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Abstract

One of the key challenges in training Spiking Neural Networks (SNNs) is that
target outputs typically come in the form of natural signals, such as labels for
classification or images for generative models, and need to be encoded into spikes.
This is done by handcrafting target spiking signals, which in turn implicitly fixes
the mechanisms used to decode spikes into natural signals, e.g., rate decoding. The
arbitrary choice of target signals and decoding rule generally impairs the capacity
of the SNN to encode and process information in the timing of spikes. To address
this problem, this work introduces a hybrid variational autoencoder architecture,
consisting of an encoding SNN and a decoding Artificial Neural Network (ANN).
The role of the decoding ANN is to learn how to best convert the spiking signals
output by the SNN into the target natural signal. A novel end-to-end learning rule
is introduced that optimizes a directed information bottleneck training criterion
via surrogate gradients. We demonstrate the applicability of the technique in an
experimental settings on various tasks, including real-life datasets.

1 Introduction

While traditional Artificial Neural Networks (ANNs) implement static rate-based neurons, Spiking
Neural Networks (SNNs) incorporate dynamic spike-based neuronal models that are closer to their
biological counterparts. In different communities, SNNs are used either as models for the operation
of biological brains or as efficient solutions for cognitive tasks. The efficiency of SNNs, when
implemented on dedicated hardware, hinges on the high capacity, low latency, and high noise tolerance
of information encoding in the timing of spikes [1]. Recent results leveraging novel prototype chips
confirm the potential order-of-magnitude gains in terms of latency- and energy-to-accuracy metrics
for several optimization and inference problems [2]. In contrast, the landscape of training algorithms
for SNNss is still quite fractured [2], and a key open question is how to derive learning rules that can
optimally leverage the time encoding capabilities of spiking neurons. This is the focus of this work.

Learning how to decode. Consider the problem of training an SNN — a network of spiking neurons.
To fix the ideas, as illustrated in Fig. 1(a)-(b), say that we wish to train an SNN to classify inputs
from a neuromorphic sensor, such as a DVS camera [5], which are in the form of a collection of
spiking signals. We hence have a spiking signal as input and a natural signal (the label) as output. As
another example in Fig. 1(e), we may wish to “naturalize’’ the output of a DVS camera to produce
the corresponding natural image [6]. The direct training of an SNN hinges on the definition of a loss
function operating on the output of the SNN. This is typically done by converting the target natural
signals into spiking signals that serve as the desired output of the SNN. As seen in Fig. 1(a)-(b),
one could for instance assign a large-rate spiking signal or an earlier spike to the readout neuron
representing the correct class. The loss function then measures the discrepancy between actual output
spiking signals and the corresponding spiking targets.
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Figure 1: (a) Illustration of an SNN trained for image classification with first-to-spike decoding. (b)
[lustration of an SNN trained for image classification with rate decoding. (c) Illustration of an SG
scheme [3]: At each time-step, updates for neuron % are computed using local eligibility traces e; ¢,
and per-neuron learning signals L; ;, obtained from errors computed based on handcrafted target
signals (gray). (d) Illustration of ML learning for SRM with stochastic threshold [4]: Updates for
readout neurons (green) are obtained with local eligibility traces based on handcrafted target spiking
signal (gray), while updates for hidden neurons (red) make use of a common learning signal ¢; based
on the same target signal. (e) Illustration of the proposed hybrid variational autoencoder: An encoding
SNN processes inputs from a spiking image source, such as a DVS camera, to produce a spiking latent
representation. A decoding ANN learns to decode this representation with the aim of reconstructing
a natural target signal, such as an image, corresponding to the spiking input of the SNN. SNN and
ANN are jointly trained under a directed information bottleneck criterion. Accordingly, training of
the ANN is based on backpropagation, while training of the SNN uses per-neuron learning signals
and common feedback from both networks.

The approach outlined in the previous paragraph has an important problem: By selecting handcrafted
target spiking signals, one is effectively choosing a priori the type of information encoding into spikes
that the SNN is allowed to produce. This constrains the capacity of the SNN to fully leverage the
time encoding capabilities of spiking signals. For instance, the target signals outlined in Fig. 1(a)
correspond to assuming first-to-spike decoding, while those in Fig. 1(b) to rate decoding [7]. This
paper proposes a method that allows the SNN to automatically learn how to best encode the input
into spiking signals, without constraining a priori the decoding strategy.

