
Under review as a conference paper at ICLR 2024

CUSTOMIZING GLOBAL MODEL FOR ARBITRARY
TARGET DISTRIBUTIONS IN FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is a privacy-preserving approach to train a global model
on decentralized data. Most existing FL algorithms optimize the global model by
minimizing the average loss among clients, aiming to perform well on commonly
assumed uniform target data distribution. In practice, though, the need often arises
for a tailored model to excel on its specific unlabeled target dataset with arbitrary
distribution. The misalignment of the assumed and actual target distribution vio-
lates the plausible uniform assumption and thus undermines the effectiveness of
vanilla FL methods. To fill this gap, we propose FedSSA, a self-supervised ag-
gregation method capable of training a specific global model for specific target
data. FedSSA leverages the target dataset on the server side to dynamically learn
aggregation weights for local models in a self-supervised manner. These aggre-
gation weights are iteratively adjusted to promote transformation-invariant. With
extensive qualitative and quantitative experiments, we demonstrate that FedSSA
consistently outperforms 12 classical baselines across multiple datasets, hetero-
geneity scenarios and different target distributions. Furthermore, we showcase the
plug-and-play property of FedSSA by combining it with various FL methods.

1 INTRODUCTION

As a privacy-preserving training paradigm, federated learning (FL) (McMahan et al., 2017) aims to
collaboratively train a global model across multiple clients without exchanging private data. It has
been widely applied to various tasks, including computer vision (Hsu et al., 2020; Jiménez-Sánchez
et al., 2023; Li et al., 2019a; Chen et al., 2023; Liu et al., 2020), natural language processing (Yang
et al., 2018; Wang et al., 2020a) and Internet of Things (IoT) (Campos et al., 2022; Friha et al.,
2022). There are many bottleneck issues that hinder the further development of FL, like data hetero-
geneity Gao et al. (2022a); Tan et al. (2022); Zhao et al. (2018); Li et al. (2019b), communication
and computation efficiency (Li et al., 2020a; Almanifi et al., 2023).

When addressing these issues, most existing FL algorithms tend to make assumptions about the
target distribution. Some works assume it to be uniform (McMahan et al., 2017; Chen & Chao,
2022) or exactly the same as the overall training distribution (Li et al., 2020b; Karimireddy et al.,
2020; Li et al., 2021) (defined as the union of client training distributions). Another line of work,
such as AFL (Mohri et al., 2019), optimizes any target distribution consisting of a mixture of client
distributions, fostering fairness and addressing distribution intricacies. Unfortunately, the target
distribution could be arbitrarily different from the overall training distribution in practice, rendering
conventional FL methods ineffective.

This paper delves into the targeted training scenarios within the FL paradigm dubbed the Pragmatic
Federated Learning. Pragmatic Federated Learning is a general and pragmatic approach for model
customization within the FL paradigm, enabling efficient and effective adaptation to diverse tar-
get datasets while preserving privacy. Consider the setting in model markets (Vartak et al., 2016;
Zhang et al., 2022a), individual buyers possess unlabeled data and require well-performing models
explicitly tailored to their unique target data. However, practical limitations, such as inadequate
task-specific training data or limited computational resources, make training entirely bespoke mod-
els for target data infeasible, requiring the utilization of federated learning. These practical scenarios
highlight the immense potential of Pragmatic Federated Learning as a solution for customizing well-
performing models to specific target data.
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The crux of the proposed Pragmatic Federated Learning, lies in assigning appropriate weights to lo-
cal models to align the training distributions with a specific target distribution. Obviously, traditional
target-agnostic weight allocation caters to overall training distribution and thus, fails to deliver well-
performing customized models for arbitrary target distribution. This is further complicated by two
factors: (1) the limited insight into distributions of clients due to the privacy restrictions in FL (Luo
et al., 2021; Zhang et al., 2022c; Yuan et al., 2022) and unlabeled target data, and (2) the inability
to assess local models on unlabeled target data. Thus, these two facts make it a critical challenge to
customize an aggregated model for this arbitrary target distribution, which motivates the exploration
of more flexible and pragmatic FL paradigms that adapt to the diverse target distribution.

To tackle this challenge, our core idea is to use the self-supervised technique to guide the model
ensembling. As self-supervised learning leverages intrinsic information underlying the target data
itself to create surrogate tasks, we can capture the representativeness of local models on target data
and assign the aggregation weights. In essence, by adjusting aggregation weights, self-supervised
learning optimizes the ensemble learning of local models and enables efficient adaptation to the
target distribution.

Following this spirit, we propose a novel pragmatic FL method with Self-Supervised Aggregation
(FedSSA), to enhance the flexibility of FL towards different target distributions. In FedSSA, the
server fixes local model parameters, aggregates the predictions of local models and learns aggrega-
tion weights by promoting transformation-invariant (Mumuni & Mumuni, 2021). Specifically, given
two different augmented views of a data sample (Shorten & Khoshgoftaar, 2019), the aggregation
weights are tuned by maximizing the cosine similarity between the two overall predictions, which
are obtained by aggregated predictions of local models. Focusing exclusively on transformation in-
variance may lead to weights concentrated on a single local model. To counteract this effect, we
design to maximize prediction confidence to prioritize more reliable clients, and we maximize the
weight entropy to encourage multi-agent collaboration. Without prior insight into data distributions,
FedSSA ensures ensemble of local models aligns effectively with the target distribution.

The distinct advantages of FedSSA include (1) Customized Global Models: FedSSA excels at tailor-
ing global models to specific target data distributions. (2) Efficient Weight Learning: Under the guid-
ance of unlabeled data, FedSSA efficiently learns aggregation weights that promote transformation-
invariant, confident predictions and multi-client collaboration.

We conduct extensive experiments to show that FedSSA consistently achieves the best by compar-
ing with 12 classical baselines on four classical datasets, under two common types of training data
heterogeneity (McMahan et al., 2017; Wang et al., 2020b), and three representative target data dis-
tributions. Besides, we demonstrate the modularity of FedSSA by showing that FedSSA can be
easily applied with various existing FL methods to further enhance their performance. Furthermore,
in cases where the unlabeled dataset is unavailable during training, FedSSA still shows advantages
for per-data-sample prediction during inference.

In summary, our main contributions are as follows:

1. We introduce the concept of Pragmatic Federated Learning, a versatile approach under
the FL paradigm. Pragmatic Federated Learning offers a practical solution for efficiently
adapting global models to diverse target datasets while preserving privacy;

2. We propose FedSSA, a novel self-supervised learning scheme at the server side in FL,
which learns aggregation weights by promoting transformation-invariant and confident
model prediction while pursuing multi-client collaboration;

3. We conduct extensive experiments to show better performance and the modularity property
by comparing with 12 classical baselines.

2 RELATED WORK

Federated learning. Federated learning (FL) enables multiple clients to collaboratively train a
global model without sharing private data (McMahan et al., 2017) and has been widely applied to
diverse fields, including image classification (Hsu et al., 2020), medical analysis (Liu et al., 2021a)
and object detection (Liu et al., 2020).
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Data heterogeneity. The training distributions of clients could distinctly vary since data are collected
under various circumstances and preferences (Kairouz et al., 2021; McMahan et al., 2017). Address-
ing this issue, many FL variants have been proposed from two aspects: global model adjustment and
local model correction. (1) FL on global model adjustment. To enhance consistency among local
models at the client side, such as applying ℓ2-based model regularization between local and global
model (Li et al., 2020b; Acar et al., 2020) and introducing a correction term on the model gradi-
ent (Karimireddy et al., 2020; Gao et al., 2022b). (2) Improving performance of the global model at
the server side, such as applying momentum-based global model updating (Hsu et al., 2019; Reddi
et al., 2020) and knowledge distillation to tune the global model (Lin et al., 2020; Li & Wang, 2019;
Chen & Chao, 2020). Our work is orthogonal to them and can be easily combined with them to
adaptively learn aggregation weights to further enhance the overall performance.

Aggregation weights learning. In the most widely used strategy (McMahan et al., 2017; Zhang
et al., 2022b; Li et al., 2021), the aggregation weights are proportional to the size of local data,
and cater to the overall training distribution. These vanilla FL methods fail to customize the global
model for specific target data. Some works (Nishio & Yonetani, 2019; Guha et al., 2019) determine
their weights by the loss-based selection, which requires the validation dataset performance, not
applicable to unlabeled data. Moreover, Reyes et al. (2021) propose inverse variance estimates
to learn weights, which adds communication and computation costs. AFL (Mohri et al., 2019)
introduces a centralized model optimized for any target distributions. It simultaneously modifies the
local model training and aggregation weights for the global model. However, AFL relies on labeled
data to leverage loss information for adjusting aggregation weights through the projection property.

