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ABSTRACT

Convolutional neural networks (CNNs) are increasingly being used in critical sys-
tems, where robustness and alignment are crucial. In this context, the field of
explainable artificial intelligence has proposed the generation of high-level expla-
nations of the prediction process of CNNs through concept extraction. While these
methods can detect whether or not a concept is present in an image, they are unable
to determine its location. What is more, a fair comparison of such approaches is
difficult due to a lack of proper validation procedures. To address these issues, we
propose a novel method for automatic concept extraction and localization based
on representations obtained through pixel-wise aggregations of CNN activation
maps. Further, we introduce a process for the validation of concept-extraction
techniques based on synthetic datasets with pixel-wise annotations of their main
components, reducing the need for human intervention. Extensive experimenta-
tion on both synthetic and real-world datasets demonstrates that our method out-
performs state-of-the-art alternatives.

1 INTRODUCTION

As convolutional neural networks (CNN) become increasingly used in critical real-world applica-
tions (e.g., quality control (Wang et al., 2018) or medical diagnosis (Benjamens et al., 2020)), there
is an urgent need to understand their inner workings. This has led to a growing adoption of ex-
plainability methods during the lifecycle of models (Burkart & Huber, 2021; Dhanorkar et al., 2021;
Wijaya et al., 2021) in an effort to increase transparency and trust, convey a sense of causality, ensure
alignment, and make adjustments when necessary (Bhatt et al., 2020; Arrieta et al., 2020).

In particular, post-hoc visual explanations of CNNs have proven to be useful for detecting undesired
biases or unexpected behaviors in models (Singh et al., 2020; Tjoa & Guan, 2021). In recent years,
post-hoc visual explanations have been tackled by either (i) adopting feature attribution methods
(Selvaraju et al., 2020; Shrikumar et al., 2017; Qi et al., 2019), or (ii) mining higher level features
through concept extraction (CE) techniques (Kim et al., 2018; Ghorbani et al., 2019; Yeh et al.,
2020). Explanations provided by the first approach are termed local explanations as they focus on
analyzing single data instances, while those of the second approach are global explanations as they
focus on obtaining features pertaining to the understanding of the model as a whole. Although these
two approaches are widely used, both have significant limitations.

As a practical example, let us consider a CNN model for the classification of parts in a quality
control process (good, scratched, and deformed edges). During the lifecycle of the CNN, explainable
artificial intelligence (XAI) may be used to detect undesired behaviors and to better understand
which features are present in the acquired data. This will increase trust in the model and ensure a
high-level alignment with expert knowledge.

Feature attribution (local explanation) methods can be used to determine (for single images) whether
the pixels in the scratched or deformed regions are important for image classification, yet they do
not tell us which groups of pixels are contextually related (composing a scratch), or whether the
model distinguishes pixels in a scratch from pixels in a deformed edge. Moreover, recent studies
have shown that feature attribution methods can be noisy and misleading (Adebayo et al., 2018).

Concept extraction (global explanation) methods can analyze a model in the context of a dataset and
return different sets of images representing concepts – in the case of the example mentioned above,

1



Under review as a conference paper at ICLR 2023

(a) ECLAD

(b) ACE

Figure 1: Proposed concept extraction technique ECLAD 1(a) in comparison to a state-of-the-art
alternative ACE 1(b). ECLAD extracts a representation per pixel (LAD) before clustering and ex-
tracting concepts. ACE segments each image and uses a single representation to describe each patch
before clustering. For new explanations, ECLAD provides the localization of each concept in the
image, whereas ACE only tests whether each concept exists in the image.

samples of scratches or deformed edges. These sets represent the concepts learned by a model
during training and are accompanied by a score denoting their importance in the model’s prediction
process (Kim et al., 2018; Ghorbani et al., 2019). When explaining new instances, these methods can
determine whether a concept is present, but not where it is, i.e., current methods do not localize the
pixels containing each concept (where is the scratch, or deformed edge). A representative method is
shown in Figure 1(b). This is a severe limitation in many applications, as posterior to the CE process,
the results are not being used to explain abnormal behaviors in detail, increasing the possibility of
biased interpretations. For example, a problematic instance of a piece with deformed edges and
a shiny patch elsewhere may be erroneously detected as scratched by a CNN. A human may then
erroneously interpret the edge as the problematic region, whereas the unusual shiny region was the
confounding factor. The same issue makes the objective validation of CE techniques difficult, as
interpreting which cues relate to a concept as well as its relation to the ground truth requires human
intervention.

Our work focuses on concept-based explanations, i.e., global explanations, and specifically on their
inability to provide a straightforward concept localization. We propose Extracting Concepts with
Local Aggregated Descriptors (ECLAD) as a method for CE that – posterior to its global execution
– is able to localize concepts and quantify their importance for a single image prediction, as shown
in Figure 1(a). In contrast to previous CE methods, we do not encode an image as a single flattened
activation map, but rather as a set of pixel-wise aggregations of the activation maps of multiple
layers. We call these pixel-wise representations local aggregated descriptors (LADs).

As an orthogonal contribution, we address the challenge of quantitatively validating CE techniques,
as current alternatives require human intervention to associate important concepts with the ground
truth. We propose an alternative process for the validation of CE methods that requires no interven-
tion to verify the correctness of extracted concepts. We achieve this by spatially associating labelled
components on images (primitives) with regions related to the extracted concepts. As other CE
methods do not provide a straightforward localization of the concepts, we segment the images and
test each patch in search of every extracted concept. This process can be used to validate any other
CE technique and provide a more objective performance measure. In this paper, we use this process
to validate the correct performance of ECLAD using new synthetic datasets.

In summary, our main contributions are: (1) We propose a concept extraction method based on local
aggregated descriptors that can extract global concepts and localize them in single images. (2) We
propose a process for validating concept extraction techniques by using pixel-level ground truth to
relate extracted concepts with primitives of a synthetic dataset. (3) We validate our methods with
multiple synthetic datasets (making them public), as well as real-world use cases.
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2 RELATED WORK ON CONCEPT EXTRACTION

The goal of concept-based explanation methods is to extract high-level features that relate to the
decision-making process of a CNN. To achieve this, ante-hoc approaches have proposed distinctive
CNN architectures, constraining the representations learned in their latent spaces (Chen et al., 2019;
Koh et al., 2020; Chen et al., 2020; Utkin et al., 2021; Goyal et al., 2019; Tran et al., 2021). In
contrast, post-hoc approaches extract patches from images, and cluster them based on their repre-
sentations inside the latent space of the CNNs (Ghorbani et al., 2019; Ge et al., 2021).

Our work lies in the category of post-hoc concept extraction (CE), where the standard approach
for extracting concepts is the algorithm Automatic Concept-based Explanations (ACE) (Ghorbani
et al., 2019), depicted in Figure 1(b). ACE uses a segmentation technique to extract patches before
encoding them through the CNN. Afterwards, ACE clusters these representations and scores the
importance of each cluster using the concept-testing algorithm TCAV (Kim et al., 2018). Other
studies have built on the CE capabilities of ACE, by focusing on concept completeness (Yeh et al.,
2020) (ConceptShap), or structural relations between concepts (Ge et al., 2021; Kori et al., 2020). In
essence, these methods assess whether an image contains a concept, and to what extent that concept
influences the prediction of said image, but not where the concept is located, omitting relevant
spatial information. Our approach uses LADs to represent each pixel rather than employing a single
flattened activation map describing a whole image. In contrast to the above-mentioned works, this
approach allows for a straightforward localization of pixels considered part of a concept.

The second main contribution of this paper is a method for validating CE techniques. Such a vali-
dation process has proven challenging for most studies to date, and three principal approaches have
been followed. The first consists of using image classification datasets, performing CE over a trained
model, and visually (qualitatively) inspecting the results for specific classes (Ghorbani et al., 2019;
Schrouff et al., 2021; Ge et al., 2021; Kori et al., 2020; Liu & Arik, 2020). The second approach
builds on the first, performing a user study to either measure the meaningfulness of extracted con-
cepts, or link them to the main unannotated attributes of each class (Ghorbani et al., 2019; Yeh et al.,
2020). The third approach utilizes datasets (synthetic or natural) with labels denoting the presence
of an attribute in each image (Goyal et al., 2019; Yeh et al., 2020). This approach allows for a
quantitative evaluation of the correlation between the labels and the extracted concepts, yet it does
not ensure that the same visual cue is responsible for both. Our proposed validation approach uses
tailored synthetic datasets with pixel-level annotations for each primitive (visual cues or concepts
present on each image) to objectively relate them to extracted concepts through a distance metric.
This measure enables an automatic assessment of whether the important extracted concepts coin-
cide with the primitives used to compose the images of each class. To our knowledge, this is the
first CE validation technique that uses pixel-wise annotations to verify whether visual cues from an
important extracted concept are related to dataset primitives without human intervention.

3 ECLAD

We present Extracting Concepts with Local Aggregated Descriptors (ECLAD) as an explanation
method for CNNs that extracts concepts (meaningful representations that a model has learned) using
a pixel-wise aggregation of activation maps. Its main premise is that the activation maps of the
multiple low, mid, and high level layers can be re-scaled and composed at a pixel level to obtain a
comprehensive description of how a neural network encodes a location of an image (including its
surrounding context). Consequently, this encoding can be used to mine for concepts.

We introduce ECLAD in four three. First, we specify what we mean by local aggregated descriptors
(LADs). Second, we describe the process of CE by clustering LADs. Third, we propose a metrics
of the relative importance of each extracted concept. A detailed pseudocode of ECLAD’s usage is
provided in the appendix B.

3.1 LOCAL AGGREGATED DESCRIPTORS

CNN classification models approximate the mapping of images x of dimensions (h,w, 3) (for RGB
images), to a vector y corresponding to the probability of the input belonging to nk classes with
a function f : x ∈ Rh×w×3 → y ∈ Rnk . In CNNs, a partial evaluation until a layer l, yields
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an activation map al = fl(x), belonging to a latent space al ∈ Rhl×wl×cl , where the dimensions
depend on the input as well as the type and quantity of layers evaluated.

To exploit the progressive information encoding of the CNNs, we propose the aggregation of the
activation maps of a predefined set L = {l1, · · · , lnl

} of nl layers. We obtain the aggregated de-
scriptor of an image xi, by first computing al for each layer l ∈ L. Then, we upscale each al to
the spatial dimensions of xi using bilinear interpolation (fU ). Finally, we concatenate the resulting
maps alongside their third dimension (depth)

dxi =
[
fU (fl1(xi)) · · · fU (flnl

(xi))
]
. (1)

We obtain the descriptor dxi
∈ Rh×w×c∗ , where c∗ is the sum of the number of units for all layers

in L. Local aggregated descriptors (LADs) refer to each pixel dxi,(a,b) ∈ R1×1×c∗ of the tensor
dxi

, where (a, b) denotes the position along the width and height of dxi
. LADs contain information

about how the CNN encodes a pixel and its surrounding context in different abstraction levels.

