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Abstract

Estimating causal effects from observational data is
a key problem in causal inference, often addressed
through covariate adjustment sets that enable un-
biased estimation of interventional means. This
paper tackles the challenge of finding optimal co-
variate adjustment sets under budget constraints, a
practical concern in many applications. We present
algorithms for enumerating valid and minimal ad-
justment sets up to a specified cost, ordered by
their proximity to outcome variables, which coin-
cides with estimator variance. Our approach builds
on existing graphical criteria and extends them to
accommodate budgetary considerations, providing
a useful tool for addressing resource limitations.

1 INTRODUCTION

Estimating the causal effect between treatment and out-
come variables in the presence of, possibly hidden, con-
founding variables is a fundamental problem in causal infer-
ence [Pearl, 2009]. When causal-effect estimation is based
on observational data, confounders pose a major problem
because they act as hidden influencers that impact both the
cause and effect, creating a biased association. The inter-
ventional mean measures the expected outcome under a
specific intervention, serving as the basis for other causal
effect measures. Estimating the interventional mean requires
computing the post-interventional distribution P (Y |do(X)),
reflecting the distribution of outcome Y after intervening on
treatment variables X . Covariate adjustment sets are sets
of variables that enable computing an unbiased estimate
of the interventional mean. An adjustment set is valid if it
enables unbiased estimation of the causal effect from the
joint distribution over the observed variables.

Graphical criteria for selecting adjustment sets have been ex-
tensively studied. Pearl’s back-door criterion [1993] is well-
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Figure 1: Both Z1 = {h1, h2} and Z2 = {t} are valid adjust-
ment sets for estimating the causal effect of a on y, but Z1 yields
an estimator with lower variance when compared to the estimator
generated using Z2 (note that h1, h2 are adjacent to y). On the
other hand, |Z2| < |Z1|, and hence potentially cheaper to measure,
and apply for adjustment. Example based on Rotnitzky [2021].

known but incomplete; that is, it cannot be used to identify
all valid adjustment sets. Recent advancements [Perkovic
et al., 2017, van der Zander et al., 2019] have provided
sound and complete criteria for various types of graphs,
including those with unobserved variables.

When based on valid adjustment sets, estimators of causal ef-
fects are unbiased, but their variances can differ significantly
across different adjustment sets [Smucler and Rotnitzky,
2022, Runge, 2021]. This has led to extensive research on
identifying adjustment sets that yield estimators with min-
imal asymptotic variance. Rotnitzky and Smucler [2020]
derived a graphical characterization of the optimal adjust-
ment set in non-parameteric models. Smucler et al. [2021]
provided graphical criteria for optimal minimal, and min-
imum cardinality adjustment sets in causal models with
hidden variables. An adjustment set is minimal if it does
not contain any adjustment set as a proper subset, and is
minimum cardinality if no smaller adjustment set exists. The
motivation for minimum-cardinality adjustment sets stems
from the fact that computing the causal effect estimator re-
quires summing over all possible values of the adjustment
set, leading to an exponential dependence on its domain size.
This computational burden grows rapidly as the number of
covariates and their possible values increase.
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In realistic settings, choosing an adjustment set involves bal-
ancing precision and cost. For example, variables requiring
laboratory tests may be much more expensive to measure
than variables pertaining to clinical examination. Such cost
considerations motivate the problem of finding adjustment
sets whose overall cost meets a given budget constraint [Rot-
nitzky and Smucler, 2020, Smucler and Rotnitzky, 2022].
The basic budget constraint is the one that places a limit k
on the size of the adjustment set. Allowing integral weights
on the vertices of the model grants us wider flexibility in
selecting adjustment sets. In particular, the weight of an
adjustment set can account for not only its cardinality, but
also its domain size, and measurement-cost, which directly
impact the efficiency of computing the causal effect.

Recent work [Smucler et al., 2021, Smucler and Rotnitzky,
2022, Runge, 2021] has established that valid adjustment
sets that are closer to the outcome variables Y yield esti-
mators with smaller asymptotic variance for all distribu-
tions that factorize according to the causal DAG; we later
make this notion precise. For example, in Figure 1, we
present a causal model from Rotnitzky [2021], where both
Z1 = {h1, h2} and Z2 = {t} are valid adjustment sets for
measuring the causal effect of a on y. Since Z1 is closer to
y than Z2, then Z1 will yield a superior estimator in terms
of variance when compared to Z2, while Z2 is superior in
terms of cost (i.e., |Z2|<|Z1|). This example illustrates the
tension between the precision of the estimator and its cost.

In causal inference, selecting an adjustment set is a multi-
criteria optimization problem: different sets trade off ac-
curacy, as measured by the variance of the causal-effect
estimator, against cost, which reflects the expense of mea-
suring the covariates, and the computational cost they yield
for computing the estimator. Crucially, there is no single
optimal solution when these criteria compete (i.e., what im-
proves one may worsen the other). A natural approach is
to enumerate the Pareto frontier of adjustment sets, which
is the family of valid adjustment sets that are undominated
with respect to these competing objectives. We show that
this frontier corresponds exactly to the class of important
separators Marx [2011], Cygan et al. [2015] in a certain
undirected graph derived from the causal model. Applying
the concept of important separators to the task of finding
optimal adjustment sets yields a principled and efficient
algorithmic solution for enumerating all Pareto-optimal ad-
justment sets of size at most k.

However, the approach relying on important separators of
size at most k inherently targets small adjustment sets be-
cause its runtime depends exponentially on k, and is there-
fore applicable only when the optimal sets are small (see
Theorem 1). To go beyond this regime, we develop an effi-
cient, general algorithm for ranked enumeration of all valid
adjustment sets, ordered first by cost and then by variance
that achieves polynomial-delay regardless of the size of the
adjustment sets returned. This broader enumeration enables

exploring the trade-offs even when optimal sets are large.

Finally, we present an algorithm that goes beyond the enu-
meration of Pareto-optimal adjustment sets to generate all
minimal, valid adjustment sets of size at most k, ranked by
their vicinity to the outcome variable, which is a proxy for
estimator variance. While important separators capture all
Pareto-optimal solutions with respect to cost and variance,
this subset may be very small when compared to the entire
set of minimal adjustment sets of size k, limiting flexibility
in practice. Moreover, assigning precise costs to covariates
is often difficult: different variables may be assigned the
same weight despite differences in availability, reliability, or
measurement burden. This has been observed, for example,
in a biomolecular causal study Taheri et al. [2023] where a
cheaper protein (PI3K) yielded comparable precision to a
costlier one (Ras), even though both were treated equally un-
der the cost model. In such cases, enumerating near-optimal
adjustment sets and not just Pareto-optimal ones, may po-
tentially uncover practically preferable options that standard
optimization may overlook.

Contributions. We assign each variable in the causal
model an integral weight representing the cost of measuring
it and including it in an adjustment set. Unweighted models
correspond to those where all variable weights are simply
1. A key contribution of this work is the characterization
of all Pareto-optimal adjustment sets of weight at most k.
An adjustment set is Pareto-optimal if it is valid, and every
other valid adjustment set either has higher cost or higher
estimator variance in all distributions consistent with the
causal DAG. We show that these sets correspond exactly
to the class of important separators in a certain undirected
graph derived from the causal DAG, allowing us to effi-
ciently enumerate the entire Pareto frontier using tools from
the theory of parameterized algorithms.

Theorem 1. Let G be a causal DAG, with an integral weight
function w : V(G) → {1, . . . , c} for some constant c, and
X,Y ⊆ V(G) be disjoint. There is an algorithm that lists
the Pareto-Optimal minimal adjustment sets in G, for com-
puting an unbiased estimator of the interventional mean
of the outcomes Y under interventions on X , of size at
most k, in time O(4k · k · (n+m)) where n = |V(G)|, and
m = |E(G)|.

Moving beyond the Pareto-Optimal frontier, we present an
algorithm that returns all valid adjustment sets, minimal
and non-minimal, ranked by cost and, secondarily, by their
closeness to the outcome variables. This algorithm gener-
alizes the result of Smucler et al. [2021], which identified
the minimum-cardinality adjustment set that is closest to
the outcome. Our method supports fully ranked exploration
of the tradeoff space under integral cost functions, even
without a fixed bound on the cost.

Theorem 2. Let G be a causal DAG, with an integral weight



function w : V(G) → N≥1, and let X,Y ⊆ V(G) be dis-
joint. There exists an enumeration algorithm that outputs
all valid adjustment sets in G for computing an unbiased
estimator of the interventional mean of the outcomes Y un-
der interventions on X . The adjustment sets are listed in
order of non-decreasing total weight, and ties are broken
by proximity to the outcome variables Y . The delay of the
algorithm is O(Kn · T (n,m)), where K is the size of the
largest adjustment set listed, n = |V(G)|, m = |E(G)|, and
T (n,m) denotes the time to compute a minimum separator
in an undirected graph with n vertices and m edges.

Finding a minimum separator can be reduced, by standard
techniques [Even and Even, 2012], to the problem of finding
a maximum flow in the graph [Ford and Fulkerson, 2010].
Currently, the fastest known algorithm for max-flow runs
in almost linear time m1+o(1) [Chen et al., 2022]. In the
rest of this paper, we denote by T (n,m) the time to find a
minimum s, t-separator in an undirected graph.

Theorem 1 presents an algorithm for enumerating the subset
of Pareto-optimal minimal adjustment sets, while Theorem 2
provides a polynomial-delay algorithm for enumerating all
valid adjustment sets, including non-minimal ones, ranked
by cost and proximity to the outcome variables. Ideally, we
would like an efficient, polynomial-delay algorithm that enu-
merates only minimal adjustment sets, ranked by cost with
a secondary ranking by proximity to the outcome, which
serves as a proxy for estimator variance. However, we later
present a hardness result that rules out such an algorithm
using known techniques. This suggests that achieving effi-
cient enumeration with both minimality and ranking guar-
antees may require fundamentally new algorithmic ideas.
To bridge the gap between these two settings, namely enu-
merating only minimal adjustment sets, but going beyond
the Pareto frontier, we develop an FPT-delay algorithm that
lists all minimal valid adjustment sets of cost at most k,
ranked by their proximity to the outcome. This addresses
scenarios where important separators are too few or too re-
strictive, allowing practitioners to explore a broader space
of high-quality adjustment sets efficiently.

Theorem 3. Let G be a causal DAG, with an integral weight
function w : V(G) → {1, . . . , c} for some constant c, and
X,Y ⊆ V(G) be disjoint. There is an algorithm that lists
all minimal adjustment sets in G for computing an unbiased
estimator of the interventional mean of the outcomes Y
under interventions on X , of weight at most k, with delay
O(k24k(n+m)) where n=|V(G)|, and m=|E(G)|. The al-
gorithm outputs the minimal separators in non-decreasing
order of their distance from Y .