Self-supervised learning. Generally, self-supervised learning aims to train a model to capture gen-
eral patterns from the massive unlabeled data (Chen et al., 2020; He et al., 2022), where a com-
mon solution is to pursue transformation-invariant features given two different augmented views
of the same image (Grill et al., 2020; Chen & He, 2021). Recently, self-supervised tasks have
been discussed in the context of FL. For example, FedU (Zhuang et al., 2021), FedEMA (Zhuang
et al., 2022), FedX (Han et al., 2022) and FedVSSL (Rehman et al., 2022) consider federated self-
supervised model pre-training. While all these methods aim at tuning all model parameters via
self-supervised learning (Zbontar et al., 2021; He et al., 2020), we apply self-supervised learning
only to tune aggregation weights while keeping the model parameters fixed.

As a sub-field, test-time training aims for tuning parameters based on unlabeled samples during
inference time (Sun et al., 2020; Liu et al., 2021b; Wang et al., 2021a). SADE (Zhang et al., 2022d)
learns weights for a triple-branch network for the long-tailed scenario, where each branch is trained
under a known pre-defined distribution and evaluates under several known pre-defined distributions;
while we consider a more challenging task where the number of branches is not fixed, both training
and evaluating distributions are unknown in the setting of Pragmatic Federated Learning.

3 PROBLEM FORMULATION

Suppose in an FL system, there are K clients in total and each client k holds a private dataset
Dk = {(xi, yi)}Nk

i=1, where xi and yi are the raw input and label of i-th sample respectively, Nk

is the number of data samples. Generally, federated learning methods aim to solve the following
minimization problem: minθ

∑K
k=1 NkFk(θ)/N , where N =

∑K
k=1 Nk and Fk(·) is the task-

driven loss function by evaluating the model on dataset of client k. Thus, they often apply the
following dataset-size-based model aggregation to obtain the final global model at the server side:
θ =

∑K
k=1 Nkθk/N , where θk is the locally trained model of client k.

However, such a global model is not suitable for cases where the target dataset DT is drawn from
a distribution distinct from the overall training distribution, which is defined as the union of local
training distributions of each local dataset Dk. Thus, to alleviate this problem, the weights for
aggregating local models should be adjusted such that the global model will be more customized to
perform well on the target dataset. Specifically, an optimal global model is defined as:

θ∗ = argmax
θ

P (DT ,θ), s.t.θ =

K∑
k

θkwk, (1)
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Figure 1: Overview of FedSSA. (1) Each client trains a local model and uploads it to the server.
(2) The aggregation weights are learned at the server, where the self-supervised learning process is
guided by maximizing the similarity between two final predictions, prediction confidence and weight
entropy. (3) The server aggregates local models according to the learned aggregation weights.

where the P (·) indicates some certain task-specific performance evaluation metrics such as the clas-
sification accuracy, both local models {θk} and {wk} are variables. Unlike most FL algorithms that
keep {wk} as fixed by setting wk = Nk/N or wk = 1/N , we focus on optimizing {wk} for the
specific target dataset.

Unfortunately, the target dataset is often unlabeled (denoted as U), and thus the optimization problem
in equation 1 can not be directly solved as the performance P (·) cannot be accurately measured when
labels are unavailable. Facing this, the aggregation weights should be learned in a self-supervised
manner and some self-supervised loss functions should be specifically designed. The original prob-
lem equation 1 is then converted to the following objective:

{wk} = argmin
{wk}

LSSA({θk}, {wk};U), s.t.θ =

K∑
k

θkwk, (2)

expecting the aggregated θ can better match with the performance of θ∗ obtained in equation 1.

This poses a troublesome challenge due to key issues: (1) no prior knowledge of the local training
and target distributions, and (2) unavailability for performance evaluation with unlabeled target data.
Addressing these, we design three essential and complementary loss functions (proxy tasks) for
self-supervised learning, which learns aggregation weights from the local models and the unlabeled
dataset. See theoretical explanation in Appendix A.

4 FL WITH SELF-SUPERVISED AGGREGATION

To achieve the goal of customizing an aggregated model that performs well under the target dataset,
we propose federated learning with self-supervised aggregation, which leverages the unlabeled
dataset to learn the weights for aggregating models at the server side. In this section, we first intro-
duce the overall FedSSA framework, and then, present the learning process of aggregation weights.

4.1 OVERALL FRAMEWORK

Following the standard FL procedure, our proposed FedSSA consists of two key steps: local model
training and global model aggregation. Our novelty mainly focuses on the second step, where we
aim to learn a set of weights customized for the target dataset in model aggregation.

Local model training. In the tth communication round, the server broadcasts the global (aggre-
gated) model θt to each available client, which is used to synchronize the local model of each client:
θt
k := θt. Each participating client employs multiple standard SGD steps to update their local

model, denoted as θt
k, across their private dataset Dk. The local objective is to minimize the task-

driven loss Lc, usually the cross-entropy loss for classification tasks. Each step operates as follows:
θt
k := θt

k − ηc∇Lc (θ
t
k;Dk), where ηc denotes the learning rate for local model training. Note

that we can also apply other local optimizations by adding another loss term, such as a ℓ2-distance
regularization between local model θt

k and global model θt (Li et al., 2020b).
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Global model aggregating. After local model training in the tth communication round, each client
k uploads the local model θt

k to the server. The server then aggregates these local models {θt
k} to

update the global model θt+1 for the next round. In conventional FL methods, each aggregation
weight is proportional to the corresponding client’s dataset size; that is, wt

k := |Dk|∑
i|Di| , where |Di|

denotes the sample number of dataset Di. However, this aggregation does not take the unlabeled
dataset U at the server side into account. To customize the global model to the unlabeled dataset, we
adjust the aggregation weights {wt

k} through self-supervised learning; see details in the following
subsection. Then, the global model is obtained by aggregating local models:

θt+1 :=
∑
k

wt
kθ

t
k. (3)

4.2 LEARNING WEIGHTS VIA SELF-SUPERVISION

To yield a global model that performs well on the target dataset, we propose to learn aggrega-
tion weights based on the unlabeled target dataset in a self-supervised manner. Our designed self-
supervised learning strategy follows three essential spirits: (1) a stable and powerful model should
produce similar predictions for different semantically invariant transformations (such as slight blur-
ring) of the same sample. (2) More confident predictions rather than ambiguous predictions are
generally more correct and thus a well-performed model should produce confident predictions. (3)
Collaboration among clients is crucial in FL as different local models may have unique insights
and beneficial knowledge, so aggregation weight concentrated on a single client should be avoided.
Following these spirits, we design three essential and complementary objectives in FedSSA.

Promoting transformation-invariant prediction. It is expected that an accurate and stable global
model should produce similar predictions for different transformation views of the same sample
since the view transformation does not change the semantics. Thus, it is natural to regularize the
cosine similarity between the predictions of different views.

Specifically, given a sample x from the unlabeled dataset U , we generate two perturbed views by
randomly applying several data transformations (e.g., flipping, Gaussian Blurring, applying color
jitters) (Chen et al., 2020; Grill et al., 2020; Zhang et al., 2022d): x(1) = T 1(x),x(2) = T 2(x),
where T 1(·) and T 2(·) are two transformation functions. The final prediction of each perturbed view
is obtained by weighted aggregated predictions of local models given the view as input:

ŷ(i) = σ(

K∑
k=1

wkŷ
(i)
k ), i = 1, 2, (4)

where σ(·) is the softmax operation, wk is the aggregation weight for model k and ŷ
(i)
k =

hk(θk;x
(i)), i = 1, 2 is the logits output of local model θk given the x(i) as the input.

As the two perturbed views are generated from the same sample, we expect that their final predictions
should be similar. Thus, we aim to maximize their similarity and propose to minimize the following
cosine-similarity-based loss Lcos by optimizing the aggregation weights {wk}:

Lcos = − cos
(
ŷ(1), ŷ(2)

)
= − ŷ(1) · ŷ(2)∥∥ŷ(1)

∥∥∥∥ŷ(2)
∥∥ . (5)

Note that only the aggregation weights {wk} are learnable here while the parameters of local models
{θk} are all kept fixed. Unlike traditional self-supervised learning methods that pursue feature-level
alignment (Chen et al., 2020; Grill et al., 2020; Zbontar et al., 2021), we adopt the prediction-level
alignment to capture more latent information about data heterogeneity in FL and thus we can learn
more appropriate aggregation weights.