3.2 CONCEPT EXTRACTION

In contrast to a flattened activation map, LADs contain information about different levels of ab-
straction, while remaining equivariant to translation. We can exploit these properties by performing
concept mining using all LADs from a dataset E,

D = {dxi,(a,b) | a ∈ {1, . . . , h}, b ∈ {1, . . . , w}, xi ∈ E}.

We use minibatch k-means (Sculley, 2010) to compensate for the computational cost of clustering
LADs. We take batches of ni images, compute their descriptors dxi

, vectorize them, and join them
(obtaining a subset of D) before applying one clustering step. This approach can be used to evaluate
a full dataset or a limited subset of all classes, without scaling memory requirements. Subsequently,
we obtain the set Γ = {γc1 , · · · , γcnc

} of centroids γcj ∈ R1×1×c∗ defining the concepts.

To locate a concept cj in an image xi, we create a mask m
cj
xi ∈ Rh×w×1 by analyzing each dxi,(a,b)

and assessing whether it belongs to the cluster defined by γcj . This allows for a direct evaluation of
an image, identifying not only whether it contains a concept, but also where it is located (localiza-
tion). We use the masks mcj

xi = Mask(xi, γcj ) to attenuate unrelated pixels by a factor λ ∈ (0, 1]

and obtain the human-understandable sets of examples εcj = {(1− λ)m
cj
xi ⊙ xi + λxi | xi ∈ E}.

3.3 CONCEPT IMPORTANCE

In contrast to other approaches (Goyal et al., 2019; Ghorbani et al., 2019), we extract concepts on a
pixel level by using LADs. Therefore, we compute the sensitivity on a pixel level, and aggregate it
for each concept. We use the same approach and also aggregate gradients to obtain gxi ∈ Rh×w×c∗ ,

gxi
=

[
fU (∇l1h

k
l1(fl1(xi))) · · · fU (∇lnl

hk
lnl

(flnl
(xi)))

]
,

where ∇lh
k
l (fl(x)) is the gradient of the prediction for the class k with respect to an activation

map al = fl(x). Then, the sensitivity skxi,(a,b)
of a pixel becomes the dot product between its local

aggregated gradient and its LAD, skxi,(a,b)
= (gxi,(a,b))

T · dxi,(a,b).

We propose the contrastive sensitivity CSkcj as the difference between the average sensitivity of a
concept cj towards the class k for all images of a class k minus the average for the rest of the dataset:

CSkcj =
1

|Sk,Ek
cj |

∑
skcj

∈S
k,Ek
cj

skcj −
1

|Sk,Ek′
cj |

∑
skcj

∈S
k,E

k′
cj

skcj , (2)

where Sk,Ek
cj is the set of sensitivities (towards class k) for all pixels in all images of Ek belonging

to the concept cj . Similarly, Sk,Ek′
cj is the set of sensitivities (towards class k) for all pixels in all

images of E \ Ek belonging to the concept cj . This measure quantifies how important a concept cj
is with respect to a specific class k. In addition, we propose a relative importance measure RIc,

RIcj = CS
kcj
cj /max

cq,k
(| CSkcq |) ; kcj = argmax

k
(| CSkcj |). (3)

4



Under review as a conference paper at ICLR 2023

This metric not only represents how important a concept is for a single class, but also how important
it is for samples of a class in contrast to samples of other classes. The relative importance (RIcj )
is a scaled value denoting the highest contrastive sensitivity of a concept, and normalized across all
concepts. Moreover, RIcj allows for the extraction of attributive and counterfactual concepts.

Our importance score is directly tied to (A) the spatial regions containing a concept, and (B) the
magnitude of the sensitivity of units in the selected layers for different class images. The objective
of this metric is to better represent the inner workings of a CNN. By doing so we avoid three known
limitations of TCAV and concept Shapely values. First, by relying on (A) we avoid the misscoring
of co-occurring concepts, a known limitation of Shapely values. Second, by relying on (B) we avoid
misscoring concepts which are in a similar general direction when the latent space of a CNN is not
zero centered. Third, (A) and (B) allow us to give a relative importance to co-occurring concepts by
comparing the magnitude of their sensitivities. Our importance metric aims to directly reflect these
dynamics of CNNs (and their internal activations), which are not captured through either TCAV
scores or Shapely values.

4 VALIDATION OF CONCEPT EXTRACTION TECHNIQUES

We propose a method for the quantitative validation of CE techniques with minimal human interven-
tion. This method is not meant to replace usability studies with humans, which seek to understand
explanations in human-AI systems (Mueller et al., 2019). Rather, it is a quantitative approach to
score CE techniques purely based on synthetic datasets.

In an ideal case, we have an unbiased classification dataset of images and their labels. Within all
high level features contained in the data, we have a subset of important features which are the
differentiating factors between the labels, and a subset of unimportant features. We build upon
the assumption that after training, a model learns to predict the labels by detecting a subset of the
important features (possibly disregarding correlated features (Geirhos et al., 2020)). Then, a CE
algorithm analyzes the model and dataset, extracting a set of concepts and scoring their importance.

We denote as aligned concepts, those spatially related to the important features of the dataset (which
were learned by the model). Similarly, we denote as unaligned concepts, those representing unim-
portant or unannotated features of the dataset that are irrelevant for performing the desired task. In
an ideal case, where the features of a dataset were perfectly learned by a trained model, the perfor-
mance of a CE method will be reflected by two metrics. Representation correctness: extracted
aligned concepts should be spatially close (e.g. overlapping) with the important features of the
dataset. Importance correctness: extracted aligned concepts should be scored as important (e.g.
1.0), and unaligned concepts as unimportant (e.g. 0.0).

With the ideal case in mind, we propose a validation procedure that aims to evaluate representation
and importance correctness of a CE technique. First, we create a set of synthetic datasets, including
masks for the base components of the images. Second, we train a set of models for each dataset.
Third, we execute the CE method. Fourth, we compute localization masks for each extracted concept
for each dataset image. Fifth, we associate each concept to the ground truth masks using a distance
metric. This allows us to classify the concepts as aligned or not. Finally, we quantify the importance
correctness and representation correctness of the extracted concepts.

4.1 SYNTHETIC DATASETS

Our validation process requires unbiased image classification datasets that can be learned by differ-
ent models and have an annotated ground truth locating each element of the images. To mitigate the
risk of introducing biases, or uncontrolled features in the datasets, we focus on the low-complexity
task of character classification. We created six synthetic datasets for the validation of ECLAD (e.g.,
dataset AB in Figure 2), described in detail in Appendix.

We generate the images of each classification task by overlapping multiple elements. Each element
(e.g., red A, a gray background) is the combination of multiple features (e.g., “is red”, “has the form
of an A”), and is generated by a mask (denoted primitive) filled with a specific texture. In each
dataset, we select a subset of features and their primitives to define each class, marking them as
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(a) Class A. (b) Class B. (c) Primitives p1, p2, p3, and p4.

Figure 2: Synthetic dataset AB. 2(a) and 2(b) show examples of classes A and B, respectively. 2(c)
Shows example masks mpo

xi
for the primitives A, plus, background and B respectively.

important, and creating the labels. Unimportant features are balanced between classes. Thus, each
datapoint is composed of an image xi, their label yi, and a mask mpo

xi
for each primitive po.

4.2 MODEL TRAINING

The main problem faced in the validation of CE techniques is that there are no ground truth regarding
what a models learns. thus, we assume that models perfectly learns simple datasets. To mitigate
possible biases, we train models with multiple architectures and random seeds for each dataset.

4.3 CONCEPT EXTRACTION

We perform CE over every trained model and its dataset. As a result of this step, every extracted
concept must have at least a related importance score and vector representation. In the case of ACE-
based methods, this vector representation is the concept activation vector (CAV) (Kim et al., 2018).
Similarly, the execution of ConceptShap yields a vector representation akin to CAVs. In our case,
ECLAD provides a centroid γc associated with every concept. The representation vectors will be
used for concept localization, and the importance scores will be used for correctness quantification.
As long as these two are provided (importance score and vector representation), a CE technique can
be validated using the proposed process.

4.4 CONCEPT LOCALIZATION

We use the results of the previous step to localize all concepts present in the synthetic datasets.
For ACE and ConceptShap, we perform concept localization by segmenting each image and testing
whether each patch contains each concept. For ECLAD, we use the descriptor dxi

of every image,
and compute a mask m

cj
xi for every concept. As a result of this step, every tested CE approach

generates a binary mask m
cj
xi for each concept cj of each model, for every image xi in a dataset E.

4.5 CONCEPT ASSOCIATION

The process of associating concepts and the important features of a dataset has previously been
performed through human inspection (Ghorbani et al., 2019; Ge et al., 2021). This association allows
the comparison of extracted concepts and the dataset’s intended features. It allows for a subjective
judgement of the correctness of the CE methods. To perform this association automatically, we
introduce the distance DSTpo,cj measuring how close a concept is to the features of a dataset.

To measure the spatial association of a concept and a feature, we consider partial overlapping as
well as spatial closeness. We compute this distance through the comparison of the concept masks
m

cj
xi and the primitives mpo

xi
of the features. In cases where a concept detects the surrounding of a

primitive (when activation maps become off-centered through a CNN), existing metrics (e.g. Jaccard
index, adjusted rand score) perform poorly, this limitations are discussed in F.6. We propose an
expressive metric, computed by adding the euclidean distance between each pixel on a mask to the
nearest element of another mask. This metric results in a zero value if the mask of the primitive and
the concept are overlapping, and increases as the masks separate. We compute a one-way distance
between the mask mpo

xi
of a primitive po and the mask m

cj
xi of a concept cj as dstpo,cj (xi) =

sum
(
mpo

xi
⊙ EDT(m

cj
xi)

)
, where EDT() refers to the euclidean distance transform; m

cj
xi is the

negated mask m
cj
xi ; and ⊙ denotes the element-wise multiplication of matrices. We estimate the
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association distance between cj and po by computing the average two-way distance for E,

DSTpo,cj =
1

|E|
∑
xi∈E

dstpo,cj (xi) + dstcj ,po(xi). (4)

Using this distance, we can associate each concept to its closest primitive, pcj = argmin
po

(DSTpo,cj ).

Finally, we can use this association to classify each concept as aligned if pcj is an important primitive
and DSTpcj

,cj is below a defined threshold tDST, or otherwise as unaligned. The usage of tDST

reduces the number of aligned concepts lacking semantic meaning.

4.6 CORRECTNESS QUANTIFICATION

We quantify the correctness of the CE method using two proxy metrics based on the desired behavior
for representation and importance correctness. We compute the representation correctness, as the
negative average association distance of all aligned concepts extracted from all models:

RCCE =
1

|Ca|
∑

cj∈Ca

−DSTpcj
,cj , (5)

where Ca denotes the set of all aligned concepts extracted from all models in the validation process.
In an ideal case, the value of RCCE would be zero, meaning that there is a subset of extracted
concepts which correctly represents the important features of the datasets learned by the model.