Theorems 1 and 3 are stated for the case where the weight
function assigns each variable an integer in {1, . . . , c} for
some constant c. In the proofs, we assume all weights are
1, and extend the results to bounded weights using the stan-
dard vertex-splitting technique. Specifically, each vertex of

weight w(v) ≤ c is replaced by w(v) unweighted vertices
forming a clique, preserving separation structure and total
weight. This transformation yields an equivalent unweighted
graph where our algorithms can be applied directly. For com-
plete technical details, see Section B in the Appendix.

In our results, we leverage the work of van der Zander et
al. [2014, 2019], translating the problem into one of finding
separators and minimal separators in an undirected graph
that is derived from the so-called proper backdoor graph.
Let s, t ∈ V(G) be two distinguished vertices in a finite,
simple, undirected graph G(V,E). An s, t-separator is a
subset S ⊆ V(G), such that removing S and its incident
edges disconnects s and t in G. An s, t-separator S ⊆ V(G)
is a minimal s, t-separator if no strict subset of S is also an
s, t-separator. A key technical ingredient in our approach is
a simple yet powerful graphical criterion for comparing the
asymptotic variance of estimators associated with different
adjustment sets. This criterion operates directly on the struc-
ture of minimal separators in the derived undirected graph.
Beyond their implications for causal inference, our algo-
rithms also contribute to the study of ranked enumeration of
separators in graphs.

Previous work on separator enumeration. Enumerating
minimal separators of bounded cardinality (or weight) re-
fines and extends two well-studied enumeration problems:
enumeration of all minimal separators, and enumeration
of all minimum-cardinality separators [Kanevsky, 1990].
Berry et al. [2000] developed an efficient algorithm that
lists the minimal separators of an undirected graphH with
a delay of O(|V(H)|3) between consecutive outputs. The
algorithm of Berry et al. [2000], as well as others [Kloks and
Kratsch, 1998, Takata, 2010, Shen and Liang, 1997], does
not list the minimal separators in any ranked order, and can-
not restrict the output only to separators of weight at most
k. Kanevsky [1990] developed a complicated algorithm
that enumerates all the minimum-cardinality separators of a
graph; Theorem 2 strictly generalizes this result.

Challanges and techniques. In a ranked enumeration al-
gorithm, finding the top element is basically an optimization
problem. In our case, there are well known algorithms for
finding a minimum-weight s, t-separator [Henzinger et al.,
2000, Even and Tarjan, 1975, Chen et al., 2022]. For K>1,
finding the K-th ranking item amounts to computing the
optimal minimal s, t-separator under the restriction that it
is not among the first K−1 items previously returned. Han-
dling this constraint is the main challenge when designing
ranked enumeration algorithms.

The technique of [Lawler et al., 1980] provides a general
framework for ranked enumeration corresponding to dis-
crete optimization problems. The main idea is to reduce a
ranked enumeration problem to an optimization problem
with constraints [Golenberg et al., 2011]. In the standard



approach to applying the Lawler-Murty technique, the al-
gorithm first finds the optimal solution S (e.g., minimum
s, t-separator). Then, the subspace of solutions (excluding
S) is partitioned using inclusion and exclusion constraints.
The straightforward approach to applying the Lawler-Murty
method to ranked enumeration of minimal s, t-separators
is by solving the following optimization problem: find the
minimum-weight, minimal s, t-separator in the graph G
that excludes a subset U ⊆ V(G), and includes a subset
I ⊆ V(G) of vertices. Using this approach, we immedi-
ately hit an obstacle. In Section D of the Appendix we
show that deciding whether there exists a minimal s, t-
separator that includes a distinguished vertex v ∈ V(G),
is NP-complete by reduction from the 3-IN-A-PATH prob-
lem [Derhy and Picouleau, 2009]. For this reason, our algo-
rithm lists the minimal s, t-separators of weight at most k in
FPT-delay [Creignou et al., 2017] with parameter k. Here
as well, our approach makes use of the notion of important
separators [Marx, 2011].

Organization. In Section 2, we provide background on
separators in undirected graphs. Section 3 covers causal
graphical models and adjustment sets, and reviews the re-
sults of [van der Zander et al., 2019, Smucler et al., 2021]
that allow translating the problem of finding adjustment sets
in causal models to that of finding separators in an undi-
rected graph. In Section 4, we show how the result of Smu-
cler et al. [2021] for comparing two adjustment sets based
on the asymptotic variance of their estimator translates to
a simple graphical criterion for comparing separators, and
we apply the concept of important separators to prove Theo-
rem 1. Section 5 considers the enumeration of all separators
in ranked order by weight, where the secondary ranking
corresponds to the quality of the associated adjustment sets
(Theorem 2). Due to space restrictions, some of the proofs
are deferred to the Appendix. The proof of Theorem 3,
which presents an algorithm for enumerating minimal sep-
arators of bounded weight, ranked by the quality of the
corresponding adjustment sets, appears in Section B of the
Appendix.

2 BACKGROUND: UNDIRECTED
GRAPHS AND SEPARATORS

Let G be an undirected graph with nodes V(G) and edges
E(G), where n = |V(G)|, and m = |E(G)|. A strictly
positive, integral weight function w : V(G) → N≥1 is de-
fined on the vertices. For unweighted graphs, we assume
w(v) = 1 for all v ∈ V(G). For a subset of vertices
S ⊆ V(G), the weight of S is w(S)

def
=

∑
v∈S w(v). For

A,B ⊆ V(G), we abbreviate AB
def
= A ∪ B; for v ∈ V(G)

we abbreviate vA
def
= {v} ∪ A. Let v ∈ V . We denote

by NG(v)
def
= {u ∈ V(G) : (u, v) ∈ E(G)} the neighbor-

hood of v, and by NG[v]
def
= NG(v) ∪ {v} the closed

neighborhood of v. For a subset of vertices T ⊆ V(G),
we denote by NG(T )

def
=

⋃
v∈T NG(v)\T , and NG[T ]

def
=

NG(T ) ∪ T . We denote by G[T ] the subgraph of G in-
duced by T . Formally, V(G[T ]) = T , and E(G[T ]) =
{(u, v) ∈ E(G) : {u, v} ⊆ T}. For a subset S ⊆ V(G), we
abbreviate G−S def

= G[V(G)\S]; for v ∈ V(G), we abbrevi-
ate G−v def

= G−{v}. We say that G′ is a subgraph of G if it
results from G by removing vertices and edges; formally,
V(G′) ⊆ V(G) and E(G′) ⊆ E(G).

Let e = (u, v) ∈ E(G). The contraction of
e results in a new graph G′, where u and v are
identified with a new vertex we that is adjacent to
NG(u)∪NG(v). Formally, V(G′) = V(G)\{u, v}∪{we},
and E(G′) = E(G)\{e}∪{(we, y) : y ∈ NG(u)∪NG(v)}.
The contraction of e to vertex u results in the graph
G′, where v is identified with u that is adjacent to
NG(u)∪NG(v). Formally, V(G′) = V(G)\{v}, and
E(G′) = E(G)\{e}∪{(u, y) : y ∈ NG(v)}.

Let u, v ∈ V(G). A simple path between u and v, called
a u, v-path, is a finite sequence of distinct vertices u =
v1, . . . , vk = v where, for all i ∈ [1, k − 1], (vi, vi+1) ∈
E(G), and whose ends are u and v. A u, v-path is chordless
or induced if (vi, vj) /∈ E(G) whenever |i− j| > 1.

We say that a subset of vertices V ′ ⊆ V(G) is connected in
G if G[V ′] contains a path between every pair of vertices in
V ′. A subset of vertices V ′ ⊆ V(G) is called a connected
component of G if V ′ is connected, and G[V ′ ∪ {x}] is not
connected for every x ∈ V \V ′. We say that G is connected
if V(G) is connected. Let V1, V2 ⊆ V(G) denote two disjoint
vertex subsets of V(G). We say that V1 and V2 are adjacent
if there is at least one pair of adjacent vertices v1 ∈ V1 and
v2 ∈ V2. We say that there is a path between V1 and V2 if
there exist vertices v1 ∈ V1 and v2 ∈ V2 such that there is a
path between v1 and v2.

Let u ∈ V(G); we denote by Sat(G, u) the graph that re-
sults from G by adding edges between all pairs of vertices
in NG[u]. In other words, Sat(G, u) is the graph where
the set NG[u] has been saturated, and forms a clique. For-
mally, V(Sat(G, u))

def
= V(G), and E(Sat(G, u))

def
= E(G) ∪

{(x, y) : x, y ∈ NG(u)}. For a set of vertices U ⊆ V(G),
we denote by Sat(G,U) the graph that results by adding
edges between all vertices in NG[u] for all u ∈ U . Formally,
V(Sat(G,U)) = V(G) and

E(Sat(G,U))
def
= E(G)∪

⋃
u∈U

{(x, y) : x, y ∈ NG[u]}. (1)

2.1 MINIMAL SEPARATORS

Let s, t ∈ V(G). For X ⊆ V(G), we let C(G−X) de-
note the set of connected components of G−X . The ver-
tex set X is called a separator of G if |C(G−X)| ≥ 2,
an s, t-separator if s and t are in different connected



components of C(G−X), and a minimal s, t-separator
if no proper subset of X is an s, t-separator of G.
For an s, t-separator X , we denote by Cs(G−X) and
Ct(G−X) the connected components of C(G−X) contain-
ing s and t respectively. In other words, Cs(G−X) =
{v ∈ V(G) : there is a path from s to v in G−X}.

Lemma 1. [Berry et al., 2000] An s, t-separator X ⊆ V(G)
is a minimal s, t-separator if and only if NG(Cs(G−X)) =
NG(Ct(G−X)) = X .

A subset X ⊆ V(G) is a minimal separator if there exist
a pair of vertices u, v ∈ V(G) such that X is a minimal
u, v-separator. A connected component C ∈ C(G−X) is
called a full component of X if NG(C) = X . By Lemma 1,
X is a minimal u, v-separator if and only if the components
Cu(G−X) and Cv(G−X) are full components of X . We
denote by Ss,t(G) the set of minimal s, t-separators of G,
and by S(G) the set of minimal separators of G.

An immediate consequence of Lemma 1 is the following,
which will be used later on. Proof deferred to Appendix A.

Proposition 1. Let S1, S2 ∈ Ss,t(G). Then Cs(G−S1) ⊆
Cs(G−S2) if and only if Ct(G−S2) ⊆ Ct(G−S1).