Promoting confident prediction. Minimizing Lcos promotes transformation-invariant prediction,
however, the learning process overlooks the different performances of local models and leads to
indistinguishable weights for differently performing models. For instance, a well-performing Model
1 producing confident predictions might be overshadowed by a poorly-performing Model 2 that
yields invariant yet irrelevant predictions.

To address this issue, our idea is to encourage confident predictions at the same time. That is,
for most samples in a classification task, the probability assigned to one certain category should
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be distinctly higher than other categories. Here, we measure the confidence of prediction using
variance, that is, the following loss should be minimized:

Lvar = −var(ŷ(1)) + var(ŷ(2))

2
, (6)

where the var(ŷ(i)) measures the variance among the elements of ŷ(i). Minimizing this loss with
the Lcos allows the aggregation weights to produce the final prediction with higher confidence while
preserving the transformation-invariant property.

Promoting multi-client collaboration. As each client in an FL system might have limited data
samples to achieve satisfactory performance, collaboration could bring beneficial shareable knowl-
edge (McMahan et al., 2017). For example, if two clients both have similar training distributions
with target distribution, a reasonable strategy is to assign them relatively equal aggregation weights.
Thus, to pursue multi-client collaboration among clients and avoid aggregation weight concentration
during the weights learning process, we propose to minimize the following weight-entropy loss:

Lwe =

K∑
k=1

wk logwk. (7)

Apparently, when the aggregation weights of all clients are equal, this loss will reach the mini-
mum. So, together with the previous two objectives, this term can contribute to avoiding weight
concentration for some specific clients and promote multi-client collaboration.

Overall SSA loss. The total SSA loss is defined as:

LSSA = Lcos + λvarLvar + λweLwe, (8)

where λvar and λwe are two hyper-parameters to balance the three loss. Note that even when
setting λvar = λwe = 0, FedSSA is sufficient to outperform baselines while the last two terms
contribute to further performance improvement. By minimizing this overall loss, FedSSA optimizes
the aggregation weights {wt

k}, which are then applied to aggregate local models uploaded from the
clients as equation 3.

5 EXPERIMENTS

We compare FedSSA with 12 baselines including local training, FedAvg (McMahan et al., 2017)
and several FL variants. Among these, FedProx (Li et al., 2020b), SCAFFOLD (Karimireddy et al.,
2020), FedDyn (Acar et al., 2020), MOON (Li et al., 2021), FedDC (Gao et al., 2022b) and Fed-
Decorr (Shi et al., 2022) focus on local model correction; FedAvgM (Hsu et al., 2019), FedDF (Lin
et al., 2020) and FedExP (Jhunjhunwala et al., 2023) focus on global model adjustment, while
AFL (Mohri et al., 2019) adjusts both aspects. Two common heterogeneous settings and several
target data distributions are considered. We show key details and results here and leave other imple-
mentation details in Appendix B and additional experiments in Appendix C.

5.1 IMPLEMENTATION DETAILS

Data heterogeneity. We consider four datasets: Fashion-MNIST (Xiao et al., 2017), CIFAR-
10 (Krizhevsky et al., 2009), CINIC-10 (Darlow et al., 2018) and CIFAR-100 (Krizhevsky et al.,
2009), which are frequently used in FL literature (Zhang et al., 2022a; Shi et al., 2022; Jhunjhun-
wala et al., 2023). For data heterogeneity, we consider two heterogeneous (non-IID) settings, namely
NIID-1 and NIID-2. Considering a C-classification task, NIID-1 is an extremely severe heteroge-
neous setting, where each client holds data from C/5 categories (Li et al., 2022; McMahan et al.,
2017). NIID-2 follows Dirichlet distribution Dirβ (default β = 0.5) (Wang et al., 2020b; Yurochkin
et al., 2019; Acar et al., 2020; Li et al., 2021), where smaller β implies more severe heterogeneity.

Target distribution. For both two heterogeneous settings (NIID-1, NIID-2), the union of training
category distributions of all clients is uniform. While most existing FL methods only consider
uniform target distribution, we consider diverse target distributions: skew, imbalanced, and uniform
distribution. The skew distribution aligns with the training distribution of Client 1. The imbalanced
distribution follows an exponential distribution (Cui et al., 2019): nc = n1ρ

− c−1
C−1 is the number
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Table 1: Classification accuracy (%) Comparison of Classification Accuracy (%) under NIID-1
on Fashion-MNIST, CIFAR-10, CINIC-10, and CIFAR-100 with three target distributions (TD):
Skew, Imb-A, and Imb-B. Imb-A and Imb-B represent imbalanced target distributions with different
imbalance degrees, where Imb-A has ρ = 100 and Imb-B has ρ = 50.

Dataset Fashion-MNIST CIFAR-10 CINIC-10 CIFAR-100
TD Skew Imb-A Imb-B Skew Imb-A Imb-B Skew Imb-A Imb-B Skew Imb-A Imb-B

Local 19.87 19.85 19.89 19.35 18.77 18.61 18.60 17.71 17.84 14.69 14.86 14.70
FedAvg 95.60 84.34 82.61 56.10 49.56 48.98 53.50 44.35 41.49 49.05 50.56 52.27

FedProx 89.55 78.01 76.64 42.20 40.72 45.22 50.80 41.49 33.17 50.40 52.45 52.76
SCAFFOLD 98.60 84.06 82.43 74.40 59.77 57.64 80.05 56.69 54.45 52.75 53.34 53.33

FedDyn 96.15 84.34 82.36 67.70 53.47 52.74 70.70 56.34 53.38 48.95 51.81 52.73
MOON 94.75 80.63 77.75 37.60 38.26 36.78 47.10 51.37 42.33 50.40 50.76 52.06
FedDC 93.00 81.84 81.79 52.15 47.42 52.23 84.40 55.13 52.38 39.95 47.47 50.31

FedDecorr 95.70 84.42 82.96 57.80 53.31 47.59 49.00 45.56 36.78 51.65 50.54 51.13

FedAvgM 93.00 82.53 82.04 55.00 50.65 51.88 48.60 40.84 38.60 49.10 50.26 50.24
FedExP 98.20 84.50 83.08 53.20 41.44 36.53 46.90 40.23 36.10 43.35 49.79 47.51
FedDF 92.05 77.72 67.41 68.95 42.37 42.03 68.95 47.70 45.65 22.90 19.90 26.91
AFL 95.40 86.68 84.36 62.90 56.70 54.07 50.10 43.38 40.50 54.10 54.01 53.30

FedSSA 99.50 86.97 84.69 90.00 62.99 58.43 92.50 61.30 55.78 78.05 58.13 53.77

of data samples that belong to category c, where ρ denotes the imbalance ratio and C is the total
category number. The uniform distribution indicates a balanced test dataset.

Training arguments. We run FL for 100 communication rounds and train local models for Elocal =
10 epochs with the batch size 64. We use SGD optimizer with a learning rate of 0.01. We utilize
ResNet-18 (He et al., 2016) for CIFAR-100 and a simple CNN network with 3 convolutional layers
and 3 fully-connected layers (Li et al., 2021; Collins et al., 2021) for others. Unless specified, the
client numbers are 5 and 10 clients for NIID1 and NIID2, respectively. In FedSSA, we set λvar = 1
and λwe = 1e− 3. For all methods, hyper-parameters are tuned for each dataset.

5.2 RESULTS

FL on data heterogeneity. Considering two types of data heterogeneity on four datasets, we com-
pare our proposed FedSSA with 12 representative baselines for three target distributions and report
the results in Table 1 and Table 5 for NIID-1 and NIID-2, respectively. For each dataset, a skew
distribution and two imbalanced distributions are considered.

From the table, we observe that: (1) FedSSA consistently achieves the best performance under
all three target distributions across datasets and heterogeneity types, demonstrating its flexibility
in adapting to different target distributions in FL. (2) Particularly for the skew target distribution,
our FedSSA achieves significantly better results. For example, on the CIFAR-10 dataset, FedSSA
outperforms others by 12.60% to 52.30% in NIID-1 and 8.56% to 22.31% in NIID-2. (3) Compared
with FedDF (Lin et al., 2020) which also utilizes the unlabeled dataset but for knowledge distillation,
FedSSA consistently performs better than baseline FedAvg (McMahan et al., 2017) while FedDF
only outperforms FedAvg for some cases, indicating the effectiveness of the self-supervised learning
scheme in dealing with the gap between training and target distributions.

Table 2: Sample-wise prediction task when data
is only available after FL training process.

Target Distribution Skew Imb. Uni.