To quantify the importance correctness, we compute the average absolute importance of all aligned
concepts Ca minus the average absolute importance for the unaligned concepts Cu. We then nor-
malize by the maximum importance of all concepts:

ICCE =
1

max
cq∈Ca∪Cu

(∣∣Icq ∣∣)
 1

|Ca|
∑

cj∈Ca

∣∣Icj ∣∣− 1

|Cu|
∑

cj∈Cu

∣∣Icj ∣∣
 , (6)

where
∣∣Icj ∣∣ refers to the absolute value of the importance of cj . In the case of ECLAD, we use

the relative importance score Icj = RIcj . For ConceptShap, we use the Shapley values associated
with each concept. Finally, for ACE, we scale the sensitivity score, Icj = 2× TCAVQ − 1, so that
unimportant concepts have a value of 0, and important concepts have a value of 1 or -1.

5 RESULTS

In this section, we present experimental results for our method ECLAD, in comparison with
ACE and ConceptShap, through five CNN architectures (ResNet-18, ResNet-34, DenseNet-121,
EfficientNet-B0, and VGG16 (He et al., 2015; Huang et al., 2016; Tan & Le, 2019; Simonyan &
Zisserman, 2015)), each of which is trained using 20 random seeds for six synthetic datasets, as well
as two industrial datasets (subsets of the MVTec-AD dataset (Bergmann et al., 2021)). We com-
pare the performance of the three algorithms using the representation and importance correctness
metrics introduced in Section 4. We first focus on the results for a single ResNet-34 model (Figure
3) trained for the AB synthetic dataset. We then provide a comparison of RCCE and ICCE (for all
models and random seeds) for four datasets, as shown in Figure 4. In the following, we report the
key findings using representative results, while further details on the setup and results are provided
in the appendix.

Eclad achieves a high representation correctness while maintaining their relation to the local
representations within the latent space of the models. In Figure 3, we can see how the aligned
concepts from ECLAD (c1 and c3) have a smaller association distance as well as higher importance
scores in comparison to those from ACE (c7−1) and ConceptShap (c4 and c0). ACE concepts are
extracted using the segmentation algorithm SLIC, which allows a more precise segmentation of the
image features (as seen in Figure 4(a)). Yet, said process disregards local activations, and in turn
affects the scoring of aligned concepts. This effect is seen for concept c7−1 in Figure 3(b), where
a perfectly segmented character B is scored as non important. Similarly, the optimization process
of learning concepts in ConceptShap, can lead to issues when extracting correlated concepts (e.g.,
inversion c5, or redundancy c0-c9 in Figure 3(c)).
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(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 3: Concepts extracted from a Resnet34 trained on the AB dataset. The extracted concepts
from each CE method are plotted in relation to their importance (y-axis), and the distance (x-axis)
towards their closest primitive (hue). In an ideal case, important concepts will be closely related to
the important primitives (e.g., c1 in 3(a)), while concepts unrelated to important primitives will be
scored as unimportant (e.g., c0 3(a)).

(a) Comparison of representation correctness.

(b) Comparison of importance correctness.

Figure 4: Comparison of representation correctness 4(a) and importance correctness 4(b) for five
models trained on four representative datasets (two synthetic and two real-world use cases). An ideal
CE method will have a representation correctness (negative distance between aligned concepts and
important primitives) close to zero, and an importance correctness (relative difference between the
importance of aligned and unaligned concepts) close to one. In both 4(a) and 4(b), higher is better.

ECLADs importance scoring allows for a better differentiation between aligned and unaligned
concepts. This phenomenon can be seen in Figure 3, where the most important concepts extracted by
ECLAD (c1 and c7) are closely associated with the features that should be important for the model.
In contrast, TCAV scores (ACE), assume that each concept is encoded in a distinctive direction in
the latent space of a network. This assumption can entangle spurious patterns with a concept (e.g.,
random patches and the character A in c3−0 in Figure 3(b)). In the case of ConceptShap, the Shapely
value of inversely correlated concepts (e.g., characters A and B), can be truncated, independent of
the extent to which a regions become activated or actually contribute to a prediction (e.g., c4 and c9
in Figure. 3(c)). Globally, this is reflected in ECLAD having a larger importance correctness score
for most datasets and model combinations, as seen in Figure 4(b).

Two counterintuitive results appear in Figure 4. First, in most cases ACE outperformed ECLAD and
ConceptShap representation correctness, yet underperformed w.r.t. ECLAD in importance correct-
ness. This result is caused by the crisp segmentation provided by SLIC. In contrast the diffusion of
information across the network leads to coarse concepts in the case of ECLAD and ConceptShap.
Second, the industrial datasets (metal nut and leather) lacked annotations for other non-important
cues (e.g., center of a metal nut, standard edge of the nut). This complicates a clean assessment
of which concepts are associated to important features and which are not. This demonstrates the
importance of having confounding factors annotated when testing CE techniques.
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In real-world use cases, ECLAD provides insightful explanations for understanding CNNs. To
test the performance of ECLAD in real-world use cases, we trained a DenseNet-121 on datasets
for concrete crack (Özgenel & Sorguç, 2018), metal casting defects (Dabhi, 2020), and diabetic
retinopathy classification (Society, 2019). The extracted concepts with importance scores higher
than 0.8 are shown in Figure 5. In the three domains, the most important extracted concepts can be
associated with the main cues expected from each dataset (cracks in Fig. 5(a), pinholes in Fig. 5(b),
and exudates-aneurysms in Fig. 5(c) and 5(d)).

(a) Concrete c1 (cracks) (b) Casting c1 (pinholes) (c) APTOS c1 (exudates) (d) APTOS c2 (aneurysm)

Figure 5: Most important concepts (RIcj > 0.8) extracted with ECLAD from a DenseNet-121
trained for the classification of concrete cracks 5(a), metal casting defects 5(b), and diabetic
retinopathy 5(c), 5(d). These examples show that ECLAD is able to extract and localize impor-
tant/meaningful concepts related to the most important visual cues of each task, being scratches
5(a), pinholes 5(b), exudates 5(c), and micro-aneurysm 5(d) respectively.

An ablation study was performed to explore the impact of key components of ECLAD, obtaining key
insights. First, using a single layer for concept extraction highly depends on the depth of the chosen
layer. In comparison, by combining layers from multiple depths, ECLAD allows the extraction of
mid and high level concepts without the complexity of fine-tuning the selected layer. Second, more
than three layers help compensate halo effects on extracted concepts (representations dilate through
the network), as well as mid level concepts which are not present in higher layers. Third, higher
number of concepts will cause a progressive slicing of important concepts (without affecting their
RIcj ) Finally, using coarse interpolation methods (fU ) will impact the boundaries of the extracted
concepts, but not the concepts themselves. The chosen parameters for the presented analysis are a
balance between performance and computational cost. The complete details on the ablation study
are presented on the appendix F.5.

6 CONCLUSIONS

We propose ECLAD as a concept extraction (CE) technique, based on local aggregate descriptors
(LADs). Our algorithm focuses on how CNNs represent pixels internally, allowing a more reliable
CE and importance scoring. In addition, it provides the novel ability to localize, in new instances,
which regions of an image contain the visual cues related to each concept.

As an orthogonal contribution, we propose an automatic validation process for CE techniques, which
minimizes the need for human intervention. Our validation process is based on two novel metrics,
measuring the importance and visual cues of concepts w.r.t. the ground truth of synthetic datasets.
We provide six new synthetic datasets that can be used for testing CE methods. The proposed
datasets and validation method proved effective in comparing ECLAD, ACE, and ConceptShap. As
validation procedures that forego (subjective) human judgement are largely missing in the area, we
hope our contribution becomes helpful, provides a quantitative approach for evaluating CE.

While ECLAD performed reliably in the studied cases, the results also raise relevant questions for
future research. First, during the initial CE, ECLAD can be more computationally expensive than
CAV based methods, as the base clustering is performed over the representations of pixels and not
images or patches. Second, the localization of concepts in new images strongly depends on the
CNN architecture being studied, as not all CNNs represent local information with the same fidelity.
Finally, for more complex tasks with a higher number of features, the number of extracted concepts
will have to be adjusted accordingly to avoid relevant features being clustered together.

9
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Ç F Özgenel and A Gönenç Sorguç. Performance comparison of pretrained convolutional neural
networks on crack detection in buildings. In ISARC. Proceedings of the International Symposium
on Automation and Robotics in Construction, volume 35, pp. 1–8. IAARC Publications, 2018.

Zhongang Qi, S. Khorram, and Fuxin Li. Visualizing deep networks by optimizing with integrated
gradients. In CVPR Workshops, 2019.

11

https://openaccess.thecvf.com/content/CVPR2021/html/Ge_A_Peek_Into_the_Reasoning_of_Neural_Networks_Interpreting_With_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Ge_A_Peek_Into_the_Reasoning_of_Neural_Networks_Interpreting_With_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Ge_A_Peek_Into_the_Reasoning_of_Neural_Networks_Interpreting_With_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Ge_A_Peek_Into_the_Reasoning_of_Neural_Networks_Interpreting_With_CVPR_2021_paper.html
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1038/s42256-020-00257-z
https://proceedings.neurips.cc/paper/2019/hash/77d2afcb31f6493e350fca61764efb9a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/77d2afcb31f6493e350fca61764efb9a-Abstract.html
http://arxiv.org/abs/1907.07165
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v119/koh20a.html
http://proceedings.mlr.press/v119/koh20a.html
https://arxiv.org/abs/2008.06457
https://arxiv.org/abs/2007.07477
http://arxiv.org/abs/1902.01876
http://arxiv.org/abs/1902.01876


Under review as a conference paper at ICLR 2023

Jessica Schrouff, Sebastien Baur, Shaobo Hou, Diana Mincu, Eric Loreaux, Ralph Blanes, James
Wexler, Alan Karthikesalingam, and Been Kim. Best of both worlds: local and global expla-
nations with human-understandable concepts. CoRR, abs/2106.08641, 2021. URL https:
//arxiv.org/abs/2106.08641.

D. Sculley. Web-scale k-means clustering. In Michael Rappa, Paul Jones, Juliana Freire, and
Soumen Chakrabarti (eds.), Proceedings of the 19th International Conference on World Wide Web,
WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pp. 1177–1178. ACM, 2010. doi:
10.1145/1772690.1772862. URL https://doi.org/10.1145/1772690.1772862.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. Int. J. Comput. Vis., 128(2):336–359, 2020. doi: 10.1007/s11263-019-01228-7. URL
https://doi.org/10.1007/s11263-019-01228-7.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 3145–3153. PMLR,
2017. URL http://proceedings.mlr.press/v70/shrikumar17a.html.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1409.1556.