2.1.1 Separators Between Vertex-Sets.

Let A,B ⊆ V(G) be disjoint and non-adjacent. A sub-
set S ⊆ V(G)\AB is an A,B-separator if, in the graph
G−S, there is no path between A and B. We say that S
is a minimal A,B-separator if no proper subset of S is an
A,B-separator. We denote by SA,B(G) the set of minimal
A,B-separators of G. In Section A.1 of the Appendix, we
show how separators between vertex-sets can be represented
as separators between singleton vertices.

Theorem 4. Let A,B ⊆ V(G) be disjoint and non-adjacent,
where s ∈ A and t ∈ B. Let H be the graph that results
from G by: (1) adding all edges between s and NG(A),
(2) adding all edges between t and NG(B), and (3) re-
moving vertices AB\{s, t} and their adjacent edges. Then
Ss,t(H) = SA,B(G).

2.1.2 Close Separators.

When S ∈ Ss,t(G) where S ⊆ NG(s), then we say that S
is close to s [Kloks and Kratsch, 1998].

Lemma 2. [Kloks and Kratsch, 1998] If s and t are non-
adjacent, then there exists exactly one minimal s, t-separator
that is close to s.

Let A,B ⊆ V(G) be disjoint and non-adjacent. From
Lemma 2, and Theorem 4, we get that there exists a unique
minimal A,B-separator that is close to A. If a ∈ A, b ∈ B,
and H is the graph that results from G by adding all edges

between a and NG(A) and all edges between b and NG(B),
and then removing AB\{a, b} and their adjacent edges, we
get by Theorem 4 that Sa,b(H) = SA,B(G). By Lemma 2
there is unique minimal a, b-separator S ∈ Sa,b(H) that is
close to a, where S ⊆ NH(a) ⊆ NG(A). Due to the equiv-
alence Sa,b(H) = SA,B(G), we get that S is the unique
minimal A,B-separator that is closest to A.

Definition 1 (closer to, ⪯). Let S1, S2 ∈ Ss,t(G). We say
that S1 is strictly closer to s than S2, denoted S1 ≺ S2 if
Cs(G−S1) ⊂ Cs(G−S2), and that S1 is closer to s than S2,
denoted S1 ⪯ S2 if Cs(G−S1) ⊆ Cs(G−S2).

2.2 MINIMUM SEPARATORS

A subset S ⊆ V(G) is a minimum-weight s, t-separator
of G (or just minimum s, t separator) if w(S) ≤ w(S′)
for every other s, t-separator S′. We denote by κs,t(G) the
weight of a minimum s, t-separator of G, and byLs,t(G) the
set of all minimum s, t-separators of G. Finding a minimum
s, t-separator can be reduced, by standard techniques [Even
and Even, 2012], to the problem of finding a maximum
flow in the graph [Ford and Fulkerson, 2010]. Currently, the
fastest known algorithm for max-flow runs in almost linear
time m1+o(1) [Chen et al., 2022]. We denote by T (n,m)
the time to find a minimum s, t-separator of G.

The following theorem is a straightforward extension of a
known result for unweighted graphs Cygan et al. [2015],
adapted here to the weighted setting. Its proof is deferred to
Section A.2 of the Appendix.

Theorem 5. There exists a unique minimum s, t-separator
S∗ ∈ Ls,t(G) such that S∗ ⪯ S for all S ∈ Ls,t(G), and
S∗ can be found in time O(n · T (n,m)).

2.3 IMPORTANT MINIMAL SEPARATORS

The notion of important separators has been applied to the
design of various fixed-parameter tractable algorithms [Cy-
gan et al., 2015, Marx, 2011].

Definition 2. [Cygan et al., 2015, Marx, 2011] Let S ⊆
V(G). We say that S is an important s, t-separator if S ∈
Ss,t(G), and for any other S′ ∈ Ss,t(G) it holds that:

Cs(G−S′) ⊂ Cs(G−S) =⇒ |S′| > |S|.

In what follows, we denote by S∗s,t(G) the set of important
s, t-separators, and by S∗s,t,k(G) the set of important s, t-
separators whose size is at most k.

Theorem 6. Cygan et al. [2015], Marx [2011] There are
at most 4k important s, t-separators of G whose size is at
most k, and there is an algorithm that outputs them in total
time O(4k · k · (n+m)).



3 BACKGROUND: CAUSAL GRAPHICAL
MODELS

Let G be a directed graph with nodes V(G) and edges E(G).
As in the undirected case, given a set of vertices Z ⊆ V(G),
we denote by G[Z] the directed subgraph induced by Z.
Formally, E(G[Z]) = {(u, v) ∈ E(G) : {u, v} ⊆ Z}. A
path between u and v is a sequence of adjacent vertices
(v1, . . . , vj) such that u = v1 and v = vj . A vertex w
is a collider on a path if the path contains the subpath
u � w � v. The path is directed, or causal, if vi → vi+1

for all i ∈ {1, 2, . . . , j − 1}. A directed cycle is a directed
path from u to v, combined with the directed edge v � u.
A directed acyclic graph (DAG) is a directed graph with-
out directed cycles. The moral graph of a DAG G is an
undirected graph Gm with the same vertex set as G, and
where (u, v) ∈ E(Gm) if and only if there is a directed edge
between u and v in G, or if there exists a vertex w ∈ V(G)
such that u � w � v is an induced subgraph of G.

If u�w∈E(G), then u is a parent of w. If there is a di-
rected path from u to w, then u is an ancestor of w and
w a descendant of u. We follow the convention that a ver-
tex is an ancestor and descendant of itself. The parents,
ancestors and descendants of w ∈ V(G) are denoted by
pa

G
(w), an

G
(w) and de

G
(w), respectively. For Z⊆V(G),

we define an
G
(Z)

def
=∪z∈ZanG

(z), de
G
(Z)

def
=∪z∈ZdeG

(z),
and pa

G
(Z)

def
= ∪z∈Z pa

G
(z). We denote by nd

G
(Z)

def
=

V(G)\de
G
(Z) the nondescendants of Z.

Let G be a DAG, and x, y∈V(G). The set of causal vertices
between x and y, denoted cv

G
(x, y), are those vertices

that lie on a directed x, y-path in G. The set of forbidden
vertices in G with respect to x, y ∈ V(G) is defined to
be forb

G
(x, y)

def
= {x} ∪ de

G
(cv

G
(x, y)). Accordingly,

for X,Y ⊆ V(G), we define cv
G
(X,Y ) as the vertices

that lie on a directed x, y-path in G for any x ∈ X and
y ∈ Y . Given X,Y ⊆ V(G), the proper back-door graph
Gpbd(X,Y ) [van der Zander et al., 2019] is defined as the
graph that results from G by removing from G the first edge
of every directed X,Y -path. Formally,

E(Gpbd(X,Y ))
def
= E(G)\{x�u : x∈X,u∈cv

G
(X,Y )}

(2)

Identification via Covariate Adjustment

A Bayesian Network (BN) for a set of variables
V={v1, . . . , vn} is a pair B def

=(G,P ) where G is a DAG,
and P a joint probability distribution for V that factorizes
as P (V ) =

∏n
i=1 P (vi|paG

(vi)). For a variable u ∈ V ,
we denote by u an assignment to u, and for a subset of
variables X ⊆ V , we denote by X an assignment to all
variables in X . We say that the BN B is causal if every edge
vi � vj ∈ E(G) represents a direct causal effect of vi on
vj . Given a causal BN B=(G,P ) and a subset X ⊆ V , the

post intervention distribution in X is:

P (V|do(X))
def
=

{∏
vi∈V \X P (vi|paG

(vi)) V is consistent
with X

0 otherwise
(3)

where V is consistent with X if V and X assign the same
values to the variables in X ∩ V , and do(X) represents an
intervention that sets X = X. In a DAG, this intevention
corresponds to removing all edges into X (i.e., all edges
between X and pa

G
(X)). The term P (Y |do(X=X)) is

called the causal effect of X on Y .

When all variables V(G) in the DAG G are observed, the
causal effect P (Y |do(X=X)) of X on Y in G can be de-
termined directly from P using (3). When some variables
are unobserved, then P (Y |do(X=X)) cannot necessarily
be computed directly from P . When it can, then it is said
that the causal effect of X on Y is identifiable [Pearl, 2009].

Definition 3. [Pearl, 2009] Given a DAG G, and pairwise
disjoint X,Y, Z ⊆ V(G), Z is called an adjustment for esti-
mating the causal effect of X on Y if, for every distribution
P that factorizes according to G, it holds:

P (Y|do(X)) =

{
P (Y|X) if Z = ∅∑

Z P (Y|X,Z)P (Z) otherwise
(4)

Let R ⊆ V(G) denote the set of observable variables in
V(G). We say that an adjustment set Z is valid if Z ⊆ R.
There exist graphs for which P (Y |do(X=X)) is identifi-
able but for which no valid adjustment set Z ⊆ R exists.
Smucler et al. [2021], and van der Zander et al. [2019]
established a graphical criterion that determines whether
P (Y |do(X=X)) has a valid adjustment set.

Let I ⊆ R ⊆ V(G). We denote by A
X,Y

(I,R,G) all of the
adjustment sets Z for X,Y in G according to (4), where
I ⊆ Z ⊆ R. We call the set A

X,Y
(I,R,G) the I,R adjust-

ment sets for X,Y in G. We say that Z is a minimal I,R
adjustment set for X,Y if no proper subset of Z is an I,R
adjustment set for X,Y . We denote by AMIN

X,Y
(I,R,G) the

minimal I,R adjustment sets for X,Y in G.

3.1 CHARACTERIZING ADJUSTMENT SETS AS
SEPARATORS IN AN UNDIRECTED GRAPH

In this section, we consider BNs with DAG G, where R ⊆
V(G) is the set of observable variables. We assume that
∅ ⊂ R since otherwise, no valid adjustment set exists. Next,
we describe the results of van der Zander et al. [2019], and
Smucler et al. [2021], which showed that A

X,Y
(I,R,G),

the I,R adjustment sets for X,Y in G, are represented as
separators in a certain undirected graph that we describe
next. Given a DAG G, two distinguished vertex-sets X,Y ⊆
V(G), a subset of observable variables R ⊆ V(G), and a



subset I ⊆ R, we define the undirected graph:

H
0

X,Y
(I,G)

def
=

(
Gpbd(X,Y )[an

G
(I ∪X ∪ Y )]

)m

(5)

where Gpbd is the proper back-door graph (see (2)), and
(· · · )m refers to the undirected moral graph.

Definition 4 (H1

X,Y
(I,G)). H1

X,Y
(I,G) is the undirected

graph that results fromH0

X,Y
(I,G) by: (1) adding all edges

between X∪Y and I , and (2) saturating (see (1)) all vertices
of H0

X,Y
(I,G) that belong to (V(G)\R)∪forb

G
(X,Y ),

and removing them from the graph.

Following, is the key result that relates (X,Y )-separators in
H1

X,Y
(I,G) and the valid adjustment sets A

X,Y
(I,R,G).