To this end, we introduce the hybrid SNN-ANN autoencoder architecture shown in Fig. 1(e) that
consists of an encoding SNN to be trained alongside a decoding ANN. The role of the decoding ANN
is to learn how to best convert the spiking signals output by the SNN into the target natural signal.
Encoding SNN and decoding ANN are trained end-to-end so as to ensure that the SNN produces
informative spike-based representations that can be efficiently decoded into the desired natural signals.

Directed information bottleneck. How to jointly train the hybrid SNN-ANN autoencoder? On
the one hand, we wish the spiking output of the SNN to be informative about the target natural signal
— which we will refer to as reference signal — and, on the other, we would like the spiking output of
the SNN to remove all extraneous information present in the spiking input that is not informative
about the reference signal. To capture this dual requirement, we adopt an information bottleneck (1B)
formulation [8], and view the ANN as the inference network in a variational autoencoder system [9].

In applying the variational IB methodology to the hybrid SNN-ANN autoencoder in Fig. 1(e), we
make two key contributions. 1) Given the inherently dynamic operation of the SNN, we generalize the



IB criterion to apply to directed information metrics [10], in lieu of conventional mutual information.
We refer to the resulting approach as variational directed IB (VDIB). 2) In order to enable the
optimization of information-theoretic metrics, such as the IB, we introduce an SNN model that
encompasses deterministic hidden neurons and probabilistic readout neurons. In so doing, we
combine two strands of research on training SNNs: The first line focuses purely on deterministic
models, viewing an SNN as a Recurrent Neural Network (RNN) and deriving approximations of
backpropagation-through-time (BPTT) through surrogate gradient (SG) techniques [3, 11-15]; while
the second assumes probabilistic neurons only, deriving approximations of maximum likelihood (ML)
learning. Additional discussion on related work can be found in the next section.

2 Related works

Training SNNs. In recent years, SG techniques for training SNNs have gained significant momen-
tum, becoming the state-of-the-art and de-facto eclipsing other techniques. As reviewed in [12], these
techniques rely on surrogate derivatives to replace the ill-defined derivative of the step activation
function of spiking neurons. The SGs are combined with truncated and approximated versions of
BPTT, including the use of per-layer local error signals [13] and per-neuron learning signals defined
using direct feedback alignment [3, 15]. Learning rules for probabilistic SNNs are typically derived
by tackling the ML problem, and result in updates that rely on random sampling and common —
rather than per-neuron — learning signals. The approach was shown to generalize to networks of
winner-take-all neurons [16]. As illustrated in Fig. 1, the proposed approach builds on both models to
enable the use of SG methods for the optimization of probabilistic learning criterion.

Hybrid SNN-ANN architectures. A hybrid SNN-ANN architecture has been recently proposed
in [17] for gesture similarity analysis, based on the variational autoencoder (VAE) framework.
Although yielding a similar objective, the encoder in [17] is not fully spiking since the ANN receives
the membrane potentials of the spiking neurons in the readout layer of the SNN. The model proposed
in our work circumvents this limitation.

Information bottleneck. The IB technique originated two decades ago [8] in the context of a
rate-distortion problem formation assuming discrete variables. The approach has regained interest in
recent years, first as a means to explain the performance of ANNSs [18], and then as a training criterion
in [9]. We extend the IB by considering temporal signals under causality constraints, hereby replacing
the mutual information with directed information [10]. The IB principle has been previously used
in the SNN literature in the case of a single neuron [19,20]. Finally, it has been used in theoretical
neuroscience to explain processing in sensory neurons [21] and as a unifying principle for the
predictive and efficient coding theories. Our model encompasses the framework introduced in [21].

3 Problem definition

Notations. Consider three jointly distributed random vectors x,y, and z with distribution
p(x,y, z). The conditional mutual information (MI) between @ and y given z is defined as
I(;y]2) = Epay.2) {log (%ﬂ where E,[-] represents the expectation with respect
to the distribution p. The Kullback-Leibler (KL) divergence between two probability distributions

p(x) and g(x) defined on the same probability space is KL(p(x)||q(x)) = Ep) {bg (%)} .