Amitojdeep Singh, Sourya Sengupta, and Vasudevan Lakshminarayanan. Explainable deep learning
models in medical image analysis. J. Imaging, 6(6):52, 2020. doi: 10.3390/jimaging6060052.
URL https://doi.org/10.3390/jimaging6060052.

Asia Pacific Tele-Ophthalmology Society. Aptos 2019 blindness detection. Kaggle.com, 2019.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR,
2019. URL http://proceedings.mlr.press/v97/tan19a.html.

Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence (XAI): toward medical
XAI. IEEE Trans. Neural Networks Learn. Syst., 32(11):4793–4813, 2021. doi: 10.1109/TNNLS.
2020.3027314. URL https://doi.org/10.1109/TNNLS.2020.3027314.

Thien Q. Tran, Kazuto Fukuchi, Youhei Akimoto, and Jun Sakuma. Unsupervised causal binary
concepts discovery with VAE for black-box model explanation. CoRR, abs/2109.04518, 2021.
URL https://arxiv.org/abs/2109.04518.

Lev V. Utkin, Pavel D. Drobintsev, Maxim Kovalev, and Andrei V. Konstantinov. Combining an
autoencoder and a variational autoencoder for explaining the machine learning model predictions.
In 28th Conference of Open Innovations Association, FRUCT 2021, Moscow, Russia, January 27-
29, 2021, pp. 489–494. IEEE, 2021. doi: 10.23919/FRUCT50888.2021.9347612. URL https:
//doi.org/10.23919/FRUCT50888.2021.9347612.

Tian Wang, Yang Chen, Meina Qiao, and Hichem Snoussi. A fast and robust convolutional neural
network-based defect detection model in product quality control. The International Journal of
Advanced Manufacturing Technology, 94(9):3465–3471, February 2018.

Maleakhi A. Wijaya, Dmitry Kazhdan, Botty Dimanov, and Mateja Jamnik. Failing conceptually:
Concept-based explanations of dataset shift. CoRR, abs/2104.08952, 2021. URL https://
arxiv.org/abs/2104.08952.
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A APPENDIX

The appendices of this work contain extended information pertaining to three principal topics. First,
we provide a pseudocode of the proposed method. Second, we discuss in detail the experimental
setup required to perform the experiments C. Third, we describe the new synthetic datasets and
provide extended results for each one D. Foruth, we describe the real-world datasets used for both
quantitative validation and testing in other domains E. Fifth, we discuss the computational cost
of ECLAD, ACE, and ConceptShap. Sixth, We describe the ablation study performed over key
components of ECLAD. Finally, we compare the proposed association distance with other existing
alternatives.

B PSEUDOCODE

ECLAD is designed to be first executed over a complete dataset to generate a global explanation.
The resulting set of centroids Γ can then be used to localize each concept for new input images. The
global execution of ECLAD is described in Algorithm 1.

Algorithm 1 ECLAD (global)
Require: model f , dataset E, number of output classes nk, layers L, number of concepts nc, mini

batch size ni, mask attenuation λ
1: D ← GetLADs(f,E, L)
2: Γ← MiniBatchKmeans(D,ni, nc)
3: for γcj ∈ Γ do
4: εcj ← {(1− λ)(Mask(xi, γcj )⊙ xi) + λxi | xi ∈ E}
5: for k ∈ {1, 2, . . . , nk} do
6: create Sk,Ek

cj , S
k,Ek′
cj

7: compute CSkcj
8: end for
9: compute RIcj

10: end for
11: return {(γcj , εcj ,RIcj ) | γcj ∈ Γ}

As a result of executing ECLAD, we obtain for each concept cj : a centroid γcj which serves as an
anchor; an example set εcj of human-understandable visualizations; and a relative importance score
RIcj , which describes how important each concept is for the overall predictions of the model.

We perform the localization of each concept cj in a new image by extracting the mask m
cj
xi , for each

concept defined by γcj ∈ Γ. The resulting masks serve as an explanation of where the different
concepts are located. In addition, the average sensitivities of all pixels in an image belonging to a
concept can be used as local measures of importance.

C EXPERIMENTAL SETUP

We performed all experiments in servers with Intel® Xeon® Gold 6330 CPU and a NVIDIA A100
GPU. We implemented ECLAD, ACE, and ConceptShap using Pytorch 1.11, and the different model
architectures using the PyTorch Image Models (TIMM) library. As part of the supplementary mate-
rial, we make available the code of the experiments, as well as the created datasets under an MIT li-
cense. Both items available on the link: https://drive.google.com/drive/folders/16CjAvk8H1VAD2-
rNiy0HV3OmzDlrwXo5?usp=sharing

Analyzed model architectures. During the experiments, we trained and analyzed five different
CNN architectures (ResNet-18 (He et al., 2015), ResNet-34 (He et al., 2015), DenseNet-121 (Huang
et al., 2016), EfficientNet-B0 (Tan & Le, 2019), and VGG16 (Simonyan & Zisserman, 2015)). For
each model, we selected four layers for executing ECLAD, and the last one (l4) was used for Con-
ceptShap. For ACE, we used the output of the average pooling before the fully connected layers of
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each model, as advised in TCAV (Kim et al., 2018). The list of layers L = l1, l2, l3, l4, and ltcav for
each model are provided in Table 1.

Table 1: Synthetic datasets.

MODEL LAYERS LAYER
RESNET-18 l1 LAYER 1, BLOCK 1, RELU 2
RESNET-18 l2 LAYER 2, BLOCK 1, RELU 2
RESNET-18 l3 LAYER 3, BLOCK 1, RELU 2
RESNET-18 l4 LAYER 4, BLOCK 1, RELU 2
RESNET-18 ltcav AVERAGE POOLING BEFORE FC LAYERS
RESNET-34 l1 LAYER 1, BLOCK 2, RELU 2
RESNET-34 l2 LAYER 2, BLOCK 3, RELU 2
RESNET-34 l3 LAYER 3, BLOCK 5, RELU 2
RESNET-34 l4 LAYER 4, BLOCK 2, RELU 2
RESNET-34 ltcav AVERAGE POOLING BEFORE FC LAYERS
DENSENET-121 l1 TRANSITION LAYER 1, CONV
DENSENET-121 l2 TRANSITION LAYER 2, CONV
DENSENET-121 l3 TRANSITION LAYER 3, CONV
DENSENET-121 l4 DENSE BLOCK 4, DENSE LAYER 16, CONV 2
DENSENET-121 ltcav AVERAGE POOLING BEFORE FC LAYERS
EFFICIENTNET-B0 l1 BLOCK 3, INVERTED RESIDUAL 2, CONV PWL
EFFICIENTNET-B0 l2 BLOCK 4, INVERTED RESIDUAL 2, CONV PWL
EFFICIENTNET-B0 l3 BLOCK 5, INVERTED RESIDUAL 3, CONV PWL
EFFICIENTNET-B0 l4 BLOCK 6, INVERTED RESIDUAL 0, CONV PWL
EFFICIENTNET-B0 ltcav AVERAGE POOLING BEFORE FC LAYERS
VGG16 l1 MAXPOOLING AFTER CONV 2-2
VGG16 l2 MAXPOOLING AFTER CONV 3-3
VGG16 l3 MAXPOOLING AFTER CONV 4-3
VGG16 l4 MAXPOOLING AFTER CONV 5-3
VGG16 ltcav AVERAGE POOLING BEFORE FC LAYERS

Model training. We performed the model training using an SGD optimizer with a learning rate of
0.1 and momentum of 0.9. We used a reduce lr on plateau scheduler with a factor of 0.1 based on
the negative log likelihood loss of the models. The data was split into 0.85 for training and 0.15 for
testing, with mini-batches of 24 images sampled and balanced between the classes. In addition, we
used random color jitter, and affine transforms for data augmentation.

ECLAD. We perform all ECLAD analysis with the same sets of parameters. Each execution was
performed using a maximum of 200 images from each class, extracting 10 concepts, and using 2
images per clustering minibatch (100352 LADs). The layers used for each model are shown in
Table 1.

ACE. We perform all ACE analysis with the same parameters used by Ghorbani et al. (2019). We
performed a SLIC segmentation over 20 images of each class, with sigma of 1.0 and compactness of
20.0 for 15, 50, and 80 segments. Subsequently, we resized and padded each patch before evaluating
it in a model to extract the activation map of the selected layer. We then extracted 25 clusters using
k-means over the flattened activation maps. Finally, we used each group of clustered patches to
perform 50 repetitions of TCAV and obtain the TCAVQ score of each concept.

ConceptShap. We perform all ConceptShap analysis with the same sets of parameters. 10 concepts
were extracted at each run with β = 1.0×10−7, λ1 = 1×10−7, λ2 = 2×10−7. These values were
obtained empirically after exploring values in orders of magnitude from 1 × 10−1 to 1 × 10−10.
The Shapely values for the concepts were approximated with Monte-Carlo sampling with 100 ×
nc samples. As a cutting threshold for localizing each concept, we used the mean values of the
projection of the activation map over the concept vectors, which worked well in comparison to other
fixed thresholds.
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D SYNTHETIC DATASETS

The six synthetic datasets created for the validation of ECLAD are summarized in the Table 2. All
synthetic datasets were created using alphabetical characters and filling them with either solid colors
or textures from the KTH-TIPS dataset (Mallikarjuna et al., 2006). Each dataset is composed of 200
RGB images of 224×224 pixels per class.

Table 2: Synthetic datasets
Name Class 0 Class 1 Primitives
AB A B A, B, +, background
ABplus A B A, B, *, /, #, X, background
Big-Small Big \emph{B} Small \emph{B} Big \emph{B}, Small \emph{B}, +, background
CO C O C, O, +, background
colorGB B G representative character (green or blue), intrusive green character, +, background
isA isA notA A, other characters (B-H), background

Each subsection contains a description of how the synthetic dataset was created, including example
images of each class and the primitives. Similarly, for each dataset, we provide a sample result for
each analysis (ECLAD, ACE, ConceptShap) and model trained in said dataset.
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D.1 AB DATASET

The AB dataset corresponds to a simple classification between images containing a character A or
a character B. The character A, denoted as the primitive p1, is filled with a cork texture and only
appears in class A. The character B, denoted as the primitive p2, is filled green, and only appears
in class B. The primitive p3 contains a + filled with a cotton texture, which is an irrelevant feature
appearing in all the images. Finally, p4 refers to the background, filled with an orange peel texture.
Examples of the class images and the primitives are presented in 6.

(a) Examples class A (b) Examples class B

(c) Primitives p1, p3, and p4 form class A. (d) Primitives p2, p3, and p4 from class B.

Figure 6: Dataset AB, composed of class A (6(a)) and B (6(b)). Primitives p1, p3, and p4 from class
A are shown in Figure 6(c). Primitives p2, p3, and p4 appearing in class B are shown in Figure 6(b).