Theorem 7. [van der Zander et al., 2019, Smucler et al.,
2021]

1. A
X,Y

(I,R,G) ̸= ∅ if and only if X and Y are not
adjacent inH1

X,Y
(I,G).

2. Let S ⊆ an
G
(X ∪ Y ∪ I). Then S ∈ A

X,Y
(I,R,G)

if and only if S is an X,Y -separator inH1

X,Y
(I,G).

3. S∈AMIN

X,Y
(I,R,G) iff S∈SX,Y (H

1

X,Y
(I,G)).

In Theorem 4 we characterized separators between vertex
sets as separators between singleton vertices in a modified
undirected graph. Let x ∈ X , y ∈ Y . LetH def

= H
X,Y

(I,G)

be the graph that results from H1

X,Y
(I,G) by adding all

edges between x and NH1

X,Y
(I,G)(X), and all edges be-

tween y and NH1

X,Y
(I,G)(Y ). By Theorem 4:

A
MIN

X,Y
(I,R,G)

Thm. 7︷︸︸︷
= SX,Y (H

1

X,Y
(I,G))

Thm. 4︷︸︸︷
= Sx,y(H) (6)

In addition, if S ⊆ an
G
(I ∪X ∪ Y ) then:

S∈A
X,Y

(I,R,G) ⇔ S an X,Y −separator inH
1

X,Y
(I,G)

⇔ S an x, y−separator inH (7)

Eq. (6) and (7) allow us to reduce the problem of finding
adjustment sets for X,Y in the DAG G to that of finding
x, y-separators in the undirected graphH.

4 ORDERING ADJUSTMENT SETS BY
EFFICIENCY

Let B=(G,P ) be a causal BN with observable variables
R ⊆ V(G), and let X,Y, I ⊆ R. We aim to estimate the
interventional mean EP (Y |do(X), I). Using the method of
covariate adjustment, the non-parametric estimator for the
interventional mean depends on the adjustment set Z. Fol-
lowing previous work [Smucler et al., 2021, Smucler and

Rotnitzky, 2022], we consider unbiased estimators that con-
verge, in distribution, to a normal distribution. We denote
by σ2

Z(P ) the variance of the normally-distributed estima-
tor when computed using the adjustment set Z (see (4)).
Different adjustment sets Z may yield estimators with vary-
ing levels of variance, making the choice of Z crucial for
obtaining reliable and accurate estimates.

Let Z1, Z2 ∈ AX,Y
(I,R,G) be two valid adjustment sets

for estimating the causal effect of X on Y in G. We say
that Z1 is more efficient than Z2, in notation Z1 ≤σ

G
Z2 if

and only if σ2
Z1
(P ) ≤ σ2

Z2
(P ) for every joint probability

distribution P that factorizes according to G. It has been es-
tablished that≤σ

G
does not induce a total order over the set of

valid adjustment sets A
X,Y

(I,R,G). In other words, there
exist two distinct adjustment sets Z1, Z2 ∈ AX,Y

(I,R,G),
such that σ2

Z1
(P ) < σ2

Z2
(P ), and σ2

Z1
(P ′) > σ2

Z2
(P ′),

where P , P ′ are two distinct joint probability distributions
that factorize according to G [Rotnitzky and Smucler, 2020].
In other words, there may be pairs of X,Y -adjustment sets
in G that are incomparable with respect to efficiency.

Definition 5. Let Z1, Z2 ∈ AX,Y
(I,R,G). We say that Z1

dominates Z2 if Z1 ≤σ
G

Z2 and |Z1| ≤ |Z2|, and that Z1

strictly dominates Z2, if one of these inequalities is strict.

The Pareto-Optimal frontier of adjustment sets is the subset
of sets in A

X,Y
(I,R,G) that are not dominated.

Let H be an undirected graph, A,B ⊆ V(H), and S1, S2

two (not necessarily minimal) A,B-separators in H . We
denote by S1 ⊴

H
S2 that S1 separates A from S2\S1, and

S2 separates B from S1\S2 in H .

Theorem 8. [Smucler et al., 2021] Let Z1, Z2 ∈
A

X,Y
(I,R,G), such that Z1, Z2 ⊆ V(H1

X,Y
(I,G)). If

Z1 ⊴
H1

X,Y
(I,G)

Z2, then Z1 ≤σ
G
Z2.

In Section A of the Appendix, we prove a result translat-
ing Theorem 8’s efficiency criteria into a crucial structural
property of separators for ranked enumeration.

Proposition 2. Let S1, S2 be two s, t-separators in H . Then
S1 ⊴

H
S2 if and only if Cs(H−S1) ⊆ Cs(H−S2) and

Ct(H−S2) ⊆ Ct(H−S1).

4.1 PROOF OF THEOREM 1

We show how Proposition 1, Proposition 2, Theorem 6, and
Theorem 8 are combined to prove Theorem 1.

Let x∈X , y∈Y , and H the graph that results from
H1

X,Y
(I,G) by adding all edges between x and

NH1

X,Y
(I,G)(X), and between y and NH1

X,Y
(I,G)(Y ). By

Theorem 4, we have that SX,Y (H
1

X,Y
(I,G)) = Sx,y(H).

Let S1, S2 be X,Y -separators inH1

X,Y
(I,G). From (7), we



have that S1 ⊴H1

X,Y
(I,G) S2 if and only if S1 ⊴H S2.

If, in addition, we have that S1, S2 are minimal X,Y -
separators in H1

X,Y
(I,G), then by Proposition 1, we have

that Cy(H−S1) ⊆ Cy(H−S2) if and only if Cx(H−S2) ⊆
Cx(H−S1). By Proposition 2, we have that S1 ⊴H S2, and
by Theorem 8 that

If Cy(H−S1) ⊆ Cy(H−S2), then S1 ≤σ
G
S2. (8)

Essentially, (8) translates the quality of adjustment sets in
causal BNs with unobserved variables to a simple graph-
ical property of minimal x, y-separators in an undirected
graph. Therefore, the set of Pareto-Optimal adjustment sets
inAMIN

X,Y
(I,R,G) precisely correspond to the important min-

imal x, y-separators inH (Definition 2). By Theorem 6, the
set of Pareto-Optimal adjustment sets whose size is at most
k can be listed in time O(k(n+m)4k).

Proposition 2, and its consequence eq. (8) also generalize
previous results of Smucler et al. [2021]. By Lemma 2, there
exists a unique minimal x, y-separator S that is closest to Y .
That is, Cy(H−S) ⊆ Cy(H−S′) for every S′ ∈ Sx,y(H).
From (8), this immediately translates to a unique, minimal,
optimal, valid X,Y -adjustment set that can be found in
polynomial time, thereby restoring the result of Smucler et
al. [2021]. Theorem 5 established that there exists a unique,
minimum x, y-separator S that is closest to y. From (8), this
immediately translates to a unique, minimum, optimal, valid
X,Y -adjustment set in the causal BN, that can be found in
polynomial time, thereby restoring the result of Smucler et
al. [2021].

5 RANKED ENUMERATION OF ALL
s, t-SEPARATORS

We present, in Figure 2, an algorithm that lists all (not nec-
essarily minimal) s, t-separators of G in ranked order by
weight, where the secondary ranking is by distance to s.
Formally, if S1, S2 are s, t-separators of G, then:

w(S1)<w(S2) or
(
w(S1)=w(S2) and S1⪯S2

)
⇒ (9)

S1 is listed before S2

Due to space restrictions, the proofs of this section are de-
ferred to Section C of the Appendix.

We begin by characterizing minimal s, t-separators that
exclude a subset U ⊆ V(G) of vertices. We define:
Ss,t(G,U)

def
= {S ∈ Ss,t(G) : S ⊆ V(G)\U}.

Theorem 9. Ss,t(G,U) = Ss,t(Sat(G,U)).

Algorithm RankedEnumSeps of Figure 2 applies the
Lawler technique with inclusion and exclusion constraints
(e.g., see Golenberg et al. [2011]), leading to a simple
polynomial-delay algorithm. By applying Theorem 5, it

easily follows that the delay of the algorithm is O(Kn ·
T (n,m)) where K is the size of the largest s, t-separator
printed by the algorithm, and T (n,m) is the time to com-
pute a minimum-weight s, t-separator.

Algorithm RankedEnumSeps(G, {s, t})

1: Compute S ∈ Ls,t(G) closest to s {Thm. 5}
2: Q← PriorityQueue(card,⪯)
3: Q.push(⟨G,S, I = ∅⟩)
4: while Q ̸= ∅ do
5: ⟨G,S, I⟩ ← Q.pop()
6: Print S
7: for all vi ∈ S\I = {v1, . . . , vq} do
8: Ii ← I ∪ {v1, . . . , vi−1}
9: H ← Sat(G, vi) {Exclude vi}

10: T∈Ls,t(H−Ii) closest to s {Theorem 5}
11: Q.push(⟨H,T ∪ Ii, Ii⟩)

Figure 2: Algorithm for enumerating all s, t-separators in
ranked order by weight, and distance from s.

Theorem 10. Let S be an s, t-separator of G. There exists
an s, t-separator S′ printed by the algorithm where S′ ⊆ S.

An immediate consequence of Theorem 10 is that every s, t-
separator S is either printed or has a printed subset S′ ⊂
S, ensuring no separator is lost. Our approach efficiently
produces the K lightest s, t-separators first, making it a
top-K enumeration algorithm for s, t-separators.

6 CONCLUSION

Previous methods optimized either adjustment set accuracy
or size, but not both. Our approach integrates these aspects
into an algorithmic framework for enumerating covariate ad-
justment sets that balances estimator variance and cost. We
present three complementary algorithms suited to different
practical and computational scenarios. The first efficiently
enumerates all minimal adjustment sets of cost at most k
that are optimal with respect to both cost and estimator vari-
ance. The second provides a polynomial-delay procedure for
listing all valid adjustment sets, minimal and non-minimal
alike, ranked by cost and variance, making it well-suited
for broader exploration when adjustment sets may be large
or completeness is required. The third algorithm bridges
these two settings by enumerating all minimal adjustment
sets of cost at most k in order of estimator quality, enabling
robust selection in cases where optimal sets are sparse or
cost functions are imprecise. Together, these results offer a
flexible and principled approach to adjustment set selection
under real-world constraints.
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APPENDIX

A PROPERTIES OF SEPARATORS

PROPOSITION 1. Let S1, S2 ∈ Ss,t(G). Then Cs(G−S1) ⊆ Cs(G−S2) if and only if Ct(G−S2) ⊆ Ct(G−S1).