Local Training 19.35 18.77 18.68
Local Training + Ensemble 38.50 39.43 48.68

FedAvg 37.05 39.96 42.28
FedAvg + Ensemble 69.70 50.12 49.73

Sample-wise FedSSA 72.50 50.66 50.37

FL for sample-wise prediction. We verify that
FedSSA is still applicable when the unlabeled
target dataset is unavailable during the FL train-
ing process. During the inference process, given
a single sample, FedSSA automatically learns
the weights for aggregating predictions, where
the aggregated prediction is adopted as the fi-
nal prediction, which is denoted as sample-wise
FedSSA. We compare it with several ensem-
ble baselines for fairness. Experiments are con-
ducted under NIID-1 of CIFAR-10. Results in Table 2 show that sample-wise FedSSA consistently
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outperforms other methods with the simple ensemble, indicating the broader effectiveness of self-
supervised aggregation weight learning.

Table 3: Modularity of FedSSA under NIID-1 of CIFAR-
10. We show the accuracy (Acc.) achieved by combining
FedSSA with several baselines and the improvement (∆)
brought by FedSSA. FedSSA consistently improves the
baselines and brings significant improvement, especially
for skew target distribution.

+FedSSA Skew Imbalanced Uniform
Acc. ∆ Acc. ∆ Acc. ∆

FedAvg 96.55 +30.45 62.19 +16.23 47.24 +00.02
FedProx 93.90 +51.70 60.76 +20.04 39.24 +00.01

SCAFFOLD 94.95 +20.55 63.76 +03.99 47.59 +00.09
FedDyn 95.56 +27.86 61.62 +08.15 53.31 +00.07
MOON 95.85 +58.85 62.15 +23.89 56.85 +00.07

Modularity of FedSSA. One decent
property of FedSSA is modularity, that
is, our proposed FedSSA can be eas-
ily combined with many existing FL
methods to further enhance the over-
all performance. Here, we consider
three target distributions: skew, imbal-
anced (ρ = 100), and uniform un-
der NIID-1 of CIFAR-10. We ap-
ply FedSSA on five representative algo-
rithms that focus on local model train-
ing: FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020b), SCAF-
FOLD (Karimireddy et al., 2020), Fed-
Dyn (Acar et al., 2020) and MOON (Li
et al., 2021). For simplicity, we perform an additional ten epochs of aggregation weights learning
based on their corresponding trained models at the last round. Results in Table 3 show that (1) in all
target distribution settings, FedSSA consistently enhances the performance of these methods, indi-
cating its plug-and-play property. (2) Specifically, for the most biased distribution (Skew), FedSSA
brings 47.35% absolute accuracy improvement on average.

5.3 ANALYSIS OF FEDSSA

To provide more insights about FedSSA, we investigate the behaviors of FedSSA in detail by ex-
ploring the relationships among performance, local models, training distributions, and target distri-
bution. Experiments are conducted under NIID-1 and skew target distribution on CIFAR-10. See
Appendix D for more comparison experiments with some designed baselines.

Table 4: Performance analysis. The client 1’s model
L1 performs significantly better than L2 to L5. FedAvg
achieves moderately as it equally aggregates all models
while FedSSA performs much better as it adaptively ad-
justs the aggregation weights.

Target L1 L2 L3 L4 L5 FedAvg FedSSA

Skew 97.30 0.50 0.20 0.40 0.50 56.10 90.00
Imb. 42.02 22.38 14.28 8.91 5.24 48.98 58.43

Performance analysis. We evaluate the
performances of each local model (de-
noted as L1 to L5), the global model
obtained by FedAvg (McMahan et al.,
2017) and FedSSA in Table 4. Results
show that (1) L1 achieves the highest
performance, indicating that more sim-
ilar data distribution to the target may
deserve a larger aggregation weight.
(2) FedAvg achieves a moderate perfor-
mance compared to L1 since its global model is obtained by equal aggregation. At the same time,
L2 to L5 may bring a negative effect as they perform poorly on this target distribution. (3) FedSSA
significantly outperforms FedAvg by 33.90% and achieves close to L1, indicating that FedSSA may
assign a larger weight for the more representative model (L1).

(a) Skew (b) Imbalance

Figure 2: Aggregation weights analysis. FedAvg assigns
equal aggregation weights while FedSSA assigns distin-
guishing aggregation weights, which are more aligned
with the distribution similarity between local training dis-
tribution and target distribution.

Aggregation weight analysis. Here,
we show cosine similarity between tar-
get and clients’ training distributions,
and aggregation weights of FedAvg and
FedSSA. As Figure 2 suggests, Fe-
dAvg uses dataset-size-based aggrega-
tion weights, failing to capture the in-
herent relationships between target and
training distributions. On the contrary,
FedSSA learns a set of aggregation
weights that are more aligned to the co-
sine similarity relationships, indicating
its adaptivity to target distribution.
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(a) β (b) λvar and λwe (c) ηssa (d) Essa

Figure 4: (a) The effects of heterogeneity level under the Skew target distribution in NIID-1 setting
on CIFAR-10. (b) Effects of λvar and λwe under imbalanced (ρ = 50) setting on CIFAR-10. (c) and
(d) are ablation studies of different learning rates and the epochs for learning aggregation weights in
FedSSA, respectively, under the NIID-1 setting on CIFAR-10.

5.4 ABLATION STUDY

Here, we investigate several key FL arguments: heterogeneity levels of training distributions and tar-
get distributions on CIFAR-10. Besides, we explore the effects of maximizing prediction confidence,
maximizing weight entropy, learning rate, and epochs for learning aggregation weights in FedSSA.
See Appendix C for experiments on the effects of the number of clients K and local epochs.

(a) NIID-1 (b) NIID-2

Figure 3: Performance on different target dis-
tributions under NIID-1 and NIID-2 settings.

Different target distributions. We evaluate the
performance of FedSSA and FedAvg under NIID-
1 and NIID-2 of CIFAR-10 with different target
distributions: Skew, Imb-100 (ρ = 100), Imb-50,
Imb-10, and Uniform (Uni.). Figure 3 shows that:
(1) FedSSA consistently outperforms FedAvg, in-
dicating its effectiveness in handling various tar-
get distributions. (2) The accuracy gap between
FedSSA and FedAvg is especially large for Skew,
where the gap between target and overall training
distribution is also the largest. (3) They perform
similarly for uniform target distribution, which is reasonable since the target distribution is the same
as the overall training distribution, thus the aggregation weights in FedAvg are appropriate.

Different training distributions. We tune the β in NIID-2 (Hsu, Tzu-Ming Harry and Qi, Hang and
Brown, Matthew, 2019) on CIFAR-10 (skew target distribution). As β following {0.1, 0.3, 0.5, 0.7}
increases, data heterogeneity level decreases. Figure 4(a) shows that FedSSA outperforms the other
4 FL methods at various heterogeneity levels.

Effects of variance- and entropy-related loss. We tune λvar and λwe in equation 8 under the
NIID-2 setting to validate the effectiveness of Lvar and Lwe. Figure 4(b) shows that for a wide
range, FedSSA always performs better than FedAvg, indicating the ease of hyper-parameters tuning.
Generally, λvar = 10 and λwe = 1e−3 performs better.

Learning rate and epochs for learning aggregation weights. We tune the learning rate ηssa and
epochs Essa under NIID-1. Results in Figure 4(c) and 4(d) show that FedSSA achieves stable
performance with respect to the different learning rates and epochs.

6 CONCLUSIONS

Addressing the need to customize a global model tailored to unlabeled target data in Pragmatic Fed-
erated Learning, we propose FedSSA, a novel FL method with self-supervised aggregation. FedSSA
learns aggregation weights that better fit the target distribution, by promoting transformation-
invariant and confident predictions, and fostering collaborative ensemble. Extensive experiments
show that FedSSA consistently outperforms state-of-the-art methods. Our work focuses on the
severely unexplored gap between target and training distribution in FL. We hope that more future
works can be proposed (e.g., a more general self-supervised strategy for diverse modalities) to tackle
this practical issue and broaden the utility of FL.
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A THEORETICAL ANALYSIS

We denote the global objective function as F (θ) =
∑N

k=1 pkFk(θ), where
∑K

k=1 pk = 1, Fk(·) is
the loss function of client k. Note that the general aggregation weight for local model aggregating is
denoted by wk and the relative dataset size is denoted by nk = Nk∑

i Ni
. For FedAvg, the aggregation

weight equals to relative dataset size: wk := nk, which optimizes the global objective function
where pk := nk.