For any two jointly distributed random vectors @ = (a1,...,ar)and b = (b1, ...,br) from time 1
to T', the 7-causally conditioned distribution of @ given b is defined as

a’”b Hp a‘t'at 17bf‘,—7—)> (1

where we denote as afzj = (@t,+1,-- ., at,) the overall random vector from time ¢; + 1 to 5, and

write ¢’ = a!; This distribution (1) captures the causal dependence of sequence a on the last 7
samples of b. If 7 = T', we recover the causally conditioned distribution [10].

We also define the T-directed information with 7 > 0 as

I (a — b) Zlat Lib b, 2)



This metric quantifies the causal statistical dependence of the last 7 samples from sequence a to b.
With 7 = T, this recovers the standard directed information [10]. We denote as * the convolution

operator f; x g = 2520 fsgi—s-

Problem definition. We study the hybrid SNN-ANN autoencoder architecture in Fig. 1 with the
aim of training an SNN encoder to produce a time-encoded spiking representation y of the spiking
input  that is informative about a natural reference signal . Throughout, a spiking signal is a binary
vector sequence, with “1” representing a spike, and a natural signal is a real-valued vector sequence.
In the prototypical application in Fig. 1(e), the input x is obtained from a neuromorphic sensor,
such as a DVS camera [5], and the reference signal r represents the corresponding target natural
signal, such as a label or the original natural image. The spiking representation y produced by the
SNN is fed to an ANN, whose role is to decode y into the reference signal ». Importantly, we do
not a priori constrain the decoding strategy. In contrast, existing works typically handcraft target
spiking signals y corresponding to some fixed decoding rule, such as rate decoding (Fig. 1(a)-(b)).
Our main contribution is a method to train encoding SNN and decoding ANN jointly, with the goal
of discovering automatically efficient time-decoding rules from spiking signals produced by the
encoding SNN.

To optimize SNN encoder and ANN decoder, we consider a data set comprising N pairs (x, r) of
exogeneous spiking inputs & and natural reference signals r generated from an unknown population
distribution p(z, r). The exogeneous inputs are in the form of arbitrary time vector sequence x =
(z1,...,27) with z, € {0,1}x, while the reference signals r = (r1,...,rr), with r, € RV,
define general target signals. In the image naturalization task illustrated in Fig. 1, the exogenous
inputs x are the spiking signals encoding the input from a DVS camera, with /Nx being the number
of pixels; and the reference signals r encode the pixel intensities of the natural image. This can be
done for instant by setting 7 = Oy, fort =1,...,T — 1, and r¢ equal to the grayscale image of
Ng pixels; or setting r; to equal the grayscale image of allt = 1,...,T.

We wish to train the encoding SNN to output a spiking representation y that is maximally informative
about the natural target signal . As we will detail below, the SNN implements a causal stochastic
mapping between latent signal y and input x that depends on a vector of parameters w¢® as

T
pt lle) = [ plwly' " 2., )
t=1

where the integer 7. represents the memory of the encoding SNN and w® the synaptic weights of the
SNN. As a starting point, consider maximizing the 74-directed information between y and r as

max Igf)(y — ), 4)
a,

for a decoding window 74 > 0, over the vector w® of the encoding SNN parameters. The use of the
Tq-directed information, in lieu of the mutual information I (y;r), reflects the practical requirement
that reference signal -, be well represented by a limited window y{_ . of past outputs of the SNN in

a causal manner. The directed information Igf) (y — 7) is evaluated with respect to the marginal
p(y, ) of the joint distribution

Po (@, y,7) = pla, 1)l (yl]2), 5)
combining population distribution and SNN mapping via the chain rule of probability.

The maximization (4) does not impose any constraint on the complexity of the spiking representation
y. To address this problem, we adopt the directed information bottleneck (DIB) objective

Rom(w®) = 1§ (y = ) — 8- 107 (2 = y), 6)

where 8 > 0 is a hyperparameter. The penalty term 1, }[5) (x — y) is the directed information between
the input « and the spiking representation y, which captures the complexity of the causal encoding

done by the SNN. This term is evaluated with respect to the marginal p(x,y) = p(m)pgi) (yl|z) of

the joint distribution (5), and it reflects the limited memory of the SNN encoding mapping (3). It
can be interpreted as the amount of information about input x that is (causally) preserved by the
representation y. To the best of our knowledge, the DIB objective is considered in this paper for the
first time.