This simple dataset can be used as a sanity check for CE methods. The characters A and B are dif-
ferent in both form and texture, which facilitates classification. Similarly, regardless of the principle
for the classification (form or color), the primitives will still be the same for both base concepts.

D.1.1 SAMPLE RESULTS FOR EACH MODEL TRAINED WITH THE DATASET AB

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 7: Concepts extracted from a resnet18 trained in the AB dataset.
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(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 8: Concepts extracted from a resnet34 trained in the AB dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 9: Concepts extracted from a densenet121 trained in the AB dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 10: Concepts extracted from a efficientnet-b0 trained in the AB dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 11: Concepts extracted from a vgg16 trained in the AB dataset.
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D.1.2 ABPLUS DATASET

The ABplus dataset also consists in the classification of images containing a character A or a char-
acter B, yet, it contains a higher number of intrusive elements in comparison with the dataset AB.
The primitive for the A character is p1, filled with an aluminum foil texture, appearing only in im-
ages from the class A. The primitive for the character B is p2, filled in green, appearing only in
images from the class B. The rest of the primitives are balanced between the two classes, and only
serve as irrelevant information. Primitives p3, p4, p5, p6, and p7 refers to the symbols *, /, #, and
X, respectively, all filled in solid colors. Finally, p8 refers to the background, filled with a sponge
texture.

(a) Examples class A (b) Examples class B

(c) Primitives p1, p3, p4, p5, p6, p7, and p8 from class A.

(d) Primitives p2, p3, p4, p5, p6, p7, and p8 from class B.

Figure 12: Examples for both classes of the dataset ABplus are shown in Figures 12(a) (class A)
and Figure 12(b) (class B). The primitives of class A are shown in Figure 12(c) and the primitives
of class B are shown in Figure (12(b)).

This dataset contains multiple irrelevant primitives with high contrast in random positions. This
allows to test CE methods to observe and quantify their performance in cases with more feature
variety. Thus, although a model may learn representations for some primitives, the irrelevant ones
should be scored with low importance.

D.1.3 SAMPLE RESULTS FOR EACH MODEL TRAINED WITH THE DATASET ABPLUS

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 13: Concepts extracted from a resnet18 trained in the ABplus dataset.
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(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 14: Concepts extracted from a resnet34 trained in the ABplus dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 15: Concepts extracted from a densenet121 trained in the ABplus dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 16: Concepts extracted from a efficientnet-b0 trained in the ABplus dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 17: Concepts extracted from a vgg16 trained in the ABplus dataset.
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D.1.4 BIG-SMALL DATASET

The Big-Small dataset, contains images of two classes. The first one, class big has 100 pixels high
letters B filled in blue (primitive p1). The second one, class small contains 40 pixels high letters B
also filled in blue (primitive p2). The only difference between the two classes is the size of the letter
B. Primitive p3, refers to an intrusive character +, filled with a cotton textile and balanced between
the two classes. Finally, the background of all images is annotated as the primitive p4, and is filled
with a cork texture.

(a) Examples class big (b) Examples class small

(c) Primitives p1, p3, and p4 from class
big.

(d) Primitives p2, p3, and p4 from class
small.

Figure 18: Big-Small dataset. Examples of class big are shown in Figure 18(a), containing big
characters B, and examples of the class small are shown in Figure 18(b), containing small Bs. Class
Big contains primitives p1, p2, and p3 (Figure 18(c)); and class small contains primitives p1, p2, and
p3 shown in Figure (18(d)).

The Big-Small dataset aims to test how different CE techniques respond to instances where scale is
the differentiating factor of classes. This is a common case in real-world applications such as quality
control, or medical diagnosis.

D.1.5 SAMPLE RESULTS FOR EACH MODEL TRAINED WITH THE DATASET BIGSMALL

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 19: Concepts extracted from a resnet18 trained in the BigSmall dataset.
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(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 20: Concepts extracted from a resnet34 trained in the BigSmall dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 21: Concepts extracted from a densenet121 trained in the BigSmall dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 22: Concepts extracted from a efficientnet-b0 trained in the BigSmall dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 23: Concepts extracted from a vgg16 trained in the BigSmall dataset.
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D.1.6 CO DATASET

The task for the dataset CO consists in differentiating images with a character C (primitive p1) in
class C, or a character O (primitive p2) in class O. Both p1 and p2 are filled with an aluminum foil
texture, and their only difference is that the O is closed on the right. Primitive p3 is the character
+ filled with a cotton texture, which appears in both classes. Similarly p4 refers to the background,
filled with a cork texture.

(a) Examples class C (b) Examples class O

(c) Primitives p1, p3, and p4 from Class C. (d) Primitives p2, p3, and p4 from class O.

Figure 24: Examples of the dataset CO, where one class are images with the letter C (Figure 24(a)),
and the other has images containing the letter O (Figure 24(b). Primitives for the class C are shown
in Figure 24(c), whereas primitives of class O are shown in Figure 24(d).

This dataset was designed to test how CE algorithms perform when dealing with completeness
issues. The actual difference between the two classes is the right side of the O, which should be the
fasts way for CNNs to differentiate the images. This main feature is part of the primitives, but patch
extraction techniques may have issues detecting features that are important by omission.

D.1.7 SAMPLE RESULTS FOR EACH MODEL TRAINED WITH THE DATASET CO

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 25: Concepts extracted from a resnet18 trained in the CO dataset.
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(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 26: Concepts extracted from a resnet34 trained in the CO dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 27: Concepts extracted from a densenet121 trained in the CO dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 28: Concepts extracted from a efficientnet-b0 trained in the CO dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 29: Concepts extracted from a vgg16 trained in the CO dataset.
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D.1.8 COLORGB DATASET

The dataset colorGB consists in detecting if a letter in the image is of color blue, or if all the letters
are of color green. In this regard, the dataset contains four primitives. The first primitive p1 can
be either the character A or B, which is randomly selected and always appears in the images. The
color of p1 determines if the class is B blue, or G green. The second primitive p2 is a random green
character between C, D or blank (not appearing), yet, it is balanced between both classes. Finally,
All images contain primitives p3 and p4 denoting a symbol + and the background, which are filed
with cotton and orange peel texture, respectively.

(a) Examples class B (b) Examples class G

(c) Primitives p1, p3, and p4 of class B. (d) Primitives p1, p2, p3, and p4 of class G.

Figure 30: Dataset colorGB, where classes B (Figure 30(a)) and G (Figure 30(b)) are defined by the
appearance of blue characters. Figure 30(c) shows the primitives of class B, where p1 is filled blue.
Figure 30(d) shows the primitives of class G, where p1 always appears in green.

This dataset is forcing a clear color different rather than a form difference between the classes. In
theory, a model should converge towards blue and green characters (A,B), possibly forcing a shortcut
towards the blue color.

D.1.9 SAMPLE RESULTS FOR EACH MODEL TRAINED WITH THE DATASET COLORGB

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 31: Concepts extracted from a resnet18 trained in the colorGB dataset.
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(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 32: Concepts extracted from a resnet34 trained in the colorGB dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 33: Concepts extracted from a densenet121 trained in the colorGB dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 34: Concepts extracted from a efficientnet-b0 trained in the colorGB dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 35: Concepts extracted from a vgg16 trained in the colorGB dataset.
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D.1.10 ISA DATASET

The isA dataset consists in the classification of whether the main primitive of an image is an A. Its
main primitive is the character A (p1) in blue, which appear in all the images of the class isA. The
second primitive p2, consists in one letter from B to H, also in blue, happening only in class notA.
The third primitive p3 refers to the background filled in gray.

(a) Examples class isA (b) Examples class notA (c) Primitives p1 and p3
from class isA.

(d) Primitives p2 and p3
from class notA.

Figure 36: Dataset isA, examples of class isA and class notA are shown in Figures 24(a) and 24(b),
respectively. Figure 24(c) shows the primitives p1 and p3 composing class isA. Figure 24(b) shows
primitives p2 and p3 composing class notA.

The complexity unbalance of this dataset aims to test the performance of CE algorithms in cases
where shortcut learning is to be expected. Thus, it is to be expected that from the extracted concepts,
one or more will be related to a region of the letter A. This will then be measured via the spatial
association of the concepts with the primitive p1.

D.1.11 SAMPLE RESULTS FOR EACH MODEL TRAINED WITH THE DATASET ISA

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 37: Concepts extracted from a resnet18 trained in the isA dataset.
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(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 38: Concepts extracted from a resnet34 trained in the isA dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 39: Concepts extracted from a densenet121 trained in the isA dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 40: Concepts extracted from a efficientnet-b0 trained in the isA dataset.

(a) Concepts ECLAD (b) Concepts ACE (c) Concepts ConceptShap

Figure 41: Concepts extracted from a vgg16 trained in the isA dataset.
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E REAL-WORLD DATASETS

The validation of the proposed methods was performed using two subsets (leather and metal nut)
from the MVTec-AD dataset (Bergmann et al., 2021), containing pixel wise labelled data other-
wise used for anomaly detection. This section contains example results for each analysis method
(ECLAD, ACE, and ConceptShap) for each model trained in said datasets. In addition, ECLAD was
tested in datasets for concrete crack (Özgenel & Sorguç, 2018), metal casting defects (Dabhi, 2020),
and diabetic retinopathy classification (Society, 2019). These examples show the list of concepts
extracted with ECLAD and their respective relative importance.

E.1 CONCRETE CRACKS DATASET

The concrete crack dataset Özgenel & Sorguç (2018) contains images of cracked and good concrete.
The main feature of the dataset is the presence of a crack (roughly though the complete image) for
one of the classes. Examples of said classes are shown in Figure 42.

(a) Class Negative. (b) Class Positive.

Figure 42: Dataset concrete crack, composed of two classes, Negative without a crack (Figure 42(a)),
and Positive with a crack (Figure 42(b)).

In an ideal scenario, the regions used by a model should coincide with the cracks appearing in the
images. Thus, the extracted concepts should serve as a way to localize where the cracks are. This
dataset serves as a simple domain with a real world application in civil and material engineering.
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E.1.1 SAMPLE RESULTS FOR CONCEPTS EXTRACTED WITH ECLAD FOR THE DATASET
CONCRETE CRACKS

Then five concepts with higher relative importance extracted through ECLAD can all be associated
with the cracks in the images. These concepts can serve as a way to localize which parts in an image
contain the defect which differentiates the classes of the dataset.

Figure 43: Concepts extracted with ECLAD from a Densenet-121 trained over the dataset concrete
cracks. Each column refers to an extracted concept, ordered by their relative importance score.
The first column represented their relative importance, subsequently, there are five examples of the
concept detected in images of each class. A gray placeholder is used when the concept was not
detected in more images of said class.
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E.2 METAL CASTING DATASET

The metal casting defects dataset Dabhi (2020) contains images of casting pieces which are classified
as ok or defective. The main features of the defective class are either pinholes, or malformed edges.
Examples of said classes are shown in Figure 44.