However, for an arbitrary target distribution, pk could be not strictly equal to nk. For example,
when the target distribution is exactly the same as Client 1 and distinct from others, the appropriate
objective function should be F (θ) = p1F1(θ), that is, p1 = 1.0 and pk = 0.0 for k ̸= 1. In such
cases, the optimal aggregation weight no longer follows wk = nk but should be adaptively adjusted
to align with the coefficient pk even though pk is not known in advance (since the target dataset is
often unlabeled and the training distributions of clients are unknown due to privacy concerns).

In the following, we explore the effects of aggregation weight wk towards the optimization given a
pre-defined global objective function (suppose pk is given).

Assumption A.1 (Smoothness) Function Fk(w) is Lipschitz-smooth: ||∇Fk(x) − ∇Fk(y)|| ≤
L||x− y|| for some L.

Assumption A.2 (Bounded Scalar) The global objective function F (w) is bounded below by
Finf .

Assumption A.3 (Unbiased Gradient and Bounded Variance) For each client, the stochastic
gradient is unbiased: Eξ[gk(w|ξ)] = ∇Fk(w), and has bounded variance: Eξ[||gk(w|ξ) −
∇Fk(w)||2] ≤ σ2.

Assumption A.4 (Bounded Dissimilarity) For each loss function Fk(w), there exists constants
A,B > 0 such that ||∇Fk(w)||2 ≤ A||∇F (w)||2 +B.

Note that all assumptions are commonly used in federated learning literature (Wang et al., 2021c; Li
et al., 2020b; 2019c; Reddi et al., 2020), except that we slightly modify the conventional bounded
dissimilarity assumption for the process of theoretical derivation. Note that this modification does
not affect the convergence rate. We present the optimization error bound in Theorem A.5 and leave
the detailed proof in E.

Theorem A.5 (Optimization bound of the global objective function) Let the global objective is
F (w) =

∑K
k=1 pkFk(w). Under these Assumptions, if we set ηL ≤ 1

2τ , the optimization error will
be bounded as follows:

min
t

E
∥∥∥∇F (θ(t,0))

∥∥∥2 ≤ 1

T

T−1∑
t=0

E
∥∥∥∇F (θ(t,0))

∥∥∥2
≤ 1

1− C − 2AC −WD(1− C)(
2(1− C)

(
F (θ(0,0))− Finf

)
τηT︸ ︷︷ ︸
T1

+(1− C)BWD︸ ︷︷ ︸
T2

+ 2(1− C)Lησ2
K∑

k=1

w2
k︸ ︷︷ ︸

T3

+2(τ − 1)σ2L2η2︸ ︷︷ ︸
T4

+2BC︸ ︷︷ ︸
T5

)
,

where WD = 2K
[∑K

k=1(pk − wk)
2
]
, wk is the aggregation weight, pk is the coefficient of global

objective function, C = 2τ(τ − 1)η2L2 < 1, τ is the number of steps in local model train-
ing, η is learning rate, T is the total communication round in FL, K is the total client number,
Finf , A,B, L, σ are the constants in assumptions.
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From the theorem A.5, we have the following two observations about the effects of the aggregation
weights towards the optimization upper bound.

Remark A.6 (Optimal Aggregation) When the aggregation weight wk strictly equals the coeffi-
cient pk in the global objective function, the WD → 0. As a result, the denominator in the upper
bound becomes the largest and the term T2 vanishes, indicating that this upper bound will be the
tightest.

Remark A.7 (Aggregation based on FedAvg) As FedAvg applies dataset-size-based aggregation
where wk := nk, there are often cases where pk ̸= nk due to the arbitrariness of the target distri-
bution. This results in a WD > 0 and makes the upper bound looser.

Thus, there exists an optimal set of aggregation weights that minimizes the optimization bound of
the global objective function while the traditional aggregation weights applied by most FL methods
could be far from optimality for cases of different target distributions. This motivates an adaptive
algorithm that automatically adjusts the aggregation weights according to the target distribu-
tion and determines a set of aggregation weights that follow wk ≈ pk.

When the aggregation weights are optimal wk := pk, we have the following corollary.

Corollary A.8 (Convergence rate for optimal aggregation weights) Given WD = 0, by setting
η = 1√

τT
, the optimization bound in Theorem A.5 can be re-written as

min
t

E
∥∥∥∇F (θ(t,0))

∥∥∥2 ≤ O(
1√
τT

) +O(
1

T
) +O(

τ

T
).

From the corollary, we observe that the convergence rate aligns with most FL theoretical litera-
ture (Li et al., 2019b; Wang et al., 2021c;b), verifying the correctness of the above theoretical results.

B IMPLEMENTATION

B.1 ALGORITHM FOR FEDSSA

Here, we show the Algorithm 1 of the proposed FedSSA. Specifically, compared with vanilla Fe-
dAvg (McMahan et al., 2017), our algorithm adds the flexible aggregation-weights learning module.

Algorithm 1 FedSSA
Input: Total round T , initial global model θ0, K clients with training dataset Dk.
Output: Global model.
for t = 0, 1, ..., T − 1 do

Server sends global model θt to initialize each client
// Local Model Training
for k = 0, 1, ...,K − 1 in parallel do
θt
k := argminθk

Lc (θk;Dk)
Sends local model θt

k to the server
end for
// Aggregation Weights Optimizing
{wt

k} := argmin{wk} LSSA ({θt
k}, {wk};U)

// Global Model Aggregation
θt+1 :=

∑
k w

t
kθ

t
k

end for
return final global model θT

B.2 BASELINES AND HYPER-PARAMETERS

• Local training: each local model is individually trained under each local dataset and there
is no model interaction. Each model is evaluated on the target dataset and we report the
averaged result.
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Table 5: Classification accuracy (%) comparison under NIID-2 on Fashion-MNIST, CIFAR-10,
CINIC, and CIFAR-100, considering 3 target distributions (TD): Skew, Imb-A, Imb-B. Imb-A and
Imb-B denote imbalanced target distribution with two different imbalance degrees, where Imb-A
with ρ = 100 and Imb-B with ρ = 50.

Dataset Fashion-MNIST CIFAR-10 CINIC-10 CIFAR-100
TD Skew Imb-A Imb-B Skew Imb-A Imb-B Skew Imb-A Imb-B Skew Imb-A Imb-B

Local 68.88 71.08 70.48 37.58 41.72 41.15 27.34 44.06 42.21 21.87 20.95 21.42
FedAvg 85.87 88.30 88.62 65.15 74.82 73.74 35.30 68.32 65.55 53.62 54.34 54.59

FedProx 76.93 81.15 81.04 64.22 72.24 71.81 44.33 64.53 63.54 52.48 53.03 54.30
SCAFFOLD 87.63 90.27 89.73 67.87 75.38 74.35 36.73 60.86 65.01 59.73 59.83 59.98

FedDyn 86.06 87.69 88.62 71.23 73.20 72.38 29.12 67.15 66.12 57.66 58.24 57.92
MOON 85.47 88.05 87.84 63.70 76.03 74.24 29.39 68.56 66.19 52.02 53.92 54.59
FedDC 86.50 88.10 88.16 69.36 74.37 75.24 40.46 65.01 62.90 57.14 58.85 58.09

FedDecorr 92.80 87.73 88.37 57.48 74.78 75.09 25.83 66.63 65.37 56.16 56.08 55.79

FedAvgM 92.42 88.46 88.26 67.77 76.43 74.74 33.79 65.94 65.12 48.76 50.54 51.29
FedExP 93.35 89.87 89.55 63.42 71.07 72.95 27.92 41.28 56.74 39.75 36.13 36.36
FedDF 93.36 88.58 88.05 61.55 73.04 70.16 23.34 66.22 64.69 22.57 21.82 21.92
AFL 85.25 87.97 87.76 66.04 77.20 76.31 37.17 67.68 66.37 53.99 53.59 55.03

FedSSA 96.40 90.92 90.20 79.79 79.58 77.39 49.62 70.34 66.51 63.20 68.32 60.78

• FedProx (Li et al., 2020b): it applies ℓ2 distance regularization and the hyper-parameter
used is 0.01.

• FedAvgM (Hsu et al., 2019): it applies momentum at the server side and the hyper-
parameter used is 0.7.

• SCAFFOLD (Karimireddy et al., 2020): it applies a control variate to correct the local
gradient.

• FedDF (Lin et al., 2020): it distills the knowledge of local models to the global model by
using the unlabeled target dataset.

• FedDyn (Acar et al., 2020): it introduces a dynamic regularization term and the hyper-
parameter used is 0.01.

• MOON (Li et al., 2021): it conducts contrastive learning among the current local model,
previous global model (positive), and previous local model (negative). The hyper-
parameter used is 0.1.

• FedDC (Gao et al., 2022b): it introduces an auxiliary local drift variable and the hyper-
parameter used is 0.01.

