigating supercollapse holds
exciting promise for deepening our scientific understanding
of scaling neural networks.
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A. Experiment Details
Transformer Architecture. We use GeLU activations (Hendrycks & Gimpel, 2016), RMSNorm (Zhang & Sennrich, 2019),
and learned positional embeddings. We untie the embedding matrix from the output head and do not use bias anywhere. The
readout layer is always zero-initialized. We denote the embedding dimension with D. We set the intermediate dimension in
the feedforward layers to D instead of the usual 4D, which enables us to explore larger widths more efficiently.

CIFAR-5M. We use the CIFAR-5M dataset (Nakkiran et al., 2020) of 6 million CIFAR-like images. We convert the
32 × 32 × 3 images to greyscale and flatten them into sequences of length 1024. The model autoregressively predicts
the pixel intensities in raster-scan order. The vocabulary is the set of pixel intensities {0, . . . , 255}. Following µP we
parameterize the learning rate for each weight matrix as η = ηbase/D where d is the model dimension, except for the
embedding matrix which has η = ηbase. We use a parameter multiplier a on the embedding matrix. We use ηbase = 4 and
a = 0.1 as they led to good performance in our early experiments. We initialize the embedding matrix as W emb

ij ∼ N (0, 1),

the output head as W head = 0, all other non-readout matrices W as Wij ∼ N (0, 1/D). These hyperparameters were
determined with a small amount of tuning in early experiments. We use a batch size of 256 images. We use a linear warmup
for 1000 steps.

For the experiments in Section 3.2.2, we use a context length of 128, which means each image is divided into 8 examples.
We use µP where the base embedding dimension is 128 and base learning rate is 0.003. We initialize the embedding matrix
with a standard deviation (std) of 0.1 and multiply its learning rate by 10 relative to the base learning rate. The output
projection and the feedforward and attention layers are zero-initialized. All other non-readout matrices are initialized with
std 1/

√
D. We use a batch size of 65536 tokens. We use a linear warmup for 10M tokens.

Chess. We run our experiments on the Lichess dataset available on Hugging Face at https://huggingface.co/
datasets/Lichess/standard-chess-games. We used character-level tokenization and a context length of 128.
We use µP where the base embedding dimension is 128 and base learning rate is 0.01. We initialize the embedding matrix
with standard deviation (std) 0.1 and multiply its learning rate by 10 relative to the base learning rate. The output projection
and the feedforward and attention layers are zero-initialized. All other matrices are initialized with std 1/

√
D. We use a

batch size of 65536 tokens. We use a linear warmup for 10M tokens.

MLP Experiments. Our MLP architecture is identical to the transformer with attention layers removed and the token
and position embedding layers replaced by a linear layer. We use µP where the base embedding dimension is 128 and
base learning rate is 0.001. The output projection and the feedforward and attention layers are zero-initialized. All other
non-readout matrices are initialized with std 1/

√
D. We use a batch size of 4096 examples. We do not use warmup.

The target function is defiend as ϕ(x) =
∑M

i=1 wi

√
2 cos

(
2πk⊤i x+ bi

)
, with x ∈ R8, wi ∼ N (0, 1), bi ∼

π
2Bernoulli(0.5), ki = round(sivi) where si is a scalar sampled from a power law with support [1,∞) and exponent −2,
vi is a random unit vector, and round rounds to the nearest point in Z8. During training, x is sampled uniformly from
[−0.5, 0.5]8, making the Fourier features orthonormal over the data distribution.

B. Scaling Collapse Across Transformer Depths
For scaling depth, we additionally apply a branch multiplier of 3/depth on the output of every feedforward and attention
layer, as suggested by Bordelon et al. (2024c). We find a decent degree of collapse in Figure 9 when training on chess data.
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Figure 9: Depthwise scaling collapse for transformers trained on chess.
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C. Estimating Compute-Optimal Training Horizon
To estimate the optimal compute for training each model, we perform the following steps in each experiment:

• We trained each model without learning rate decay but keeping the initial warmup. We chose a large enough number of
steps so that the largest model could reach the compute-optimal loss frontier. We average the loss curves from 5 seeds.