Proof. If Cs(G−S1) ⊆ Cs(G−S2), then Cs(G−S1) ∪ NG(Cs(G−S1)) ⊆ Cs(G−S2) ∪ NG(Cs(G−S2)). By Lemma 1,
we have that S1 = NG(Cs(G−S1)). Therefore, Cs(G−S1) ∪ S1 ⊆ Cs(G−S2) ∪ NG(Cs(G−S2)). In particular, S1 ∩
Ct(G−S2) = ∅. This means that Ct(G−S2) is contained in the connected component of G−S1 that contains t. By definition,
Ct(G−S2) ⊆ Ct(G−S1). The other direction is symmetrical.

PROPOSITION 2. Let S1, S2 be two s, t-separators in H . Then S1 ⊴
H

S2 if and only if Cs(H−S1) ⊆ Cs(H−S2) and
Ct(H−S2) ⊆ Ct(H−S1).

Proof. If Cs(H−S1) ⊆ Cs(H−S2), then ∅ = Cs(H−S2) ∩ S2 ⊇ Cs(H−S1) ∩ S2, and hence Cs(H−S1) ∩ S2 = ∅.
Consequently, (S2\S1) ∩ (Cs(H−S1) ∪ S1) = ∅. Every vertex connected to s in H−S1 belongs to Cs(H−S1). Since
(S2\S1) ∩ (Cs(H−S1) ∪ S1) = ∅, then S1 separates s from S2\S1. Symmetrically, if Ct(H−S2) ⊆ Ct(H−S1), then
(S1\S2) ∩ (Ct(H−S2) ∪ S2) = ∅, thus S2 separates t from S1\S2.

If S1 separates s from S2\S1, then (S2\S1) ∩ Cs(H−S1) = ∅. By definition, S1 ∩ Cs(H−S1) = ∅, and hence S2 ∩
Cs(H−S1) = ∅. This, in turn, means that Cs(H−S1) is contained in the connected component of H−S2 that contains s. By
definition, Cs(H−S1) ⊆ Cs(H−S2). Symmetrically, if S2 separates t from S1\S2, then Ct(H−S2) ⊆ Ct(H−S1). So, if
S1 ⊴

H
S2 then Cs(H−S1) ⊆ Cs(H−S2) and Ct(H−S2) ⊆ Ct(H−S1).

Proposition 3. Let S ∈ Ss,t(G) where S ⊆ NG(s). For every T ∈ Ss,t(G), it holds that Cs(G−S) ⊆ Cs(G−T ).

Proof. Since S ⊆ NG(s) ⊆ T ∪ Cs(G−T ), then Cs(G−S) ⊆ Cs(G−T ).

A.1 SEPARATORS BETWEEN VERTEX-SETS

In this Section, we prove Theorem 4 that follows from a series of Lemmas.

Lemma 3. Let A and B be two disjoint, non-adjacent subsets of V(G). Then S ∈ SA,B(G) if and only if S is an
A,B-separator, and for every w ∈ S, there exist two connected components CA, CB ∈ C(G−S) such that CA ∩ A ̸= ∅,
CB ∩B ̸= ∅, and w ∈ NG(CA) ∩NG(CB).

Proof. If S ∈ SA,B(G), then for every w ∈ S it holds that S\{w} no longer separates A from B. Hence, there is a path
from some a ∈ A to some b ∈ B in G−(S\{w}). Let Ca and Cb denote the connected components of C(G−S) containing
a ∈ A and b ∈ B, respectively. Since Ca and Cb are connected in G−(S\{w}), then w ∈ NG(Ca) ∩NG(Cb).

Suppose that for every w ∈ S, there exist two connected components CA, CB ∈ CG(S) such that CA∩A ̸= ∅, CB ∩B ̸= ∅,
and w ∈ NG(CA)∩NG(CB). If S /∈ SA,B(G), then S\{w} separates A from B for some w ∈ S. Since w connects CA to
CB in G−(S\{w}), no such w ∈ S exists, and thus S ∈ SA,B(G).

Observe that Lemma 3 implies Lemma 1. By Lemma 3, it holds that S ∈ Ss,t(G) if and only if S is an s, t-separator
and S ⊆ NG(Cs(G−S)) ∩ NG(Ct(G−S)). By definition, NG(Cs(G−S)) ⊆ S and NG(Ct(G−S)) ⊆ S, and hence
S = NG(Cs(G−S)) ∩NG(Ct(G−S)), and S = NG(Cs(G−S)) = NG(Ct(G−S)).

Lemma 4. Let G and H be graphs where V(G) = V(H) and E(G) ⊆ E(H). Let A,B ⊆ V(G) disjoint and non-adjacent.
Let S ∈ SA,B(G). If S is an A,B-separator in H , then S ∈ SA,B(H).

Proof. Since S ∈ SA,B(G), then by Lemma 3, for every u ∈ S there exist two distinct connected components Cu
A, C

u
B ∈

C(G−S) where Cu
A ∩ A ̸= ∅, Cu

B ∩ B ̸= ∅, and u ∈ NG(C
u
A) ∩ NG(C

u
B). Since E(H) ⊇ E(G), and since S is an

A,B-separator in H , then H−S contains two distinct connected components Du
A, D

u
B where Cu

A ⊆ Du
A and Cu

B ⊆ Du
B .

Therefore, w ∈ NH(Du
A) ∩NH(Du

B). By Lemma 3, we have that S ∈ SA,B(H).



Lemma 5. Let u ∈ V(G)\sB such that NG(u) ⊆ NG(s). Then Ss,B(G) = Ss,B(G−u)

Proof. Let S ∈ Ss,B(G). We first show that u /∈ S. Suppose, by way of contradiction, that u ∈ S. By Lemma 3, there
exist two distinct vertices x, y ∈ NG(u) such that x ∈ Cs(G−S) and y ∈ CB(G−S), where CB(G−S) ∩ B ̸= ∅. By the
assumption of the lemma that NG(u) ⊆ NG(s), then y ∈ NG(s). But then, S is not an s,B-separator of G; a contradiction.
Hence u /∈ S for any S ∈ Ss,B(G).

Let T ∈ Ss,B(G−u). We show that T is an s,B-separator of G. If it is not, then since every s,B-path of G−u is also an
s,B-path of G, then T ∪ {u} ∈ Ss,B(G). But this contradicts the fact that u /∈ S for every S ∈ Ss,B(G). Hence, T is
an s,B-separator of G. By Lemma 4, we have that T ∈ Ss,B(G). Hence, we have that Ss,B(G−u) ⊆ Ss,B(G). For the
other direction, let T ∈ Ss,B(G). Clearly T is an s,B-separator of G−u. If T /∈ Ss,B(G−u), then there exist a T ′ ⊂ T
s.t. T ′ ∈ Ss,B(G−u). By the previous direction, we have that T ′ ∈ Ss,B(G−u) ⊆ Ss,B(G). But then, T ′ ∈ Ss,B(G)
contradicting the minimality of T . Hence, Ss,B(G−u) = Ss,B(G).

Lemma 6. Let A ⊆ V(G)\Bs. Let H be the graph that results from G by (1) adding all edges between s and NG(A), and
(2) removing the vertices A and their adjacent edges from H . Then SsA,B(G) = Ss,B(H).

Proof. Let T ∈ SsA,B(G), and let C1, . . . , Ck denote the connected components of C(G−T ) containing vertices from
sA. By definition, B ∩ Ci = ∅ for all i ∈ {1, 2, . . . , k}. Assume wlog that s ∈ C1. Let H ′ denote the graph that results
from G by adding all edges between s and NG(A). By definition, the edges added to G to form H ′ are between C1 and
C1 · · ·Ck ∪ T . Therefore, T separates sA from B in H ′. Since E(H ′) ⊇ E(G), then by Lemma 4, if T ∈ SsA,B(G) and T
is an sA,B-separator in H ′, then T ∈ SsA,B(H

′). Therefore, we have that SsA,B(G) ⊆ SsA,B(H
′).

We now claim that SsA,B(H
′) = Ss,B(H ′). Take T ∈ Ss,B(H ′). We claim that T is an sA,B-separator in H ′. Suppose

it is not, and let C ∈ C(H ′−T ) such that a, b ∈ C where a ∈ A and b ∈ B. Let y ∈ NH′(a) ∩ C. By construction,
y ∈ NH′(s). But then, s ∈ NH′(C) and hence T is not an s,B-separator in H ′; a contradiction. Since T ∈ Ss,B(H ′), then
by Lemma 3, we have that for every u ∈ T there exists a connected component Cu

B ∈ C(H ′−T ) s.t. B ∩ Cu
B ̸= ∅ and

u ∈ NH′(Cs(H
′−T )) ∩NH′(Cu

B). By Lemma 3, we have that T ∈ SsA,B(H
′). Hence Ss,B(H ′) ⊆ SsA,B(H

′). For the
other direction, let T ∈ SsA,B(H

′). Clearly, T is an s,B-separator of H ′. If T /∈ Ss,B(H ′), then there exists a T ′ ⊂ T
such that T ′ ∈ Ss,B(H ′). By the previous direction, we have that T ′ ∈ SsA,B(H

′), but this contradicts the minimality of T .
Hence, Ss,B(H ′) = SsA,B(H

′). Overall, we have shown that SsA,B(G) ⊆ SsA,B(H
′) = Ss,B(H ′).

Let T ∈ Ss,B(H ′). We first show that T separates sA from B in G; if not, there is a path from x ∈ sA to B in G−T . Let
u be the first vertex on this path such that u /∈ sA. Note that such a vertex u /∈ sA must exist because B ∩ sA = ∅. In
particular, u ∈ NG(sA), and by construction, u ∈ NH′(s). This means that there is a path from s to B (via u) in H ′−T ,
which is a contradiction. Therefore, T is an sA,B-separator in G. If T /∈ SsA,B(G), then there is a T ′ ∈ SsA,B(G) where
T ′ ⊂ T . By the previous direction, T ′ ∈ SsA,B(G) ⊆ Ss,B(H ′), and hence T ′ ∈ Ss,B(H ′), contradicting the minimality
of T ∈ Ss,B(H ′). Therefore, SsA,t(G) = Ss,B(H ′).

By construction, for every u ∈ sA, we have that NH′(u) ⊆ NH′(s). From Lemma 5, we have that Ss,B(H ′) = Ss,B(H).
Therefore, SsA,t(G) = Ss,B(H).

THEOREM 4. Let A,B ⊆ V(G) be disjoint and non-adjacent, where s ∈ A and t ∈ B. Let H be the graph that results from
G by: (1) adding all edges between s and NG(A), (2) adding all edges between t and NG(B), and (3) removing vertices
AB\{s, t} and their adjacent edges. Then Ss,t(H) = SA,B(G).