4 Learning to decode through the IB

In order to address the DIB problem (6), we adopt a variational formulation that relies on the
introduction of a decoding network, as in the architecture illustrated in Fig. 1(d). The decoding
network implements the causally conditional distribution

72 (rlly) = qu (relr =yl ) (7)

between spiking representation y and natural reference signal r. The decoder (7) is causal, with
memory given by integer 74 > 1 and is parametrized by a vector w?. The decoder can be implemented
in several ways. A simple approach, that we follow in the remainder of this paper, is to use a model
Gua (TP 1yt ) = qua(re]yl_,,), where qya(r|y;_. ) is an ANN with inputs given by a
window yf_m of 74 samples from the spiking representation y. Alternatively, one could use an RNN
to directly model the kernel gy,a (r¢|r' =", yi__ ). Note that the introduction of the decoder network
(7) is consistent with the use of the 74-directed information in (6). We emphasize that the use of an
ANN, or RNN, for decoding, is essential in order to allow the reference sequence 7 to be a natural
signal.

With such a network, using a standard variational inequality [9], we bound the two terms in (6) to
obtain the variational DIB (VDIB) loss Lypig(w*, w”) as an upper bound on the negative DIB
objective (6)

) (r KL (wllo)llw) | ®

information theoretic regularization

CVDIB (’UJ wd) Epwa (y,r) IOg q Hy) +/)) . Ep(m)

~
average decoder’s log-loss

in which we have introduced an arbitrary “prior” distribution ¢(y) = [, ¢(y+|y*~") on the spiking
representation. As in the implementation in [9] for the standard IB criterion, we will consider ¢(y) to
be fixed, although it can potentially be optimized on. To enforce sparsity of the encoder’s outputs, the
“prior” ¢(y) can be chosen as a sparse Bernoulli distribution [4], i.e., ¢(y) = Hthl Bern(y;|p) for
some small probability p. The derivation of the bound can be found in Appendix A.1.

The learning criterion (8) enables the joint training of encoding SNN and decoding network via the
problem

min. Lyps(w®, w?), )
we, w?

which we address via SGD. To this end, we now give general expressions for the gradients of the

VDIB criterion (8) with respect to the encoder and decoder weights by leveraging the REINFORCE

Monte Carlo gradients. In the next section, we will then detail how the gradient with respect to

the encoding SNN weights w® can be approximated by integrating SG [3] with the probabilistic

approach [4]. To start, the VDIB loss in (8) can equivalently be stated as

(7e)
, e x
Lypi(w®, w?) =E p(x, ) E ) longd (r|ly) +0 - log M , (10)
PE T pyl (yllz) | — q(y)
population distribution mN_/ = é'wd (y,’!’)
= Lye (Y, )

where we have defined the decoder loss ¢,,4(y, ) and the encoder loss £, (y, ), as shown in (10).
The gradient with respect to the encoder weights w*® can be obtained via the REINFORCE gradient
technique [22, Ch. 8] [23] as

V’weﬁVDlB(wea wd) = EP(E,T)EPEE;)(MM) |:(‘€wd (y7 ’f’) + /3 . gw“ (yv ZB)) - Ve logp(Tp (y|(lf):| )
(11)

while the gradient with respect to the decoder weights w? can be directly computed as

vwdfCVDIB (’U) wd) Ep(:c ,,,)E <q—(,)( [degwd ('y, ’I’):| . (12)

yllx)



Unbiased estimates of the gradients (11)-(12) can be evaluated by using one sample (x, ) ~ p(x, )

from the data set, along with a randomly generated SNN output y ~ pgi) (y||x). We obtain

Ve Lyom (w0, w") % (Lo (y,7) + 8- Cue (4.2)) - Ve log i (g l) a3)

deﬁvm]g(’we,’wd) ~ defwd (y,r). (14)
While the gradient Va4, (y, r) can be computed using standard backpropagation on the decoding

ANN, the gradient Ve log pgi) (y||) for the encoder weights depends on the SNN model, and is
detailed in the next section.