• We numerically computed the compute-loss Pareto frontier to obtain an estimate of c⋆(p) - the optimal compute for
each model size p. We use logarithmically spaced points for c and find the p that achieves the best loss given c training
FLOPs.

• We fit a power law c⋆(p) = Ap1+γ where A and γ are fit parameters. The optimal number of training tokens is then
t⋆(p) = c⋆(p)/(6p), which scales as pγ . We remove outliers in this fit by dropping points from the smallest or largest
model.

Figure 10 illustrates this procedure for the MLP experiment.
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Figure 10: Estimating compute-optimal data exponent, illustrated with the MLP experiment.

D. Power-Law Pareto Frontier is Necessary for Collapse
Recall t⋆(p) is the optimal training horizon for model size p, i.e. L(t⋆(p), p) = mint′,p′:t′p′=t⋆(p)p L(t

′, p′). Let c⋆(p) =
6t⋆(p)p be the optimal compute for p. In what follows, rather than writing L(t, p), we will find it convenient to express the
loss curves in terms of compute and model size. Letting L(c, p) be the loss curves expressed this way, we have the following
theorem:

Theorem D.1. Let L(c, p) be C1 in (c, p) and let c⋆(p). Write L(t, p) = L(t, p)− L̂ for any offset L̂ (e.g., L̂ = L0). Define
the normalized loss curve

ℓ(x, p) =
L(xc⋆(p), p)

L(c⋆(p), p)
, x ∈ [0, 1]. (30)

1. Necessity. If ℓ is independent of p (collapse), then the Pareto frontier of {L(c, p)}c,p

L⋆(c) := min
p

L(c, p) = L(c⋆(p), p) (31)

is a power law L⋆(c) = Ac−δ for some constants A, δ.

2. Sufficiency at first order. Conversely, suppose L⋆(c) = Ac−δ, then

d

dx
ℓ(x, p)

∣∣∣∣
x=1

= −δ, (32)

independent of p; hence all curves share the same first-order behavior around x = 1, i.e., they collapse to first order
around x = 1.
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Proof of Necessity. Choose any p and write c⋆ = c⋆(p) for its compute–optimal budget. Because the collapsed curve ℓ(x, p)
does not depend on p, its derivative at the endpoint x = 1 is a constant indepedent of p; set

ℓ′(1) = −δ (δ > 0).

From the definition ℓ(x, p) = L(xc⋆,p)
L(c⋆,p) we obtain, by the chain rule,

ℓ′(1) =
c⋆

L(c⋆, p) ∂cL(c, p)
∣∣
c=c⋆

= ∂log c logL(c, p)
∣∣
c=c⋆

.

Hence
∂log c logL(c, p)

∣∣∣
c=c⋆(p)

= −δ for every p. (33)

By optimality, the point (c⋆(p), p) lies on the compute–loss Pareto frontier {(c,L⋆(c)}c. Because L(c, p) is C1 in c, p, the
value and first derivative of the curve L(·, p) matches those of the frontier at c = c⋆(p):

L⋆(c⋆(p)) = L(c⋆(p), p), L′⋆(c⋆(p)) = ∂cL(c, p)
∣∣
c=c⋆(p)

.

Combining with (33) yields

d

dlog c
logL⋆(c) =

c

L⋆(c)
L⋆′(c)

c=c⋆(p)−−−−−→ c⋆(p)

L(c⋆(p), p) ∂cL(c, p)
∣∣∣
c=c⋆(p)

= −δ,

i.e.,
d

dlog c
logL⋆(c)

∣∣∣
c=c⋆(p)

= −δ for all p.

Therefore the log–log slope of the frontier is the same −δ everywhere:

d

dlog c
logL⋆(c) = −δ ∀ c.

Integrating this leads to a power law L⋆(c) = Ac−δ.

Proof of sufficiency at first order. Assume the Pareto frontier is a power law

L⋆(c) = Ac−δ, A > 0, δ > 0.