(a) Class OK. (b) Class defective.

Figure 44: Dataset metal casting, composed of two classes, OK with a well cast metal part (Figure
44(a)), and defective with a metal part with a defect on it (Figure 44(b)).

In an ideal scenario, the concepts learned by the model should be able to differentiate the defective
regions of the image. Considering the low structural variability of the images, a model may also
learn the presence of different structural parts (center hole, consistent edges, background).

E.2.1 SAMPLE RESULTS FOR CONCEPTS EXTRACTED WITH ECLAD FOR THE DATASET
METAL CASTING

The concept with the higher relative importance can be associated to the pinholes or malformed
edges. In contrast, other concepts with importance of less than half of the first one are associated
with different structural parts of the cast piece. Finally, it is also an important insight that the least
important concept is associated with the background (there is no background bias).
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Figure 45: Concepts extracted with ECLAD from a Densenet-121 trained over the dataset metal
casting. Each column refers to an extracted concept, ordered by their relative importance score.
The first column represented their relative importance, subsequently, there are five examples of the
concept detected in images of each class. A gray placeholder is used when the concept was not
detected in more images of said class.

E.3 DIABETIC RETINOPATHY CLASSIFICATION DATASET

The diabetic retinopathy classification Society (2019) (APTOS), is a medical imaging dataset con-
taining retina images taken using fundus photography. The images are classified in one of five
classes, depending on the severity of their diabetic retinopathy. Examples of said classes are shown
in Figure 46.
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(a) Class 0 - No DR. (b) Class 1 - Mild. (c) Class 2 - Moderate.

(d) Class 3 - Severe. (e) Class 4 - Proliferative DR.

Figure 46: Dataset diabetic retinopathy classification, composed of five classes, 0 - No DR with a
healthy retina image (Figure 46(a)), 0 - No DR with a healthy retina image (Figure 46(a)), 1 - Mild
with a retina image with mild retinopathy (Figure 46(b)), 2 - Moderate with a retina image with
moderate retinopathy (Figure 46(c)), 3 - Severe with a retina image with severe retinopathy (Figure
46(d)), and 4 - Proliferative DR with a retina image with proliferative retinopathy (Figure 46(e)).

In an ideal scenario, the extracted concepts will be aligned with the visual cues that human experts
would use to diagnose diabetic retinopathy. This means, concepts with high relative importance
should be associated with micro-aneurysm, exudates, issues in blood vessels, and large hemorrhages.

E.3.1 SAMPLE RESULTS FOR CONCEPTS EXTRACTED WITH ECLAD FOR THE DATASET
DIABETIC RETINOPATHY CLASSIFICATION

The two concepts with the highest relative importance are directly associated with micro-aneurysm
and exudates. In addition, the third and fourth concepts used by the model are related to blood
vessels of different characteristics. As a tangential insight, none of the concepts were specifically
related to large hemorrhages. Paradoxically, the analyzed model does use a minimal set of visual
cues important to human experts. Yet, not all cues that human experts would consider relevant are
being used by the CNN in the prediction process.

Figure 47: Concepts extracted with ECLAD from a Densenet-121 trained over the dataset diabetic
retinopathy classification. Each column refers to an extracted concept, ordered by their relative
importance score. The first column represented their relative importance, subsequently, there are
five examples of the concept detected in images of each class. A gray placeholder is used when the
concept was not detected in more images of said class.

33



Under review as a conference paper at ICLR 2023

F COMPUTATIONAL COST AND BOTTLENECKS

Concept extraction algorithms provide global explanations in human understandable terms to im-
prove the interpretability of neural networks. These algorithms can provide valuable insights, yet,
their computational cost is significant. Most specifically, the presented methods, require the eval-
uation of the analyzed model a significant amount of times, as well as to execute clustering and
regression techniques over large amounts of data. The computational cost of executing each one of
these algorithms, not only depends on the CE method, but also on the model that is being analyzed.
In this section we provide a rough approximation of the computational costs of each algorithm, in
terms of their main operations. For each algorithm, we analyze the main operations on their phases
of (1) identifying concepts, (2) importance scoring of concepts, and (3) usage to localize concepts,
as of the authors implementation.

F.1 ECLAD

The first phase of ECLAD can be defined as the (1) Identification of concepts. This phase consists
on the computation of LADs and execution of minibatch K-means. First, every batch of ni images
(from the dataset of Ne images) is evaluated on the CNN, and the activation maps from the set L
of Nl layers are extracted. After extracting the activation maps, they are resized and concatenated,
to obtain the descriptor dxi

of each image, and latter flattening the descriptors of all images in the
batch to form a vector of h w ni LADs, where each LAD has nLAD dimensions (where nLAD is the
sum of units/neurons for all selected layers L). Finally, this vector is used to perform a step of the
minibatch K-means. The time complexity of this phase is proportional to:

O(ECLAD(1)) =
Ne

ni
(niO(fCNN) + niNlO(fresize) +O(mbkmean(h w ni, nLAD, k))) (7)

Where, Ne denotes the size of the dataset; ni is the number of images composing each batch; Nl is
the number of layers on the set L; h and w denote the height and width of each input image; nLAD

is the sum of units in all layers of L; O(fCNN) represents the complexity of evaluating an image on
the selected CNN; O(fresize) represents the complexity of resizing an activation map to size (h,w);
and O(mbkmean(h w ni, nLAD, k)) represents the complexity of executing one step of minibatch
K-means, for h w ni points of nLAD dimensions, to compute k clusters.

Once the concepts have been identified, the phase (2) importance scoring of concepts starts. This
phase requires the computation of skxi

for each image and each class, before aggregating the results
to obtain CSkcj and RIcj . For each computation of skxi

, the computation of dxi
and gxi

are re-
quired. Similarly, for the correct aggregation of CSkcj , each LAD must be associated to the centroids
extracted through minibatch K-means. The time complexity of this phase is proportional to:

O(ECLAD(2)) =NkNe(O(fCNN) +NlO(fresize) +O(f∇CNN) + 2NlO(fresize)

+O(fassociation) +O(fs)) +O(faggregation)
(8)

Where Nk denotes the number of classes of the dataset; O(f∇CNN) represents the complexity of
computing the gradient of the CNN; O(fassociation) represents the complexity of associating the
LADs of an image to the centroids of the extracted concepts; O(fs) is the complexity of computing
skxi

; and O(faggregation) represents the complexity of computing CSkcj and RIcj , based on the set of
all skxi

and their associated concepts.

The rough cost of executing ECLAD is:
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O(ECLAD) =

(1 +Nk)NeO(fCNN)

+NkNeO(f∇CNN)

+
Ne

ni
O(mbkmean(h w ni, nLAD, k))

+ (1 + 2Nk)NeNlO(fresize)

+NkNeO(fassociation) +NkNeO(fs) +O(faggregation)

(9)

To evaluate new images, ECLAD’s (3) usage to localize concepts, consists of three steps. First, the
image is evaluated on the analyzed CNN, and the activation maps of the set of layers L are extracted.
Then, these activation maps are resized and aggregated. Finally, each LAD of the resulting descriptor
dxi is associated to the centroids of each concept. The time complexity of this phase is proportional
to:

O(ECLAD(3)) = O(fCNN) +NlO(fresize) +O(faggregation) (10)

From these operations, the bottlenecks are O(fCNN), O(mbkmean(h w ni, nLAD, k), and O(fs).
Where O(fCNN) was performed on a GPU, and requires not only the memory to execute the CNN,
but also to extract dxi

of dimensions h× w × nLAD. O(mbkmean(h w ni, nLAD, k) was executed
on the CPU, and could be speed up by using a GPU implementation of K-means, yet, it would
also imply higher GPU requirements. Finally, O(fs) was performed on GPU, and required the
multiplication of two matrices dxi and gxi , which in case of being computed in minibatches, are
of dimension h w ni × nLAD each. This operation can arise practical problems with limited GPU
resources.

F.2 ACE

For a fair comparison, we will discuss the analysis of a complete dataset, and for simplification, we
will assume balanced classes. The (1) identification of concepts using ACE, consists on three steps.
First, each image is segmented ns times using SLIC, to obtain a set of np patches. Then, each patch
is resized, padded, and evaluated on the CNN, to obtain the activation map of the selected layer.
Finally, for each class, the set of Ne

Nk
np vectors, of hl wl nlayer dimensions are used to extract k

clusters using K-means (where nlayer denotes the number of dimensions of the selected layer). The
time complexity of this phase is proportional to:

O(ACE(1)) =Nk(
Ne

Nk
(nsOSLIC + npO(fCNN))

+Okmean(
Ne

Nk
, hl wl nlayer, k))

(11)

Where Ne is the size of the dataset; Nk is the number of classes of the dataset; k is the number
of concepts to extract; ns denotes the number of SLIC segmentations to perform (e.g., the ACE
method segments an image to obtain [15,50,80] patches, in this case ns = 3); np denotes the total
number of patches extracted after filtering the SLIC segments (e.g., for the default parameters of
ACE, 15 + 50 + 80 > np > 15); hl and wl denote the height and width of the activation maps
of the selected layer; nlayer denotes the number of units of the selected layer; OSLIC denotes the
complexity of executing the SLIC segmentation algorithm; O(fCNN) represents the complexity of
evaluating an image on the selected CNN; Okmean(

Ne

Nk
, hl wl nlayer, k)) represent the complexity

of executing the K-means algorithm for Ne

Nk
datapoints, of hl wl nlayer dimensions, and k clusters.