As we will describe in the next section, and as illustrated in Fig. 1(d), the learning rule for the SNN
involves the common learning signal (ﬁwd(y, )+ B Lae(y, :c)) which includes two feedback
signals, one from the ANN decoder — the loss ¢, (y, 7) — and one from the SNN encoder, namely
Lye (y, ). The latter imposes a penalty for the distribution of the representation y that depends on its
“distance”, in terms of log-likelihood ratio, with respect to the reference distribution ¢(y). Apart from
the described common learning signals, which is a hallmark of probabilistic learning rules [4,24],
the update also involves per-neuron terms derived as in SG-based rules. The proposed algorithm is
detailed in Appendix A.1 and derived next.

5 SNN Model
The encoding SNN is a directed network N of spiking neurons for which at each time-step ¢ =
1,...,T, each neuron ¢ € A outputs a binary value z;;, € {0,1}. The set of neurons can be

partitioned as N' = H U Y, where H denotes the set of Ny hidden neurons, and ) the set of Ny

readout neurons that output spiking signal y over T" time instants. The SNN defines the stochastic
mapping pgﬁ)(y| |) in (3) between exogenous input sequence @ and the output y of the readout
neurons. For each neuron i € N, we denote as P; the set of pre-synaptic neurons, i.e., the set of
neurons having directed synaptic links to neuron ¢. With a slight abuse of notation, we include the
Nx exogenous inputs in this set. In order to enable the use of information-theoretic criteria via the
stochastic mapping (3), as well as the efficiency of SG-based training, we model the readout neurons
in ) using the (probabilistic) Spike Response Model (SRM) [25] with stochastic threshold [4],
while the hidden neurons in H follow the standard (deterministic) SRM. Accordingly, the spiking
mechanism of every neuron 7 € A in the SNN depends on the spiking history of pre-synaptic neurons
and of the post-synaptic neuron itself through the neuron’s membrane potential [4,24,25]

Uit = Z wi; (ozt * zj,t) + wy (ﬁt * Zi,t_1) + w§. 15)
JEP;

In (15), the contribution of each pre-synaptic neuron j is given by the synaptic trace o * 2; ¢, Where
the sequence «v; is the synaptic spike response and z; ; is the pre-synaptic neuron’s output, multiplied
by the synaptic weight wg,. The membrane potential is also affected by the post-synaptic trace
B¢ * z; 11, Where (3 is the feedback response and z; ; is the post-synaptic neuron’s output, which
is weighted by wy. The spike response «; and feedback response [3; can be different for visible and
hidden neurons (see Appendix A.2), and they have memory limited for 7, samples, i.e., a; = 5 =0
for ¢ > 7.. Finally, w{ is a learnable bias parameter. Choices for these functions and details on the
neuron models are provided in Appendix A.2.

Deterministic SRM.  For each neuron ¢ € N, the binary output z; ; € {0, 1} at time ¢ depends on
its membrane potential u; ; as

Zit = O(usz), (16)
where O(-) is the Heaviside step function: A spike is emitted when the membrane potential u; ; is
positive.

SRM with stochastic threshold. For each neuron ¢ € ) in the readout layer, the spiking probability,
when conditioned on the overall spiking history, depends on the membrane potential as

Pwe (it = Huig) = o(uiy), (17

where o(z) = 1/(1 + exp (—x)) is the sigmoid function, and w§ = {wf;, w§,ws } is the per-neuron
set of parameters. This yields the encoding stochastic mapping (3) as

T
Pt (@ll@) = [T T pus (el fuse)- (18)

icyt=1



Gradients. From Sec. 4, given (13)-(14), we need to compute the gradients Ve log pgi) (yl|x).