For every model size p the compute–optimal budget c⋆ = c⋆(p) satisfies L(c⋆, p) = L⋆(c⋆). Because L is C1 and L⋆ is the
Pareto frontier minp L(c, p), we have the tangency condition

∂cL(c, p)
∣∣∣
c=c⋆

= L⋆′(c⋆) = −δ A (c⋆)−δ−1. (S.1)

Differentiate the normalized loss ℓ(x, p) = L(xc⋆,p)
L(c⋆,p) :

d

dx
ℓ(x, p)

∣∣∣∣
x=1

=
c⋆

L(c⋆, p) ∂cL(c, p)
∣∣∣
c=c⋆

=
c⋆

L⋆(c⋆)
L⋆′(c⋆).

Insert L⋆(c) = Ac−δ and (S.1):

d

dx
ℓ(x, p)

∣∣∣∣
x=1

=
c⋆

A(c⋆)−δ

[
−δ A (c⋆)−δ−1

]
= −δ.

Therefore, the slope ℓ′(1, p) = −δ is the same for all p; thus every normalized curve shares identical value ℓ(1, p) = 1 and
identical first derivative at x = 1. Consequently the family {ℓ(x, p)} collapses to first order around x = 1, completing the
proof.

Remark. This result shows that power-law compute-optimal frontier is necessary and itself already promotes a weaker form
of the collapse. We note that the theorem doesn’t directly apply to schedules which decay to 0 at the Pareto frontier as the
loss curves have non-differentiable end points (only differentiable from the left) and are usually no longer tangent to the
frontier.
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E. Collapse for General Sum-of-Power-Laws Loss Curves
Theorem E.1 (Compute–optimal horizon implies asymptotic collapse). Let the expected loss be a sum of power laws

L(t, p) = L0 +

m∑
i=1

ai t
−µi p−νi , ai > 0, µi, νi ≥ 0,

where t is the number of optimization steps, p the model size, and L0 an irreducible loss. Assume the training horizon scales
as a power of the model size,

t⋆(p) = κ pγ , κ > 0, γ > 0,

and define the combined exponents
βi := µiγ + νi, i = 1, . . . ,m.

Order them so that β1 ≤ β2 < · · · ≤ βm.

1. If t⋆(p) is asymptotically compute-optimal—that is, it minimizes L under the constraint 6t p = c (constant total
compute) for large p—then the two smallest exponents coincide,

β1 = β2, =⇒ γ =
ν1 − ν2
µ2 − µ1

with µ1 ̸= µ2. Exactly the terms i = 1, 2 dominate the loss as p→ ∞.

2. With this choice of γ, the normalized loss curves

ℓ(x, p) :=
L
(
x t⋆(p), p

)
− L0

L
(
t⋆(p), p

)
− L0

, 0 < x ≤ 1,

collapse asymptotically:

ℓ(x, p) = u(x) + O
(
p−ε

)
, u(x) :=

b1x
−µ1 + b2x

−µ2

b1 + b2
, ε := β3 − β1 > 0,

where bi := aiκ
−µi . All explicit p-dependence vanishes in the limit p→ ∞.

3. The horizon required for collaspe is only determined up to an overall multiplicative constant: any λ t⋆(p) with fixed
λ > 0 works just as well.

Proof. Fix the total compute c := 6tp and regard p as the free variable, so that t(p) = c/(6p) and dt/dp = −t/p.
Differentiating L

(
t(p), p

)
along this path gives

dL

dp
=

m∑
i=1

(
∂tL

) dt
dp

+ ∂pL =
1

p

m∑
i=1

ai(µi − νi) t
−µi p−νi .

Compute-optimality demands dL/dp = 0, hence

m∑
i=1

ai(µi − νi) t
−µi p−νi = 0

Insert the ansatz t = κpγ ; then t−µip−νi = κ−µip−βi and

m∑
i=1

bi(µi − νi) p
−βi = 0, bi := aiκ

−µi .

As p→ ∞ the terms with the smallest βi dominate. For their weighted sum to vanish there must be at least two such terms,
and they must share the same exponent, giving β1 = β2 and consequently γ = (ν1 − ν2)/(µ2 − µ1).
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With this γ,
L
(
t⋆(p), p

)
− L0 = (b1 + b2) p

−β1
[
1 +O

(
p−(β3−β1)

)]
.