• FedExP (Jhunjhunwala et al., 2023): it dynamically adjusts the global learning rate with
the hyper-parameter 0.001.

• FedDecorr (Shi et al., 2022): it regularizes feature correlation during local model training
and the hyper-parameter used is 0.1.

• AFL (Mohri et al., 2019): it computes stochastic gradients with respect to the weights and
updates the model accordingly, then conducts a projection step with hyper-parameter 0.001.

B.3 MODELS

The simple CNN network sequentially consists of 5× 5 convolution layer, max-pooling layer, 5× 5
convolution layer, and three fully-connected layers with the hidden size of 120, 84, and 10 respec-
tively. We use ResNet18 (He et al., 2016) in the Pytorch library. We replace the first 7×7 convolution
layer with a 3× 3 convolution layer and eliminate the first pooling layer.
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Table 6: Effects of number of clients K under skew target distribution on NIID-2 of CIFAR-10. The
participation rate is 0.2 for K = 50 and 1.0 for others.

K 5 10 20 30 50

FedAvg (McMahan et al., 2017) 65.10 65.15 77.94 69.21 79.83
FedDF (Lin et al., 2020) 62.31 61.55 65.17 59.52 76.98

SCAFFOLD (Karimireddy et al., 2020) 69.30 67.87 79.92 70.84 79.10
FedDecorr (Shi et al., 2022) 57.94 57.48 75.30 61.63 82.88

FedSSA (ours) 81.78 79.79 81.46 72.01 84.45

C EXPERIMENTS

C.1 BASIC EXPERIMENT RESULTS FOR NIID-2

We conduct similar experiments on the fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky
et al., 2009), CINIC-10 (Darlow et al., 2018) and CIFAR-100 (Krizhevsky et al., 2009) datasets,
under the NIID-2 setting, to complement Table 1 in the main content. As before, we compare our
results with 12 existing baselines. Here, we choose to apply FedSSA on well-performed baselines
and thus we apply FedSSA on MOON and SCAFFOLD for CINIC-10 and CIFAR-100, respectively.
Results in Table 5 show that (1) FedSSA consistently outperforms the baselines with a large margin
on average. For example, on the CIFAR-10 dataset, FedSSA outperforms others by 12.60% to
52.30% in NIID-1 and 8.56% to 22.31% in NIID-2. (2) Tuning the aggregation weights according
to our FedSSA algorithm leads to significant performance improvements on average for a well-
performed baseline, indicating the plug-and-play property of FedSSA.

C.2 EFFECTS OF NUMBER OF CLIENTS

We tune the number of clients K in {5, 10, 20, 30, 50} under skew target distribution on NIID-1
of CIFAR-10. When K = 50, we consider a 0.2 participating rate. Results in Table 6 show that
(1) FedSSA performs the best across different client numbers, and (2) FedSSA shows applicability
toward partial client participation scenarios.

C.3 EFFECTS OF LOCAL EPOCHS

Here, we explore the impact of the number of local epochs Elocal during local model training. Ex-
periments are conducted on the skew target distribution under both NIID-1 and NIID-2 settings on
CIFAR-10. Specifically, we tune the number of local epochs Elocal in {2, 5, 10, 20} and compare
the results with five representative FL methods, including FedAvg (McMahan et al., 2017), SCAF-
FOLD (Karimireddy et al., 2020), FedDF (Lin et al., 2020) and FedDecorr (Shi et al., 2022). As
illustrated in Figure 5, the performance fluctuations of FedSSA were within 2%, whereas other meth-
ods exhibited fluctuations ranging from 75.90% to 46.80%. These results demonstrate that FedSSA
is less sensitive to the number of local epochs compared to other FL methods, exhibiting its stability.

C.4 EFFECTS OF VARIANCE- AND ENTROPY-RELATED LOSS

Here, we complement the results in Figure 5 (b) in the main content. We tune λvar in {0, 1e −
1, 1, 10} and λwe in {0, 1e − 4, 1e − 3, 1e − 2}, respectively. We show the results under another
two settings in Table 7 and Table 8. We observe that: (1) in NIID-1 setting, λvar and λwe have
relatively ordinary influence on the performance of FedSSA; (2) in the NIID-2 setting, λvar brings
about 10% improvement regardless of λwe, indicating the confidence-promoting loss term enhance
significantly the performance of the aggregated model.

These two results show that when the computing resource is adequate, we can tune both two hyper-
parameters for better performance. However, for cases where the computing resource is limited, we
can only apply the transformation-variant loss term.
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(a) NIID-1 (b) NIID-2

Figure 5: Effects of local epochs on CIFAR-10 under NIID-1 and NIID-2 settings.

Table 7: Effects of hyper-parameters for weight-entropy loss and confidence-based loss term under
imbalanced (ρ = 100) target distribution on NIID-1 of CIFAR-10. Note that λwe = λvar = 0.0
denotes FedSSA with our proposed transformation-invariant loss only.

Accuracy λvar

λwe 0 1e-1 1 10

0 65.05 64.65 64.85 63.20
1e-4 64.49 64.41 64.65 63.60
1e-3 65.01 64.73 65.05 65.42
1e-2 64.85 65.86 65.01 64.53

D SIMPLE DESIGNED BASELINES

Based on the transformation-invariant and confidence-promoting principles, we design two straight-
forward algorithms to adjust the aggregation weights based on pre-defined rules.

Transformation-invariant based weights. For each local model θk, we can obtain the predictions
ŷ
(1,2)
k,m of two transformation views of the same sample xm. Then, we can calculate the cosine

similarity between these two predictions for each data sample. The averaged cosine similarity for
each client k is denoted as sk

sk =
1

Nk

Nk∑
m=1

cos
(
ŷ
(1)
k,m, ŷ

(2)
k,m

)
. (9)

Finally, we normalize the cosine similarity as the aggregation weight for each client: wk = sk∑
i si

.

Confidence-promoting based weights. Similarly, we first calculate the prediction confidence for
each client k, denoted as ck:

ck =
1

Nk

Nk∑
m=1

var(ŷk,m). (10)

Aggregation weights are obtained by normalization: wk = ck∑
i ci

.

Experiments. Considering the NIID-1 and NIID-2 settings, we conduct experiments on CIFAR-10,
shown in Table 9. Results show that (1) these proposed simple baselines and FedSSA outperforms
FedAvg across different settings, indicating that both the similarity-based and confidence-based met-
rics are beneficial for determining aggregation weights. (2) Our learnable aggregation weights based
on enhancing both transformation-invariance and confidence contribute to the best results, indicating
the effectiveness of FedSSA.
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Table 8: Effects of hyper-parameters for weight-entropy loss and confidence-based loss term under
skew target distribution on NIID-2 of CIFAR-10. Note that λwe = λvar = 0.0 denotes FedSSA
with our proposed transformation-invariant loss only.

Accuracy λvar

λwe 0 1e-1 1 10

0 70.81 71.14 70.95 80.50
1e-4 70.29 69.93 69.78 79.75
1e-3 70.63 71.66 71.56 79.84
1e-2 71.52 70.53 69.87 80.87

Table 9: Comparisons with designed baselines on CIFAR-10.
Setting NIID-1 NIID-2

Target Distribution Skew Imb-A Imb-B Skew Imb-A Imb-B

FedAvg 56.10 49.56 48.98 65.15 74.82 73.74
Similarity 72.50 53.03 52.27 68.52 76.43 75.13

Confidence 70.00 58.79 52.16 70.72 74.33 74.49
FedSSA 90.00 62.99 58.43 79.79 79.58 77.39

E PROOF

E.1 PRELIMINARIES

The global objective function is F (θ) =
∑N

k=1 pkFk(θ), where
∑K

k=1 pk = 1. Note that the
general aggregation weight for local model aggregating is denoted by wk and the relative dataset
size is denoted by nk = Nk∑

i Ni
. For FedAvg, the aggregation weight equals to relative dataset size:

wk := nk, which optimizes the global objective function where pk := nk. For an arbitrary target
distribution, pk should not be strictly equal to nk like FedAvg and so do wk. For example, when
the target distribution is exactly the same as Client 1 and distinct from others, the objective function
should be F (θ) = p1F1(θ), that is, p1 = 1.0 and pk = 0.0 for k ̸= 1. Thus, we explore the effects
of aggregation weight wk towards the optimization given a pre-defined global objective function,
that is, pk is given.