After the extraction of concepts, the (2) importance scoring of concepts is performed using TCAV,
for each concept of each class. The process of obtaining the CAV and TCAV score of a concept
consists on four steps. First, a random set of images are sampled from the dataset to serve as a
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random concept. Similarly, a subset of nb images from the concept and random concept are sampled.
Second, both subsets of images are evaluated on the CNN, to obtain the flattened activation maps of
the selected TCAV layer. Third, a linear classifier is trained to differentiate both subsets of vectors
(we obtain a CAV from this classifier). This linear classification is performed over a dataset of
2nb vectors of hl wl nlayer dimensions. Fourth, we compute the TCAV score for said CAV, by
evaluating every image of the associated class in the model, obtaining the directional derivative
on the corresponding layer and counting how many of these directional derivatives point on the
same direction as the CAV, this proportion is the TCAV score. This process is repeated ntcav times
for each concept and an associated concept of random images (serving as a random concept for
control). The resulting sets of TCAV scores and CAVs of the concept and random concept are then
compared using a t-test, to obtain a p-value stating the statistical significance of the concept. The
time complexity of this phase is proportional to:

O(ACE(2)) =NkK(

ntcav(O(fsample)

+ 2nbO(fCNN)

+O(flin−class)

+
Ne

Nk
(O(fCNN)

+O(f∇CNN)

+O(fproj))

) +O(ft−test))

(12)

Where Ne is the size of the dataset; Nk is the number of classes of the dataset; ntcav refers to
the number of subsample computations to TCAV scores for each concept, to later compute the
statistical significance of the concept; nb is the size of each image subset to compute each TCAV
score; O(fsample) represents the complexity of sampling nb images from a concept and random
concept; O(fCNN) represents the complexity of executing the CNN and extracting the selected
activation map; O(f∇CNN) represents the complexity of computing the gradient of the CNN w.r.t.
the selected layer; O(flin−class) represents the complexity of fitting a linear a stochastic gradient
descent classifier to 2nb vectors of hl wl nlayer dimensions; O(fproj) represents the complexity of
projecting the gradient of the network towards a CAV;

The rough cost of executing ACE is:

O(ACE) =NensOSLIC

+ (Nenp + 2NkKntcavnb +KntcavNe)O(fCNN)

+KntcavNeO(f∇CNN)

+NkOkmean(
Ne

Nk
, hl wl nlayer, k)

+NkKntcavO(flin−class)

+NkKntcavO(fsample)

+KntcavNeO(fproj)

+NkKO(ft−test)

(13)

To improve the efficiency of ACE, we evaluated the extracted patches, random images, and the im-
ages of every class a single time, and sampled the tensors when performing the TCAV computations.
This implementation detail significantly reduced the time complexity to:
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O(ACE) =NensOSLIC

+ (Nenp + 2NkKnb +Ne)O(fCNN)

+NeO(f∇CNN)

+NkOkmean(
Ne

Nk
, hl wl nlayer, k)

+NkKntcavO(flin−class)

+NkKntcavO(fsample)

+KntcavNeO(fproj)

+NkKO(ft−test)

(14)

To evaluate new images, ACE’s (3) usage to localize concepts, consists of three steps. First, the
image is segmented using SLIC ns times. Second, each patch is evaluated on the analyzed CNN,
and the activation maps of the selected layer is extracted. Then, these flattened activation maps are
compared with each CAV of the class concepts. Finally, the masks of each path are aggregated to
obtain the localization result. The time complexity of this phase is proportional to:

O(ACE(3)) =nsOSLIC

+ npO(fCNN)

+ npO(fcomparison)

+O(faggregation)

(15)

From these operations, O(fCNN), OSLIC, and Okmean(
Ne

Nk
, hl wl nlayer, k) were the bottlenecks.

O(fCNN) was performed on GPU, and also required the memory for the extraction of the selected
layer. Both OSLIC and Okmean(

Ne

Nk
, hl wl nlayer, k) were performed on CPU, which significantly

increase the time requirements of ACE.

F.3 CONCEPTSHAP

The phase of (1) identification of concepts with ConceptShap is performed by including an extra set
of layers at a defined point of a CNN and training said layer for net epochs. Each evaluation of the
CNN is performed until a selected layer. Then, a linear projection of the resulting activation map is
performed towards a lower dimensional space (of k dimensions). Afterwards, an extra pair of layers
g are introduced to rescale the obtained tensor and obtain an activation map of the original size.
Then, the rest of the CNN is evaluated as originally intended. In this process, the lower dimensional
space is introduced as a concept space, and loss is added to it. The identification of concept is then
performed by freezing the CNN weights and training the new layer (for net epochs), to optimize
the performance of the model as well as the extra losses introduced on the concept space. The time
complexity of this phase is proportional to:

O(ConceptShap(1)) = Netnet(O(fCNN) +O(f∇CNN) +O(foptim−step−CNN)) (16)

Where Net refers to the training subset of the dataset Ne; net refers to the number of epochs for
training the added layers; O(fCNN) refers to the complexity of the evaluation of the CNN, including
the evaluation of the new layers; O(f∇CNN) and O(foptim−step−CNN) refer to the complexity of
computing the gradient of the CNN and performing an optimization step over the new layers.

After training the new projections and obtaining a concept space, each component of said space is
scored, and their importance is computed based on Shapely values. Said Shapely values are obtained
based on a Monte Carlo approximation. For each one of the NMC samples of this approximation, the
contribution is computed as the difference in completeness score between not ablating the concepts,
and ablating them. The completeness score requires a complete evaluation of the validation set. In
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addition, when ablating the concepts, a retraining of the layers g is performed for nev epochs (to
compute the completeness score). The time complexity of this phase is proportional to:

O(ConceptShap(2)) =NMC(Nevnev(O(fCNN) +O(f∇CNN)

+O(foptim−step−CNN)) + 2NevO(fCNN))
(17)

Where Nev refers to the validation subset of the Ne dataset; nev refers to the number of epochs to
retrain the new layers at each computation of the completeness score; NMC refers to the number of
samples to use when computing the Monte Carlo approximate of the shapely values of the concepts;
O(fCNN), O(f∇CNN), O(foptim−step−CNN) refer to the computational complexity of evaluating
the CNN, computing its gradient and performing an optimization step over the parameters of the
new layers, respectively.

The rough cost of executing ConceptSHAP is:

O(ConceptShap) =

(Netnet +NMCNevnev + 2NMCNev)O(fCNN)

+ (Netnet +NMCNevnev)O(f∇CNN)

+ (Netnet +NMCNevnev)O(foptim−step−CNN)

(18)

To evaluate new images, ConceptShap’s (3) usage to localize concepts, consists of three steps. First,
the image is evaluated on the analyzed CNN, including the newly added layers for linear projection
and resizing. Then, the activation map of the concept space is extracted, and based on a threshold,
each dimension of said tensor is used as the mask of said concept. Finally, the extracted masks
are resized to the original size of the image, and can be used to localize each concept. The time
complexity of this phase is proportional to:

O(ConceptShap(3)) = O(fCNN) +O(faggregation) +O(fthreshold) (19)

From these operations, the Monte Carlo approximation of the shapely values of each concept are
resource intensive. Specially, since the computation of the contribution for each sample requires the
retraining of the layers g. Yet, this operation is performed on GPU, which speeds it up significantly.

F.4 COMPARISON

The nature of the three algorithms differs significantly, and thus, they scale differently to specific
parameters and operations. As an example, ECLAD requires the evaluation of a CNN (1 +Nk)Ne

times, and Ne

ni
executions of minibatch K-means. ECLAD will perform efficiently (w.r.t ACE and

ConceptShap) for dataset with few classes (e.g. Nk < 20). There is a tradeoff between speed and
GPU requirements based on the minibatch size ni, where it increases the required GPU memory (by
a factor of ni × nLAD × h w

hl wl
, w.r.t ACE and ConceptShap), yet, it speeds up the computations of

O(fCNN), and O(fs). In contrast ACE requires (1 + np)Ne + 2NkKnb evaluations of the CNN,
Nens executions of SLIC, and Nk executions of K-means. This means that the number of executions
of the CNN scales better to the number of classes. To increase the scalability of the method, the K-
means of each class can be performed by minibatches (analog to ECLAD). Yet, the computational
cost of executing Nens times SLIC, and NkKntcav linear classifiers is significant, which makes it
slower than ECLAD and ConceptShap for most cases. ConceptShap evaluates the analyzed CNN
roughly netNe + (NMC − 1)Nevnet + 2NMCNet (if we consider Net = Nev), which means it
doesn’t require more resources, regardless of the number of classes. In contrast, it scales poorly
with the number of concepts k, as it directly influences the number of samples NMC required for the
convergence of the Monte Carlo approximation of the shapely values of the concepts.

As a broad summary, ECLAD provides more granular explanations, scaling well to large datasets
and number of concepts. It scales linearly for the number of classes Nk, which makes it preferable
when dealing with a small number of classes (e.g. Nk < 20). ConceptShap scales well for a
large number of classes, yet it scales poorly for the number of extracted concepts. As a caution,
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ConceptShap and Shapely values in general have issues when dealing with correlated concepts,
which can be problematic when detecting spurious correlations and their importance for a CNN.
Finally, ACE scales better than ECLAD w.r.t. to the number of classes, yet, it has a significant
computational cost of executing SLIC and SDG linear classification. In this regard, ACE can be
parallelized and executed per class, being a better fit for large datasets with a large number of classes
(e.g. Nk 1000). In our settings, ECLAD took the least time to execute, followed by ConceptShap,
and finally ACE.

F.5 ABLATION STUDY

In contrast to other concept extraction methods (e.g. ACE, ConceptShap), ECLAD proposes the
upscaling and aggregation of of activation maps at different levels of a neural network. On a pixel
level, these local aggregated descriptors are denoted as LADs, and are used as a basis for extracting
similarly encoded areas through a clustering algorithm. In this ablation study, we explore four key
components of our method. First, we explore the need for aggregating information of different
layers. Second, we investigate the impact of the number of aggregated layers. Third, we examine
the difference of using different numbers of clusters. Finally, we assess the impact of using multiple
upscaling methods.

Each study was performed using two models architectures (ResNet-18 (He et al., 2015) and
DenseNet-121 (Huang et al., 2016)) trained over the ABplus and leather datasets. From each ar-
chitecture we selected eight equally distributed layers, named l1 to l8, from which subsets were used
on each run. The plots shown below result from executing ECLAD with different sets of parameters
over a DenseNet-121, trained on the ABplus datasets, which are representative of both architectures
and datasets.

F.5.1 AGGREGATING ACTIVATION MAPS

We compare the execution of ECLAD over single layers (across different depths of the network),
with the standard execution using four layers equally distributed across the depth of the network.
Similar to the figures shown in the result section, we provide scatter plots of association distance
and importance of the extracted concepts for each run, as seen in Figure 48.

Combining layers from multiple depths allows the extraction of mid and high level concepts
without the complexity of fine-tuning the selected layer. The results of performing CE over single
low level layers generates concepts lacking from abstract meaning such as lateral edges found in l1
(c4, c5 in subfigure 48(a)), or multiple entangled features such as yellow, green and black edges
found in l3 (c6, c1 in subfigure 48(b)). When using a single high level layer, the generated concepts
disregard mid level features such as the * or + characters in the images which are not found in l6 nor
l8. In addition, the latent representations of the features dilates, generating significant halo effects in
l6 and l8 (c0, c8, c9 in subfigure 48(e)). This makes the choice of a single layer, non trivial, as higher
level layers miss existing concepts, and low level layers lack abstraction and disentanglement. In
contrast, the aggregation of equally distributed layers extracted high level features characteristics of
the task, such as A and B (c2, c4 in subfigure 48(f)), as well as other existing high level concepts
differentiated by the model, such as the * or + characters (c8, c3 in subfigure 48(f)). By aggregating
multiple layers, the resulting concepts are more defined (mitigating the halo effect of higher layers),
and the selection of layers for the analysis becomes less critical.
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(a) L = {l1} (b) L = {l3} (c) L = {l5}

(d) L = {l6} (e) L = {l8} (f) L = {l2, l4, l6, l8}

Figure 48: Concepts extracted from a DenseNet-121 trained in the ABplus dataset. Subfigures
48(a) to 48(e) contain the results of single layer executions, and subfigures 48(f) contains the results
of aggregating four layers. Concepts extracted from low layers lack abstract meaning and are related
to texture, edges or color (e.g. c0, c1, c7 in subfigure 48(a)), while concepts extracted from higher
layers disregard mid level concepts (e.g. + character on the images). The results from aggregating
layers (subfigure 48(f)), contain abstract concepts relevant to the classification task (e.g. c2, c4),
without loosing specificity nor disregarding mid level concepts (e.g. c8, c5, c3).