Proof. Let H1 be the graph that results from G by adding all edges between s and NG(A), and removing vertices A\{s} from
the graph. By Lemma 6, we have that SA,B(G) = Ss,B(H1). By the assumption that A and B are disjoint and non-adjacent,
then NG[B] = NH1

[B]. Now, let H2 be the graph that results from H1 by adding all edges between t and NH1
(B) = NG(B),

and removing vertices B\{t} from the graph H2. By Lemma 6, we have that Ss,t(H2) = Ss,B(H1) = SA,B(G).

A.2 MINIMUM SEPARATORS

THEOREM 5. There exists a unique minimum s, t-separator S∗ ∈ Ls,t(G) such that S∗ ⪯ S for all S ∈ Ls,t(G), and S∗

can be found in time O(n · T (n,m)).



Theorem 5 is a straightforward extension of the following Theorem.

Theorem 11. (Cygan et al. [2015]) Let G be a non-weighted graph (i.e., w(v) = 1 for every v ∈ V(G)). There exists a
unique minimum-cardinality s, t-separator S∗ ∈ Ls,t(G) such that S∗ ⪯ S for all S ∈ Ls,t(G), and S∗ can be found in
time O(n · T (n,m)).

For completeness, we provide the proof of Theorem 5 herein.

Theorem 12. (Theorem 8.3 in Cygan et al. [2015]) For X,Y ⊆ V(G). It holds that:

|NG(X)|+ |NG(Y )| ≥ |NG(X ∩ Y )|+ |NG(X ∪ Y )|.

Proof Overview. The proof establishes that for every vertex v ∈ V(G), the number of times it is accounted for in the
left-hand-side (LHS) is at least as large as the number of times it is accounted for in the right-hand-side (RHS), thereby
proving the claim.

Lemma 7. Let G be an undirected, weighted graph, with weight function w : V(G)→ N≥1. For X,Y ⊆ V(G). It holds
that:

w(NG(X)) + w(NG(Y )) ≥ w(NG(X ∩ Y )) + w(NG(X ∪ Y )).

Proof Overview. The proof is identical to that of Theorem 12, establishing that for every vertex v ∈ V(G), the number of
times it is accounted for in the left-hand-side (LHS) is at least as large as the number of times it is accounted for in the
right-hand-side (RHS), thereby proving the claim. Since the weights are positive, the claim follows.

Recall from Definition 1 that for two minimal s, t-separators S1, S2 ∈ Ss,t(G), it holds:

S1 ⪯ S2 if and only if Cs(G−S1) ⊆ Cs(G−S2).

Theorem 13. (Theorem 8.4 in Cygan et al. [2015]) Let G be an undirected, uweighted graph. There exists a minimum-
cardinality s, t-separator S∗ ∈ Ls,t(G), such that S∗ ⪯ S for every S ∈ Ls,t(G).

Lemma 8 presents the weighted version of Theorem 13. The proof is similar to that of Theorem 13, and is provided below
for completeness.

Lemma 8. Let G be an undirected, weighted graph, with weight function w : V(G)→ N≥1. There exists a minimum-weight
s, t-separator S∗ ∈ Ls,t(G), such that S∗ ⪯ S for every S ∈ Ls,t(G).

Proof. Let S1, S2 ∈ Ls,t(G). By Lemma 7, and Lemma 1, we have that:

w(S1) + w(S2) =︸︷︷︸
Lemma 1

w(N(Cs(G−S1))) + w(N(Cs(G−S2)))

≥︸︷︷︸
Lemma 7

w(N(Cs(G−S1) ∩ Cs(G−S2))) + w(N(Cs(G−S1) ∪ Cs(G−S2))). (10)

Define S− def
= N(Cs(G−S1)∩Cs(G−S2)) and S+ def

= N(Cs(G−S1)∪Cs(G−S2)). Since s ∈ Cs(G−S1)∩Cs(G−S2), and
t /∈ Cs(G−S1)∪Cs(G−S2), then both S− and S+ are s, t-seprators of G. Therefore, w(S−) ≥ κs,t(G) = w(S1) = w(S2),
and w(S+) ≥ κs,t(G) = w(S1) = w(S2).

From (10), we have that

2κs,t(G) = w(S1) + w(S2) ≥ w(S−) + w(S+) ≥ 2κs,t(G),

and hence, w(S−) = w(S+) = κs,t(G). Since S− = N(Cs(G−S1) ∩ Cs(G−S2)), then by definition, S− ⪯ S1 and
S− ⪯ S2. Since Ls,t(G), the set of minimum-weight s, t-separators of G, is finite, this proves the claim.

We are now ready to prove Theorem 5.

THEOREM 5. There exists a unique minimum s, t-separator S∗ ∈ Ls,t(G) such that S∗ ⪯ S for all S ∈ Ls,t(G), and S∗

can be found in time O(n · T (n,m)).



Proof. From Lemma 8, we have that S∗ ∈ Ls,t(G) exists and is unique. We show that it can be found in time O(n·T (n,m)).
Finding a minimum-weight s, t-separator can be reduced, by standard techniques to the maximum-flow problem. Let
S1 ∈ Ls,t(G) be a minimum-weight s, t-separator found in this way. Now, we need to check whether there is another
S2 ∈ Ls,t(G) such that S2 ≺ S1. If Cs(G−S2) ⊂ Cs(G−S1), then by Proposition 1, it holds that Ct(G−S1) ⊂ Ct(G−S2).
In particular, S1 = N(Ct(G−S1)) ⊆ Ct(G−S2) ∪ N(Ct(G−S2)) = Ct(G−S2) ∪ S2. Since S1, S2 ∈ Ls,t(G), then
S1 ̸⊆ S2, and hence S1 ∩ Ct(G−S2) ̸= ∅. In other words, if S2 ≺ S1, then there must be a vertex v ∈ S1 that belongs
to Ct(G−S2). We check if this is the case by iterating over all vertices v ∈ S1, and contracting Ct(G−S1) ∪ {v} to the
vertex t, and finding a minimum-weight s, t-separator in the resulting graph. If, for all v ∈ S1, this results in a separator
whose weight is strictly larger than κs,t(G), then we have identified the minimum-weight s, t-separator that is closest to s.
Otherwise, we repeat this procedure until no such vertex v ∈ S1 is found – indicating that the computed s, t-seprator is both
minimum-weight, and closest to s.

B LISTING COST-CONSTRAINED MINIMAL s, t-SEPARATORS IN FPT-DELAY

In this section, we consider the case where the weight function w : V(G)→ {1, . . . , c} is bounded by a constant c. That is,
w(v) ≤ c for all v ∈ V(G). We present an algorithm that given a threshold value W , returns all minimal s, t-separators
S ∈ Ss,t(G) where w(S) ≤W in ranked order by their distance from s. That is, if S1, S2 ∈ Ss,t(G) where w(S1) ≤W ,
w(S2) ≤ W , and S1 ≺ S2, then S1 is printed before S2 by the algorithm. To that end, we first transform G into an
unweighted graph G′ by using the common vertex-splitting technique that preserves G’s paths and connectivity structure.
For every vertex v ∈ V(G), we generate a set Cv of w(v) ≤ c copies of v in G′ and connect them to form a clique. Let
a′, b′ ∈ V(G′) be copies of distinct vertices a, b ∈ V(G), respectively. Then (a′, b′) ∈ E(G′) if and only if (a, b) ∈ E(G). It
is easily seen that S ∈ Ss,t(G) if and only if S′ ∈ Ss,t(G′), where S′ def

= ∪v∈SCv. Note also that |S′| = w(S). Hence, the
problem is reduced to that of returning all minimal s, t-separators of G′ whose cardinality is at most W in ranked order by
their distance from s. The rest of this section is devoted to this problem.

For any natural number k ≥ 0, we denote by Ss,t,k(G) the minimal s, t-separators whose cardinality is at most k.

Ss,t,k(G)
def
= {S ∈ Ss,t(G) : |S| ≤ k} (11)

Let C1, C2 ⊆ V(G). We say that they are incomparable if C1 ̸⊆ C2 and C2 ̸⊆ C1. Recall Definition 1 of the partial order
⪯ between minimal s, t-separtors. In Figure 3, we present the enumeration algorithm that lists all minimal s, t-separators
whose size is at most k (i.e., Ss,t,k(G)) according to the order ≺. Recall that S∗s,t,k(G) is the set of important minimal
s, t-separators of size at most k (see Section 2.3).

B.1 OVERVIEW OF PROOF OF CORRECTNESS

Correctness is established by showing that a subset S ⊆ V(G) is printed by the algorithm if and only if S ∈ Ss,t(G), and
|S| ≤ k (i.e., S ∈ Ss,t,k(G)). This is established by Theorems 14 and 15. In Theorem 16, we show that if S1, S2 ∈ Ss,t,k(G),
and S1 ≺ S2, then S1 is printed before S2. Finally, we establish FPT-delay in Theorem 17. The results follow from a series
of lemmas.

Theorem 14. If S ⊆ V(G) is printed, then S ∈ Ss,t,k(G), and S is printed exactly once.

Theorem 15. Let T ∈ Ss,t,k(G). Then T is printed by SmallMinimalSeps in Figure 3.

Theorem 14 and Theorem 15 together establish that a subset T ⊆ V(G) is printed by the algorithm if and only if
T ∈ Ss,t,k(G). In other words, SmallMinimalSeps prints precisely the set Ss,t,k(G).

Theorem 16. Let S1, S2 ∈ Ss,t,k(G). If S1 ≺ S2, then S1 is printed before S2 by Algorithm SmallMinimalSeps.

Theorem 16 establishes that the minimal s, t-separators are printed in an order that corresponds to the desirability of the
adjustment sets, in terms of their variance (see Section 4).

Theorem 17. The delay between the printing of minimal s, t-separators whose size is at most k is O(k24k(n+m)).

Lemma 9. Let v ∈ NG(s), and let G′ denote the graph that results from G by contracting the edge (s, v) to s. Then
Ss,t(G′) = {S ∈ Ss,t(G) : v /∈ S}.



Algorithm SmallMinimalSeps(G, s, t, k)

Input: Graph G, and s, t,∈ V(G).
Output: Ss,t,k(G).

1: if (s, t) ∈ E(G) then
2: Print ⊥
3: return
4: Q← PriorityQueue(⪯),M← ∅
5: Compute S∗s,t,k(G) {Theorem 6}
6: for S ∈ S∗s,t,k(G) do
7: Q.push(S)
8: while Q is not empty do
9: S ← Q.pop()

10: Print S
11: M.push(S)
12: Define HS : V(HS)={s}∪S∪Ct(G−S),

E(HS)=E(G[V(HS)])∪{(s, v) : v∈S}
13: for v ∈ S do
14: Let Hv

S be the graph that results from HS by contracting the
edge (s, v) to s.

15: Compute S∗s,t,k(Hv
S) {Theorem 6}

16: for T ∈ S∗s,t,k(Hv
S) do

17: if T /∈ Q AND T /∈M then
18: Q.push(T )

Figure 3: Algorithm for listing the minimal s, t-separators of G whose size is at most k, ranked by ⪯.