For the readout neurons, this can be directly done as [4]
Ve, 108 Pwe (Yir = 1|uig) = (0w * 2j0) (yise — 0(uin)) = €ij (19)

where we recall that z; ; is the spiking signal of pre-synaptic neuron j. In (19), we have defined
the pre-synaptic eligibility trace e;; ;. Learning rules can similarly derived for weights w§ and
wg, with corresponding eligibility traces e; ; and €; ¢, and we define per-neuron eligibility trace
e+ = {eijt, €+, €. For neurons ¢ € # in the hidden layer, we rely on e-prop [3] — an SG-based
technique — to obtain the approximation

T
Ve, log g (yllz) = Y Liseiju, (20)
t=1
with the learning signal
Liv = Bir(yrs — o(ury)) 1)
key

characterized by random, but fixed, weights B;; following direct feedback alignment [26], and
eligibility trace

eijt = O (uir — V) (ar * zj4). (22)

The approximation (20) comes from: (i) truncating the BPTT by ignoring the dependence of the
log-loss — 10g paye (ys,¢]us +) at time ¢ on the weight w§ due to the previous time instants ¢’ < ¢; (ii)
replacing backpropagation through neurons, via feedback alignment; and (iii) using the derivative of a
surrogate function ©’(-) [12]. For example, with a sigmoid surrogate gradient, we have ©'(-) = o’(-).

The overall algorithm, referred to as VDIB, is summarized in Appendix A.l. As anticipated in the
previous sections, the updates (31) and (32) contain elements from both probabilistic and SG-based
learning rules. In particular, the global learning signal ((y,a(y,7) + B - Lo (y, x)) relates to the
global signal used in probabilistic learning [4,24], whilst per-neuron error signal (21) is a feature of
SG schemes [3, 12].

6 Experiments

We now evaluate the proposed VDIB solution in an experimental setting. We specifically focus
on two tasks: predictive coding and naturalization of spiking signals. The former task highlights
the aspect of causal, online, encoding and decoding, and relates closely with work in theoretical
neuroscience [21]. In contrast, the latter task emphasizes the role of the proposed approach for
neuromorphic computing [6]. Specifically, the naturalization of spiking inputs, e.g., obtained from a
DVS camera [5], enables the integration of neuromorphic sensors with conventional digital sensors
and processors [6].

As the proposed hybrid architecture gives flexibility in the choice of the decoding ANN, we have
considered three options: (i) a simple logistic regression model, (ii) a multilayer perceptron (MLP)
with one hidden layer, and (iii) a convolutional neural network (CNN) with two convolutional layers
and one fully connected layer. As discussed in Sec. 3, at each time ¢, the decoding ANN is given
the sequence yffw of 74 time samples produced by the encoding SNN. As a benchmark, we also
consider conventional rate decoding, whereby time samples within the sequence y!_ , are summed

over time, yielding Zi’:t—'rd vy, before being fed to the ANN.

By considering encoding networks with a layered architecture, our implementation of both ANN and
SNN makes use of automatic differentiation and general-purpose deep learning libraries [27] and
Tesla V100 GPUs.

6.1 Efficient predictive coding

In this first experiment, we explore the use of the proposed hybrid variational autoencoder for a
predictive coding problem. Following the experiment proposed in [21], we consider exogenous
signals consisting of 20 correlated spiking signals that represent two independent auto-regressive
“drifting Gaussian blobs”. At each time ¢, the position p; € {1,...,20} of each “blob” across the
exogenous inputs follows a (wrapped) Gaussian path N (6;, o), with 6; evolving according to an
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Figure 2: Left: Illustration of the exogenous inputs (top), and accuracy as a function of the target lag
d (bottom). Right: Encoding network spike rates with lag § = —2 versus regularization constant
(top), and corresponding accuracy (bottom). Shaded areas represent standard deviations.

AR(2) process 0; = 6;_1 + v, with v, = av;_1 — bey, & ~ N(0,1), 0 = 0.45, a = 0.9 and
b = 0.14. A realization of the exogenous inputs can be found in Fig. 2(left, top). The reference signal
r; at time-step ¢ consists of the one-hot encoding of the positions of the two blobs at time ¢ + ¢ for
some time lag § € Z. A one layer encoder compresses the 20 exogenous spiking signals into 10
spiking signals, which are decoded by a softmax regressor (playing the role of the decoding ANN).
We choose the reference distribution ¢(y) to be i.i.d. Bern(0.2) to enforce temporal sparsity. We
set 7. = 5, and 74 = 5 and, where not mentioned otherwise, 8 = 1. Training is done over 50, 000
randomly generated examples, of length 7" = 100. Testing is done on a single example of length
T = 1,000. Results are presented in terms of mean squared error (MSE), and averaged over 5 trials
with random initializations. In the right panels, it can be seen that by modulating the value of 3, one
can explore the trade-off between temporal sparsity and accuracy. Overall, the approach is seen to
yield compact spiking representations that enable the reconstruction of the input signal via online
decoding. Finally, we provide a study of the effect of the window sizes 7. and 74 in Appendix A.3.