For ease of writing, we use gk(θ) to denote mini-batch gradient gk(θ|ξ) and ∇Fk(θ) to denote
full-batch gradient, where ξ is a mini-batch sampled from dataset. We further define the following
two notions:

Averaged Mini-batch Gradient: dk =
1

τ

τ−1∑
r=0

gk(θ
(t,r)
k ), (11)

Averaged Full-batch Gradient: hk =
1

τ

τ−1∑
r=0

∇Fk(θ
(t,r)
k ). (12)

Then, the update of the global model between the two rounds is as follows:

θ(t+1,0) − θ(t,0) = −τη

K∑
k=1

wkdk. (13)

Here, we present a key lemma and defer its proof to section E.3.
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E.1.1 LEMMA 1 (WANG ET AL., 2021C).

Suppose {At}Tt=1 is a sequence of random matrices and follows E[At|At−1, At−2, ..., A1] = 0, then

E

∥∥∥∥∥
T∑

t=1

At

∥∥∥∥∥
2

F

 =

T∑
t=1

E
[
∥At∥2F

]

E.2 PROOF OF THEOREM 1

According to the Lipschitz-smooth assumption in Assumption 1, we have its equivalent form (Bottou
et al., 2018)

E
[
F (θ(t+1,0))

]
− F (θ(t,0))

≤ E
[〈

∇F (θ(t,0)),θ(t+1,0) − θ(t,0)
〉]

− L

2
E
[∥∥∥θ(t+1,0) − θ(t,0)

∥∥∥2] (14)

= −τη E

[〈
∇F (θ(t,0)),

K∑
k=1

wkdk

〉]
︸ ︷︷ ︸

N1

+
Lτ2η2

2
E

∥∥∥∥∥
K∑

k=1

wkdk

∥∥∥∥∥
2


︸ ︷︷ ︸
N2

, (15)

where the expectation is taken over mini-batches ξ(t,r)k , ∀k ∈ 1, 2, ...,K, r ∈ 0, 1, ..., τ − 1.

E.2.1 BOUNDING N1 IN (15)

N1 = E

[〈
∇F (θ(t,0)),

K∑
k=1

wk(dk − hk)

〉]
+ E

[〈
∇F (θ(t,0)),

K∑
k=1

wkhk

〉]
(16)

= E

[〈
∇F (θ(t,0)),

K∑
k=1

wkhk

〉]
(17)

=
1

2

∥∥∥∇F (θ(t,0))
∥∥∥2 + 1

2
E

∥∥∥∥∥
K∑

k=1

wkhk

∥∥∥∥∥
2
− 1

2
E

∥∥∥∥∥∇F (θ(t,0))−
K∑

k=1

wkhk

∥∥∥∥∥
2
 , (18)

where (17) uses the unbiased gradient assumption in Assumption 3, such that E[dk − hk] = hk −
hk = 0. (18) uses the fact that 2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2.

21



Under review as a conference paper at ICLR 2024

E.2.2 BOUNDING N2 IN (15)

N2 = E

∥∥∥∥∥
K∑

k=1

wk(dk − hk) +

K∑
k=1

wkhk

∥∥∥∥∥
2
 (19)

≤ 2E

∥∥∥∥∥
K∑

k=1

wk(dk − hk)

∥∥∥∥∥
2
+ 2E

∥∥∥∥∥
K∑

k=1

wkhk

∥∥∥∥∥
2
 (20)

= 2

K∑
k=1

w2
kE

[
∥dk − hk∥2

]
+ 2E

∥∥∥∥∥
K∑

k=1

wkhk

∥∥∥∥∥
2
 (21)

=
2

τ2

K∑
k=1

w2
kE

∥∥∥∥∥
τ−1∑
r=0

(gk(θ
(t,r)
k )−∇Fk(θ

(t,r)
k ))

∥∥∥∥∥
2
+ 2E

∥∥∥∥∥
K∑

k=1

wkhk

∥∥∥∥∥
2
 (22)

=
2

τ2

K∑
k=1

w2
k

τ−1∑
r=0

E
[∥∥∥gk(θ(t,r)

k )−∇Fk(θ
(t,r)
k )

∥∥∥2]+ 2E

∥∥∥∥∥
K∑

k=1

wkhk

∥∥∥∥∥
2
 (23)

≤ 2σ2

τ

K∑
k=1

w2
k + 2E

∥∥∥∥∥
K∑

k=1

wkhk

∥∥∥∥∥
2
 (24)

where (20) follows ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, (21) uses the fact that clients are independent to
each other so that E ⟨dk − hk,dn − hn⟩ = 0,∀k ̸= n. (23) uses Lemma 1 and (24) uses bounded
variance assumption in Assumption 2.

Plug (18) and (24) back into (15), we have

E
[
F (θ(t+1,0))

]
− F (θ(t,0))

≤− τη

2

∥∥∥∇F (θ(t,0))
∥∥∥2 − τη

2
(1− 2τηL)E

∥∥∥∥∥
K∑

k=1

wkhk

∥∥∥∥∥
2
+ Lτη2σ2

K∑
k=1

w2
k +

τη

2
E

∥∥∥∥∥∇F (θ(t,0))−
K∑

k=1

wkhk

∥∥∥∥∥
2


︸ ︷︷ ︸
N3

.

(25)

E.2.3 BOUNDING N3 IN (25)

E

∥∥∥∥∥∇F (θ(t,0))−
K∑

k=1

wkhk

∥∥∥∥∥
2


=E

∥∥∥∥∥
K∑

k=1

(pk − wk)∇Fk(θ
(t,0)) +

K∑
k=1

wk

(
∇Fk(θ

(t,0))− hk

)∥∥∥∥∥
2
 (26)

≤2

∥∥∥∥∥
K∑

k=1

(pk − wk)∇Fk(θ
(t,0))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
K∑

k=1

wk

(
∇Fk(θ

(t,0))− hk

)∥∥∥∥∥
2

(27)

≤2

[
K∑

k=1

(pk − wk)
2

][
K∑

k=1

∥∥∥∇Fk(θ
(t,0))

∥∥∥2]+ 2

∥∥∥∥∥
K∑

k=1

wk

(
∇Fk(θ

(t,0))− hk

)∥∥∥∥∥
2

(28)

≤2K

[
K∑

k=1

(pk − wk)
2

] [
A
∥∥∥∇F (θ(t,0))

∥∥∥2 +B

]
+ 2

∥∥∥∥∥
K∑

k=1

wk

(
∇Fk(θ

(t,0))− hk

)∥∥∥∥∥
2

, (29)
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where (27) follows ∥a+ b∥2 ≤ 2 ∥a∥2+2 ∥b∥2, (28) follows Cauchy–Schwarz inequality, (29) uses
the bounded similarity assumption in Assumption 4.

We use WD to denote 2K
[∑K

k=1(pk − wk)
2
]
. When 1− 2τηL ≥ 0, we have

E
[
F (θ(t+1,0))

]
− F (θ(t,0))

≤ −τη(1−AWD)

2

∥∥∥∇F (θ(t,0))
∥∥∥2 + Lτη2σ2

K∑
k=1

w2
k +

τηBWD

2
+ τηE

∥∥∥∥∥
K∑

k=1

wk

(
∇Fk(θ

(t,0))− hk

)∥∥∥∥∥
2


(30)

≤ −τη(1−AWD)

2

∥∥∥∇F (θ(t,0))
∥∥∥2 + Lτη2σ2

K∑
k=1

w2
k +

τηBWD

2
+ τη

K∑
k=1

wk E
[∥∥∥∇Fk(θ

(t,0))− hk

∥∥∥2]︸ ︷︷ ︸
N4

,

(31)

where (31) uses Jensen’s Inequality
∥∥∥∑K

k=1 wkxk

∥∥∥2 ≤
∑K

k=1 wk ∥xk∥2.