F.5.2 NUMBER OF AGGREGATED LAYERS

We compare the execution of ECLAD selecting different number of equally distributed layers (along
the depth of the model). As discussed before, using a single layer for concept extraction can be
problematic given the dilation of concepts through the CNNs, as well as the disappearance of mid
level concepts through the network. In this section we compare the impact of using two or more
layers for the concept extraction, the resulting scatter plots are shown in Figure 49.

Including more layers mitigates the halo effect of important concepts and allows the inclusion
of mid level concepts. The results of performing CE with two or three layers generates concepts in-
cluding the most important ones, but also entangled representations of other concepts, such as edges
(c9 in subfigure 49(a), and c7 in subfigure 49(b)), and entangled concepts such as the characters X
and A (c5 in subfigure 49(a), and c9 in subfigure 49(b)). A possible explanation can suggest that the
selected layers did not have enough information for clearly separating the different concepts (e.g. X
and A), as their representations are differentiated in middle layers. ECLAD runs with more layers
(e.g. 4 and 8) extract disentangled concepts as the possibility of including relevant layers increase.
This can be observed in the characters X, * and B (e.g. c2 and c5 in subfigure 49(c), and c1 and
c7 in subfigure 49(e)). Similarly, possible issues of halo effect in important concepts diminish with
an increasing number of layers, which can be seen for concepts related to the character B with a
halo in subfigure 49(c), which disappears with the subsequent inclusion of more layers. It must be
mentioned that the computational cost increases with each new layer selected for the analysis, thus,
our choice of four layers is a balance between computational cost and good performance.
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(a) L = {l1, l7} (b) L = {l1, l4, l7} (c) L = {l1, l3, l5, l7}

(d) L = {l0, l1, l3, l4, l6, l7} (e) L = {l0, l1, l2, l3, l4, l5, l6, l7}

Figure 49: Concepts extracted from a DenseNet-121 trained in the ABplus dataset. Subfigures
49(a) to 49(e) contain results of executing ECLAD with 2 to 8 layers equally distributed through the
depth of the model. For two and three layers, the resulting concepts also include low level features
such as edges (c9 in subfigure 49(a), and c7 in subfigure 49(b)), and entangled concepts such as the
characters X and A (c5 in subfigure 49(a), and c9 in subfigure 49(b)). runs with four to eighth layers
provide a better extraction of disentangled concepts such as the characters X, * and B (e.g. c2 and
c5 in subfigure 49(c), and c1 and c7 in subfigure 49(e)). In addition, the halo effect of important
concepts such as the character B progressively diminishes with the number of layers.

F.5.3 NUMBER OF CLUSTERS

The number of concepts to extract nc is an important parameter for ECLAD, as it determines the
number of clusters to mine using minibatch k-means over subsets of LADs. In this section we
compare executions of ECLAD with different numbers of k-means clusters nc. The results of four
runs with nc of 5, 10, 20 and 50 are shown in Figure 50.

A low number of concepts will group unimportant features, and a high number of concepts
will slice important features. Nonetheless, the extraction and scoring of important features is
consistent. For low number of clusters, such as 5, unimportant features are grouped together in a
single concept. An example can be seen in concept c3 from subfigure 50(a), where the characters
X, + and * were grouped on a single concept. These features are then split when the number of
clusters is increased, as seen for nc = 10 in subfigure 50(b), with concepts c3, c8, and c5. For larger
number of clusters such as 20 or 50, features are sliced into multiple concepts. An example can be
seen in concepts c5 and c33 of subplot 50(d) which represent the center and surrounding of character
B, respectively. Nonetheless, the slices of important concepts are still being scored with the highest
RIcj , consistently across different numbers of concepts.
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(a) nc = 5 (b) nc = 10

(c) nc = 20 (d) nc = 50

Figure 50: Concepts extracted from a DenseNet-121 trained in the ABplus dataset. Subfigures
50(a) to 50(d) contain results of executing ECLAD with 5 to 50 extracted concepts. With nc of five,
the important concepts are extracted correctly (character B and A, c2 and c4 in subfigure 50(a)), and
unimportant concepts are presented together (c3 in subfigure 50(a)). With an increasing number of
clusters, the different features start to disentangle, e.g. characters X, *, and +, in subfigure 50(b).
Yet, for larger number of concepts such as 20 or 50, the original features such as the character B,
start to be sliced into multiple concepts (e.g. c5 and c33 in subfigure 50(d)).

F.5.4 UPSCALING METHODS

A key step of ECLAD is the upsampling of activation maps to obtain the image descriptors and
LADs. The upsampling functions can have a significant impact when resizing small activation
maps from high level layers. Thus we explore three alternatives in the runs below, in Figure 51 we
present ECLAD results of three runs using nearest interpolation, bilinear interpolation, and bicubic
interpolation.

(a) fU = nearest interpolation. (b) fU = bilinear interpolation. (c) fU = bicubic interpolation.

Figure 51: Concepts extracted from a DenseNet-121 trained in the ABplus dataset. Subfigures
51(a), 51(b), and 51(c) present the results for executing ECLAD with nearest interpolation, bilinear
interpolation and bicubic interpolation respectively. The resulting concepts of the three runs contain
the main features of the dataset, characters B and A, which are extracted in concepts c8, c7 in
subfigure 51(a), c2 and c4 in subfigure 51(b), and c1 and c5 in subfigure 51(c).
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Using coarse interpolation methods (fU ) will impact the boundaries of the extracted concepts,
but not the concepts themselves. For the three methods, similar concepts where extracted, an
example is the important character B, which is extracted as concepts c8, c2, c1 for the nearest,
bilinear, and bicubic interpolation runs respectively. A similar example is the unimportant character
+ which is extracted as concepts c3, c3, c4 for the nearest, bilinear, and bicubic interpolation runs
respectively. Aside from the rough boundaries of the concepts, no perceivable effect was observed
on the end result of the different runs. A similar behavior was observed when analysing the results
for a ResNet-18 also trained on the ABplus dataset, as shown in Figure 52

(a) fU = nearest interpolation. (b) fU = bilinear interpolation. (c) fU = bicubic interpolation.

Figure 52: Concepts extracted from a Resnet-121 trained in the ABplus dataset. Subfigures 52(a),
52(b), and 52(c) present the results for executing ECLAD with nearest interpolation, bilinear inter-
polation and bicubic interpolation respectively. The resulting concepts of the three runs contain the
main features of the dataset, characters B and A, which are extracted in concepts c6, c8 in subfigure
52(a), c3 and c2 in subfigure 52(b), and c8 and c5 in subfigure 52(c).

F.6 DISTANCE METRIC

A key contribution of the current manuscript is the proposal of an distance metric DSTpo,cj mea-
suring the spatial association between the masks of concepts and primitives. This metric takes into
account overlapping and spatial closeness to mitigate the effect of associating off-centered and sur-
rounding concept. The case of off-centered concepts can arise when the representation of a feature
shifts through the filters of CNN. This phenomenon can arise in relation with the depth of a CNN
unless the activation maps of multiple depths are constrained. The case of surrounding concepts can
arise when a network recognizes the shape of a feature as important, and not the area of the feature
itself. Thus, the the edges surrounding the shape may be recognized, and further propagated towards
the exterior of an object. We seek a metric capable of relating dataset primitives and concepts even
in these exceptional cases. In this section we compare the proposed DSTpo,cj association distance,
with the Jaccard score used in object detection, the normalized mutual information score, and the
adjusted rand score used in clustering.

As an example, the CO synthetic dataset consists in classifying images with a character C or a
character O in them. Given the shape of both characters, the difference can be described as an
extra right section for the character O, or a missing right section of the C. The two approaches for
detecting both classes where seen in the experimentation process. For the current metric comparison,
an example of overlapping related concepts is shown in Figure 53.

On the first experimental setup we compare two masks emulating a primitive and a concept, with
the same general form as the offset between the characters increase. In the figure 54 we present the
experimental results of comparing two masks of the character A, and two masks of the character O, at
various offsets. White areas represent overlapped sections and gray areas represent non overlapping
regions of both masks.

The proposed association distance DSTpo,cj can express offsets between primitive and concept
masks, with or without overlapping. Figure 54(a), shows as the three alternative metrics decrease
monotonically with a bigger offset between masks, yet, the difference can only be measured while
there is a degree of overlapping. When the two masks cease to overlap, the alternative metrics do not
express the offset anymore. In addition, depending on the geometry of the compared masks, the de-
gree of overlapping may increase as the two masks shift from each other. This can be observed at 40
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Figure 53: Concepts extracted from a ResNet-18 model traned over the CO synthetic dataset.
Concept c4 related to the missing right part of the character C. The concept is non-overlapping, yet,
spatially related to character C on all images.

pixels offset on the subfigure 54(b), where the vertical section of the character O increases the over-
lapping. As a consequence, the Jaccard score, normalized mutual information score, and adjusted
rand score, stop behaving monotonically w.r.t. the shift between the masks, which is undesired.

In other cases, a concept may represent the surroundings of a feature, or the missing counterpart
of a form. In these cases, it is desired that an association metric is able to measure the degree of
separation between the feature and the surrounding concept.

The proposed association distance DSTpo,cj can measure concepts surrounding primitives and
express the degree of separation between both masks.. Other metrics only allow the comparison
of overlapping regions, which can be problematic.
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(a) Metric comparison for offsets of the character A.

(b) Metric comparison for offsets of the character O.

Figure 54: Evolution of metrics at various degrees of overlapping and offset for the character A in
subfigure 54(a), and for the character O in subfigure 54(b). In both cases, the jaccard score, normal-
ized mutual information score, and adjusted rand score are proportional to the degree of overlapping,
yet, do not show any difference for further offsets of the masks. In comparison, the association dis-
tance captures the differences between the masks not only the overlapping cases (d¡70), but also non
overlapping shifts.
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(a) Metric comparison for features surrounding the character A.

(b) Metric comparison for features surrounding the character O.

Figure 55: Evolution of metrics as a relate surrounding features distances itself from a shape.
subfigure 55(a) contains the comparison of the character A and a concept surrounding it, initially
including it’s center, and subsequently only surrounding its exterior. Similarly, subfigure 55(b)
contains the comparison between the character O and a surrounding concept. In both cases, the
association distance behaves monotonically as the primitive and the concepts distance increases,
yet, other metrics cannot capture this behavior.
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