6.2 Naturalizing MNIST images

We now consider image naturalization. To start, we obtain exogenous input spiking signals x by
encoding MNIST images using either Poisson encoding (see [25]) or time-to-first-spike encoding
(as in [7]). The relevance signal is defined as 7y = Oy, fort =1,...,T — 1, and 77 is the original
image. Results are provided in terms of the accuracy of the convolutional LeNet ANN trained on the
original MNIST dataset [28]. Specifically, we feed the decoded natural images to the LeNet ANN,
and report its accuracy. The hybrid variational autoencoder compresses the 784 exogenous spiking
signals into 256 spiking signals at the readout layer of the SNN. We set 7, = 74 = T' = 30, and
B = 0.001. Training is carried over 200, 000 examples, and testing is done on the 10, 000 images
from the test dataset. Other experimental details can be found in Appendix A.3.

Table 1: Comparison of classification accuracies for an MLP ANN decoder under various encoding
strategies (for the MNIST digits at the input of the SNN) and decoding schemes (for the output of the
SNN).

Encoding \ Decoding Rate VDIB

Rate 60.50 +£0.32% 91.32 + 0.27%
Time-to-First-Spike ~ 86.43 +0.84% 92.82 4 0.25%




Figure 3: Top: Exogenous spiking inputs from the MNIST-DVS dataset summed over time samples
(first row), and reconstructed natural images via VDIB (second row). Bottom: T-SNE representation
of the spiking signals produced by the SNN with rate decoding (left), and with VDIB (right).

We explore the impact of various encoding and decoding strategies in Table 1, when using a decoding
MLP. From Table 1, we note that, although rate decoding provides clear benefits in reducing the
size of inputs to the decoder, this is at the cost of a large drop in accuracy. The clear performance
advantages for time decoding validate our working hypothesis regarding the importance to move
away from handcrafted decoding strategies.

6.3 Naturalizing MNIST-DVS images

Finally, we evaluate VDIB on the MNIST-DVS dataset [29]. Following [16,30-32], we crop images
to 26 x 26 pixels, and to 2 seconds. We also use a sampling period of 10 ms, which yields T = 200,
and evaluate the impact of coarser sampling rates on the proposed method. To obtain natural images,
the reference signal r used during training is given by a single image of the corresponding class from
the MNIST dataset. In this experiment, the 676 exogenous signals from MNIST-DVS images are
compressed by the encoder into 256 spiking signals, which are fed to a convolutional decoder. We set
Te = 7q¢ = T, and 8 = 0.001. Training is carried over 100, 000 examples, and testing is done on the
10, 000 images from the test dataset.

Fig. 3(top row) illustrates with some examples that VDIB can effectively naturalize MNIST-DVS
images. In the bottom row, we show T-SNE [33] representations of encoded spiking signals produced
by the SNN when using VDIB, and compare them with those produced when considering rate
decoding. The latter is seen to be unable to produce representations from which class patterns can be
identified, since all the representations are superimposed.

7 Conclusion

In this work, we have introduced VDIB, a variational learning algorithm for a hybrid SNN-ANN
autoencoder that is based on a directed, causal, variant of the information bottleneck. The proposed
system enables a shift from conventional handcrafted decoding rules to optimized learned decoding.
VDIB can find applications in neuromorphic sensing through naturalization of spiking signals,
and generally as a broad framework for the design of training algorithms for SNNs. This includes
applications in mobile edge computing, offering opportunities in, e.g., personal healthcare. Limitations
of this work include the choice of ANNs for decoders, where the usage of RNNs may result in
improvements. Another line for future work consists in learning the reference distribution ¢(y)
instead of fixing it.
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