Proof. Let G′′ be the graph that results from G by adding all edges between s and NG(v). By definition, this means that
NG′′(v) ⊆ NG′′(s). We first show that Ss,t(G′′) = {S ∈ Ss,t(G) : v /∈ S}.

Let S ∈ Ss,t(G) such that v /∈ S. Since v ∈ NG(s), then v ∈ Cs(G−S), and hence NG(v) ⊆ S ∪ Cs(G−S). Therefore, S
is an s, t-separator in G′′ as well. Since E(G′′) ⊇ E(G), then by Lemma 4, S ∈ Ss,t(G′′).

Now, let T ∈ Ss,t(G′′). Since E(G) ⊆ E(G′′) then clearly T is an s, t-separator of G. Since NG′′(v) ⊆ NG′′(s), then by
Lemma 5, it holds that Ss,t(G′′) = Ss,t(G′′−v). Therefore, we have that v /∈ T . If T /∈ Ss,t(G), then there exists a T ′ ⊂ T
such that T ′ ∈ Ss,t(G). Since v /∈ T , then v /∈ T ′. We have previously established that Ss,t(G′′) ⊇ {S ∈ Ss,t(G) : v /∈ S},
and hence T ′ ∈ Ss,t(G′′). But this contradicts the minimality of T . Therefore, T ∈ {S ∈ Ss,t(G) : v /∈ S}, and we have
that Ss,t(G′′) = {S ∈ Ss,t(G) : v /∈ S}.

By construction, we have that NG′′(v) ⊆ NG′′(s). By Lemma 5, we have that Ss,t(G′′) = Ss,t(G′′−v) = Ss,t(G′).
Therefore, we get that Ss,t(G′) = {S ∈ Ss,t(G) : v /∈ S}.

Lemma 10. Let S, T ∈ Ss,t(G). Then:

Cs(G−S) ⊆ Cs(G−T ) if and only if T ⊆ S ∪ Ct(G−S).

Proof. If T ⊆ S ∪Ct(G−S), then by definition T ∩Cs(G−S) = ∅. Therefore, Cs(G−S) remains connected in G−T . This
means that Cs(G−S) ⊆ Cs(G−T ).

Now, suppose that Cs(G−S) ⊆ Cs(G−T ). By Lemma 1, it holds that S = NG(Cs(G−S)). Since Cs(G−S) ⊆ Cs(G−T ),
then S = NG(Cs(G−S)) ⊆ T ∪ Cs(G−T ). Since S ⊆ T ∪ Cs(G−T ) then by definition it holds that S ∩ Ct(G−T ) = ∅.
This, in turn, implies that Ct(G−T ) remains connected in G−S. In particular, we have that Ct(G−T ) ⊆ Ct(G−S). By
Lemma 1, it holds that T = NG(Ct(G−T )). Since Ct(G−T ) ⊆ Ct(G−S), then T = NG(Ct(G−T )) ⊆ S∪Ct(G−S).



Lemma 11. Let S ∈ Ss,t(G), and let HS be the graph that results from G by adding all edges from s to S. That is,
E(HS) = E(G) ∪ {(s, v) : v ∈ S}. Then:

Ss,t(HS) = {Q ∈ Ss,t(G) : Q ⊆ S ∪ Ct(G−S)}

Proof. Let Q ∈ Ss,t(G) where Q ⊆ S ∪ Ct(G−S). Since Q ∩ Cs(G−S) = ∅, then Cs(G−S) remains connected
in G−Q. Therefore, Cs(G−S) ⊆ Cs(G−Q). By Lemma 1, S = NG(Cs(G−S)). Since Cs(G−S) ⊆ Cs(G−Q), then
S = NG(Cs(G−S)) ⊆ Cs(G−Q) ∪Q. In particular, S ∩ Ct(G−Q) = ∅. Consequently, Q separates Ct(G−Q) from s in
HS as well. That is, Q is an s, t-separator in HS . Since E(HS) ⊇ E(G), then Q ∈ Ss,t(HS).

Let T ∈ Ss,t(HS). By construction, S ∈ Ss,t(HS) where S ⊆ NH(s). By Proposition 3, Cs(HS−S) ⊆ Cs(HS−T ).
By Lemma 10, it holds that T ⊆ S ∪ Ct(HS−S). Since, by construction, Ct(HS−S) = Ct(G−S), we get that T ⊆
S ∪ Ct(G−S).

Lemma 12. Let T ∈ Ss,t,k(G). Exactly one of the following holds: (1) T ∈ S∗s,t,k(G) or (2) There exists a minimal
s, t-separator S ∈ S∗s,t,k(G) such that S ≺ T .

Proof. By induction on |Cs(G−T )|. If |Cs(G−T )| = 1, then clearly T ⊆ NG(s). By Lemma 2, T is the unique minimal
s, t-separator that is closest to s, and hence T ∈ S∗s,t,k(G). So, we assume that the claim holds for all T ∈ Ss,t,k(G),
where 1 ≤ |Cs(G−S)| ≤ ℓ. Let T ∈ Ss,t,k(G), where |Cs(G−S)| = ℓ+ 1. If T ∈ S∗s,t,k(G), then we are done. Otherwise,
if T /∈ S∗s,t,k(G), then since |T | ≤ k, it must hold that T /∈ S∗s,t(G). By definition 2, there exists a T ′ ∈ Ss,t(G) such
that T ′ ≺ T (i.e., Cs(G−T ′) ⊂ Cs(G−T )), and |T ′| ≤ |T | ≤ k. Consequently, |Cs(G−T ′)| < |Cs(G−T )| = ℓ + 1, and
|Cs(G−T ′)| ≤ ℓ. Since T ′ ∈ Ss,t,k(G) and |Cs(G−T ′)| ≤ ℓ, then by the induction hypothesis, either T ′ ∈ S∗s,t,k(G), in
which case T ′ ≺ T , thus proving the claim. Otherwise, there exists an S ∈ S∗s,t,k(G) such that S ≺ T ′. Hence, S ≺ T ′ ≺ T ,
and S ≺ T , thus proving the claim.

Lemma 13. Let T ∈ Ss,t,k(G). There exists a S ∈ S∗s,t,k(G) such that S ⪯ T , and T ⊆ S ∪ Ct(G−S).

Proof. If T ∈ S∗s,t,k(G), then the claim is immediate. If T /∈ S∗s,t,k(G) then, by Lemma 12, there exists an S ∈ S∗s,t,k(G),
such that S ≺ T . By Lemma 10, T∈S∪Ct(G−S).

THEOREM 14. If S ⊆ V(G) is printed, then S ∈ Ss,t,k(G), and S is printed exactly once.

Proof. Every subset of vertices inserted into the queue (in lines 7 and 18) is pushed exactly once and has cardinality
at most k. Therefore, we only need to show that every subset of vertices pushed into the queue Q, and printed by the
algorithm, belongs to Ss,t(G). Suppose, by way of contradiction, that this is not the case, and let T ⊆ V(G) be the first
subset of vertices printed where T /∈ Ss,t(G). Then T must be inserted into the queue in line 18. Consider the set S that
was printed before T is inserted into the queue. By our assumption S ∈ Ss,t(G). Therefore, T ∈ S∗s,t,k(Hv

S), where v ∈ S.
By Lemma 11, Ss,t(HS) ⊆ Ss,t(G). Since v ∈ NHS

(s), and Hv
S is the graph that results from HS by contracting the edge

(s, v) to vertex v, by Lemma 9, it holds that Ss,t(Hv
S) ⊆ Ss,t(HS) ⊆ Ss,t(G). Since T ∈ S∗s,t,k(Hv

S) ⊆ Ss,t(Hv
S), we get

that T ∈ Ss,t(G), which brings us to a contradiction.

THEOREM 15. Let T ∈ Ss,t,k(G). Then T is printed by SmallMinimalSeps in Figure 3.

Proof. If T ∈ S∗s,t,k(G), then T is inserted into the queue in line 7, and will be printed. Therefore, assume that T /∈ S∗s,t,k(G).
Suppose that T is not printed. Let T ′ ∈ Ss,t(G) be the largest minimal s, t-separator, with respect to ≺, that is printed by
the algorithm, such that T ′ ⪯ T . In other words, there does not exist a T ′′ ∈ Ss,t(G), that is printed by the algorithm where
T ′ ≺ T ′′ ⪯ T . By Lemma 13, and the fact that T /∈ S∗s,t,k(G) such a separator T ′ exists.

Since Cs(G−T ′) ⊂ Cs(G−T ), then by Lemma 10, it holds that T ∈ T ′ ∪ Ct(G−T ′). By Lemma 11, it holds that
T ∈ Ss,t(HT ′). Consider what happens when T ′ is popped from the queue in line 9, and the graph HT ′ is generated in
line 12. Since T ̸= T ′ (we assume that T is not printed), T ′ ⊆ NHT ′ (s), and T ∈ Ss,t(HT ′), then there exists a vertex
v ∈ T ′, such that T ∈ Ss,t(Hv

T ′) (see line 14). If T ∈ S∗s,t,k(Hv
T ′), then T is pushed into the queue in line 18, and will

therefore be printed. Otherwise, by Lemma 13, there exists an S ∈ S∗s,t,k(Hv
T ′), such that Cs(H

v
T ′−S) ⊆ Cs(H

v
T ′−T ). By

construction, we have that Cs(HT ′−T ′) ⊂ Cs(H
v
T ′−S) ⊆ Cs(HT ′−T ). Since S is pushed into the queue in line 18, then it



will be printed by the algorithm in line 10. By Theorem 14, we have that S ∈ Ss,t,k(G) is printed by the algorithm, where
T ′ ≺ S ⪯ T , contradicting our assumption that T ′ is maximal with respect to the partial order ≺.

THEOREM 16. Let S1, S2 ∈ Ss,t,k(G). If S1 ≺ S2, then S1 is printed before S2 by Algorithm SmallMinimalSeps.

Proof. By Theorem 15, both S1 and S2 are printed by the algorithm. Consider the point in time where S2 is pushed into the
queue Q.

1. Case 1: S1 ∈M. In that case, when S2 is pushed into the queue, S1 has already been printed, and hence S1 is printed
before S2.

2. Case 2: S1 ∈ Q. Since Q is a priority queue sorted according to ≺, then S1 will be popped from the queue Q (in
line 9), and printed (in line 10) before S2 is popped (and printed).