Replacing t⋆ 7→ x t⋆ multiplies each bi by x−µi ; dividing by the expression above yields the claimed form for ℓ(x, p)
and establishes collapse. Finally, multiplying t⋆ by any fixed λ > 0 just rescales every bi and preserves the asymptotic
collapse.

Remarks. (i) For m > 2, the third-smallest exponent governs the leading finite-size error O(p−ε) (ii) For m > 2, compute-
optimal scaling implies asymptotic collapse, but the converse is not always true, since there can be multiple choices of
γ that lead to balanced dominant power laws, which imply collapse, but only one of them can be compute-optimal. (iii)
With m = 2 the remainder vanishes and we recover the perfect collapse of Section 3.1. (iii) Note we did not determine the
compute-optimal γ, as the ordering of βi depends on γ. Finding the compute-optimal γ can be done by finding all possible
solutions for γ that balance the two dominant terms and taking the one that leads to the fastest asymptotic decrease in loss.
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Figure 11: Sum-of-power-laws fit on additional datasets. Both tasks have loss curves that can be approximated by the sum of two
power laws when using a constant learning rate schedule.

F. A Perturbative Model of Learning Rate Schedules
The dynamics of stochastic gradient descent in gradient flow time are given by

dw′

dτ
= −

(
∇L(w′) + Σ1/2(w′)ξ(τ)

)
, (34)

with noise correlation E[ξ(τ)ξ(τ)⊤] = η(τ)δ(τ − τ ′). For convenience, we rewrite this using ξ(τ) = η1/2(τ)ξ̃(τ) so that

dw′

dτ
= −

(
∇L(w′) + η1/2(τ)Σ1/2(w′)ξ̃(τ)

)
, (35)

where now E[ξ̃(τ)ξ̃(τ ′)⊤] = δ(τ − τ ′).

Our strategy is to solve w′(τ) as w(τ) + δw(τ) where w(τ) is the deterministic trajectory satisfying dw
dτ = −∇L(w), up to

first order in the gradient noise scale ηΣ. Here w(τ) satisfies

Letting δw ≡ w′ − w, g ≡ ∇L and taking the difference of the two differential equations:

d(δw)

dτ
= −

(
g(w′)− g(w) + η1/2(τ)Σ1/2(w′)ξ̃(τ)

)
. (36)

At first order,

g(w′) ≈ g(w) +H(w)δw (37)

where H(w) = ∇2L(w) is the Hessian.
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Our SDE for δw becomes:

d(δw)

dτ
= −H(w)δw − (ηΣ)1/2ξ̃(τ) (38)

We define the propagator G(τ, s) that satisfies:

dG(τ, s)

dτ
= −H(w(τ))G(τ, s) (39)

with G(s, s) = I .

For time-dependent H(w(τ)), the propagator is:

G(τ, s) = T exp

(
−
∫ τ

s

dtH(w(t))

)
(40)

where T denotes time-ordering.

Assuming the initial perturbation δw(0) = 0, the solution for δw is:

δw(τ) = −
∫ τ

0

dsG(τ, s)(ηΣ)1/2(s)ξ̃(s). (41)

Now expanding L(w′) = L(w + δw) to second order in δw gives

δL(τ) = L(w′(τ))− L(w(τ))

≈ g(w(τ))
⊤
δw(τ) +

1

2
δw(τ)⊤H(w(τ)) δw(τ). (42)

Since E[ξ̃(s)] = 0 and δw is linear in ξ̃, E[δw(τ)] = 0, so

E
[
g(w(τ))⊤δw(τ)

]
= 0. (43)

Thus the leading non–vanishing contribution to the expected loss shift comes from the quadratic term.