E.2.4 BOUNDING N4 IN (31)

E
[∥∥∥∇Fk(θ

(t,0))− hk

∥∥∥2] = E

∥∥∥∥∥∇Fk(θ
(t,0))− 1

τ

τ−1∑
r=0

∇Fk(θ
(t,r)
k )

∥∥∥∥∥
2
 (32)

= E

∥∥∥∥∥1τ
τ−1∑
r=0

(∇Fk(θ
(t,0))−∇Fk(θ

(t,r)
k ))

∥∥∥∥∥
2
 (33)

≤ 1

τ

τ−1∑
r=0

E
[∥∥∥∇Fk(θ

(t,0))−∇Fk(θ
(t,r)
k )

∥∥∥2] (34)

≤ L2

τ

τ−1∑
r=0

E
[∥∥∥θ(t,0) − θ

(t,r)
k

∥∥∥2]︸ ︷︷ ︸
N5

, (35)

where (34) uses Jensen’s Inequality and (35) follows Lipschitz-smooth property.
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E.2.5 BOUNDING N5 IN (41)

E
[∥∥∥θ(t,0) − θ

(t,r)
k

∥∥∥2] = η2E

∥∥∥∥∥
r−1∑
s=0

gk(θ
(t,s)
k )

∥∥∥∥∥
2
 (36)

≤2η2E

∥∥∥∥∥
r−1∑
s=0

(
gk(θ

(t,s)
k )−∇Fk(θ

(t,s)
k )

)∥∥∥∥∥
2
+ 2η2E

∥∥∥∥∥
r−1∑
s=0

∇Fk(θ
(t,s)
k )

∥∥∥∥∥
2
 (37)

=2η2
r−1∑
s=0

E
[∥∥∥gk(θ(t,s)

k )−∇Fk(θ
(t,s)
k )

∥∥∥2]+ 2η2E

∥∥∥∥∥
r−1∑
s=0

∇Fk(θ
(t,s)
k )

∥∥∥∥∥
2
 (38)

≤2rη2σ2 + 2η2E

∥∥∥∥∥r
r−1∑
s=0

1

r
∇Fk(θ

(t,s)
k )

∥∥∥∥∥
2
 (39)

≤2rη2σ2 + 2rη2
r−1∑
s=0

E
[∥∥∥∇Fk(θ

(t,s)
k )

∥∥∥2] (40)

≤2rη2σ2 + 2rη2
τ−1∑
s=0

E
[∥∥∥∇Fk(θ

(t,s)
k )

∥∥∥2] (41)

where (37) uses ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, (38) uses Lemma 1, (39) uses the bounded variance
assumption in Assumption 3, (40) uses Jensen’s Inequality.

Plug (41) back into (35) and use this equation
∑τ−1

r=0 r = τ(τ−1)
2 , we have

E
[∥∥∥∇Fk(θ

(t,0))− hk

∥∥∥2] ≤ L2

τ

τ−1∑
r=0

E
[∥∥∥θ(t,0) − θ

(t,r)
k

∥∥∥2] (42)

≤(τ − 1)L2η2σ2 + (τ − 1)L2η2
τ−1∑
s=0

E
[∥∥∥∇Fk(θ

(t,s)
k )

∥∥∥2]︸ ︷︷ ︸
N6

, (43)

where N6 in (43) can be further bounded.

E.2.6 BOUNDING N6 IN (43)

E
[∥∥∥∇Fk(θ

(t,s)
k )

∥∥∥2]
≤2E

[∥∥∥∇Fk(θ
(t,s)
k )−∇Fk(θ

(t,0))
∥∥∥2]+ 2E

[∥∥∥∇Fk(θ
(t,0))

∥∥∥2] (44)

≤2L2E
[∥∥∥θ(t,0) − θ

(t,s)
k

∥∥∥2]+ 2E
[∥∥∥∇Fk(θ

(t,0))
∥∥∥2] , (45)

where (44) uses ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, (45) uses Lipschitz-smooth property. Plug (45) back
to (43), we have

L2

τ

τ−1∑
r=0

E
[∥∥∥θ(t,0) − θ

(t,r)
k

∥∥∥2]

≤(τ − 1)L2η2σ2 + 2(τ − 1)η2L4
τ−1∑
s=0

E
[∥∥∥θ(t,0)

k − θ(t,s)
∥∥∥2]

+ 2(τ − 1)η2L2
τ−1∑
s=0

E
[∥∥∥∇Fk(θ

(t,0))
∥∥∥2] (46)
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After rearranging, we have the following bound for N4:

E
[∥∥∥∇Fk(θ

(t,0))− hk

∥∥∥2] ≤ L2

τ

τ−1∑
r=0

E
[∥∥∥θ(t,0) − θ

(t,r)
k

∥∥∥2] (47)

≤ (τ − 1)η2σ2L2

1− 2τ(τ − 1)η2L2
+

2τ(τ − 1)η2L2

1− 2τ(τ − 1)η2L2
E
[∥∥∥∇Fk(θ

(t,0))
∥∥∥2] (48)

=
(τ − 1)η2σ2L2

1− C
+

C

1− C
E
[∥∥∥∇Fk(θ

(t,0))
∥∥∥2] , (49)

where we define C = 2τ(τ − 1)η2L2 < 1. Then, the last term in equation 31 can be bounded as:

τη

K∑
k=1

wkE
[∥∥∥∇Fk(θ

(t,0))− hk

∥∥∥2]

≤τη

K∑
k=1

{
wk

[
(τ − 1)η2σ2L2

1− C
+

C

1− C
E
[∥∥∥∇Fk(θ

(t,0))
∥∥∥2]]} (50)

≤τ(τ − 1)σ2L2η3

1− C
+

τηAC

1− C
E
[∥∥∥∇F (θ(t,0))

∥∥∥2]+
τηBC

1− C
, (51)

where (51) follows the bounded dissimilarity assumption in Assumption 4. Plug (51) back to (31),
we have
E
[
F (θ(t+1,0))

]
− F (θ(t,0))

≤− τη(1−AWD)

2

∥∥∥∇F (θ(t,0))
∥∥∥2 + Lτη2σ2

K∑
k=1

w2
k +

τηBWD

2
+ τη

K∑
k=1

wkE
[∥∥∥∇Fk(θ

(t,0))− hk

∥∥∥2]

≤− τη(1−WD)

2

∥∥∥∇F (θ(t,0))
∥∥∥2 + Lτη2σ2

K∑
k=1

w2
k +

τηBWD

2

+
τ(τ − 1)σ2L2η3

1− C
+

τηAC

1− C
E
[∥∥∥∇F (θ(t,0))

∥∥∥2]+
τηBC

1− C
(52)

=− τη

2
(1−WD − 2AC

1− C
)
∥∥∥∇F (θ(t,0))

∥∥∥2 + Lτη2σ2
K∑

k=1

w2
k +

τηBWD

2
+

τ(τ − 1)σ2L2η3

1− C
+

τηBC

1− C

(53)

Finally, by taking the average expectation across all rounds, we finish the proof of Theorem 1.

min
t

E
∥∥∥∇F (θ(t,0))

∥∥∥2 ≤ 1

T

T−1∑
t=0

E
∥∥∥∇F (θ(t,0))

∥∥∥2 (54)

≤
2(1− C)

(
F (θ(0,0))− Finf

)
τηT [1− C − 2AC −WD(1− C)]

+
(1− C)BWD

[1− C − 2AC −WD(1− C)]

+
2(1− C)Lησ2

∑K
k=1 w

2
k

[1− C − 2AC −WD(1− C)]
+

2(τ − 1)σ2L2η2

[1− C − 2AC −WD(1− C)]
+

2BC

[1− C − 2AC −WD(1− C)]
(55)

=
1

1− C − 2AC −WD(1− C)

(
2(1− C)

(
F (θ(0,0))− Finf

)
τηT︸ ︷︷ ︸
T1

+(1− C)BWD︸ ︷︷ ︸
T2

+ 2(1− C)Lησ2
K∑

k=1

w2
k︸ ︷︷ ︸

T3

+2(τ − 1)σ2L2η2︸ ︷︷ ︸
T4

+2BC︸ ︷︷ ︸
T5

)
, (56)
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where WD = 2K
[∑K

k=1(pk − wk)
2
]
, wk is the aggregation weight, pk is the coefficient of global

objective function, C = 2τ(τ − 1)η2L2 < 1, τ is the number of steps in local model train-
ing, η is learning rate, T is the total communication round in FL, K is the total client number,
Finf , A,B, L, σ are the constants in assumptions.

E.3 PROOF OF LEMMA 1

Suppose {At}Tt=1 is a sequence of random matrices and follows E[At|At−1, At−2, ..., A1] = 0, then

E

∥∥∥∥∥
T∑

t=1

At

∥∥∥∥∥
2

F

 =

T∑
t=1

E
[
∥At∥2F

]
Proof.

E

∥∥∥∥∥
T∑

t=1

At

∥∥∥∥∥
2

F

 =

T∑
t=1

E
[
∥At∥2F

]
+

T∑
i=1

T∑
j=1,j ̸=i

E
[
Tr

{
A⊤

i A
⊤
j

}]
(57)

=

T∑
t=1

E
[
∥At∥2F

]
+

T∑
i=1

T∑
j=1,j ̸=i

Tr
{
E
[
A⊤

i A
⊤
j

]}
(58)

=

T∑
t=1

E
[
∥At∥2F

]
, (59)

where (59) comes from assuming i < j and using the law of total expectation E
[
A⊤

i Aj

]
=

E
[
A⊤

i E[Aj |Ai, ..., A1]
]
= 0.
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