3. Case 3: S1 is generated and inserted into the queue after S2 is printed. In that case, by the workings of the algorithm,
S1 ∈ Ss,t,k(Hv

S2
) for some v ∈ S2 (see lines 13–18). By Lemma 9, S1 ∈ Ss,t,k(Hv

S2
) ⊆ Ss,t,k(HS2). By Lemma 11,

if S1 ∈ Ss,t,k(HS2), then S1 ∈ Ss,t,k(G) where S1 ⊆ S2 ∪ Ct(G−S2). By Lemma 10, we have that Cs(G−S2) ⊆
Cs(G−S1); a contradiction. Therefore, only cases 1 and 2 are possible, which means that S1 is printed before S2.

THEOREM 17. The delay between the printing of minimal s, t-separators whose size is at most k is O(k24k(n+m)).

Proof. The size of the queue Q and the data structure M, can be at most nk. We make the standard assumption that
these data structures allow logarithmic insertion and extraction, which take time O(k log n). Applying Theorem 6, which
states that there are at most 4k important separators that can be found in time O(k4k(n + m)), we get that the loop in
lines (13)-(18) runs in time: O(k · (n+ 4k · k · (n+m) + k · 4k · log n). Overall, the delay is O(4kk2(n+m)).

C PROOFS FROM SECTION 5

We prove that Ss,t(G,U) = Ss,t(Sat(G,U)). We proceed by a series of lemmas.

Lemma 14. Let u ∈ V(G) such that NG[u] forms a clique. Then u /∈ S for every S ∈ Ss,t(G).

Proof. Let S ∈ Ss,t(G). By Lemma 1, G−S contains two full connected components Cs(G−S) and Ct(G−S) containing
s and t respectively, such that S = NG(Cs(G−S)) = NG(Ct(G−S)). Therefore, if u ∈ S, then it has two neighbors
v1 ∈ Cs(G−S) and v2 ∈ Ct(G−S) that are connected by an edge (because NG[u] is a clique). But then, there is an s, t-path
in G−S that avoids S, which contradicts the fact that S is an s, t-separator.

Lemma 15. If S ∈ Ss,t(G, u), there exists a connected component Cu ∈ C(G−S) such that NG[u] ⊆ Cu ∪ S.

Proof. Let Cu ∈ C(G−S) be the connected component that contains u. Such a component must exist because, by Lemma 14,
u /∈ S. If NG(u) ̸⊆ Cu ∪ S, then there exists a vertex v ∈ NG(u) that resides in a connected component Cv ∈ C(G−S)
distinct from Cu. But this is a contradiction because, by definition, (u, v) ∈ E(G). Hence, Cv = Cu, and this proves the
claim.

Lemma 16. Let u ∈ V(G). Then Ss,t(G, u) = Ss,t(Sat(G, {u})).

Proof. Let S ∈ Ss,t(G, u). By Lemma 15, there exists a connected component Cu ∈ C(G−S) that contains u, where
NG[u] ⊆ Cu ∪ S. Therefore, no added edge in E(Sat(G, {u}))\E(G) connects vertices in distinct connected components
in C(G−S). Hence, S separates s and t also in Sat(G, {u}). Since the addition of edges cannot eliminate any path between
s and t, we get that S is a minimal s, t-separator also in Sat(G, {u}). Hence, Ss,t(G, u) ⊆ Ss,t(Sat(G, {u})).

Now, let S ∈ Ss,t(Sat(G, {u})). Hence, NG[u] is a clique in Sat(G, {u}). By Lemma 14, u /∈ S. Since G is a subgraph
of Sat(G, {u}), then if S separates s from t in Sat(G, {u}), it must separate s from t in G. Hence, S is an s, t-separator
in G where u /∈ S. It is left to show that S is a minimal s, t-separator in G. Suppose that it is not, and let S′ ⊂ S be



a minimal s, t-separator of G. Since u /∈ S, then u /∈ S′. By definition, S′ ∈ Ss,t(G, u). By the previous direction,
S′ ∈ Ss,t(G, u) ⊆ Ss,t(Sat(G, {u})), and hence S′ ∈ Ss,t(Sat(G, {u})). But this is a contradiction to the minimality of
S. Therefore, Ss,t(Sat(G, {u})) ⊆ Ss,t(G, u), and this completes the proof.

THEOREM 9. Ss,t(G,U) = Ss,t(Sat(G,U)).

Proof. The fact that Ss,t(G,U) = Ss,t(Sat(G,U)) follows from Lemma 16 by induction on |U |.

Let 0 ≤ k ≤ n be an integer, and Ss,t(G,U)k and Ss,t(Sat(G,U))k denote the sets of minimal s, t-separators in Ss,t(G,U)
and Ss,t(Sat(G,U)) whose size is exactly k, respectively. Since Ss,t(G,U) = Ss,t(Sat(G,U)), then Ss,t(G,U)k =
Ss,t(Sat(G,U))k for every integer 0 ≤ k ≤ n. In particular, this is the case for k = κs,t(G,U) = κs,t(Sat(G,U)). Hence,
Ls,t(G,U) = Ls,t(Sat(G,U)).

THEOREM 10. Let S be an s, t-separator of G. There exists an s, t-separator S′ printed by the algorithm where S′ ⊆ S.

Proof. Let T be an s, t-separator of G, and suppose, by way of contradiction, that neither T , nor any of its subsets are
printed. Every triple ⟨H,S, I⟩ pushed into the queue Q in lines 3 and 11 corresponds to a pair of inclusion/exclusion
constraints that restrict the set of s, t-separators to those that include vertices I , and exclude vertices U ⊆ V(G) that have
been saturated in G (i.e., to form H). Let ⟨H,S, I⟩ be the triple, inserted into Q, where: (1) I ⊆ T , and (2) U ⊆ V(G)\T ,
which maximizes |I|+ |U |. Note that such a triple ⟨H,S, I⟩ must exist because the first triple pushed into the queue Q in
line 3 is ⟨G,S, ∅⟩ where S ∈ Ls,t(G), I = ∅ ⊆ T , and no vertex of G has yet been saturated and hence U = ∅ ⊆ V(G)\T .

Let S\I = {v1, . . . , vq}. By our assumption, S ̸⊆ T . Let ℓ ≤ q be the smallest index such that vℓ /∈ T . In other
words, {v1, . . . , vℓ−1} ⊆ T , and vℓ /∈ T . In the ℓth iteration of the loop in lines 7–11, the algorithm generates a triple
⟨Hℓ, Sℓ, Iℓ⟩, where Iℓ

def
= I ∪ {v1, . . . , vℓ−1} ⊆ T , and Hℓ is the graph that, by Theorem 9, materializes the condition of

excluding U ∪ {vℓ}. In other words, the algoirithm generates a triple with inclusion constraints I ⊆ Iℓ ⊆ T , and exclusion
constraint Uℓ

def
= U ∪ {vℓ} ⊃ U , where Uℓ ⊆ V(G)\T , and |Uℓ| > |U |. But then, ⟨H,S, I⟩ does not maximize |I|+ |U |; a

contradiction.

D MINIMAL SEPARATORS AND CHORDLESS s, t-PATHS

In this section we show that given a set I ⊆ V(G), it is NP-hard to decide whether there exists a minimal s, t-separator
S ∈ Ss,t(G) such that I ⊂ S. We prove this by showing a reduction from the problem 3-IN-A-PATH that asks whether there
is an induced (or chordless) path containing three given terminals. Bienstock [1991] has shown that deciding whether two
terminals belong to an induced cycle is NP-hard. From this, it is easy to show that the 3-IN-A-PATH problem is NP-hard
even for graphs whose degree is at most three [Derhy and Picouleau, 2009]. In fact, even deciding whether there is such a
path of length at most k was shown to be W [1]-complete with respect to the length parameter k [Haas and Hoffmann, 2006].
The related problem, called THREE-IN-A-TREE, for deciding whether there is an induced tree containing three terminals, is
in PTIME [Lai et al., 2020].

Theorem 18. Let v ∈ V(G). There exists a minimal s, t-separator that includes v if and only if there exists a chordless
s, t-path through v.

Proof. Let S ∈ Ss,t(G) where v ∈ S, and let Cs(G−S), Ct(G−S) denote the connected components of G−S that contain
s and t respectively. By Lemma 1, there exists a path from s to v where all the internal vertices belong to Cs(G−S). Let Psv

denote the shortest such path. Likewise, let Pvt denote the shortest path from v to t where all internal vertices belong to
Ct(G−S). Clearly, Psv and Pvt are both chordless paths. Since Cs(G−S) ∩ Ct(G−S) = ∅, then V(Psv) ∩ V(Pvt) = {v}.
Since S ∈ Ss,t(G), then there are no edges between vertices in Cs(G−S) and vertices in Ct(G−S). Consequently, there are
no edges between vertices in V(Psv) and V(Pvt). Therefore, the path PsvPvt is a chordless s, t-path that passes through v.
In other words, if v ∈ S, then there is an induced s, t-path through v.

Let P = s, a1, . . . , ak, v, b1, . . . , bℓ, t denote a simple, chordless s, t-path through v. If v ∈ NG(s) (v ∈ NG(t)), then
k = 0 (ℓ = 0). Contract all edges on the sub-path Pa

def
= (s, a1, . . . , ak) such that Pa is reduced to an edge (s, v). Likewise,

contract all edges on the sub-path Pb
def
= (b1, . . . , bℓ, t) such that Pb is reduced to an edge (v, t). Denote the resulting graph



by G′. Since P is chordless, then there are no edges between (ai, bj) for all i ∈ [1, k] and all j ∈ [1, ℓ]. Therefore, following
the contraction, s and t are not adjacent in the new graph G′, and hence separable.

Let S′ ∈ Ss,t(G′) be a minimal s, t-separator in G′. By construction, v ∈ NG′(s) ∩NG′(t), and hence v ∈ S′. It is left
to show that S′ ∈ Ss,t(G). Let Cs(G

′−S′) and Ct(G
′−S′) denote the full connected components of G′−S′ containing

s and t respectively. Define Ds(G−S′)
def
= Cs(G

′−S′) ∪ {a1, . . . , ak} and Dt(G−S′)
def
= Ct(G

′−S′) ∪ {b1, . . . , bℓ}. By
construction, Ds(G−S′) and Dt(G−S′) are disjoint, non-adjacent, and G[Ds(G−S′)] (G[Dt(G−S′)]) are both connected
components in G. Since Cs(G

′−S′) and Ct(G
′−S′) are full components of S′ in G′, and Ds(G−S′) ⊇ Cs(G

′−S′) and
Dt(G−S′) ⊇ Ct(G

′−S′), then Ds(G−S′) and Dt(G−S′) are full components of S′ in G. By Lemma 1, S′ ∈ Ss,t(G).

Theorem 18 provides a characterization of when a vertex v is included in a minimal s, t-separator. By reduction from the
3-IN-A-PATH problem we conclude that deciding whether there is a minimal s, t-separator containing a subset I ⊆ V(G) is
an NP-complete problem.
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