Using the solution for δw,

δw(τ) δw(τ)⊤ =

∫ τ

0

ds

∫ τ

0

du G(τ, s)(ηΣ)1/2(s)ξ̃(s)ξ̃(u)⊤(ηΣ)1/2(u)G(τ, u)⊤. (44)

Taking the expectation with E[ξ̃(s)ξ̃(u)⊤] = δ(s− u) I gives

E
[
δw(τ) δw(τ)⊤

]
=

∫ τ

0

ds G(τ, s) η(s)Σ(w′(s))G(τ, s)⊤. (45)

Substituting (45) into the quadratic term of (42),

E[δL(τ)] =
1

2

∫ τ

0

ds Tr
[
H(w(τ))G(τ, s) η(s)Σ(w′(s))G(τ, s)⊤

]
. (46)

Using Tr[ABC] = Tr[CAB],

E[δL(τ)] =
1

2

∫ τ

0

ds Tr
[
G(τ, s)⊤H(w(τ))G(τ, s)η(s)Σ(w′(s))

]
. (47)

Equation (47) is the exact leading-order expression for the noise-induced change in expected loss. Conceptually, the
derivation shows that—although the full dynamics are non-linear and the loss is not assumed quadratic—the pertubation
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generated by small gradient noises behaves in a simple, linear–quadratic fashion: the weight perturbation δw is linear in the
injected noise, and the resulting loss shift δL is quadratic in that perturbation.

Consequently the derivation and final formula completely mirrors the familiar quadratic-loss result, the only difference
being that the constant Hessian H is now replaced by the time-dependent Hessian H

(
w(τ)

)
carried along the deterministic

trajectory. In other words, small gradient noise “sees” the network through an instantaneous linearization, so all schedule
effects enter through the propagator G(τ, s), the local Hessian, and the noise covariance, exactly as in the linear case.

Slow–variation and late–time limit. As in the quadratic loss case, we can simplify the result under an adiabatic ap-
proximation where the Hessian, schedule, and noise covariance changes slowly compared to the time-scale set by the
instantaneous Hessian. Specifically, if H(w(t)) ≈ H(w(τ)) ≡ H over the support of G(τ, s)⊤H(w(τ))G(τ, s), then
G(τ, s) ≈ e−H(τ−s) and G(τ, s)⊤HG(τ, s) ≈ H e−2H(τ−s). Assuming the exponential decay is fast compared to the
variation of the noise scale ηΣ, and taking τ → ∞, we have

E[δL(τ)] ≈ 1

4
Tr [η(τ)Σ(w′(τ))]. (48)

Adaptive Optimizers and Preconditioned Gradient Covariance. When using adaptive optimizers with a preconditioner
P (t), the equation of motion becomes

dw

dt
= −P−1(t)

(
∇L(w) + Σ1/2(w)ξ(t)

)
, (49)

If the preconditioner varies slowly, the dynamics can be treated as if there is no preconditioner, but in a transformed
coordinate system:

w̃(t) = P
1
2 (t)w(t).

Differentiating and neglecting the O(Ṗ ) term gives

dw̃

dt
= P

1
2
dw

dt
= −P− 1

2

(
∇wL(w) + Σ

1
2 (w) ξ(t)

)
= −∇w̃L(w̃)− P− 1

2Σ
1
2 (w) ξ(t)︸ ︷︷ ︸

noise

.

Therefore the gradient noise covariance in the new coordinates are P− 1
2 Σ(w)P− 1

2 , i.e. the preconditioned gradient
covariance. In our experiments, we take P to be the instantaneous Adam preconditioner composed with a diagonal matrix
encoding the per-layer learning rate introduced by µP, following what is done in Noci et al. (2024).

G. Additional Results on Learning Rate Schedules
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Figure 12: A simple model predicts MLP loss curves trained across learning rate schedules, model sizes p, and training horizons T
on the synthetictic regression task. Dashed curves show the predicted loss as L̄′(τ) = L̄(τ) + α δη(τ)Tr(Σ′(τ)) (Equation (20)). α is
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Figure 14: Universality of gradient noise in MLPs. Fixing a learning rate schedule, the ratio Tr
(
Σ̄
)
/L̄ is approximately a function of

normalized compute alone, independent of model size. On this regression task, the estimated irreducible loss is negligible (≈ 0.001) so
L ≈ L.
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